Propagation of hybrid Devils Hole Pupfish × Ash Meadows Amargosa Pupfish
Feuerbacher, Olin; Mapula, Justin A.; Bonar, Scott A.
2015-01-01
Recent censuses of Devils Hole Pupfish Cyprinodon diabolis revealed that fewer than 100 individuals currently remain in the wild. Captive propagation is among actions being considered to prevent their extinction, but no pure-strain Devils Hole Pupfish were available for broodstock. To help provide emergency information, we investigated techniques to propagate their most closely related relative, hybrid Devils Hole Pupfish C. diabolis× Ash Meadows Amargosa Pupfish C. nevadensis mionectes. We tested various temperatures and larval feeds with respect to egg production, larval survival, and growth. Larval survival and growth were similar from 24°C to 32°C and egg production peaked at static 28°C; however, reducing water temperatures to 23°C and then raising them to 28°C resulted in even higher production. Larvae fed infusoria, Rio Grande Silvery Minnow Chow (RGSM), or Zeigler larval diet (ZLD) had the highest survival (79.4, 71.6, and 73.4%, respectively), and those fed Otohime (OTO) had the lowest survival (60.8%), although OTO provided greatest (14 mm) 30-d growth. Supplementation of RGSM or ZLD with Artemia nauplii increased growth but decreased survival. Larval production was maximized by placing six spawning mops, constructed of yarn and tile, in each of four 437-L parental aquaria, stocked with 24 adult fish each (1:1 sex ratio) for 3 d, to attract adults and provide spawning substrate. A 30% water change conducted on the same day of mop placement lowered water temperature from 28°C to 23°C. Water temperature was raised back to 28°C over 48 h. After 3 d, mops were transferred to hatching aquaria that were held at 28°C and aerated until larval hatch. Although some differences likely exist in effective propagation techniques for hybrid and pure-strain Devils Hole Pupfish, these data help provide initial recommendations to aid recovery.
Evaluating an icon of population persistence: the Devil's Hole pupfish
Reed, J. Michael; Stockwell, Craig A.
2014-01-01
The Devil's Hole pupfish Cyprinodon diabolis has iconic status among conservation biologists because it is one of the World's most vulnerable species. Furthermore, C. diabolis is the most widely cited example of a persistent, small, isolated vertebrate population; a chronic exception to the rule that small populations do not persist long in isolation. It is widely asserted that this species has persisted in small numbers (less than 400 adults) for 10 000–20 000 years, but this assertion has never been evaluated. Here, we analyse the time series of count data for this species, and we estimate time to coalescence from microsatellite data to evaluate this hypothesis. We conclude that mean time to extinction is approximately 360–2900 years (median 410–1800), with less than a 2.1% probability of persisting 10 000 years. Median times to coalescence varied from 217 to 2530 years, but all five approximations had wide credible intervals. Our analyses suggest that Devil's Hole pupfish colonized this pool well after the Pleistocene Lakes receded, probably within the last few hundred to few thousand years; this could have occurred through human intervention. PMID:25232135
Sackett, Joshua D; Huerta, Desiree C; Kruger, Brittany R; Hamilton-Brehm, Scott D; Moser, Duane P
2018-01-01
Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish.
Huerta, Desiree C.; Kruger, Brittany R.; Hamilton-Brehm, Scott D.; Moser, Duane P.
2018-01-01
Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish. PMID:29543879
Oxygen Consumption is Limited at an Ecologically Relevant Rearing Temperature in Pupfish Eggs.
Jones, Alexander C; Lim, David; Wayne-Thompson, Jacoby J; Urbina, Natasha; Puentedura, Georgina; Hillyard, Stanley; Breukelen, Frank Van
2016-10-01
The habitat of the critically endangered Devils Hole Pupfish, Cyprinodon diabolis is marked by constant high temperatures and low oxygen availability. In order to explore the effects of these conditions on development and recruitment of eggs in Devils Hole, we tested the effects of two ecologically relevant temperatures on the development, hatch success, and oxygen consumption of eggs from a refuge population of pupfish derived from C. diabolis and eggs from its close sister species, Cyprinodon nevadensis mionectes. We developed a simple method to measure oxygen consumption in a single egg. Parent acclimation temperature, rather than incubation temperature, was the most important factor influencing hatch success. Eggs incubated at 33°C hatched more quickly compared to those incubated at 28°C. Despite this accelerated development, larvae from both temperatures were of similar size at hatch. Unexpectedly, eggs incubated at 33°C experience lower than expected oxygen consumption rates compared to those incubated at 28°C. Oxygen consumption rates would be limited at PO 2 values that are much higher than environmental oxygen tensions. Oxygen consumption increased dramatically upon hatch, indicating that low oxygen conditions such as those present in Devils Hole may limit developing eggs. © 2016 Wiley Periodicals, Inc.
Climate change, shifting seasons, and the ecohydrology of Devils Hole, Death Valley National Park
NASA Astrophysics Data System (ADS)
Hausner, M. B.; Wilson, K. P.; Gaines, D. B.; Suarez, F. I.; Tyler, S. W.
2011-12-01
Devils Hole, a water-filled fracture in the carbonate aquifer of the Death Valley Regional Flow System, comprises an ecosystem that can serve as a bellwether of climate change. This 50 square meter pool of unknown depth is home to the only extant population of the endangered Devils Hole pupfish (Cyprinodon diabolis). A shallow shelf in the system provides the most suitable habitat for spawning, and the past pupfish population counts have been correlated to the water level in the system. Recently, however, population declines unrelated to water level have been observed. The 33° C waters of Devils Hole are near the upper threshold for most Cyprinodon species, and the shallow shelf experiences the greatest diurnal and seasonal temperature variability. The extremely limited habitat, small population (the spring, 2011 population survey counted approximately 100 individuals), and precarious nature of populations near survival thresholds combine to make the system exceptionally susceptible to the impacts of climate change. A hydrodynamic model of the shallow shelf was developed to simulate thermal convection in response to a number of energy fluxes, including climatic drivers such as air temperature and solar radiation. Simulations of current conditions demonstrate seasonal and diurnal changes in the temperature of the water and the substrate in which adult pupfish spawn, eggs hatch, and larvae develop. The simulated convection patterns also influence the oxygen dynamics, nutrient cycling, and the food web of the ecosystem. Simulations of future conditions using a delta change methodology point towards changes in the seasonal cycles, which may limit or shift the reproductive season of the species.
500,000-year temperature record challenges ice age theory
Snow, K. Mitchell
1994-01-01
Just outside the searing heat of Death Valley lies Devils Hole (fig. 1), a fault-created cave that harbors two remnants of the Earth's great ice ages. The endangered desert pupfish (Cyprinodon diabolis) has long made its home in the cave. A 500,000-year record of the planet's climate that challenges a widely accepted theory explaining the ice ages also has been preserved in Devils Hole.
NASA Astrophysics Data System (ADS)
Halford, K. J.; Jackson, T.; Fenelon, J.
2017-12-01
Endangered species such as the Devils Hole pupfish can be affected by decadal groundwater-level changes of less than 1 ft. These relatively minor changes in long-term water levels primarily result from temporal variations in recharge and groundwater development. Natural groundwater-level changes are the summation of episodic rises from infrequent recharge events and steady declines from regional groundwater discharge. Rising water levels have been observed in Devils Hole and across southern Nevada in response to wetter conditions during 1970-2016 relative to the 1900-1970 period. Interpretation of water-level changes in Devils Hole were made tractable by differentiating naturally occurring rises from pumping effects with analytical water-level models. Effects of local and regional pumping on water-level changes in Devils Hole were differentiated easily with a calibrated groundwater-flow model after removing natural rising trends. Annual average water levels declined 2.3 ft from 1968-1972 in response to local pumping within 2 mi of Devils Hole and rose 1.7 ft from 1973-2016 in response to the cumulative effects of recharge, recovery from the cessation of local pumping, and long-term declines of regional pumping.
Design and testing of a mesocosm-scale habitat for culturing the endangered Devils Hole Pupfish
Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.
2016-01-01
aptive propagation of desert spring fishes, whether for conservation or research, is often difficult, given the unique and often challenging environments these fish utilize in nature. High temperatures, low dissolved oxygen, minimal water flow, and highly variable lighting are some conditions a researcher might need to recreate to simulate their natural environments. Here we describe a mesocosm-scale habitat created to maintain hybrid Devils Hole × Ash Meadows Amargosa Pupfish (Cyprinodon diabolis × C. nevadensis mionectes) under conditions similar to those found in Devils Hole, Nevada. This 13,000-L system utilized flow control and natural processes to maintain these conditions rather than utilizing complex and expensive automation. We designed a rotating solar collector to control natural sunlight, a biological reactor to consume oxygen while buffering water quality, and a reverse-daylight photosynthesis sump system to stabilize nighttime pH and swings in dissolved oxygen levels. This system successfully controlled many desired parameters and helped inform development of a larger, more permanent desert fish conservation facility at the U.S. Fish and Wildlife Service’s Ash Meadows National Wildlife Refuge, Nevada. For others who need to raise fish from unique habitats, many components of the scalable and modular design of this system can be adapted at reasonable cost.
NASA Astrophysics Data System (ADS)
Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.
2012-05-01
Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure vertical temperature profiles in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature profiles are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS observations make it possible to observe temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.
Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey
2013-01-01
We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.
Chaudoin, Ambre L.; Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.
2015-01-01
The monitoring of threatened and endangered fishes in remote environments continues to challenge fisheries biologists. The endangered Devils Hole Pupfish Cyprinodon diabolis, which is confined to a single warm spring in Death Valley National Park, California–Nevada, has recently experienced record declines, spurring renewed conservation and recovery efforts. In February–December 2010, we investigated the timing and frequency of spawning in the species' native habitat by using three survey methods: underwater videography, above-water videography, and in-person surveys. Videography methods incorporated fixed-position, solar-powered cameras to record continuous footage of a shallow rock shelf that Devils Hole Pupfish use for spawning. In-person surveys were conducted from a platform placed above the water's surface. The underwater camera recorded more overall spawning throughout the year (mean ± SE = 0.35 ± 0.06 events/sample) than the above-water camera (0.11 ± 0.03 events/sample). Underwater videography also recorded more peak-season spawning (March: 0.83 ± 0.18 events/sample; April: 2.39 ± 0.47 events/sample) than above-water videography (March: 0.21 ± 0.10 events/sample; April: 0.9 ± 0.32 events/sample). Although the overall number of spawning events per sample did not differ significantly between underwater videography and in-person surveys, underwater videography provided a larger data set with much less variability than data from in-person surveys. Fixed videography was more cost efficient than in-person surveys (\\$1.31 versus \\$605 per collected data-hour), and underwater videography provided more usable data than above-water videography. Furthermore, video data collection was possible even under adverse conditions, such as the extreme temperatures of the region, and could be maintained successfully with few study site visits. Our results suggest that self-contained underwater cameras can be efficient tools for monitoring remote and sensitive aquatic ecosystems.
Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.
2017-01-01
We evaluated the effectiveness of four antibiotics in enhancing the hatch rate, larval survival, and adult survival of hybrid Devils Hole Pupfish Cyprinodon diabolis (hybridized with Ash Meadows Amargosa Pupfish C. nevadensis mionectes). Cephalexin (CEX; concentration = 6.6 mg/L of water), chloramphenicol (CAM; 50 mg/L), erythromycin (ERY; 12.5 mg/L), and trimethoprim sulfamethoxazole (TMP-SMX; 25 mg/L) were applied as a constant bath either to incubating eggs or to larvae that hatched from untreated eggs. Hatch rate was roughly doubled by incubation in the presence of CAM (68% hatch) and TMP-SMX (66%) relative to the control (28%). Cephalexin and ERY conferred no benefit upon the hatch rate. Among fry that hatched from treated eggs, there was no increase in 15-d larval survival. However, fish that hatched from eggs treated with CAM, ERY, and TMP-SMX demonstrated enhanced survival at 360 d (51.2, 38.4, and 43.6%, respectively) and at 540 d (22.6, 6.8, and 20.2%, respectively); the untreated control had no survivors to those time points. All groups of eggs treated with antibiotics showed reductions in bacterial colony-forming units (CFUs) at 24 h posttreatment. At 120 h posttreatment, CEX-treated eggs had CFU counts similar to those of the control, whereas the TMP-SMX-treated eggs had the lowest CFU counts. Eggs treated with CAM and ERY had similar CFU counts, which were significantly reduced from the control counts. Larvae that were treated with CAM and TMP-SMX within 12 h posthatch showed enhanced 15-d survival (74% and 72%, respectively) in comparison with the control (56%). For pupfish rearing efforts in which antibiotic use is appropriate, CAM and TMP-SMX appear to provide the greatest benefit, particularly when applied to incubating eggs rather than to hatched larvae.
NASA Astrophysics Data System (ADS)
Cutillo, P. A.; Ge, S.
2004-12-01
Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the Devils Hole area.
Cyprinodon diabolis: prospects for an endangered desert pupfish in a changing climate
NASA Astrophysics Data System (ADS)
Hausner, M. B.; Wilson, K. P.; Gaines, D. B.; Suarez, F. I.; Tyler, S. W.
2013-12-01
A small groundwater-fed ecosystem in the Mojave Desert of the southwestern United States, Devils Hole is home to the only extant population of the Devils Hole pupfish (Cyprinodon diabolis). The critically endangered population of these fish entered a heretofore unexplained decline in the mid-1990s. Successful reproduction in Cyprinodon spp. is influenced by both water temperature and dissolved oxygen content, and the annual recruitment of C. diabolis depends on the coincidence of annual temperature cycles and seasonal changes in the ecosystem's food web. Recent climate change in the Mojave Desert is already sufficient to increase water temperatures more than 0.1 °C. Understanding the future impacts of climate on the ecosystem is critical to management and conservation efforts. In this study, we employ computational fluid dynamics to consider the ecosystem's physical response to projected climate scenarios. Using an energy-based model driven by a range of climate (air temperatures) and management (water levels) scenarios, we simulate water temperatures on the critical shallow shelf that comprises the optimum spawning habitat in the ecosystem. Results show that increasing air temperatures shift the timing of the thermal conditions conducive to spawning and the ecosystem's food web, and that the brief period each spring during which both aspects are suitable for recruitment will likely become shorter in the future. Simulations also show that the impact of air temperature on water temperature is much less for scenarios in which the water level is higher, pointing toward one potential strategy for mitigating the ecological effects of the changing climate.
Paradoxical anaerobism in desert pupfish.
Heuton, Matt; Ayala, Luis; Burg, Chris; Dayton, Kyle; McKenna, Ken; Morante, Aldo; Puentedura, Georgina; Urbina, Natasha; Hillyard, Stanley; Steinberg, Spencer; van Breukelen, Frank
2015-12-01
In order to estimate metabolic demands of desert pupfish for conservation purposes, we measured oxygen consumption in fish acclimated to the ecologically relevant temperatures of 28 or 33°C. For these experiments, we used fish derived from a refuge population of Devils Hole pupfish (Cyprinodon diabolis). Measurement of routine oxygen consumption (V̇O2,routine) revealed some 33°C-acclimated fish (10% of 295 assayed fish) periodically exhibited periods of no measurable oxygen consumption despite available ambient oxygen tensions that were above the critical PO2. We call this phenomenon paradoxical anaerobism. The longest observed continuous bout with no oxygen consumption was 149 min, although typical bouts were much shorter. Fish maintained normal posture and ventilation rate (>230 ventilations per minute) during paradoxical anaerobism. Fish rarely demonstrated a compensatory increase in oxygen use following a period of paradoxical anaerobism. In contrast, only one out of 262 sampled fish acclimated at 28°C spontaneously demonstrated paradoxical anaerobism. Muscle lactate concentration was not elevated during periods of paradoxical anaerobism. However, the amount of ethanol released by the 33°C-acclimated fish was 7.3 times greater than that released by the 28°C acclimation group, suggesting ethanol may be used as an alternative end product of anaerobic metabolism. Exposure to exogenous ethanol, in concentrations as low as 0.1%, produced periods of paradoxical anaerobism even in 28°C-acclimated fish. © 2015. Published by The Company of Biologists Ltd.
78 FR 12776 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
.... SUPPLEMENTARY INFORMATION: Public Availability of Comments The Act (16 U.S.C. 1531 et seq.) prohibits activities... (5 U.S.C. 552a) and Freedom of Information Act (5 U.S.C. 552). Permit TE-022190 Applicant: Arizona... pupfish (Cyprinodon elegans) Devils River minnow (Dionda diaboli) Fountain darter (Etheostoma fonticola...
Plummer, Niel; Busenberg, E.; Riggs, A.C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7??C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34??C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of P(CO)(2), decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Plummer, Niel; Busenberg, Eurybiades; Riggs, Alan C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Winograd, I.J.; Landwehr, J.M.
1993-01-01
The detailed and well-dated 500,000-yr record of oxygen-18 variations found in vein calcite core DH-11 taken from Devils Hole in Nevada provides several challenges to the Milankovitch theory for the occurrence of Quaternary glaciations. A recent discussion paper (Imbrie and others, 1993) has dismissed the relevance of this well-dated core for determining the timing of global climatic fluctuations and, moreover, asserts that the Devils Hole record provides support for the Milankovitch theory. Upon analysis of the arguments found in this discussion, the authors found nothing to dissuade them from the original conclusion that the Devils Hole chronology does present a serious challenge to the Milankovitch theory.
Devils Hole, Nevada, δ18O record extended to the mid-Holocene
Winograd, Isaac J.; Landwehr, Jurate M.; Coplen, Tyler B.; Sharp, Warren D.; Riggs, Alan C.; Ludwig, Kenneth R.; Kolesar, Peter T.
2006-01-01
The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
Winograd, Isaac J.
2016-01-01
Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
NASA Astrophysics Data System (ADS)
Winograd, Isaac J.
2016-10-01
Moseley et al. (Reports, 8 January 2016, p. 165) postulate an increase in dissolved thorium isotope 230Th with depth below the water table as the explanation for the differing ages of Termination II. Flow of geothermal water through the Devils Hole caverns precludes this explanation. Deposition of younger secondary calcite into the initial porosity of the calcite comprising their cores is a plausible alternate explanation.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Brumbaugh, William G.
2012-01-01
We assessed the suitability of two nonnative poeciliid fishes—western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna)—for monitoring selenium exposure in desert pupfish (Cyprinodon macularius). Our investigation was prompted by a need to avoid lethal take of an endangered species (pupfish) when sampling fish for chemical analysis. Total selenium (SeTot) concentrations in both poeciliids were highly correlated with SeTot concentrations in pupfish. However, mean SeTot concentrations varied among fish species, with higher concentrations measured in mosquitofish than in mollies and pupfish from one of three sampled agricultural drains. Moreover, regression equations describing the relationship of selenomethionine to SeTot differed between mosquitofish and pupfish, but not between mollies and pupfish. Because selenium accumulates in animals primarily through dietary exposure, we examined fish trophic relationships by measuring stable isotopes (δ13C and δ15N) and gut contents. According to δ13C measurements, the trophic pathway leading to mosquitofish was more carbon-depleted than trophic pathways leading to mollies and pupfish, suggesting that energy flow to mosquitofish originated from allochthonous sources (terrestrial vegetation, emergent macrophytes, or both), whereas energy flow to mollies and pupfish originated from autochthonous sources (filamentous algae, submerged macrophytes, or both). The δ15N measurements indicated that mosquitofish and mollies occupied similar trophic levels, whereas pupfish occupied a slightly higher trophic level. Analysis of gut contents showed that mosquitofish consumed mostly winged insects (an indication of terrestrial taxa), whereas mollies and pupfish consumed mostly organic detritus. Judging from our results, only mollies (not mosquitofish) are suitable for monitoring selenium exposure in pupfish.
Geology of the Devils Hole area, Nevada
Carr, W.J.
1988-01-01
Detailed and reconnaissance mapping of the Devils Hole, Nevada, area has improved definition of the local geologic structure within a regional carbonate aquifer near its primary discharge points -- the springs of Ash Meadows. Several formerly unmapped calcite veins, and other young calcite-lined paleo-spring feeder zones were found, as well as a number of previously unknown small collapse areas in the limestone. Although the predominant structural grain of the area is oriented northwest, the importance of the very subordinate northeast-striking faults and fractures is underscored by their association with Devils Hole itself, with most of the collapse depressions, and with many of the calcite veins in ' lake beds ' and alluvium. Probable channeling of groundwater flow may occur along one important northeast-striking fault zone. The persistent tendency for openings may have been facilitated by underlying low-angle faults that separate brittle carbonate rocks from underlying, less-competent clastic rocks. (Author 's abstract)
Devils Hole, Nevada—A photographic story of a restricted subaqueous environment
Hoffman, Ray J.
2017-07-24
This report presents selected photographic images taken by the author during U.S. Geological Survey (USGS) research into paleoclimatology and geochemistry in Devils Hole cavern during 1984 to 1993 in cooperation with the National Park Service. The unaltered suite of photographs was prepared by the USGS dive team as an aid to assist nondiving scientists with a visual perspective of the environment where earth-science samples were collected and subsequently analyzed for chemical and isotopic composition.
Martin, B.A.; Saiki, M.K.
2005-01-01
We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray-Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinnaandPoecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. This study also documented evidence of predation by mudsuckers on pupfish. These findings support the contention of many resource managers that pupfish populations are adversely influenced by ecological interactions with nonnative fishes. ?? Springer 2005.
2015-11-05
On an early fall afternoon in Ganges Chasma Valles Marineris, NASA Mars Reconnaissance Orbiter spacecraft managed to capture a cluster of eight dust devils, five of them in the enhanced color strip. They're together on a dark sandy surface that tilts slightly to the north, towards the Sun. Both of these factors help warm the surface and generate convection in the air above. The surface is streaked with the faint tracks of earlier dust devils. A pair of dust devils appears together at top right, spaced only 250 meters apart. These two have quite different morphologies. The bigger one (on the right) is about 100 meters in diameter and is shaped like a doughnut with a hole in the middle. Its smaller companion is more compact and plume-like, but it too has a small hole in the center, where the air pressure is lowest. It may be that the smaller dust devil is younger than the larger one. A row of four dust devils are in the middle of the color strip, separated by about 900 meters from one another. This image might answer some interesting questions about the behavior of dust devils. Dust devils are theoretically expected to migrate uphill on a sloping surface, or migrate downwind when there is a breeze. Where they are found close together in pairs, they are expected to rotate in opposite directions. HiRISE color observations can be used to determine the direction of rotation and-for fast moving dust devils-the direction of their travel. This is because the different color observations (infrared, red, and blue) are taken at slightly different times. The differences between the earliest color observation and the last tell us about the changes that took place during that time interval. All this requires careful analysis, but if these dust devils are moving fast enough, and spaced closely enough, these here might display some interesting "social dynamics," possibly marching together and rotating in alternating directions. http://photojournal.jpl.nasa.gov/catalog/PIA20045
Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.
2012-01-01
Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching success, larval survival and deformities) were documented throughout the life-cycle study.Selenium concentrations in water (as much as 52 micrograms per liter [μg/L]) and diets (as much as 53 micrograms per gram [μg/g], on a dry weight basis) bracketed concentrations reported in pupfish habitats. Juvenile F0 pupfish rapidly accumulated Se and bioaccumulation models indicated that pupfish had reached more than 97 percent of maximum whole-body Se concentrations by the time they reached reproductive maturity. Adult pupfish accumulated whole-body Se concentrations that averaged about 40 percent of those in the oligochaete diets. Selenium concentrations in eggs and F1 juveniles were similar to or slightly greater than Se concentrations in F0 adults. Juvenile F0 pupfish contained selenomethionine fractions (62–71 percent of whole-body Se) greater than the average reported for wild pupfish from the Imperial Valley (53 percent).Selenium exposure had minimal effects on survival or growth of juvenile and adult pupfish. There was evidence of toxic effects on pupfish in the highest Se treatment (Se–5), including reduced growth of F0 and F1 juvenile pupfish (17–21 percent less than controls) on some sampling dates. These growth reductions did not persist to subsequent sampling dates, but reduced growth of F1 pupfish in the Se–5 treatment was associated with reduced survival (12 percent less than controls).Egg production was greatest in the controls and decreased with increasing Se exposure, reaching a minimum (51 percent less than controls) in the Se–4 treatment, but egg production was reduced by only 24 percent in the Se–5 treatment, a lesser reduction than in other Se treatments except Se–1. There was no statistically significant overall effect of Se treatment on mean pupfish egg production, reflecting large variation among replicates and among sampling dates. However, comparisons of daily mean egg production for 23 sampling dates indicated that egg production in each of 5 Se treatments was significantly less than controls on multiple (3–7) sampling dates, but no mean for any Se treatment was significantly greater than controls on any date. Significant reductions in daily egg production occurred mainly during the middle of the study and egg production increased in several Se treatments during the final 2 weeks of the study. These results suggest that pupfish egg production, although a highly variable endpoint, was adversely affected by elevated Se exposure.Neither egg hatching success nor survival of F1 larvae indicated clear evidence of Se toxicity. Egg hatching success did not differ significantly among treatments, with means ranging from 84–91 percent. The frequency of morphological deformities (primarily spinal deformities) was greater in larvae 10 days post-fertilization (dpf) from a preliminary reproduction study than in older larvae (14 dpf) from the main reproduction study. The frequency of larval deformities was generally greater in Se treatments than controls, but mean frequencies did not differ significantly among treatments. Survival of F1 larvae to 21 dpf was not reduced significantly by parental Se exposure, but the Se–5 treatment had the lowest larval survival (84 percent), and lowest combined egg hatching and larval survival (76 percent).Results of the Se treatments indicate that pupfish were insensitive to Se toxicity through most of their life cycle. Consistent toxic effects on survival and growth of juvenile and adult pupfish (defined as at least 10 percent reduction compared to controls) occurred only in treatment Se–5, which had a mean dietary Se concentration of 52 μg/g and a mean pupfish whole-body Se concentration of 27 μg/g. These apparent toxicity thresholds for growth and survival rank among the least sensitive chronic Se toxicity values reported for nonreproductive endpoints in freshwater fish. Comparisons of these thresholds to surveys of Se concentrations in the Imperial Valley suggest that risks of Se toxicity are low in pupfish habitats. The dietary threshold was about twice as high as the greatest mean Se concentrations reported in midge larvae from seven sites in the Imperial Valley. Whole-body thresholds were greater than mean whole-body Se concentrations reported for field-collected pupfish from three sites and for the sailfin molly (Poecilia latipinna), a potential bioaccumulation surrogate for pupfish, from seven sites.Reduced egg production, although highly variable, was the most sensitive response of pupfish to Se exposure. Toxic effects on egg production (reductions of 24–51 percent relative to controls) occurred in the four highest Se treatments, corresponding to reproductive toxicity thresholds of 7.3 μg/g for Se in diet, 3.4 μg/g in pupfish (whole body), and 4.4 μg/g in pupfish eggs. These thresholds are substantially lower than published Se toxicity values for reproductive effects in other freshwater fish (for example, 17–24 μg/g in eggs). Reduced egg production has not been reported as a sensitive endpoint in Se toxicity studies, although abnormal ovarian development has been reported in Se-exposed fish, and reduced egg production has been reported as a sensitive response of other Cyprinodon pupfish to other environmental stressors.Selenium concentrations in tissues of pupfish, mollies, and diet items from Imperial Valley sites frequently exceeded concentrations associated with reduced pupfish egg production in the laboratory study. Reduced egg production may limit the ability of pupfish populations to persist and recover in Se-contaminated habitats in the Imperial Valley and elsewhere in their limited range. However, these apparent risks of Se toxicity are not supported by recent surveys of desert pupfish populations in the Imperial Valley. These surveys indicated that desert pupfish made up a small, but variable, component of fish communities in Imperial Valley habitats, including sites with increased levels of Se exposure, and that pupfish distribution and population density indicated no clear relationships with Se concentrations in diets or fish tissues. Additional studies could determine the role of egg production in the maintenance and recovery of desert pupfish populations in Se-contaminated habitats.
Water-resources data collected in the Devils Hole area, Ash Meadows, Nevada, 1975-76
Hanes, William Toby
1976-01-01
The U.S. Geological Survey collected water-level, spring-flow, and power-consumption data in the Devils Hole area in Nevada from July 1975 through June 1976. The work for this sfurth annual data report was done in cooperation with the National Park Service. Continuous recorders were used to monitor water levels in Devils Hole, three observation wells, and the flow from four springs. Also, monthly readings were made on two wells to help define a general trend of ground-water levels. Monthly meter readings of six electrically powered irrigation wells provided a record of power consumption, which in turn, is an index of the amount of water pumped. The purpose of the work is to observe the effects, if any, of ground-water withdrawals from specified irrigtion wells in the Ash Meadows area on (1) the water level in Devils Hole, and (2) the flow of four springs in the area. Fairbanks Spring and Big Spring, which are in the extreme northern and southern parts of Ash Meadows respectively, show little effect of pumping. An increase in the monthly average flow at Fairbanks Spring in September can be attributed to runoff and surficial recharge in the surrounding area caused by a large cloudburst. Jack Rabbit Spring, which is about 1 mile southwest of the major pumping field, is affected strongly by pumping. Jack Rabbit Spring flowed during the winter months but flowed very infrequently during non-winter months. Point of Rocks Spring had a flow pattern similar to Big Spring and Fairbanks Spring. All the springs had a general increase in flow during the Winter months. (Woodard-USGS)
The chronology for the d18O record from Devils Hole, Nevada, extended into the Mid-Holocene
Landwehr, J.M.; Sharp, W.D.; Coplen, T.B.; Ludwig, K. R.; Winograd, I.J.
2011-01-01
This report presents the numeric values for the chronology of the paleoclimatically relevant mid-to-late Pleistocene record of the ratios of stable oxygen isotope (delta18O) in vein calcite from Devils Hole, Nev., which recently had been extended into the mid-Holocene. Dating was obtained using 230Th-234U-238U thermal ionization mass spectrometry. Devils Hole is a subaqueous cave of tectonic origin, which developed in the discharge zone of a regional aquifer in south-central Nevada. The primary groundwater recharge source area is the Spring Mountains, the highest mountain range in southern Nevada [altitude 3,630 meters (m)], approximately 80 kilometers to the east of the cavern. The walls of the open fault zone comprising the cave system are coated with dense vein calcite precipitated from the through-flowing groundwater. The calcite, up to 40 centimeters (cm) thick, contains a continuous record of the sequential variation of the composition of stable oxygen isotopes in the ground water over time. The vein calcite has also proven to be a suitable material for precise uranium-series dating via thermal ionization mass spectrometry utilizing the 230Th-234U-238U decay clock. Earlier work has presented data from the Devils Hole core DH-11, a 36-cm-long core of vein calcite recovered from a depth of about 30 m below the water table (about 45 m beneath the ground surface). The DH-11 core provided a continuous record of isotopic oxygen variation from 567,700 to 59,800 years before present. Recent work has extended this record up to 4,500 years before present, into the mid-Holocene epoch.
Landwehr, Jurate Maciunas
2002-01-01
This report presents the data for the Vostok - Devils Hole chronology, termed V-DH chronology, for the Antarctic Vostok ice core record. This depth - age relation is based on a join between the Vostok deuterium profile (D) and the stable oxygen isotope ratio (18O) record of paleotemperature from a calcitic core at Devils Hole, Nevada, using the algorithm developed by Landwehr and Winograd (2001). Both the control points defining the V-DH chronology and the numeric values for the chronology are given. In addition, a plausible chronology for a deformed bottom portion of the Vostok core developed with this algorithm is presented. Landwehr and Winograd (2001) demonstrated the broader utility of their algorithm by applying it to another appropriate Antarctic paleotemperature record, the Antarctic Dome Fuji ice core 18O record. Control points for this chronology are also presented in this report but deemed preliminary because, to date, investigators have published only the visual trace and not the numeric values for the Dome Fuji 18O record. The total uncertainty that can be associated with the assigned ages is also given.
Martin, Barbara A.; Saiki, Michael K.
2009-01-01
This study was conducted to characterize trophic relationships of small nonnative fishes and to determine if predation by these fishes contributes to the decline of desert pupfish (Cyprinodon macularius), an endangered cyprinodont on the verge of extinction. We sampled 403 hybrid Mozambique tilapias (Oreochromis mossambica by O. urolepis), 107 redbelly tilapias (Tilapia zillii), 32 longjaw mudsuckers (Gillkhthys mirabilis), 182 western mosquitofish (Gambusia affinis), 222 sailfin mollies (Poecilia latipinna), 63 shortfin mollies (Poecilia mexicana), and 235 porthole livebearers (Poecilurpsis gracilis) from a natural creek and four agricultural drains during September 1999- December 2001. Evidence of piscivory was in gastrointestinal contents of 14 hybrid Mozambique tilapias, 3 redbelly tilapias, 10 longjaw mudsuckers, 8 western mosquitofish, 2 sailfin mollies, and 8 porthole livebearers. Although digestion often was too advanced for identification of fishes consumed by nonnative fishes, remains of desert pupfish were in gastrointestinal contents of a longjaw mudsucker. Our findings, along with Field evidence from other studies that inverse relationships exist between abundances of desert pupfish and nonnative species, are consistent with the hypothesis that predation by nonnative species is contributing to decline of desert pupfish. We suspect that competitive interactions with nonnative fishes might also adversely affect abundance of desert pupfish.
Saiki, Michael K.; Martin, Barbara A.; Anderson, Thomas W.
2011-01-01
In October 2006, months after shallow experimental ponds in the Salton Sea Basin were filled with water from the Alamo River and Salton Sea, fish were observed in several ponds, although inlets had been screened to exclude fish. During October 2007November 2009, nine surveys were conducted using baited minnow traps to document species and relative abundance of fish. Surveys yielded 3,620 fish representing five species. Desert pupfish (Cyprinodon macularius), the only native species encountered, was the most numerous and comprised >93% of the catch. Nonnative species included western mosquitofish (Gambusia affinis, 4.1%), sailfin molly (Poecilia latipinna, 2.8%), and tilapia (a mixture of hybrid Mozambique tilapia Oreochromis mossambicus ?? O. urolepis and redbelly tilapia Tilapia zillii, <0.1%). Dominance by desert pupfish, which persisted over our 2 years of study, was unusual because surveys conducted in nearby agricultural drains yielded relatively few desert pupfish.
Safe Harbor: a tool to help recover topminnow and pupfish in Arizona
Douglas K. Duncan; Jeremy Voeltz
2005-01-01
The Arizona Game and Fish Department (Department) has developed a Safe Harbor Agreement (SHA) for four native fishes in Arizona. The SHA will allow Gila and Yaqui topminnow (Poeciliopsis occidentalis and P. sonoriensis) and desert and Quitobaquito pupfish (Cyprinodon macularius and C. eremus)...
Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.
2014-01-01
The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about 19,600 years old. Dissolved-solids concentrations of Lost River samples collected from 1984 to 1999 ranged from 8,930 to 118,000 (estimated) mg/L. Dissolved-solids concentrations in samples from nonhabitat area sites ranged from 1,740 to 54,200 (estimated) mg/L. In general, water collected from pupfish nonhabitat area sites tends to have larger proportions of calcium, magnesium, and sulfate than water from pupfish habitat area sites. Water from springs associated with mounds in pupfish nonhabitat areas was of a similar type (calcium-sulfate) to water associated with mounds in pupfish habitat areas. Alkali Spring had a sodium-chloride water type, but the proportions of sodium-chloride and magnesium-sulfate are unique as compared to samples from other sites.
Flores-Galván, Miguel; Arellano-García, Evarista; Ruiz-Campos, Gorgonio; Daesslé, Luis Walter
2017-08-01
The frequency of micro nucleated erythrocytes in peripheral blood of the desert pupfish (Cyprinodon macularius) from a geothermal effluent pond is determined and compared to organisms kept in an aquarium. The frequency of micronucleated erythrocytes found in pupfish from the geothermal pond is 2.75 (±2.09) and only 0.44 (±0.52) in captivity organisms. Dissolved As in the ponds doubles the 340 µg L -1 US-EPA acute quality criteria for aquatic life and Hg equals the 1.77 µg L -1 chronic criteria. The organisms with high MNE also have significantly high Se, As and Hg concentrations in muscle and liver. Compared to international maximum allowable limits for fish consumption, there is 81× enrichment for Se, 6× for As and 5× for Hg. Although Se is not significantly enriched in water, it is likely that its bioaccumulation occurs via feeding of detritus. The desert pupfish has a significant resistance to extreme metal accumulations and to recover under unpolluted conditions.
Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark
2011-01-01
This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red swamp crayfish and western mosquitofish was in water with temperature greater than 26 degrees C near the springhead, and in shallow (depths less than 10 centimeters) grassy marshes. Among 177 sampling stations within the range of Warm Springs Amargosa pupfish, red swamp crayfish were collected at 96 stations and western mosquitofish were collected at 49 stations. Removal of convict cichlid (Amatitlania nigrofasciata) from Fairbanks Spring was followed by a substantial increase in Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) captures from 910 pre-removal to 3,056 post-removal. Red swamp crayfish was continually removed from Bradford 1 Spring, which seemed to cause an increase in the speckled dace population. Restoration of Kings Pool and Jackrabbit Springs promoted the success of native fishes with the greatest densities in restored reaches. Ongoing restoration of Carson Slough and its tributaries, as well as control and elimination of invasive species, is expected to increase abundance and distribution of Ash Meadows' native fish populations. Further analysis of data from this study will help determine the habitat characteristic(s) that promote native species and curtail non-native species.
Camarena-Rosales, Faustino; Del Río-Portilla, Miguel A; Ruiz-Campos, Gorgonio; García-De-León, Francisco J
2016-11-01
The complete mitochondrial genome sequence of the Desert Pupfish, Cyprinodon macularius (Gene accession number KM985373) has a length of 16,940 bp, and the arrangement consisted of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 22 transfer RNA, which are similar to other known mitogenomes for the family Cyprinodontidae.
Pleistocene pollen stratigraphy from borehole 81/34, devil's hole area, central north sea
NASA Astrophysics Data System (ADS)
Ekman, Sten R.
1998-09-01
Twelve pollen assemblage zones are identified in a 229 m deep borehole (BH 81/34) from the Devil's Hole area in the central North Sea (British sector). The sediment from this borehole is Early to Late Pleistocene in age and the observation of massulae from Azolla filiculoides in sediment with reversed polarity indicates an age younger than the Olduvai geomagnetic event for the entire sequence. The Early Pleistocene sediments were at least partly deposited in the vicinity of a river outlet and can be correlated either with the Eburonian or the Menapian cold stage and with the Bavel interglacial and the Linge glacial within the Bavelian stage in the Dutch stratigraphy. The Middle Pleistocene sequence contains an interval rich in Abies, Picea and Pinus, probably deposited during the end of either Cromerian Complex interglacial IV (Noordbergum) or possibly the Holsteinian. The uppermost 80 m of the core contains high frequencies of pre-Quaternary and deteriorated palynomorphs indicating extensive glacial or glaciofluvially reworked sediment.
Szabo, B. J.; Kolesar, Peter T.; Riggs, A.C.; Winograd, I.J.; Ludwig, K. R.
1994-01-01
The petrographic and morphologic differences between calcite precipitated below, at, or above the present water table and uranium-series dating were used to reconstruct a chronology of water-table fluctuation for the past 120,000 yr in Browns Room, a subterranean air-filled chamber of Devils Hole fissure adjacent to the discharge area of the large Ash Meadows groundwater flow system in southern Nevada. The water table was more than 5 m above present level between about 116,000 and 53,000 yr ago, fluctuated between about +5 and +9 m during the period between about 44,000 and 20,000 yr ago, and declined rapidly from +9 to its present level during the past 20,000 yr. Because the Ash Meadows groundwater basin is greater than 12,000 km2 in extent, these documented water-table fluctuations are likely to be of regional significance. Although different in detail, water-level fluctuation recorded by Browns Room calcites generally correlate with other Great Basin proxy palcoclimatic data.
Peterson, Damon; Trantham, Randi B.; Trantham, Tulley G.; Caldwell, Colleen A.
2018-01-01
One of the greatest limiting factors of studies designed to obtain growth, movement, and survival in small-bodied fishes is the selection of a viable tag. The tag must be relatively small with respect to body size as to impart minimal sub-lethal effects on growth and mobility, as well as be retained throughout the life of the fish or duration of the study. Thus, body size of the model species becomes a major limiting factor; yet few studies have obtained empirical evidence of the minimum fish size and related tagging effects. The probability of surviving a tagging event was quantified in White Sands pupfish (Cyprinodon tularosa) across a range of sizes (19–60 mm) to address the hypothesis that body size predicts tagging survival. We compared tagging related mortality, individual taggers, growth, and tag retention in White Sands pupfish implanted with 8-mm passive integrated transponder (PIT), visual implant elastomer (VIE), and control (handled similarly, but no tag implantation) over a 75 d period. Initial body weight was a good predictor of the probability of survival in PIT- and VIE-tagged fish. As weight increased by 1 g, the fish were 4.73 times more likely to survive PIT-tag implantation compared to the control fish with an estimated suitable tagging size at 1.1 g (TL: 39.29 ± 0.41 mm). Likewise, VIE-tagged animals were 2.27 times more likely to survive a tagging event compared to the control group for every additional 1 g with an estimated size suitable for tagging of 0.9 g (TL: 36.9 ± 0.36 mm) fish. Growth rates of PIT- and VIE-tagged White Sands pupfish were similar to the control groups. This research validated two popular tagging methodologies in the White Sands pupfish, thus providing a valuable tool for characterizing vital rates in other small-bodied fishes.
Tech, C
2006-11-01
I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.
Lema, Sean C; Chow, Michelle I; Resner, Emily J; Westman, Alex A; May, Darran; Dittman, Andrew H; Hardy, Kristin M
2016-01-01
Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae . We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2-40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 ( dio2 ) and type 3 ( dio3 ) and TH receptor β ( trβ ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2 , dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 ( mct8 ) and organic anion-transporting protein 1c1 ( oatp1c1 ). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain ( ldhA ) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.
Saiki, Michael K; Martin, Barbara A; May, Thomas W
2012-09-01
Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.
Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.
2012-01-01
Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.
Révész, Kinga M; Landwehr, Jurate M
2002-01-01
A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 +/- 20 micro g) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H(3)PO(4)/CaCO(3)) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H(3)PO(4)/CaCO(3) reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 degrees C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was =0.1 and =0.2 per mill or per thousand, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for delta(18)O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows automation of some processes resulting in considerable time savings.
Revesz, Kinga M.; Landwehr, Jurate Maciunas; Keybl, Jaroslav Edward
2001-01-01
A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400?20 ?g) of calcium carbonate. This new method streamlines the classical phosphoric acid - calcium carbonate (H3PO4 - CaCO3) reaction method by making use of a Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. To obtain reproducible and accurate results, optimal conditions for the H3PO4 - CaCO3 reaction had to be determined. At the acid-carbonate reaction temperature suggested by the equipment manufacturer, the oxygen isotope ratio results were unsatisfactory (standard deviation () greater than 1.5 per mill), probably because of a secondary reaction. When the acid-carbonate reaction temperature was lowered to 26?C and the reaction time was increased to 24 hours, the precision of the carbon and oxygen isotope ratios for duplicate analyses improved to 0.1 and 0.2 per mill, respectively. The method was tested by analyzing calcite from Devils Hole, Nevada, which was formed by precipitation from ground water onto the walls of a sub-aqueous cavern during the last 500,000 years. Isotope-ratio values previously had been obtained by the classical method for Devils Hole core DH-11. The DH-11 core had been recently re-sampled, and isotope-ratio values were obtained using this new method. The results were comparable to those obtained by the classical method. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, a cutting error that was then independently confirmed. The reproducibility of the isotopic values is demonstrated by a correlation of approximately 0.96 for both isotopes, after correcting for an alignment offset. This result indicates that the new method is a viable alternative to the classical method. In particular, the new method requires less sample material permitting finer resolution and allows automation of some processes resulting in considerable timesavings.
Mars Climate Continues to Fascinate
NASA Technical Reports Server (NTRS)
2005-01-01
After Opportunity ground a hole in the rock called 'Ice Cream' and conducted various scientific experiments, it took this final microscopic image of the hole before driving away. When the image arrived at Earth, scientist discovered that the hole had been filled with dust. Apparently, a blast of wind had picked up some of the tailings produced by the grinding of the rover's rock abrasion tool and swept them back into the hole. In recent months, both rovers have experienced the effects of wind. The Spirit rover on the other side of Mars has tracked the progress of numerous dust devils moving across the plains. Opportunity took this mosaic of images on martian day, or sol, 549 (Aug. 9, 2005). The area shown is approximately 6 centimeters (2.4 inches) wide. The darker portions in the upper left corner of each quadrangle in the mosaic are shadows cast by the rover's robotic arm.Scoppettone, G. Gary; Hereford, Mark E.; Rissler, Peter H.; Johnson, Danielle M.; Salgado, Antonio
2011-01-01
The Amargosa River Canyon of San Bernardino and Inyo County, California, has been designated by the Bureau of Land Management as an Area of Critical Environmental Concern, due in part to its unique flora and fauna. As a task of the Area of Critical Environmental Concern implementation plan, a survey of native fishes was conducted from June 21 to August 12, 2010. Geographic Information System tools were used to map sampling locations, which were spaced at 50-meter intervals. Global Positioning Systems were used to locate sampling stations, and stations with adequate water for successful trapping were sampled with baited minnow traps. Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were widespread throughout Armargosa River Canyon. Throughout the study area 8,558 pupfish were captured at 194 stations; 3,472 speckled dace were captured at 210 stations; 238 red-swamp crayfish (Procambarus clarkia) were captured at 83 stations; and 1,095 western mosquitofish (Gambusia affinus) were captured at 110 stations. Pupfish were most abundant in open water habitat with native riparian vegetation, and they were significantly less abundant where the stream was completely covered by cattails or where saltcedar (Tamarix sp.) dominated the riparian corridor. There was no relationship between stream cover and speckled dace distribution. Non-native western mosquitofish and red-swamp crayfish densities were significantly higher in stream reaches dominated by saltcedar. The continued spread of saltcedar threatens to negatively affect pupfish and potentially reduce speckled dace abundance throughout the Amargosa River Canyon. This study can serve as baseline information for observing native fish populations in the future, as related to potential changes to the Amargosa River Canyon ecosystem.
The Devil's Hole Is In The Details
NASA Astrophysics Data System (ADS)
Wallace, M. G.
2012-12-01
As the granularity of Quaternary paleoclimatic proxy signatures from continental and oceanic sources continues to resolve, increasingly integrated studies such as Shakun et. al. (2012), and Kohfeld and Ridgewell (2009) have emerged, with far-reaching but sometimes conflicting paleo-global climate interpretations. Accordingly, none of the competing empirical and phenomenological narratives regarding the time series of Quaternary temperature patterns fit with sufficient fidelity to the observational record. Among other examples, the Shakun et al. study reviewed and processed 80 proxy sites worldwide for paleotemperature reconstruction, but left out the premier Devil's Hole poxy site in the continental Southwestern U.S. The Devil's Hole site presents a nominally earlier record of an interglacial warming signal (Landwehr and Winograd 2012). Both cite similar data (NOAA, 2005) as confirmation of their competing interpretations. Clearly both cannot be right. Epistemic origins of this apparent conflict may be rooted on the ongoing controversy concerning the importance of orbital forcings to the 100K year Quaternary glacial oscillations. Orbital forcings had been intrinsically posited as the only possible extraterrestrial driver of global temperature cycles over the Quaternary time frame. Yet other extraterrestrial climate forcing parameters are now conceivable. This paper reexamines past 3He marine core measurements conducted on two oceans and two hemispheres, and alternatives to the associated interpretations of researchers Patterson and Farley (1998). This study includes a new phenomenological and empirical exploration of an alternate extraterrestrial Quaternary global climate forcing model. This new interpretation is possible based on improved mapping of the Local Interstellar Medium (ISM), as documented in recent works such as those by Frisch and Mueller (2011). References: Frisch, P.C., and HR Mueller, 2011, Time-Variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth. Space Science Review DOI 10.1007/s11214-011-9766-x. Kohfeld, Karen E., and Andy Ridgewell, 2009, "Glacial-Interglacial Variability in Atmospheric CO2", Surface Ocean-Lower Atmosphere Processes Geophysical Research Series 187, pp. 251-286. Landwehr, J.M., Sharp, W.D., Coplen, T.B., Ludwig, K.R., and Winograd, I.J., 2011, "The chronology for the δ18O record from Devil's Hole, Nevada, extended into the mid-Holocene: U.S. Geological Survey Open-File Report 2011-1082, 5 p. NOAA Paleoclimatology Program - Paleocean Site Data. tr163-19_ssts-fwc.txt # SST data only # File Created: 19-Jan-2005. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleocean/sediment_files/sst/tr163-19_ssts-fwc.txt. Patterson, DB, and Farley, KA (1998): Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochimica et Cosmochimica Acta, 62(23-24), 3669-3682. Shakun, Jeremy D. , Peter U. Clark, Feng He, Shaun A. Marcott, Alan C. Mix, Zhengyu Liu, Bette Otto-Bliesner, Andreas Schmittner & Edouard Bard, 2012, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation" Nature Vol 484. pp 49-55.
Revesz, Kinga M.; Landwehr, Jurate M.
2002-01-01
A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows automation of some processes resulting in considerable time savings.
Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J
2015-10-01
Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Martin, Christopher H.; Wainwright, Peter C.
2013-01-01
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype. PMID:23976994
Eradication of invasive Tamarix ramosissima along a desert stream increases native fish density
Kennedy, T.A.; Finlay, J.C.; Hobbie, S.E.
2005-01-01
Spring ecosystems of the western United States have high conservation value, particularly because of the highly endemic, and often endangered, fauna that they support. Refuges now protect these habitats from many of the human impacts that once threatened them, but invasive species often persist. Invasive saltcedar is ubiquitous along streams, rivers, and spring ecosystems of the western United States, yet the impact of saltcedar invasion on these ecosystems, or ecosystem response to its removal, have rarely been quantified. Along Jackrabbit Spring, a springbrook in Nevada that supports populations of two endangered fish (Ash Meadows pupfish and Ash Meadows speckled dace) as well as several exotic aquatic consumers, we quantified the response of aquatic consumers to largescale saltcedar removal and identified the mechanism underlying consumer response to the removal. Clearing saltcedar from the riparian zone increased densities of native pupfish and exotic screw snails, but decreased the density of exotic crayfish. Positive effects of saltcedar removal on pupfish and snails occurred because saltcedar heavily shades the stream, greatly reducing the availability of algae for herbivores. This was confirmed by analyses of potential organic matter sources and consumer 13C: pupfish and snails, along with native dace and exotic mosquitofish, relied heavily on algae-derived carbon and not saltcedar-derived carbon. By contrast, crayfish ??13C values mirrored algae ??13C during summer, but in winter indicated reliance on allochthonous saltcedar litter that dominated organic inputs in saltcedar reaches and on algae-derived carbon where saltcedar was absent. The seasonal use of saltcedar by crayfish likely explains its negative response to saltcedar removal. Clearing saltcedar effectively restored the springbrook of Jackrabbit Spring to the conditions characteristic of native vegetation sites. Given the high conservation value of spring ecosystems and the potential conservation benefits of saltcedar removal that this research highlights, eradicating saltcedar from spring ecosystems of the western United States should clearly be a management priority. ?? 2005 by the Ecological Society of America.
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
Coplen, Tyler B.
2016-01-01
Moseley et al.’s (Reports, 8 January 2016, p. 165) preferred-Termination-II age is subjective, as evidenced by variation in their Termination-II ages of 2500 years per meter. Termination-II-age bias decreases to zero at ~1.5 meters below the present-day water table, if one assumes linear variation with core-sample height. Maintaining the required gradient of thorium isotope 230Th over 3.6 meters for 1000 years, much less 10,000 years, seems exceedingly unlikely.
Comment on “Reconciliation of the Devils Hole climate record with orbital forcing”
NASA Astrophysics Data System (ADS)
Coplen, Tyler B.
2016-10-01
Moseley et al.’s (Reports, 8 January 2016, p. 165) preferred-Termination-II age is subjective, as evidenced by variation in their Termination-II ages of 2500 years per meter. Termination-II-age bias decreases to zero at ~1.5 meters below the present-day water table, if one assumes linear variation with core-sample height. Maintaining the required gradient of thorium isotope 230Th over 3.6 meters for 1000 years, much less 10,000 years, seems exceedingly unlikely.
Wait, Liana F; Fox, Samantha; Peck, Sarah; Power, Michelle L
2017-01-01
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial found only in the wild in Tasmania, Australia. Tasmanian devils are classified as endangered and are currently threatened by devil facial tumour disease, a lethal transmissible cancer that has decimated the wild population in Tasmania. To prevent extinction of Tasmanian devils, conservation management was implemented in 2003 under the Save the Tasmanian Devil Program. This study aimed to assess if conservation management was altering the interactions between Tasmanian devils and their parasites. Molecular tools were used to investigate the prevalence and diversity of two protozoan parasites, Cryptosporidium and Giardia, in Tasmanian devils. A comparison of parasite prevalence between wild and captive Tasmanian devils showed that both Cryptosporidium and Giardia were significantly more prevalent in wild devils (p < 0.05); Cryptosporidium was identified in 37.9% of wild devils but only 10.7% of captive devils, while Giardia was identified in 24.1% of wild devils but only 0.82% of captive devils. Molecular analysis identified the presence of novel genotypes of both Cryptosporidium and Giardia. The novel Cryptosporidium genotype was 98.1% similar at the 18S rDNA to Cryptosporidium varanii (syn. C. saurophilum) with additional samples identified as C. fayeri, C. muris, and C. galli. Two novel Giardia genotypes, TD genotype 1 and TD genotype 2, were similar to G. duodenalis from dogs (94.4%) and a Giardia assemblage A isolate from humans (86.9%). Giardia duodenalis BIV, a zoonotic genotype of Giardia, was also identified in a single captive Tasmanian devil. These findings suggest that conservation management may be altering host-parasite interactions in the Tasmanian devil, and the presence of G. duodenalis BIV in a captive devil points to possible human-devil parasite transmission.
Fox, Samantha; Peck, Sarah; Power, Michelle L.
2017-01-01
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial found only in the wild in Tasmania, Australia. Tasmanian devils are classified as endangered and are currently threatened by devil facial tumour disease, a lethal transmissible cancer that has decimated the wild population in Tasmania. To prevent extinction of Tasmanian devils, conservation management was implemented in 2003 under the Save the Tasmanian Devil Program. This study aimed to assess if conservation management was altering the interactions between Tasmanian devils and their parasites. Molecular tools were used to investigate the prevalence and diversity of two protozoan parasites, Cryptosporidium and Giardia, in Tasmanian devils. A comparison of parasite prevalence between wild and captive Tasmanian devils showed that both Cryptosporidium and Giardia were significantly more prevalent in wild devils (p < 0.05); Cryptosporidium was identified in 37.9% of wild devils but only 10.7% of captive devils, while Giardia was identified in 24.1% of wild devils but only 0.82% of captive devils. Molecular analysis identified the presence of novel genotypes of both Cryptosporidium and Giardia. The novel Cryptosporidium genotype was 98.1% similar at the 18S rDNA to Cryptosporidium varanii (syn. C. saurophilum) with additional samples identified as C. fayeri, C. muris, and C. galli. Two novel Giardia genotypes, TD genotype 1 and TD genotype 2, were similar to G. duodenalis from dogs (94.4%) and a Giardia assemblage A isolate from humans (86.9%). Giardia duodenalis BIV, a zoonotic genotype of Giardia, was also identified in a single captive Tasmanian devil. These findings suggest that conservation management may be altering host-parasite interactions in the Tasmanian devil, and the presence of G. duodenalis BIV in a captive devil points to possible human-devil parasite transmission. PMID:28423030
Automatic detection of typical dust devils from Mars landscape images
NASA Astrophysics Data System (ADS)
Ogohara, Kazunori; Watanabe, Takeru; Okumura, Susumu; Hatanaka, Yuji
2018-02-01
This paper presents an improved algorithm for automatic detection of Martian dust devils that successfully extracts tiny bright dust devils and obscured large dust devils from two subtracted landscape images. These dust devils are frequently observed using visible cameras onboard landers or rovers. Nevertheless, previous research on automated detection of dust devils has not focused on these common types of dust devils, but on dust devils that appear on images to be irregularly bright and large. In this study, we detect these common dust devils automatically using two kinds of parameter sets for thresholding when binarizing subtracted images. We automatically extract dust devils from 266 images taken by the Spirit rover to evaluate our algorithm. Taking dust devils detected by visual inspection to be ground truth, the precision, recall and F-measure values are 0.77, 0.86, and 0.81, respectively.
How Do Martian Dust Devils Vary Throughout the Sol?
NASA Astrophysics Data System (ADS)
Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.
2016-12-01
Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications.
Hereford, Mark E.
2016-07-22
The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that accounts for variation in capture probability could be implemented to quantify the effects of habitat modifications on abundance of fishes and crayfish.
2004-05-01
or Naval officer as test director. Ship-based tests were conducted in the open waters of the North Atlantic and Pacific Oceans and near the...BG, FP Oct. 9, 2002 (ship-based) Granville S. Hall and surround- ing waters and airspace A-4, F-105, and an Aero Commander 65-12, Devil Hole I...Apr.-May 1968 USS Carbonero, USS Oahu, Hawaii, BG June 30, 03 Arrow (ship-based) Granville S. Hall and surrounding waters 69-31 (ship-based) 313 Aug
NASA Astrophysics Data System (ADS)
Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan
2018-06-01
Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.
Frederickson, Megan E; Gordon, Deborah M
2007-01-01
‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests. PMID:17301016
Frederickson, Megan E; Gordon, Deborah M
2007-04-22
'Devil's gardens' are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant-plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests.
NASA Technical Reports Server (NTRS)
2007-01-01
On sol 1120 (February 26, 2007), the navigation camera aboard NASA's Mars Exploration Rover Spirit captured one of the best dust devils it's seen in its three-plus year mission. The series of navigation camera images were put together to make a dust devil movie. The dust devil column is clearly defined and is clearly bent in the down wind direction. Near the end of the movie, the base of the dust devil becomes much wider. The atmospheric science team thinks that this is because the dust devil encountered some sand and therefore produced a 'saltation skirt,' an apron of material that is thrown out of the dust devil because it is too large to be carried up into suspension. Also near the end of the movie the dust devil seems to move faster across the surface. This is because Spirit began taking pictures less frequently, and not because the dust devil sped up.NASA Astrophysics Data System (ADS)
Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.
2012-11-01
Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.
Dating the Vostok ice core record by importing the Devils Hole chronology
Landwehr, J.M.; Winograd, I.J.
2001-01-01
The development of an accurate chronology for the Vostok record continues to be an open research question because these invaluable ice cores cannot be dated directly. Depth-to-age relationships have been developed using many different approaches, but published age estimates are inconsistent, even for major paleoclimatic events. We have developed a chronology for the Vostok deuterium paleotemperature record using a simple and objective algorithm to transfer ages of major paleoclimatic events from the radiometrically dated 500,000-year ??18O-paleotemperature record from Devils Hole, Nevada. The method is based only on a strong inference that major shifts in paleotemperature recorded at both locations occurred synchronously, consistent with an atmospheric teleconnection. The derived depth-to-age relationship conforms with the physics of ice compaction, and internally produces ages for climatic events 5.4 and 11.24 which are consistent with the externally assigned ages that the Vostok team needed to assume in order to derive their most recent chronology, GT4. Indeed, the resulting V-DH chronology is highly correlated with GT4 because of the unexpected correspondence even in the timing of second-order climatic events that were not constrained by the algorithm. Furthermore, the algorithm developed herein is not specific to this problem; rather, the procedure can be used whenever two paleoclimate records are proxies for the same physical phenomenon, and paleoclimatic conditions forcing the two records can be considered to have occurred contemporaneously. The ability of the algorithm to date the East Antarctic Dome Fuji core is also demonstrated.
Diurnal variation in martian dust devil activity
NASA Astrophysics Data System (ADS)
Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.
2017-08-01
We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.
A Multi-Year Dust Devil Vortex Survey Using an Automated Search of Pressure Time-Series
NASA Astrophysics Data System (ADS)
Jackson, Brian K.; Lorenz, Ralph
2014-11-01
Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multi-year in-situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a post-hoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (> 1,000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time-series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values. For example, our results suggest the dust flux from the average terrestrial devil is nearly 1,000 times smaller than the (more representative) population-weighted average flux. If applicable to Martian dust devils, such corrections may help resolve purported discrepancies between the dust fluxes estimated from dust devil studies and those required to maintain the atmospheric dust concentration.
Sol 568 Dust Devil in Gusev, Unenhanced
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows several dust devils moving from right to left across a plain inside Mars' Gusev Crater, as seen from the vantage point of NASA's Mars Exploration Rover Spirit in hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera during the rover's 543rd martian day, or sol (July 13, 2005). Unlike some other movie clips of dust devils seen by Spirit, the images in this clip have not been processed to enhance contrast of the dust devils. The total time elapsed during the taking of these frames was 12 minutes, 17 seconds. Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.NASA Astrophysics Data System (ADS)
Reiss, D.; Zanetti, M.; Neukum, G.
2011-09-01
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ˜26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ˜700 m in diameter) dust devils are ˜26 min, as inferred from retracing. For one of these large dust devil (˜820 m in diameter) it was possible to calculate a minimum lifetime of ˜74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (˜19 m in diameter, avg. min. lifetime of ˜2.83 min) and medium (˜185 m in diameter, avg. min. lifetime of ˜13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ˜50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.
Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii)
Ujvari, Beata; Hamede, Rodrigo; Peck, Sarah; Pemberton, David; Jones, Menna; Belov, Katherine; Madsen, Thomas
2016-01-01
Immunoglobulins such as IgG and IgM have been shown to induce anti-tumour cytotoxic activity. In the present study we therefore explore total serum IgG and IgM expression dynamics in 23 known-aged Tasmanian devils (Sarcophilus harrisii) of which 9 where affected by Devil Facial Tumour Disease (DFTD). DFTD is clonally transmissible cancer that has caused massive declines in devil numbers. Our analyses revealed that IgM and IgG expression levels as well as IgM/IgG ratios decreased with increasing devil age. Neither age, sex, IgM nor IgG expression levels affected devil DFTD status in our analyses. However, devils with increased IgM relative to IgG expression levels had significantly lower DFTD prevalence. Our results therefore suggest that IgM/IgG ratios may play an important role in determining devil susceptibility to DFTD. We consequently propose that our findings warrant further studies to elucidate the underpinning(s) of devil IgM/IgG ratios and DFTD status. PMID:27126067
Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit
Greeley, R.; Whelley, P.L.; Arvidson, R. E.; Cabrol, N.A.; Foley, D.J.; Franklin, B.J.; Geissler, P.G.; Golombek, M.P.; Kuzmin, R.O.; Landis, G.A.; Lemmon, M.T.; Neakrase, L.D.V.; Squyres, S. W.; Thompson, S.D.
2006-01-01
A full dust devil "season" was observed from Spirit from 10 March 2005 (sol 421, first active dust devil observed) to 12 December 2005 (sol 691, last dust devil seen); this corresponds to the period Ls 173.2?? to 339.5??, or the southern spring and summer on Mars. Thermal Emission Spectrometer data suggest a correlation between high surface temperatures and a positive thermal gradient with active dust devils in Gusev and that Spirit landed in the waning stages of a dust devil season as temperatures decreased. 533 active dust devils were observed, enabling new characterizations; they ranged in diameter from 2 to 276 m, with most in the range of 10-20 m in diameter, and occurred from about 0930 to 1630 hours local true solar time (with the maximum forming around 1300 hours) and a peak occurrence in southern late spring (Ls ??? 250??). Horizontal speeds of the dust devils ranged from <1 to 21 m/s, while vertical wind speeds within the dust devils ranged from 0.2 to 8.8 m/s. These data, when combined with estimates of the dust content within the dust devils, yield dust fluxes of 3.95 ?? 10-9 to 4.59-4 kg/m2/s. Analysis of the dust devil frequency distribution over the inferred dust devil zone within Gusev crater yields ???50 active dust devils/km2/sol, suggesting a dust loading into the atmosphere of ???19 kg/km2/sol. This value is less than one tenth the estimates by Cantor et al. (2001) for regional dust storms on Mars. Copyright 2006 by the American Geophysical Union.
Coarse-scale movement patterns of a small-bodied fish inhabiting a desert stream
Dzul, M.C.; Quist, M.C.; Dinsmore, S.J.; Gaines, D.B.; Bower, M.R.
2013-01-01
Located on the floor of Death Valley (CA, USA), Salt Creek harbors a single fish species, the Salt Creek pupfish, Cyprinodon salinus salinus, which has adapted to this extremely harsh environment. Salt Creek is fed by an underground spring and is comprised of numerous pools, runs, and marshes that exhibit substantial variability in temperature, salinity, and dissolved oxygen concentrations. In addition, the wetted area of Salt Creek is reduced throughout the summer months due to high rates of evaporation, with some reaches drying completely. Therefore, it seems logical that short- and long-term movement patterns may play an important role in Salt Creek pupfish population dynamics. The objective of this study was to describe coarse-scale movements of Salt Creek pupfish in Salt Creek during their breeding season from March to May. Sex ratios and length–frequency distributions varied spatially within Salt Creek, suggesting population segregation during the breeding season. Long-distance movements were generally rare, although two fish moved more than 1.2 km. Movement in upstream reaches was rare or absent, in contrast to the greater movement observed in downstream reaches (29% of recaptures). Temporal trends and demographic patterns in movement were not observed. Because the two most downstream habitats dry up in the summer, our results indicate that coarse-scale movements that re-populate downstream reaches likely occur during other times of year. Consequently, the importance of small- and large-scale movements is influenced by season. Further assessment of Salt Creek movement patterns conducted during other times of year may better illuminate long-distance movement patterns and source-sink dynamics.
Particle Lifting Processes in Dust Devils
NASA Astrophysics Data System (ADS)
Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.
2016-11-01
Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.
Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.
2008-01-01
During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western Nevada by such a connection is not supported. Beyond the biologically predicted time frame, however, sparse and disputed data suggest that a fluvial system connected Panamint (Owens River), Death, and Amargosa Valleys, which could account for the dispersal and isolation before 3 Ma. ?? 2008 The Geological Society of America.
A multiyear dust devil vortex survey using an automated search of pressure time series
NASA Astrophysics Data System (ADS)
Jackson, Brian; Lorenz, Ralph
2015-03-01
Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multiyear in situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a posthoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate possible seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (>1000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values.
Kunde, Dale A.; Taylor, Robyn L.; Pyecroft, Stephen B.; Sohal, Sukhwinder Singh; Snow, Elizabeth T.
2017-01-01
Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1’s cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild. PMID:28591206
Martian Dust Devils: 2 Mars Years of MGS MOC Observations
NASA Astrophysics Data System (ADS)
Cantor, B. A.; Edgett, K. S.
2002-12-01
Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide and narrow angle images have captured more than 1000 active dust devils over 2 Mars years. In the most recent Mars year, we repeatedly imaged (and are continuing to image) several areas to monitor dust devil occurrence. Some Mars dust devils are as small as a few to 10s of meters across, others are 100s of meters across and over 6 km high. Each Martian hemisphere has a "dust devil season" that generally follows the subsolar latitude. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer (probably every afternoon; observations are acquired 2-3 times a week). The Amazonis and other MOC observations show no evidence that dust devils cause, lead to, or have a systematic relationship with dust storms. However, dust devils sometimes do occur near small, localized storms; and one specific relation occurred during the onset of the global dust events of 2001: slightly elevated levels of atmospheric dust (an optically thin cloud) triggered a very short period of dust devil activity in NW Amazonis in early northern autumn. The redistribution of dust by the 2001 global events may have also affected subsequent spring and summer dust devil activity in Hellas, where considerably fewer dust devils occurred in 2001-2002 than 1999-2000. In SW Syria, frequent, large dust devils occurred after the 2001 global events and persisted through southern summer. While dust devils have no specific relation to dust storms, they might play a role in the seasonal "wave of darkening" at middle and high latitudes by removing or disrupting thin veneers of dust. Dust devils have been observed to create thin, filamentary streaks. Some streaks are darker than their surroundings, while others are lighter. Some dust devils do not create streaks. At mid-latitudes, surfaces darken in spring as 100s of crisscrossing streaks form on widely-varied terrain. Some rare streaks exhibit cycloidal patterns similar to those created on Earth by tornadoes with multiple sub-vortices. The streaks occur at nearly all latitudes and elevations, from north polar dunes to the south polar layered terrain, from the summit of Olympus Mons to the floor of Hellas. During "dust devil season" at a given latitude, tremendous changes in streak patterns occur in periods as short as 1 month. These observations, along with repeated imaging in NW Amazonis and SW Syria, provide some idea of the frequency of dust devils. Uncertain is whether dust devils are responsible for all thin, filamentary streaks: while active vortices have been seen creating the plethora of streaks at southern mid-latitudes, none have been observed on the northern plains, despite observation of similar streak patterns. Perhaps northern plains dust devils occur at a different time of day relative to the MGS 1400 LT orbit, or perhaps dust devils did not form them. We monitored removal of dust from surfaces after the 2001 global dust events in several locations. Of particular interest was western Syrtis Major, which had brightened considerably after the 2001 storms. We observed this area for several months while very little change occurred. Finally, in January 2002, the surface was swept clean of most of its 2001 veneer of dust in a period of about 1 week. Dust devils played no role in this process; instead, regional surface winds were responsible.
COMPARATIVE SENSITIVITY OF THE SHEEPSHEAD MINNOW AND ENDANGERED PUPFISHES
Standard environmental assessment procedures are assumed to protect aquatic species, including endangered ones. However, it is not known if endangered species are adequately protected by these procedures. To test the validity of this assumption, static acute toxicity tests were c...
2017-01-01
Today, the Tasmanian devil (Sarcophilus harrisii) is found only on the island of Tasmania, despite once being widespread across mainland Australia. While the devil is thought to have become extinct on the mainland approximately 3000 years ago, three specimens were collected in Victoria (south-eastern Australia) between 1912 and 1991, raising the possibility that a relict mainland population survived in the area. Alternatively, these devils may have escaped captivity or were deliberately released after being transported from Tasmania, a practice that has been strictly controlled since the onset of devil facial tumour disease in the early 1990s. Such quarantine regimes are important to protect disease-free, ‘insurance populations’ in zoos on the mainland. To test whether the three Victorian devils were members of a relict mainland population or had been recently transported from Tasmania we identified seven single nucleotide polymorphisms (SNPs) in the mitochondrial genome that can distinguish between Tasmanian and ancient mainland populations. The three Victorian devil specimens have the same seven SNPs diagnostic of modern Tasmanian devils, confirming that they were most likely transported from Tasmania and do not represent a remnant population of mainland devils. PMID:28484632
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a dust devil seen by NASA's Mars Exploration Rover Spirit during the rover's 532nd martian day, or sol (July 2, 2005). The dust-carrying whirlwind is moving across a plain inside Gusev Crater and viewed from Spirit's vantage point on hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera, processed to enhance contrast for anything in the images that changes from frame to frame. The total elapsed time during the taking of these frames was 8 minutes, 48 seconds. Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.NASA Technical Reports Server (NTRS)
2001-01-01
One objective for the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in the Extended Mission is to continue looking for changes and dynamic events taking place on the red planet. The feature shown here elicited gasps of excitement among the MOC Operations Staff when it was received in early April 2001.The feature is a dust devil. Dust devils are spinning, columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. When this dust devil was spied in Amazonis Planitia on April 10th, the MOC was looking straight down. Usually when the camera is looking down the dust devil will appear as a circular, fuzzy patch with a straight shadow indicating its columnar shape. In this case, however, the dust devil is somewhat curved and kinked--its shape is best seen in the shadow it casts to the right. A thin, light-toned track has been left by the dust devil as it moved eastward across the landscape. Usually, such tracks are darker than the surroundings, in this case the light tone might indicate that the dust being removed by the passing dust devil is darker than the surface underneath the thin veneer of dust.Dust devils most typically form when the ground heats up during the day, warming the air immediately above the surface. As the warmed air nearest the surface begins to rise, it spins. The spinning column begins to move across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it the 'dust devil' or tornado-like appearance. This dust devil occurred at an optimal time for dust devils whether on Earth or Mars--around 2 p.m. local time in the middle of Northern Hemisphere Summer. North is up, sunlight illuminates the scene from the left (west), and 500 meters is about 547 yards. The shadow cast by the dust devil goes off the edge of the image, but the length shown here (about 1.5 km) indicates that the dust devil was a bit more than 1 km (0.62 mi) in height.Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
76 FR 35235 - Endangered and Threatened Species Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
..., during normal business hours at the U.S. Fish and Wildlife Service, 500 Gold Ave., SW., Room 6034... (Gila elegans), Colorado pikeminnow (Ptychocheilus lucius), desert pupfish (Cyprinodon macularius), Gila... samples, and captively hold the following species: Colorado pikeminnow (Ptychocheilus lucius), desert...
Chemical quality of surface waters in Devils Lake basin, North Dakota
Swenson, Herbert; Colby, Bruce R.
1955-01-01
Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert
Martin, Christopher H; Erickson, Priscilla A; Miller, Craig T
2017-01-01
The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system. © 2016 John Wiley & Sons Ltd.
Hollings, Tracey; McCallum, Hamish; Kreger, Kaely; Mooney, Nick; Jones, Menna
2015-01-01
Apex predators structure ecosystems through lethal and non-lethal interactions with prey, and their global decline is causing loss of ecological function. Behavioural changes of prey are some of the most rapid responses to predator decline and may act as an early indicator of cascading effects. The Tasmanian devil (Sarcophilus harrisii), an apex predator, is undergoing progressive and extensive population decline, of more than 90% in long-diseased areas, caused by a novel disease. Time since local disease outbreak correlates with devil population declines and thus predation risk. We used hair traps and giving-up densities (GUDs) in food patches to test whether a major prey species of devils, the arboreal common brushtail possum (Trichosurus vulpecula), is responsive to the changing risk of predation when they forage on the ground. Possums spend more time on the ground, discover food patches faster and forage more to a lower GUD with increasing years since disease outbreak and greater devil population decline. Loss of top–down effects of devils with respect to predation risk was evident at 90% devil population decline, with possum behaviour indistinguishable from a devil-free island. Alternative predators may help to maintain risk-sensitive anti-predator behaviours in possums while devil populations remain low. PMID:26085584
NASA Astrophysics Data System (ADS)
Jackson, Brian; Lorenz, Ralph; Davis, Karan
2018-01-01
Dust devils are likely the dominant source of dust for the martian atmosphere, but the amount and frequency of dust-lifting depend on the statistical distribution of dust devil parameters. Dust devils exhibit pressure perturbations and, if they pass near a barometric sensor, they may register as a discernible dip in a pressure time-series. Leveraging this fact, several surveys using barometric sensors on landed spacecraft have revealed dust devil structures and occurrence rates. However powerful they are, though, such surveys suffer from non-trivial biases that skew the inferred dust devil properties. For example, such surveys are most sensitive to dust devils with the widest and deepest pressure profiles, but the recovered profiles will be distorted, broader and shallow than the actual profiles. In addition, such surveys often do not provide wind speed measurements alongside the pressure time series, and so the durations of the dust devil signals in the time series cannot be directly converted to profile widths. Fortunately, simple statistical and geometric considerations can de-bias these surveys, allowing conversion of the duration of dust devil signals into physical widths, given only a distribution of likely translation velocities, and the recovery of the underlying distributions of physical parameters. In this study, we develop a scheme for de-biasing such surveys. Applying our model to an in-situ survey using data from the Phoenix lander suggests a larger dust flux and a dust devil occurrence rate about ten times larger than previously inferred. Comparing our results to dust devil track surveys suggests only about one in five low-pressure cells lifts sufficient dust to leave a visible track.
The Tasmanian devil microbiome-implications for conservation and management.
Cheng, Yuanyuan; Fox, Samantha; Pemberton, David; Hogg, Carolyn; Papenfuss, Anthony T; Belov, Katherine
2015-12-21
The Tasmanian devil, the world's largest carnivorous marsupial, is at risk of extinction due to devil facial tumour disease (DFTD), a fatal contagious cancer. The Save the Tasmanian Devil Program has established an insurance population, which currently holds over 600 devils in captive facilities across Australia. Microbes are known to play a crucial role in the health and well-being of humans and other animals, and increasing evidence suggests that changes in the microbiota can influence various aspects of host physiology and development. To improve our understanding of devils and facilitate management and conservation of the species, we characterised the microbiome of wild devils and investigated differences in the composition of microbial community between captive and wild individuals. A total of 1,223,550 bacterial 16S ribosomal RNA (rRNA) sequences were generated via Roche 454 sequencing from 56 samples, including 17 gut, 15 skin, 18 pouch and 6 oral samples. The devil's gut microbiome was dominated by Firmicutes and showed a high Firmicutes-to-Bacteroidetes ratio, which appears to be a common feature of many carnivorous mammals. Metabolisms of carbohydrates, amino acids, energy, cofactors and vitamins, nucleotides and lipids were predicted as the most prominent metabolic pathways that the devil's gut flora contributed to. The microbiota inside the female's pouch outside lactation was highly similar to that of the skin, both co-dominated by Firmicutes and Proteobacteria. The oral microbiome had similar proportions of Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Compositional differences were observed in all four types of microbiota between devils from captive and wild populations. Certain captive devils had significantly lower levels of gut bacterial diversity than wild individuals, and the two groups differed in the proportion of gut bacteria accounting for the metabolism of glycan, amino acids and cofactors and vitamins. Further studies are underway to investigate whether alterations in the microbiome of captive devils can have impacts on their ability to adapt and survive following re-introduction to the wild.
In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele
2017-04-19
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.
SUMMER MOVEMENTS OF DESERT PUPFISH AMONG HABITATS AT THE SALTON SEA. (R826552)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; McCallum, Hamish; Pyecroft, Stephen; Taylor, Robyn; Eldridge, Mark D B; Belov, Katherine
2012-03-01
Tasmanian devils (Sarcophilus harrisii) are the largest extant marsupial carnivores. This species, now confined to Tasmania, is endangered from the emergence of a transmissible cancer, devil facial tumor disease (DFTD). In the present study, we use cytogenetic and molecular techniques to examine the stability of devil facial tumor (DFT) cell lines across time and space. This article describes disease progression from February 2004 to June 2011. We demonstrate evolutionary changes in the disease, which affects devils in different sites across Tasmania and over a period of several years, producing several chromosomal variants (strains) that are capable of transmission between devils. We describe the evolution of DFTs in the field and speculate on the possible impacts on the disease, including (1) development of less aggressive forms of the disease; (2) development of more aggressive forms of the disease; (3) development of forms capable of affecting closely related species of dasyurids (e.g., quolls); (4) extinction of the disease as it acquires additional deleterious mutations that affect either cell viability or transmissibility; and (5) co-evolution of the disease and the host. We also speculate about the future of the Tasmanian devil in the wild. We note that although DFTs are regarded as unstable by comparison with another much older transmissible cancer, canine transmissible venereal tumor (CTVT), the potential for development of less aggressive forms of DFTs or for development of resistance in devils is limited by devils' small numbers, low genetic diversity, and restricted geographical distribution. Copyright © 2012 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
...-Clyde Ice Field, Takeoff Minimum and Obstacle DP, Amdt 1 Gladewater, TX, Gladewater Muni, Takeoff... Field, VOR/DME RWY 12, Amdt 4 Devil's Lake, ND, Devil's Lake Rgnl, ILS OR LOC/DME RWY 31, Amdt 2 Devil's Lake, ND, Devil's Lake Rgnl, RNAV (GPS) RWY 3, Amdt 1 Ely, NV, Ely Airport-Yelland Field, Takeoff...
Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils
Tovar, Cesar; Pye, Ruth J.; Kreiss, Alexandre; Cheng, Yuanyuan; Brown, Gabriella K.; Darby, Jocelyn; Malley, Roslyn C.; Siddle, Hannah V. T.; Skjødt, Karsten; Kaufman, Jim; Silva, Anabel; Baz Morelli, Adriana; Papenfuss, Anthony T.; Corcoran, Lynn M.; Murphy, James M.; Pearse, Martin J.; Belov, Katherine; Lyons, A. Bruce; Woods, Gregory M.
2017-01-01
Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the ‘infectious’ agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species. PMID:28276463
Growth, productivity, and relative extinction risk of a data-sparse devil ray
Pardo, Sebastián A.; Kindsvater, Holly K.; Cuevas-Zimbrón, Elizabeth; Sosa-Nishizaki, Oscar; Pérez-Jiménez, Juan Carlos; Dulvy, Nicholas K.
2016-01-01
Devil rays (Mobula spp.) face intensifying fishing pressure to meet the ongoing international demand for gill plates. The paucity of information on growth, mortality, and fishing effort for devil rays make quantifying population growth rates and extinction risk challenging. Furthermore, unlike manta rays (Manta spp.), devil rays have not been listed on CITES. Here, we use a published size-at-age dataset for the Spinetail Devil Ray (Mobula japanica), to estimate somatic growth rates, age at maturity, maximum age, and natural and fishing mortality. We then estimate a plausible distribution of the maximum intrinsic population growth rate (rmax) and compare it to 95 other chondrichthyans. We find evidence that larger devil ray species have low somatic growth rate, low annual reproductive output, and low maximum population growth rates, suggesting they have low productivity. Fishing rates of a small-scale artisanal Mexican fishery were comparable to our estimate of rmax, and therefore probably unsustainable. Devil ray rmax is very similar to that of manta rays, indicating devil rays can potentially be driven to local extinction at low levels of fishing mortality and that a similar degree of protection for both groups is warranted. PMID:27658342
Legislative Environmental Impact Statement: Small Intercontinental Ballistic Missile Program.
1986-11-01
beautiful shiner, and Apache trout) and four federal-candidate species (desert pupfish, Sonora chub, loach minnow, and flat-tailed horned lizard) occur...Archaeology. A Class I Inventory of Prehistoric Resources. Ethnoscience, Billings, Montana. 9-13 INV Den Beste, Ken and Lois Den Beste 1976 Backgrounded
Sando, Steven K.; Sether, Bradley A.
1993-01-01
Physical-properties were measured and water-quality, plankton, and bottom-material samples were collected at 10 sites in Devils Lake and East Devils Lake during September 1988 through October 1990 to study water-quality variability and water-quality and plankton relations in Devils Lake and East Devils Lake. Physical properties measured include specific conductance, pH, water temperature, dissolved-oxygen concentration, water transparency, and light transmission. Water-quality samples were analyzed for concentrations of major ions, selected nutrients, and selected trace elements. Plankton samples were examined for identification and enumeration of phytoplankton and zooplankton species, and bottom-material samples were analyzed for concentrations of selected nutrients. Data-collection procedures are discussed and the data are presented in tabular form.
Morris, Katrina; Austin, Jeremy J.; Belov, Katherine
2013-01-01
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes. PMID:23221872
Spatial and temporal variability of dissolved sulfate in Devils Lake, North Dakota, 1998
Sether, Bradley A.; Vecchia, Aldo V.; Berkas, Wayne R.
1998-01-01
The Devils Lake Basin is a 3,810-squaremile closed subbasin of the Red River of the North Basin (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils Lake. The Devils Lake Basin contributes to the Red River of the North Basin when the level of Devils Lake is greater than 1,459 feet above sea level.Lake levels of Devils Lake were recorded sporadically from 1867 to 1890. In 1901, the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 through 1998, the lake level has fluctuated between a minimum of 1,400.9 feet above sea level in 1940 and a maximum of 1,444.7 feet above sea level in 1998 (fig. 2). The maximum, which occurred on July 7, 1998, was 22.1 feet higher than the level recorded in February 1993.The rapid rise in the lake level of Devils Lake since 1993 is in response to abovenormal precipitation and below-normal evaporation from the summer of 1993 through 1998. Because of the rising lake level, more than 50,000 acres of land and many roads around the lake have been flooded. In addition, the water quality of Devils Lake changed substantially in 1993 because of the summer flooding (Williams-Sether and others, 1996). In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) flood mitigation options. Current and accurate hydrologic and water-quality information is needed to assess the effectiveness of the flood mitigation options, which include managing and storing water in the Devils Lake Basin, continuing infrastructure protection, and providing an outlet to the Sheyenne River (Wiche, 1998). As part of the U.S. Army Corps of Engineers Devils Lake emergency outlet feasibility study, the U.S. Geological Survey is modeling lake levels and sulfate concentrations in Devils Lake to simulate operation of an emergency outlet. Accurate simulation of sulfate concentrations in Devils Lake is required to determine potential effects of the outlet on downstream water quality. Historical sulfate concentrations are used to calibrate and verify the model. Most of the Devils Lake water-quality data available before 1998 were obtained from samples collected from the water column about three to four times a year. The samples were collected at one location in each of the Devils Lake major bays (West Bay, Main Bay, East Bay, and East Devils Lake). However, sample collection from only one location in a bay may not give an adequate representation of the water quality of the bay because of factors such as wind, precipitation, temperature, surface- and ground-water inflow, and possible bed-sediment interactions. Thus, spatial variability (the variability within each bay) and temporal variability (the variability with time) of dissolved sulfate need to be determined to evaluate the accuracy of the estimates obtained from the model.
Gusev Dust Devil Movie, Sol 459 (Enhanced)
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 459th martian day, or sol (April 18, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera, and the contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil. The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils. The images were processed in three steps. All images were calibrated to remove known camera artifacts. The images were then processed to remove stationary objects. The result is a gray scene showing only features that change with time. The final step combined the original image with the image that shows only moving features, showing the martian scene and the enhanced dust devils. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils. Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.Gusev Dust Devil Movie, Sol 456 (Enhanced)
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 456th martian day, or sol (April 15, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera, and the contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil. The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils. The images were processed in three steps. All images were calibrated to remove known camera artifacts. The images were then processed to remove stationary objects. The result is a gray scene showing only features that change with time. The final step combined the original image with the image that shows only moving features, showing the martian scene and the enhanced dust devils. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils. Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, Johann P; Shafer, David S; Campbell, Dave
The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis)more » (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.« less
Gusev Dust Devil Movie, Sol 456 (Plain and Isolated)
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 456th martian day, or sol (April 15, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera. Each frame in this movie has the raw image on the top half and a processed version in the lower half that enhances contrast and removes stationary objects, producing an image that is uniformly gray except for features that change from frame to frame. The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils. Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.Gusev Dust Devil Movie, Sol 459 (Plain and Isolated)
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 459th martian day, or sol (April 18, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera. Each frame in this movie has the raw image on the top half and a processed version in the lower half that enhances contrast and removes stationary objects, producing an image that is uniformly gray except for features that change from frame to frame. The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils. Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.Fancourt, Bronwyn A.; Hawkins, Clare E.; Cameron, Elissa Z.; Jones, Menna E.; Nicol, Stewart C.
2015-01-01
The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that has recently undergone a rapid and severe population decline over the 10 years to 2009, with no sign of recovery. This decline has been linked to a period of unfavourable weather, but subsequent improved weather conditions have not been matched by quoll recovery. A recent study suggested another mechanism: that declines in Tasmanian devil (Sarcophilus harrisii) populations, due to the spread of the fatal Devil Facial Tumour Disease, have released feral cats (Felis catus) from competitive suppression, with eastern quoll declines linked to a subsequent increase in cat sightings. Yet current evidence of intraguild suppression among devils, cats and quolls is scant and equivocal. We therefore assessed the influences of top-down effects on abundance and activity patterns among devils, feral cats and eastern quolls. Between 2011 and 2013, we monitored four carnivore populations using longitudinal trapping and camera surveys, and performed camera surveys at 12 additional sites throughout the eastern quoll’s range. We did not find evidence of a negative relationship between devil and cat abundance, nor of higher cat abundance in areas where devil populations had declined the longest. Cats did not appear to avoid devils spatially; however, there was evidence of temporal separation of cat and devil activity, with reduced separation and increasing nocturnal activity observed in areas where devils had declined the longest. Cats and quolls used the same areas, and there was no evidence that cat and quoll abundances were negatively related. Temporal overlap in observed cat and quoll activity was higher in summer than in winter, but this seasonal difference was unrelated to devil declines. We suggest that cats did not cause the recent quoll decline, but that predation of juvenile quolls by cats could be inhibiting low density quoll populations from recovering their former abundance through a ‘predator pit’ effect following weather-induced decline. Predation intensity could increase further should cats become increasingly nocturnal in response to devil declines. PMID:25760348
Fancourt, Bronwyn A; Hawkins, Clare E; Cameron, Elissa Z; Jones, Menna E; Nicol, Stewart C
2015-01-01
The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that has recently undergone a rapid and severe population decline over the 10 years to 2009, with no sign of recovery. This decline has been linked to a period of unfavourable weather, but subsequent improved weather conditions have not been matched by quoll recovery. A recent study suggested another mechanism: that declines in Tasmanian devil (Sarcophilus harrisii) populations, due to the spread of the fatal Devil Facial Tumour Disease, have released feral cats (Felis catus) from competitive suppression, with eastern quoll declines linked to a subsequent increase in cat sightings. Yet current evidence of intraguild suppression among devils, cats and quolls is scant and equivocal. We therefore assessed the influences of top-down effects on abundance and activity patterns among devils, feral cats and eastern quolls. Between 2011 and 2013, we monitored four carnivore populations using longitudinal trapping and camera surveys, and performed camera surveys at 12 additional sites throughout the eastern quoll's range. We did not find evidence of a negative relationship between devil and cat abundance, nor of higher cat abundance in areas where devil populations had declined the longest. Cats did not appear to avoid devils spatially; however, there was evidence of temporal separation of cat and devil activity, with reduced separation and increasing nocturnal activity observed in areas where devils had declined the longest. Cats and quolls used the same areas, and there was no evidence that cat and quoll abundances were negatively related. Temporal overlap in observed cat and quoll activity was higher in summer than in winter, but this seasonal difference was unrelated to devil declines. We suggest that cats did not cause the recent quoll decline, but that predation of juvenile quolls by cats could be inhibiting low density quoll populations from recovering their former abundance through a 'predator pit' effect following weather-induced decline. Predation intensity could increase further should cats become increasingly nocturnal in response to devil declines.
Johnson, Christopher N.; Barmuta, Leon A.; Jones, Menna E.
2017-01-01
Australia’s native marsupial fauna has just two primarily flesh-eating ‘hypercarnivores’, the Tasmanian devil (Sarcophilus harrisii) and the spotted-tailed quoll (Dasyurus maculatus) which coexist only on the island of Tasmania. Devil populations are currently declining due to a fatal transmissible cancer. Our aim was to analyse the diet of both species across their range in Tasmania, as a basis for understanding how devil decline might affect the abundance and distribution of quolls through release from competition. We used faecal analysis to describe diets of one or both species at 13 sites across Tasmania. We compared diet composition and breadth between the two species, and tested for geographic patterns in diets related to rainfall and devil population decline. Dietary items were classified into 6 broad categories: large mammals (≥ 7.0kg), medium-sized mammals (0.5–6.9kg), small mammals (< 0.5kg), birds, reptiles and invertebrates. Diet overlap based on prey-size category was high. Quoll diets were broader than devils at all but one site. Devils consumed more large and medium-sized mammals and quolls more small mammals, reptiles and invertebrates. Medium-sized mammals (mainly Tasmanian pademelon Thylogale billardierii), followed by large mammals (mainly Bennett’s wallaby Macropus rufogriseus) and birds, were the most important prey groups for both species. Diet composition varied across sites, suggesting that both species are flexible and opportunistic foragers, but was not related to rainfall for devils. Quolls included more large mammals but fewer small mammals and invertebrates in their diet in the eastern drier parts of Tasmania where devils have declined. This suggests that a competitive release of quolls may have occurred and the substantial decline of devils has provided more food in the large-mammal category for quolls, perhaps as increased scavenging opportunities. The high diet overlap suggests that if resources become limited in areas of high devil density, interspecific competition could occur. PMID:29176811
NASA Astrophysics Data System (ADS)
Verba, Circe A.; Geissler, Paul E.; Titus, Timothy N.; Waller, Devin
2010-09-01
Two areas targeted for repeated imaging by detailed High Resolution Imaging Science Experiment (HiRISE) observations allow us to examine morphological differences and monitor seasonal variations of Martian dust devil tracks at two quite different locations. Russell crater (53.3°S, 12.9°E) is regularly imaged to study seasonal processes including deposition and sublimation of CO2 frost. Gusev crater (14.6°S, 175.4°E) has been frequently imaged in support of the Mars Exploration Rover mission. Gusev crater provides the first opportunity to compare “ground truth” orbital observations of dust devil tracks to surface observations of active dust plumes. Orbital observations show that dust devil tracks are rare, forming at a rate <1/110 that of the occurrence of active dust plumes estimated from Spirit's surface observations. Furthermore, the tracks observed from orbit are wider than typical plume diameters observed by Spirit. We conclude that the tracks in Gusev are primarily formed by rare, large dust devils. Smaller dust devils fail to leave tracks that are visible from orbit, perhaps because of limited surface excavation depths. Russell crater displays more frequent, smaller sinuous tracks than Gusev. This may be due to the thin dust cover in Russell, allowing smaller dust devils to penetrate through the bright dust layer and leave conspicuous tracks. The start of the dust devil season and peak activity are delayed in Russell in comparison to Gusev, likely because of its more southerly location. Dust devils in both sites travel in directions consistent with general circulation model (GCM)-predicted winds, confirming a laboratory-derived approach to determining dust devil travel directions based on track morphology.
Native fish sanctuaries of the lower Colorado River: Cibola High Levee Pond, Desert Pupfish Pond
Mueller, G.
2005-01-01
Isolated by high mountains and harsh deserts, its fish community developed unique and specialized traits that helped them survive raging floods and prolonged droughts. Conditions were so unique that three quarters of the fish species are found nowhere else in the world?|
Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002
NASA Astrophysics Data System (ADS)
Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.
2002-12-01
We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.
Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer
Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R.; Cheetham, R. Keira; Cheng, William; Connor, Thomas R.; Cox, Anthony J.; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J.; Harris, Simon R.; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J.; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J.; Wedge, David C.; Woods, Gregory M.; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M.J.; Carter, Nigel P.; Papenfuss, Anthony T.; Futreal, P. Andrew; Campbell, Peter J.; Yang, Fengtang; Bentley, David R.; Evers, Dirk J.; Stratton, Michael R.
2012-01-01
Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip PMID:22341448
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-363, 17 May 2003
This summertime Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of the floor of Argyre Basin shows a plethora of dark streaks thought to have been created by the passage of dust devils. Dust devils are vortices of wind--just as a tornado is a vortex of wind associated with stormy weather on Earth, and the spiraling of water down a bathtub drain is a vortex in a liquid. Dust devils usually form on Mars on relatively calm, quiet, spring and summer afternoons. The passage of a dust devil picks up and disturbs the thin coatings of dust on the martian surface, forming streaks that mark the path that the moving dust devil took. This picture covers an area 3 km (1.9 mi) wide and is located near 48.5oS, 43.0oW. Sunlight illuminates the scene from the upper left.Dust Devils Seen Streaking Across Mars: PART II--They're the Work of the Devil!
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] In December 1999, the MOC team finally had an answer! A dust devil, shown in the above left figure, was caught in the act of creating a swirly, dark streak! An eerie sensation washed over the first team members who saw this picture--here was an event on Mars 'caught in the act' just hours before the picture was played back to Earth. A 'smoking gun.'The first dust devil seen making a streak--located in Promethei Terra (above, left)--was traveling from right (east) to left (west). A columnar shadow was cast by sunlight coming from the upper left. This shadow indicates the true shape of the dust devil. The bright dust devil itself does not look like a column because the picture was taken from a camera looking straight down on it. The dust devil is less than 100 meters (less than 100 yards) wide and the picture covers an area approximately 1.5 by 1.7 kilometers (about 1 by 1 mile).Dust devils are spinning, columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. They form when the ground heats up during the day, warming the air immediately above the surface. As the warmed air nearest the surface begins to rise, it spins. The spinning column begins to move across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it the 'dust devil' or tornado-like appearance. On Earth, dust devils typically last for only a few minutes.The fourth picture (above, right) shows a surface in southwestern Terra Sirenum near 63oS, 168oW, that has seen the activity of so many dust devils that it looks like a plate of dark gray spaghetti. This image, taken in early summer during February 2000, covers an area 3 km wide and 30 km long (1.9 by 19 miles). In fact, a dust devil can be seen in the upper right of this image. Like the other pictures shown here, the Terra Sirenum image is illuminated by sunlight from the upper left.Boldness towards novelty and translocation success in captive-raised, orphaned Tasmanian devils.
Sinn, David L; Cawthen, Lisa; Jones, Susan M; Pukk, Chrissy; Jones, Menna E
2014-01-01
Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release. © 2013 Wiley Periodicals, Inc.
Using an Instrumented Drone to Sample Dust Devils
NASA Astrophysics Data System (ADS)
Jackson, Brian; Lorenz, Ralph; Davis, Karan; Lipple, Brock
2017-10-01
Dust devils are low-pressure, small (many to tens of meters) convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur in arid climates on Earth, where they degrade air quality and pose a hazard to small aircraft. They also occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust. Since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Moreover, most previous studies of martian dust devils have relied on passive sampling of the profiles via meteorology packages on landed spacecraft, resulting in random encounter geometries which non-trivially skew the retrieved profiles. Analog studies of terrestrial devils have employed more active sampling (instrumented vehicles or manned aircraft) but have been limited to near-surface (few meters) or relatively high altitude (hundreds of meters) sampling. Unmanned aerial vehicles (UAVs) or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils via (relatively) controlled geometries at a wide variety of altitudes. In this presentation, we will describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge) has not previously been surveyed for dust devils. We will present preliminary results from the resulting encounters, including stereo image analysis and encounter footage collected onboard the drone.
An investigation of Martian and terrestrial dust devils
NASA Astrophysics Data System (ADS)
Ringrose, Timothy John
2004-10-01
It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.
Techniques for identifying dust devils in mars pathfinder images
Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.
2000-01-01
Image processing methods used to identify and enhance dust devil features imaged by IMP (Imager for Mars Pathfinder) are reviewed. Spectral differences, visible red minus visible blue, were used for initial dust devil searches, driven by the observation that Martian dust has high red and low blue reflectance. The Martian sky proved to be more heavily dust-laden than pre-Pathfinder predictions, based on analysis of images from the Hubble Space Telescope. As a result, these initial spectral difference methods failed to contrast dust devils with background dust haze. Imager artifacts (dust motes on the camera lens, flat-field effects caused by imperfections in the CCD, and projection onto a flat sensor plane by a convex lens) further impeded the ability to resolve subtle dust devil features. Consequently, reference images containing sky with a minimal horizon were first subtracted from each spectral filter image to remove camera artifacts and reduce the background dust haze signal. Once the sky-flat preprocessing step was completed, the red-minus-blue spectral difference scheme was attempted again. Dust devils then were successfully identified as bright plumes. False-color ratios using calibrated IMP images were found useful for visualizing dust plumes, verifying initial discoveries as vortex-like features. Enhancement of monochromatic (especially blue filter) images revealed dust devils as silhouettes against brighter background sky. Experiments with principal components transformation identified dust devils in raw, uncalibrated IMP images and further showed relative movement of dust devils across the Martian surface. A variety of methods therefore served qualitative and quantitative goals for dust plume identification and analysis in an environment where such features are obscure.
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...
Pye, Ruth; Patchett, Amanda; McLennan, Elspeth; Thomson, Russell; Carver, Scott; Fox, Samantha; Pemberton, David; Kreiss, Alexandre; Baz Morelli, Adriana; Silva, Anabel; Pearse, Martin J.; Corcoran, Lynn M.; Belov, Katherine; Hogg, Carolyn J.; Woods, Gregory M; Lyons, A. Bruce
2018-01-01
Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild. PMID:29515577
Stannard, Hayley J; Tong, Lydia; Shaw, Michelle; Van Sluys, Monique; McAllan, Bronwyn; Raubenheimer, David
2017-03-01
Tasmanian devils (Sarcophilus harrisii) are the largest carnivorous marsupial in Australia. Currently many animals are being held in captivity as a management procedure to combat Devil Facial Tumor Disease. Only one published study thus far has investigated nutrition in Tasmanian devils, determining their maintenance energy requirements and digestibility on a rodent diet. More information is needed on Tasmanian devil nutritional and gastrointestinal function to aid in their management. Our study aimed to investigate the current nutritional status of Tasmanian devils in a captive population and functional morphology and histology of their gastrointestinal tract. Animals were maintained on a diet of kangaroo, rabbit, quail and chicken wings and digestibility of these items by the devils was high (>85% for dry matter, protein and lipid). Kangaroo and rabbit were high protein diet items while the quail and chicken wings provided high lipid to the diet, and carbohydrates were minimal (≤3% energy). Maintenance energy requirements were determined to be 620kJkg -0.75 d -1 with no significant difference between males and females. Opportunistic samples for gastrointestinal morphology were obtained from captive specimens. Tasmanian devils have a simple digestive tract similar to other dasyurid species. Both the morphology and histology of the gastrointestinal tract show specialization for a high protein carnivorous diet. Copyright © 2016 Elsevier Inc. All rights reserved.
Dust devil characteristics and associated dust entrainment based on large-eddy simulations
NASA Astrophysics Data System (ADS)
Klose, Martina; Kwidzinski, Nick; Shao, Yaping
2015-04-01
The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.
Dust devils as aeolian transport mechanisms in southern Nevada and the Mars Pathfinder landing site
NASA Astrophysics Data System (ADS)
Metzger, Stephen M.
Discovery of dust devils vortices in Mars Pathfinder images by this study is direct evidence of a dust entrainment mechanism at work on Mars. Dust devils on Earth can entrain fine material from crusted as well as unconsolidated surfaces, even when forced-convection wind speeds are below threshold. Terrestrial dust devils are commonly ``squat'' V-shaped vortices lasting several minutes. Well developed vortices consist of an outer cylinder of high rotation (<25 m/s), an Intermediate cylinder of moderate vertical lift (<13 m/s), and a inner cylindrical core of low pressure (<1.5% below ambient pressure) and elevated temperature (up to 20°C above ambient air temperature). Directly sampled dust devils on Earth were found to carry from 30 to over 2000 kg of soil. On average, the Eldorado Valley, NV, experienced 42 observable dust devils per summer day, each lofting over 200 kg for a daily total of 9 metric tonnes from this desert basin. Spectral differencing techniques have enhanced five localized dust plumes against the general haze in Mars Pathfinder images acquired near midday, which are determined to be dust devils. Given interpreted geographic locations relative to the lander, the dust devils are 14 to 79 m wide, 46 to over 350 m tall, and travel over ground at 0.5 to 4.6 m/s. Their dust loading was approximately 7 × 10-5 kg/m3, relative to the general haze of 9 × 10-8 kg/m3. With an estimated vertical dust flux of 0.5 g m-2 s-1, total particulate transport of these Martian dust devils may have ranged from 2.2 kg for a small dust devil lasting 35 s to over 700 kg for a large plume of 400 s duration. Observed characteristics of these plumes are consistent with expectations based on theory and the lessons of terrestrial field studies. The increasingly apparent role of dust devils in the dust aeolian transport cycle may largely explain the continued concentration of the general Martian dust haze and perhaps the Initiation mechanism for global dust storms.
THEMIS VIS and IR observations of a high-altitude Martian dust devil
Cushing, G.E.; Titus, T.N.; Christensen, P.R.
2005-01-01
The Mars Odyssey Thermal Emission Imaging System (THEMIS) imaged a Martian dust devil in both visible and thermal-infrared wavelengths on January 30, 2004. We believe this is the first documented infrared observation of an extraterrestrial dust devil, and the highest to be directly observed at more than 16 kilometers above the equatorial geoid of Mars. This dust devil measured over 700 meters in height and 375 meters across, and the strongest infrared signature was given by atmospheric dust absorption in the 9-micron range (THEMIS IR band 5). In addition to having formed in the extremely low-pressure environment of about 1 millibar, this dust devil is of particular interest because it was observed at 16:06 local time. This is an unusually late time of day to find dust devils on Mars, during a period when rapid surface cooling typically reduces the boundary-layer turbulence necessary to form these convective vortices. Understanding the mechanisms for dust-devil formation under such extreme circumstances will help to constrain theories of atmospheric dynamics, and of dust lifting and transport mechanisms on Mars. Copyright 2005 by the American Geophysical Union.
Dust loading in Gusev crater, Mars: Results from two active dust devil seasons
NASA Astrophysics Data System (ADS)
Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.
2009-12-01
Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged during Season One and resulted in an average of ~50 active dust devils/km2/sol extrapolated out to the LAZ while 103 dust devils were imaged during Season Two resulting in an average of ~5 active dust devils/km2/sol within the LAZ. This drop in dust devil frequency from one season to the next was coupled with a 50% decrease in the amount of dust loaded into the atmosphere during Season Two (~19 kg/km2/sol in Season One and ~10 kg/km2/sol in Season Two). Previous models indicate that the increased amount of dust in the atmosphere during the storm decreased the amount of solar insolation to the surface therefore also decreasing the surface heat flux. The rapidly decreasing surficial heat flux prevents the temperature lapse rate (change in temperature gradient with elevation) from becoming super-adiabatic and therefore causes the low-altitude atmospheric temperature profile to become too homogeneous to sustain convective plumes.
First Dust Devil Seen by Opportunity
2010-07-28
This is the first dust devil that NASA rover Opportunity has observed in the rover six and a half years on Mars. This image has been carefully calibrated and the contrast stretched to make the dust devil easier to see against the Martian sky.
Large-Eddy Simulations of Dust Devils and Convective Vortices
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei
2016-11-01
In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.
1989-01-18
INVENTORY O: PORTIONS OF THE DEVILS LAKE BASIN , I BENSON, EDDY, NELSON, AND RAMSEY COUNTIES, NORTH DAKOTA By: 5 MERVIN G. FLOODMAN, M.A. Submitted By...had a geomorphological study conducted for the Devils Lake Basin , to interpret the Pleistocene and Holocene development of the landscape, and assess...investigations, in an attempt to make broad statements about the location of cultural resources within the Devils Lake Basin . None of the historic sites
Laser Doppler dust devil measurements
NASA Technical Reports Server (NTRS)
Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.
1977-01-01
A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.
Jefferson, S.
1958-01-28
This patent relates to a device normally termed a godevil for use in clearing pipes of sludge, and in particular describes an arrangement for housing a radioactive source within a go-devil whereby the source is removed from a radioactivity shield for detection purposes only when the go-devil is in use. In the described go-devil the radioactive source is housed in a member attached to a piston. Under normal pressure conditions the piston is forced in a direction to position the source within a lead shield. A bellows senses the pressure external to the go-devil and acts through a hydraulic line to force the piston in a direction to remove the source from the shield as long as the pressure is above a pre-set value.
2017-01-01
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity. PMID:28796803
Dust devil signatures in infrasound records of the International Monitoring System
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Christie, Douglas
2015-03-01
We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.
Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.
2000-01-01
The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin. At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry. Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997). John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase. The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million. These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels. Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.
Dust Devils in Gusev Crater, Sol 463
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a several dust devils -- whirlwinds that loft dust into the air -- moving across a plain below the hillside vantage point of NASA's Mars Exploration Rover Spirit. Several of the dust devils are visible at once in some of the frames in this sequence. The local solar time was about 2 p.m., when the ground temperature was high enough to cause turbulence that kicks up dust devils as the wind blows across the plain. The number of seconds elapsed since the first frame is indicated at lower left of the images, typically 20 seconds between frames. Spirit's navigation camera took these images on the rover's 463rd martian day, or sol (April 22, 2005.) Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection can trigger dust devils.Several Dust Devils in Gusev Crater, Sol 461
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a several dust devils -- whirlwinds that loft dust into the air -- moving across a plain below the hillside vantage point of NASA's Mars Exploration Rover Spirit. Several of the dust devils are visible at once in some of the 21 frames in this sequence. The local solar time was about 2 p.m., when the ground temperature was high enough to cause turbulence that kicks up dust devils as the wind blows across the plain. The number of seconds elapsed since the first frame is indicated at lower left of the images, typically 20 seconds between frames. Spirit's navigation camera took these images on the rover's 461st martian day, or sol (April 20, 2005.) Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil. Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection can trigger dust devils.Martian Arctic Dust Devil, Phoenix Sol 104
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008. Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104. Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those. The image has been enhanced to make the dust devil easier to see. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-464, 26 August 2003
Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.Dust Devil Track Occurrence in Argyre Planitia.
NASA Astrophysics Data System (ADS)
Whelley, P. L.; Balme, M. R.; Greeley, R.
2002-12-01
Martian dust devil tracks were first observed in Viking Orbiter images [Thomas et al., 1985]. While the interpretation of these features was at first controversial, it is now widely accepted that the tracks are formed by the passage of small convective vortices (dust devils). As the dust devils travel across the surface the atmosphere is loaded with fine particles creating a visible trail inferred to be removal or deposition of material [Greeley et al., 2001]. Mars Global Surveyor (MGS) Mars Orbital Camera (MOC) images of dust devil tracks in Argyre Planitia were used to asses dust devil track abundance as a function of Martian season as well as elevation using Mars Orbiter Laser Altimeter (MOLA) data. Argyre Planitia is a large impact basin in the southern hemisphere (55° to 33°W and 35° to 58°S), with topographic relief of 7 km with the median at -1km. We have studied the 564 Narrow Angle MOC images (taken as of summer 2002) covering the area. The images were divided into two categories: those with devil tracks and those without. The Ls (solar longitude degrees as a fraction of orbit) and elevation of all of the images with and without devil tracks were noted. The elevation was recorded at the center point of each MOC image using MOLA data. A polar plot of all of the images shows a statistically random distribution throughout the Martian year. A context map of the images shows a representative distribution over the area of the crater itself. A polar plot of dust devil track occurrence within the area observed shows a major concentration of tracks between Ls 200° and 360° (southern spring to late summer). A seasonal breakdown of devil track occurrence as a percentage of total area observed yields: fall 11.25%, winter 2.24%, spring 27.21%, and summer 46.49%. We therefore conclude that dust devils tracks are formed preferentially in summer and are destroyed, fade or are covered, over a period of a few months. The elevation of all 564 images was measured and 1km bins were used to calculate the percent of occurrence. We discovered that, at 3km 0% of the observed area contain dust devil tracks, 2km 7.69%, 1km 12.90%, at Datum 15.95%, -1km 8.97%, -2km 28.92%, -3km% 50.00%, -4km 50.00%. Independent of the season a majority of the devil tracks were observed below -3km. Therefore elevation is a key factor governing the formation of dust devils or their ability to produce tracks. Our interpretation of these results is that dust devils are much more likely to form during the summer and, as suggested by recent experiments [Balme et al., 2002], that they are more efficient at moving materials on the surface in areas where the atmospheric pressure is greatest (in the lowest elevations). The short timescale for disappearance of tracks suggests that the distinct albedo variations of the tracks result from only the removal or deposition of a very thin layer of material. Thomas. P. et al., 1985, Science v. 230 Greeley. R. et al., 2001, LPSC XXXII Balme. M. et al., 2002, LPSC XXXIII
Martian Dust Devil Movie, Phoenix Sol 104
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008. Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104. Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix. This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.. The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Devices for Deviling Classes in Theatre History.
ERIC Educational Resources Information Center
Bryan, George B.
In addition to the use of the lecture-discussion method of teaching theatre history, the author contends that this approach can be augmented by the process of "deviling" (adding spice to) the learning situation. At the University of Vermont, theatre history courses have been taught with a variety of deviling exercises, which include: (1)…
2017-02-20
Today's VIS image shows dust devil tracks on the plains of Aonia Terra. As the dust devil moves across the surface it scours the fine dust particles, revealing the darker rock surface below. Orbit Number: 66800 Latitude: -65.2605 Longitude: 239.338 Instrument: VIS Captured: 2017-01-04 04:52 http://photojournal.jpl.nasa.gov/catalog/PIA21316
In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA
USDA-ARS?s Scientific Manuscript database
We document observations of dust devil vortices using a linear array of 10 miniature pressure- and sunlight-logging stations in summer 2013 at La Jornada Experimental Range in the southwestern USA. These data provide a census of vortex and dust-devil activity at this site. The simultaneous spatial...
Orbital Observations of Dust Lofted by Daytime Convective Turbulence
NASA Astrophysics Data System (ADS)
Fenton, Lori; Reiss, Dennis; Lemmon, Mark; Marticorena, Béatrice; Lewis, Stephen; Cantor, Bruce
2016-11-01
Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called "dust devils". On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet's atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.
Moring, J. Bruce
2012-01-01
The total number of fish species collected was the same in the Devils River and Pecos River, but the species found in the two rivers varied slightly. The number of fish species generally increased from the site farthest upstream to the site farthest downstream in the Devils River, and decreased between the site farthest upstream and site farthest downstream in the Pecos River. The redbreast sunfish was the most abundant species collected in the Devils River, and the blacktail shiner was the most abundant species collected in the Pecos River. Comparing the species from each river, the percentage of omnivorous fish species was larger at the more downstream sites closer to Amistad Reservoir, and the percentage of species tolerant of environmental stressors was larger in the Pecos River. The fish community, assessed on the basis of the number of shared species among the sites sampled, was more similar to the fish community at the other sites on the same river than it was to the fish community from any other site in the other river. More macroinvertebrate taxa were collected in the Devils River than in the Pecos River. The largest number of macroinvertebrate taxa were from the site second farthest downstream on the Devils River, and the smallest numbers of macroinvertebrate taxa were from the farthest downstream site on the Pecos River. Mayflies were more common in the Devils River, and caddisflies were less common than mayflies at most sites. Net-spinning caddisflies were more common at the Devils River sites. The combined percent of mayfly, caddisfly, and stonefly taxa was generally larger at the Pecos River sites. Riffle beetles were the most commonly collected beetle taxon among all sites, and water-penny beetles were only collected at the Pecos River sites. A greater number of true midge taxa were collected more than any other taxa at the genus and species taxonomic level. Non-insect macroinvertebrate taxa were more common at the Devils River sites. Corbicula sp. (presumably the introduced Asian clam) was found at sites in both rivers, and amphipods were more abundant in the Devils River. The Margalef species richness index, based on aquatic insect taxa only, was larger at the Devils River sites than at the Pecos River sites. The Hilsenhoff's biotic index was largest at the site farthest downstream in the Devils River and smallest at the site second farthest downstream in the Pecos River. Overall similarity among sites based on the number of shared macroinvertebrate taxa indicated that each site is more similar to other sites on the same river than to sites on the other river.
Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota
Wiche, Gregg J.
1996-01-01
The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake, Lake Alice, and Lake Irvine). Most of the planning studies include options to store water in the Devils Lake Basin and to provide an outlet to the Sheyenne River via Devils Lake or the Stump Lakes. If an outlet is constructed, water-quantity and -quality issues will be considered in designing the operating plan. Therefore, current and accurate hydrologic information is needed to assess the viability of the various options to lower the level of Devils Lake.
Phalen, David N.; Frimberger, Angela; Pyecroft, Stephen; Peck, Sarah; Harmsen, Colette; Lola, Suzanneth; de Mello Mattos, Beatriz; Li, Kong M.; McLachlan, Andrew J.; Moore, Antony
2013-01-01
Tasmanian Devil Facial Tumor Disease (DFTD) is a transmissible cancer threatening to cause the extinction of Tasmanian Devils in the wild. The aim of this study was to determine the susceptibility of the DFTD to vincristine. Escalating dosage rates of vincristine (0.05 to 0.136 mg/kg) were given to Tasmanian devils in the early stages of DFTD (n = 8). None of these dosage rates impacted the outcome of the disease. A dosage rate of 0.105 mg/kg, a rate significantly higher than that given in humans or domestic animals, was found to the highest dosage rate that could be administered safely. Signs of toxicity included anorexia, vomiting, diarrhea and neutropenia. Pharmacokinetic studies showed that, as with other species, there was a rapid drop in blood concentration following a rapid intravenous infusion with a high volume of distribution (1.96 L/kg) and a relatively long elimination half life (11 h). Plasma clearance (1.8 ml/min/kg) was slower in the Tasmanian devil than in humans, suggesting that pharmacodynamics and not pharmacokinetics explain the Tasmanian devil’s ability to tolerate high dosage rates of vincristine. While providing base-line data for the use of vincristine in Tasmanian devils and possibly other marsupials with vincristine susceptible cancers, these findings strongly suggest that vincristine will not be effective in the treatment of DFTD. PMID:23762298
Measurements of Martian dust devil winds with HiRISE
Choi, D.S.; Dundas, C.M.
2011-01-01
We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.
9 CFR 319.761 - Potted meat food product and deviled meat food product.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...
9 CFR 319.761 - Potted meat food product and deviled meat food product.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...
9 CFR 319.761 - Potted meat food product and deviled meat food product.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...
9 CFR 319.761 - Potted meat food product and deviled meat food product.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...
Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.
2011-01-01
The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model accurately simulated the faster rate of rise in Devils Lake than in Stump Lake, and timing and direction of wind-driven fluctuations in water levels on a short time scale were reproduced well. To help the U.S. Army Corps of Engineers determine the elevation to which the protective embankment for the city of Devils Lake should be raised, an extreme flooding scenario based on an inflow of one-half the probable maximum flood was simulated. Under the conditions and assumptions of the extreme flooding scenario, the water level for both lakes reached a maximum water level around 1,461.9 feet above the National Geodetic Vertical Datum of 1929. One factor limiting the extent of pumping from the Devils Lake State Outlet is sulfate concentrations in West Bay. If sulfate concentrations can be reduced in West Bay, pumping from the Devils Lake State Outlet potentially can increase. The Devils Lake model was used to simulate the transport of dissolved solids using specific conductance data as a surrogate for sulfate. Because the transport of dissolved solids was not calibrated, results from the simulations were not actual expected concentrations. However, the effects of hydrological modifications on the transport of dissolved solids could be evaluated by comparing the effects of hydrological modifications relative to a baseline scenario in which no hydrological modifications were made. Four scenarios were simulated: (1) baseline condition (no hydrological modification), (2) diversion of Channel A, (3) reduction of the area of water exchange between Main Bay and East Bay, and (4) combination of scenarios 2 and 3. Relative to scenario 1, mean concentrations in West Bay for scenarios 2 and 4 were reduced by approximately 9 percent. Given that there is no change in concentration for scenario 3, but about a 9-percent reduction in concentration for scenario 4, the diversion of Channel A was the only hydrologic modification that appeared to have the potential to reduce sulfate c
Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.
2003-01-01
The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next younger Famennian Stage. The Northern Antelope Range section is located near the top of the west side of the proto-Antler forebulge. Because of its unusual, tectonically active location, unmatched at any other Nevada localities, this section records only four regional and global events during a timespan slightly longer than that of the Devils Gate section. The global semichatovae rise and late Frasnian mass extinction event are largely masked because of the depositional complexities resulting from this location.
Martian Arctic Dust Devil and Phoenix Meteorology Mast
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008. Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104. Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those. The image has been enhanced to make the dust devil easier to see. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Properties of Arizona Dust Devils: a Martian Analog
NASA Astrophysics Data System (ADS)
Smith, P. H.; Renno, N.; MATADOR Team
2001-11-01
During the week of June 4-8, 2001, the MATADOR team instrumented a truck to study the properties of dust devils at a Martian analog site in Eloy, AZ. MATADOR consists of a group of instruments operated by a science team of about 20 members originally selected by the HEDS program for a 2003 lander mission to Mars. Currently deselected with the loss of the mission, the team has continued studying the optimum means for measuring dust devil properties. With an eye for remotely sensing and identifying potential hazards to humans and their equipment, MATADOR can eventually act as an early warning system much like tornedo and hurricane watches on the Earth. Key questions that the MATADOR group is addressing concern the ability of LIDAR (provided by Optech in Canada) to scan dust devils, the strength of electrical charging and the associated E-fields that are created, the oxidation of the local soil from ionized species, and the best ways to measure the quixotic meteorological properties that define dust devils. Dozens of dust devils were monitored during the field test both remotely and in situ, the results of our study will be presented in detail. One thing is clear though, dust devils maintain a tremendous charge separation such that E-fields approach the breakdown potential of the Earth's atmosphere. Equivalent dust devils on Mars would be 100 times larger than their small Earth cousins; despite the much reduced breakdown potential of the Martian atmosphere, charge separations are likely to occur on Mars. The discharging of these dust events would create electrical signals that can be studied remotely. We would like to thank NASA's HEDS division for their support of these investigations.
The devil is in the details: Transposable element analysis of the Tasmanian devil genome.
Nilsson, Maria A
2016-01-01
The third marsupial genome was sequenced from the Tasmanian devil ( Sarcophilus harrisii ), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the L ong IN terspersed E lement 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the S hort IN terspersed E lements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.
The devil is in the details: Transposable element analysis of the Tasmanian devil genome
Nilsson, Maria A.
2016-01-01
ABSTRACT The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome. PMID:27066301
Dust devil vortices seen by the Mars Pathfinder camera
Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.
1999-01-01
Discovery of dust devil vortices in Mars Pathfinder (MPF) images reveals a dust entrainment mechanism at work on Mars. Scattering of visible light by dust in the Martian atmosphere creates a pronounced haze, preventing conventional image processing from displaying dust plumes. Spectral differencing techniques have enhanced five localized dust plumes from the general haze in images acquired near midday, which we determine to be dust devils. Processing of 440 nm images highlights dust devils as distinct occultation features against the horizon. The dust devils are interpreted to be 14-79 m wide, 46-350 m tall, travel at 0.5-4.6 m/s, with dust loading of 7E-5 kg m-3, relative to the general haze of 9E-8 kg m-3, and total particulate transport of 2.2 - 700 kg. The vortices match predictions from terrestrial analog studies. Copyright 1999 by the American Geophysical Union.
Results from Automated Cloud and Dust Devil Detection Onboard the MER
NASA Technical Reports Server (NTRS)
Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark
2008-01-01
We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.
On the geological origin of Devils Tower (WY, USA)
NASA Astrophysics Data System (ADS)
Zavada, P.; Dedecek, P.; Holloway, S. D.; Chang, J. C.; Crain, K.; Keller, G. R.
2011-12-01
The Devils Tower is an exceptional igneous rock formation and a dominating landmark of the northern plains in Wyoming (USA). It rises 250 m above the surrounding sedimentary formations. Previous hypotheses suggested that the Devils Tower was originally part of a magmatic intrusion; volcanic conduit, magmatic stock or a laccolith. Our review of the geological evidence suggests that the Devils Tower is a remnant of an eroded lava lake that filled a broad phreatomagmatic volcano crater. Our hypothesis is based on a detailed study of a similar phonolite landmark in Czech Republic, called Boren, and analogue modeling, finite element numerical modeling of cooling for various shapes of volcanic bodies, and results of field and gravity surveys of the area. The Devils Tower together with a group of five phonolite bodies called Missouri Buttes, located 6 km NW from the Devils Tower, represent the easternmost products of the Tertiary tectonomagmatic events related to the lithospheric-scale uplift of the Black hills monocline. The phreatomagmatic deposits in the surroundings of the Missouri Buttes and the Devils Tower suggest that these phonolite bodies were originally emplaced into phreatomagmatic maar-diatreme volcanoes. To reveal the original shape of the Devils Tower, we employed the analogue modeling using plaster of Paris as analogue for phonolite magma to study internal fabrics and shapes of extrusive/intrusive magmatic bodies emplaced into the maar-diatreme volcanoes. Then, the resulting shapes of analogue magmatic bodies were used for the Finite Element thermal numerical models of their cooling using the thermophysical parameters of the phonolite magma and the rock units surrounding the Devils Tower and Missouri Buttes. Because the columnar joints grow perpendicular to the isotherms in cooling igneous and volcanic bodies, we analyzed the match between the thermal structure of the FE models and the columnar jointing pattern on the Devils Tower. The best fit of the thermal structure and the inverted fan columnar jointing pattern on Devils Tower was found for one of the models that produced a lava lake filling the entire maar crater of the phreatomagmatic volcano. The Devils Tower represents the central part of the lake just above the feeding conduit. After emplacement and solidification of the lava lake, erosion first removed the weakly consolidated phreatomagmatic deposits in the tuff ring around the lake. Then the lava body eroded laterally due to the formation of ice in the columnar joints, pushing columns away from the neighboring columns into the open space. The remnant of the solidified lake (Devils Tower) represents a structure, which is resistant to this kind of erosion, because its base is formed by columns that lean against each other and towards the center of the Tower. In contrast, the Missouri Buttes most probably represent a remnant of a branched intrusion producing several extrusive domes on the maar-crater periphery that can form by subsequent emplacement of different magma batches (e.g. from a stratified magma chamber), each with relatively lower yield strength owing to decreasing crystal content.
2017-03-06
This image captured by NASA 2001 Mars Odyssey spacecraft shows dust devil tracks in Aonia Terra. As the dust devil moves along the surface it scours the dust and fine materials away, revealing the darker rocky surface below the dust. Orbit Number: 66962 Latitude: -68.8221 Longitude: 241.346 Instrument: VIS Captured: 2017-01-17 13:13 http://photojournal.jpl.nasa.gov/catalog/PIA21501
78 FR 1751 - Modification of VOR Federal Airway V-170 in the Vicinity of Devils Lake, ND
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
..., Devils Lake, ND, to support non- radar separation requirements when the restricted area is active. DATES...-radar separation and airway clearance from the newly established R-5402, Devils Lake, ND (77 FR 54860... greatest level of safety and efficiency in the vicinity of this area that has poor low altitude radar...
The Gothic Folk Devils Strike Back! Theorizing Folk Devil Reaction in the Post-Columbine Era
ERIC Educational Resources Information Center
Griffiths, Richard
2010-01-01
Folk devils have to date been significantly overlooked in previous studies of moral panics. While several studies have called attention to this problematic (Thornton and McRobbie 1995, De Young 2004, Lumsden 2009), no specific theoretical framework has been proposed for reading this dimension of a moral panic. This paper argues that a moral panic…
Gaussian-based filters for detecting Martian dust devils
Yang, F.; Mlsna, P.A.; Geissler, P.
2006-01-01
The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.
What's "up" with God? Vertical space as a representation of the divine.
Meier, Brian P; Hauser, David J; Robinson, Michael D; Friesen, Chris Kelland; Schjeldahl, Katie
2007-11-01
"God" and "Devil" are abstract concepts often linked to vertical metaphors (e.g., "glory to God in the highest," "the Devil lives down in hell"). It is unknown, however, whether these metaphors simply aid communication or implicate a deeper mode of concept representation. In 6 experiments, the authors examined the extent to which the vertical dimension is used in noncommunication contexts involving God and the Devil. Experiment 1 established that people have implicit associations between God-Devil and up-down. Experiment 2 revealed that people encode God-related concepts faster if presented in a high (vs. low) vertical position. Experiment 3 found that people's memory for the vertical location of God- and Devil-like images showed a metaphor-consistent bias (up for God; down for Devil). Experiments 4, 5a, and 5b revealed that people rated strangers as more likely to believe in God when their images appeared in a high versus low vertical position, and this effect was independent of inferences related to power and likability. These robust results reveal that vertical perceptions are invoked when people access divinity-related cognitions. (c) 2007 APA, all rights reserved.
Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation
Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.
2015-01-01
This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called
Sympathy for the devil: a conservation strategy for devil and manta rays
Lawson, Julia M.; Fordham, Sonja V.; O’Malley, Mary P.; Davidson, Lindsay N.K.; Walls, Rachel H.L.; Heupel, Michelle R.; Stevens, Guy; Fernando, Daniel; Budziak, Ania; Simpfendorfer, Colin A.; Ender, Isabel; Francis, Malcolm P.; Notarbartolo di Sciara, Giuseppe
2017-01-01
Background International trade for luxury products, medicines, and tonics poses a threat to both terrestrial and marine wildlife. The demand for and consumption of gill plates (known as Peng Yu Sai, “Fish Gill of Mobulid Ray”) from devil and manta rays (subfamily Mobulinae, collectively referred to as mobulids) poses a significant threat to these marine fishes because of their extremely low productivity. The demand for these gill plates has driven an international trade supplied by largely unmonitored and unregulated catches from target and incidental fisheries around the world. Scientific research, conservation campaigns, and legal protections for devil rays have lagged behind those for manta rays despite similar threats across all mobulids. Methods To investigate the difference in attention given to devil rays and manta rays, we examined trends in the scientific literature and updated species distribution maps for all mobulids. Using available information on target and incidental fisheries, and gathering information on fishing and trade regulations (at international, national, and territorial levels), we examined how threats and protective measures overlap with species distribution. We then used a species conservation planning approach to develop the Global Devil and Manta Ray Conservation Strategy, specifying a vision, goals, objectives, and actions to advance the knowledge and protection of both devil and manta rays. Results and Discussion Our literature review revealed that there had been nearly 2.5-times more “manta”-titled publications, than “mobula” or “devil ray”-titled publications over the past 4.5 years (January 2012–June 2016). The majority of these recent publications were reports on occurrence of mobulid species. These publications contributed to updated Area of Occupancy and Extent of Occurrence maps which showed expanded distributions for most mobulid species and overlap between the two genera. While several international protections have recently expanded to include all mobulids, there remains a greater number of national, state, and territory-level protections for manta rays compared to devil rays. We hypothesize that there are fewer scientific publications and regulatory protections for devil rays due primarily to perceptions of charisma that favour manta rays. We suggest that the well-established species conservation framework used here offers an objective solution to close this gap. To advance the goals of the conservation strategy we highlight opportunities for parity in protection and suggest solutions to help reduce target and bycatch fisheries. PMID:28316882
Sympathy for the devil: a conservation strategy for devil and manta rays.
Lawson, Julia M; Fordham, Sonja V; O'Malley, Mary P; Davidson, Lindsay N K; Walls, Rachel H L; Heupel, Michelle R; Stevens, Guy; Fernando, Daniel; Budziak, Ania; Simpfendorfer, Colin A; Ender, Isabel; Francis, Malcolm P; Notarbartolo di Sciara, Giuseppe; Dulvy, Nicholas K
2017-01-01
International trade for luxury products, medicines, and tonics poses a threat to both terrestrial and marine wildlife. The demand for and consumption of gill plates (known as Peng Yu Sai , "Fish Gill of Mobulid Ray") from devil and manta rays (subfamily Mobulinae, collectively referred to as mobulids) poses a significant threat to these marine fishes because of their extremely low productivity. The demand for these gill plates has driven an international trade supplied by largely unmonitored and unregulated catches from target and incidental fisheries around the world. Scientific research, conservation campaigns, and legal protections for devil rays have lagged behind those for manta rays despite similar threats across all mobulids. To investigate the difference in attention given to devil rays and manta rays, we examined trends in the scientific literature and updated species distribution maps for all mobulids. Using available information on target and incidental fisheries, and gathering information on fishing and trade regulations (at international, national, and territorial levels), we examined how threats and protective measures overlap with species distribution. We then used a species conservation planning approach to develop the Global Devil and Manta Ray Conservation Strategy, specifying a vision, goals, objectives, and actions to advance the knowledge and protection of both devil and manta rays. Our literature review revealed that there had been nearly 2.5-times more "manta"-titled publications, than "mobula" or "devil ray"-titled publications over the past 4.5 years (January 2012-June 2016). The majority of these recent publications were reports on occurrence of mobulid species. These publications contributed to updated Area of Occupancy and Extent of Occurrence maps which showed expanded distributions for most mobulid species and overlap between the two genera. While several international protections have recently expanded to include all mobulids, there remains a greater number of national, state, and territory-level protections for manta rays compared to devil rays. We hypothesize that there are fewer scientific publications and regulatory protections for devil rays due primarily to perceptions of charisma that favour manta rays. We suggest that the well-established species conservation framework used here offers an objective solution to close this gap. To advance the goals of the conservation strategy we highlight opportunities for parity in protection and suggest solutions to help reduce target and bycatch fisheries.
Lent, R.M.; Alexander, C.R.
1997-01-01
Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.
Food preference of red devil (Amphilophus labiatus) in the Sermo Reservoir, Kulon Progo Regency
NASA Astrophysics Data System (ADS)
Ariasari, A.; Helmiati, S.; Setyobudi, E.
2018-03-01
Food preference is one of the important information that can be used to know the food chain in order to manage fisheries resources. This study aims to determine the food habits and preference of red devil (Amphilophus labiatus) in the Sermo Reservoir, Kulon Progo Regency. Samples were collected randomly each month from September 2013 to February 2014. Each sample collected was measured its total length, body weight, and determined sex, then dissected to measure the gut length and to observe gut contents. Results showed that red devil is omnivorous (relative gut length = 3.83) with food composition consisted of fish, crustaceans, detritus, phytoplankton, zooplankton, plants, insects, insect’s larvae, Chironomus sp., and annelids. A change occurred in the food preference of red devil, i.e. the young fish prefers to feed Chironomus sp. larvae (86.02 %) whereas the adult fish prefers fish/fish chunk (81.82 %). Trophic level status of red devil showed as carnivorous and niche overlapping between male and female of the adult.
Fenelon, Joseph M.; Moreo, Michael T.
2002-01-01
Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground-water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranspiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable from 1992 to 2000, with some water levels showing small rising trends and some declining slightly. Possible reasons for water-level fluctuations at sites AD-6 (Tracer Well 3), AM-5 (Devils Hole Well), and AM-4 (Devils Hole) from 1960 to 2000 include climate change, local and regional ground-water withdrawals, and tectonic activity. In Jackass Flats, water levels from 1992 to 2000 in six wells adjacent to Fortymile Wash displayed either small upward trends or no upward or downward trend. Comparison of trends in water levels from 1983 to 2000 for these six wells shows good correlations between all wells and suggests a common mechanism controlling water levels in the area. Of the likely controls on the system--precipitation or pumping in Jackass Flats--precipitation appears to be the predominant factor controlling water levels near Fortymile Wash. Water levels in the heavily pumped Amargosa Farms area declined from about 10 to 30 feet from 1964 to 2000. Water-level declines accelerated beginning in the early 1990's as pumping rates increased substantially. Pumping in the Amargosa Farms area may affect water levels in some wells as far away as 5-14 miles. The water level at site DV-3 (Travertine Point 1 Well) and discharge at site DV-2 (Navel Spring), both in the Death Valley hydrographic area, had downward trends from 1992 to 2000. The cause of these downward trends may be linked to earthquakes, pumping in the Amargosa Farms area, or both.
A second transmissible cancer in Tasmanian devils
Pye, Ruth J.; Pemberton, David; Tovar, Cesar; Tubio, Jose M. C.; Dun, Karen A.; Fox, Samantha; Darby, Jocelyn; Hayes, Dane; Knowles, Graeme W.; Kreiss, Alexandre; Siddle, Hannah V. T.; Swift, Kate; Lyons, A. Bruce; Murchison, Elizabeth P.; Woods, Gregory M.
2016-01-01
Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens. PMID:26711993
A second transmissible cancer in Tasmanian devils.
Pye, Ruth J; Pemberton, David; Tovar, Cesar; Tubio, Jose M C; Dun, Karen A; Fox, Samantha; Darby, Jocelyn; Hayes, Dane; Knowles, Graeme W; Kreiss, Alexandre; Siddle, Hannah V T; Swift, Kate; Lyons, A Bruce; Murchison, Elizabeth P; Woods, Gregory M
2016-01-12
Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.
NASA Astrophysics Data System (ADS)
Mahmood, T. H.; Van Hoy, D.
2016-12-01
The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.
Lachish, S; Miller, K J; Storfer, A; Goldizen, A W; Jones, M E
2011-01-01
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations. PMID:20216571
Comparison of Martian Dust Devil Track Morphologies in Gusev and Russell Craters
NASA Astrophysics Data System (ADS)
Verba, C. A.; Geissler, P. E.
2008-12-01
Detailed HiRISE images were used to observe the seasonal changes of dust devil tracks in Gusev and Russell craters, focusing on the temporal and morphological differences between the two locations. Seasonal variations in dust devil activity are influenced by topography, sediment supply, altitude, as well as latitudinal variations in the atmospheric dust cycle and local winds. Topographical features, such as the dunes in Russell, enhance convective circulation, thereby playing a key role in dust devil formation. The greater the contrast between surface and air temperatures, the greater the surface heat flux and potential for dust devil activity. The NASA Ames General Circulation Model (GCM) was used to compare predicted wind directions to those determined from inferred scallops of tracks mapped using ArcMap. Observations indicate distinct variations in the density, shape, and size of the tracks during specific seasons. Russell crater tracks are curvilinear and highly sinuous, with widths and lengths ranging from 20-40 m and 340 m to 9 km respectively. Gusev crater tracks are less sinuous, measuring tens of meters wide and 2-4 km long. Tracks in Russell crater are aligned with the northwesterly oriented prevailing wind as predicted by the GCM. The dust devil season in Gusev Crater is much shorter (Ls= 160° - 340°, with only minor activity afterwards) than that of Russell Crater (Ls= 172° - 40°). Peak dust devil frequencies occur sooner at Gusev (Ls 250°) than at Russell crater (Ls 288°). Track densities are greater and more consistent in Gusev crater and are more variable at Russell, particularly during the early part of the season. Possible explanations for the differences in seasonal behavior between the study sites include: (1) average altitudes up to 2000 m higher at Russell crater than at Gusev, resulting in enhanced convective circulation; (2) increased insolation at higher southern latitudes during perihelion; and (3) frost on the dunes delays the start of the dust devil season in Russell crater.
Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine
2015-08-01
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Spirit Captures Two Dust Devils On the Move
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Annotated At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This is an image from the rover's navigation camera. Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil. Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range. One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust? By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Annotated At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This pair of images is from the rover's rear hazard-avoidance camera. Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil. Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range. One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust? By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.A Dust Devil Making a Streak and Climbing a Crater Wall
NASA Technical Reports Server (NTRS)
2002-01-01
MGS MOC Release No. MOC2-318, 8 August 2002 [figure removed for brevity, see original site] One of the key elements of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is to look for and monitor changes taking place on the planet over the course of a second--and, eventually, a third--martian year. MGS is now well into its second Mars year, which will draw to a close in December 2002. Among the changes the MOC has observed are streaks believed to be caused by the passage of dust devils. Thousands of MOC images show these streaks, dozens show that they change over time, but far fewer images have actually captured a dust devil in the act of creating a streak. At the center right of this image (above left) is a dust devil that, on May 21, 2002, was seen climbing the wall of a crater at 4.1oS, 9.5oW. This crater (above right) is in western Terra Meridiani. The dust devil was moving toward the northeast (upper right), leaving behind a dark trail where a thin coating of surficial dust was removed or disrupted as the dust devil advanced. Dust devils most commonly form after noon on days when the martian air is still (that is, when there isn't even a faint breeze). On such days, the ground is better able to heat up the air immediately above the surface. As the warmed near-surface air begins to rise, it also begins to spin, creating a vortex. The spinning column then moves across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it a tornado-like appearance. The dust devil in this image has a very short, dark shadow cast to the right of the bright column; this shadow is short because the sun was nearly overhead.
Why Devil's town has Devil's water
NASA Astrophysics Data System (ADS)
Jovic, Sladjana; Mitriceski, Bojana
2015-04-01
Why Devil's town has Devil's water In the south of Serbia, lies a first-class natural landmark "Devil's Town" at an altitude of 660-700 m. Earthen figures or "towers" as the locals call them, are located in the watershed between two gullies, whose sources joined together create a unique erosive formation, tremendously demolished by the erosive processes. The gullies also have strange names: "Devil's Gully" and "Hell's Gully". There are two rare natural phenomena at the same spot: 202 earthen figures of different shape and dimension, from 2 m to 15 m in height, and from 0.5 m to 3 m in width, with stone caps on the top. They are an outcome of a specific erosive process that lasts for centuries. When figures are formed, they grow, change, shorten, gradually (very slowly) disappear and reappear. The loose soil is dissolved and washed away by the rain. However, the material under the stone caps is protected from the "bombardment" of the rain drops and washout, and remains in place in the form of the rising earthen pillars - figures. Another natural rarity in "Devil's Town" are two springs of extraordinary properties "Devil's Water", which is located in vicinity of these earthen figures, is a cold and extremely acid spring (pH 1.5) of high mineral concentration (15 g/l of water), springing out in "Devil's Gully". In comparison to drinking water, it is 10 to 1000 times richer in minerals (aluminium, iron, potassium, copper, nickel, sulphur, and alaun). "Red Well" is another spring located downstream, in the alluvial plain, 400 m away from the first spring. Its water (pH 3.5) is less acid and has a lower general mineral concentration (4.372 mg/l of water). Due to the oxidation of iron, which is contained in water in large amounts, an attractive red terrace in the form of a fan is created. The main assessment for students is to take some examples of water from Devils Gully and the others from Red Well . Second part is to find out content of minerals in water examples and this part should be done in laboratory while measured of PH with PH meters should be done on the spot. At the same time students can analyze erosion process which is developed in this place. This type of public classes is very popular and teaching and learning process are taking place at the same time.
Expansion of CORE-SINEs in the genome of the Tasmanian devil
2012-01-01
Background The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. Results The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. Conclusions The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome. PMID:22559330
Expansion of CORE-SINEs in the genome of the Tasmanian devil.
Nilsson, Maria A; Janke, Axel; Murchison, Elizabeth P; Ning, Zemin; Hallström, Björn M
2012-05-06
The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species' survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome.
Analysis of Dust Devils on Mars using CFD
NASA Astrophysics Data System (ADS)
Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.
2009-05-01
Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.
Martian Dust Devil Action in Gale Crater, Sol 1597
2017-02-27
This frame from a sequence of images shows a dust-carrying whirlwind, called a dust devil, scooting across the ground inside Gale Crater, as observed on the local summer afternoon of NASA's Curiosity Mars Rover's 1,597th Martian day, or sol (Feb. 1, 2017). Set within a broader southward view from the rover's Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. A dust devil is most evident in the 10th, 11th and 12th frames. In the first and fifth frames, dust blowing across the ground appears as pale horizontal streak. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21270
From Dust Devil to Sustainable Swirling Wind Energy
NASA Astrophysics Data System (ADS)
Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin
2015-02-01
Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.
NASA Technical Reports Server (NTRS)
Thomas, P. G.; Gierasch, P.
1985-01-01
Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.
In Situ Sampling of Terrestrial Dust Devils and Implications for Mars
NASA Astrophysics Data System (ADS)
Raack, J.; Reiss, D.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.
2017-09-01
We report on first very detailed in situ samples of the relative dust load and the vertical grain size distribution of terrestrial dust devils sampled during two field campaigns in Morocco and their implications for Mars. Our measurements imply, i.e., a similar internal structure for sampled dust devils, despite their different strenghts and dimensions; an exponential decreasing of particle size with height; and that between 60 and 70% of all lifted particles can go into atmospheric suspension.
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: is the control room for the Mars W.T. with Eric Eddlemon
NASA Astrophysics Data System (ADS)
Thomas, P.; Gierasch, P. J.
1985-10-01
Viking Orbiter photographic imagery has confirmed the occurrence of dust devils on Mars. The images were of small bright clouds with long, tapered shadows viewed from a nearly-nadir angle. Spectra of the features were consistent with dust and not condensates. A maximum height of 6.8 km and width of 1 km were measured. The dust devils appeared on smooth planes, and had average dimensions of 2 km height and 200 m diam, carrying 3000 kg of dust. The data may be of use in interpreting convective processes on earth.
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel
Ecology: 'Devil's gardens' bedevilled by ants.
Frederickson, Megan E; Greene, Michael J; Gordon, Deborah M
2005-09-22
'Devil's gardens' are large stands of trees in the Amazonian rainforest that consist almost entirely of a single species, Duroia hirsuta, and, according to local legend, are cultivated by an evil forest spirit. Here we show that the ant Myrmelachista schumanni, which nests in D. hirsuta stems, creates devil's gardens by poisoning all plants except its host plants with formic acid. By killing these other plants, M. schumanni provides its colonies with abundant nest sites--a long-lasting benefit as colonies can live for 800 years.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.
2010-01-01
This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and inversely correlated with total suspended-solids concentrations. Although pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially mosquitofish, mollies, and red shiner (Cyprinella lutrensis). Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 32.8 micrograms per liter (?g/L), with selenate as the major constituent. Selenium concentrations in other matrices varied widely among drains and ponds, with one drain (Trifolium 18) exhibiting especially high concentrations in food chain matrices [particulate organic detritus, 5.98-58.0 micrograms of selenium per gram (?g Se/g); midge larvae, 12.7-50.6 ?g Se/g] and in fish (mosquitofish, 13.2-20.2 ?g Se/g; sailfin mollies, 12.8-30.4 ?g Se/g; all concentrations are based on dry weights). Although selenium was accumulated by all trophic levels, biomagnification (defined as a progressive increase in selenium concentration from one trophic level to the next higher level) in midge larvae and fish occurred only at lower exposure concentrations. Judging mostly from circumstantial evidence, the health and wellbeing of poeciliids and pupfish are not believed to be threatened by ambient exposure to selenium in the drains and ponds.
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew
2016-11-01
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.
Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.
2016-04-21
The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been affected by Mill activities, a classification system was developed to determine which wells were most likely to have been affected. Affects to groundwater by the Mill were determined by using the reported uranium alpha activity ratios measured in groundwater samples, along with the concentration of the uranium and the location of the wells relative to the Mill. Activity ratios of 1.2 or less were determined to be the most reliable indicator of Mill-affected groundwater. Wells with samples that had a reported activity ratio of 1.2 or less were classified as Mill affected. To compare groundwater with background water-quality, data from groundwater seeps and springs in the Upper Eagle Nest Arroyo and Salt Creek Wash, located north of the San Juan River, are also presented and analyzed.Based on groundwater elevations and tritium concentrations measured in wells located between the disposal cell and Many Devils Wash, Mill water is not likely to reach Many Devils Wash. The tritium concentrations also indicate that groundwater from the Mill has not substantially affected Many Devils Wash in the past. Upwelling from deep aquifers was also determined to be an unlikely source, primarily by comparing the composition of the stable isotopes of water in the shallow groundwater with those reported in groundwater samples from the deeper aquifers. The stable-isotope compositions of the shallow groundwater around the site are enriched relative to the San Juan River and local meteoric lines, which suggests that most of the shallow groundwater has been influenced by evaporation and therefore was recharged at the surface. Several observations indicate that focused recharge is the likely source of groundwater in the area of Many Devils Wash. The visible erosional features in Many Devils Wash provide evidence of piping and groundwater sapping, and the distribution and type of vegetation in Many Devils Wash suggest that the focused recharge of precipitation is occurring. The estimated recharge from precipitation was calculated to be 0.0008 inches per year (in/yr) by using the mass-balance approach from reported seep discharge and 0.0011 in/yr using the chloride mass-balance approach.A conceptual model of groundwater quality beneath Many Devils Wash is presented to explain the source of solutes in the groundwater beneath Many Devils Wash. The major-ion concentrations and geochemical evolution in the groundwater beneath Many Devils Wash and across the study area support the conceptual model that the underlying Mancos Shale is the source of solutes. Differences in the major-ion composition between groundwater samples collected around the site, result from the degree of weathering to the Mancos Shale. The cation distribution appears to be an indicator of effects from the Mill, with samples from the Mill-affected wells largely having a calcium/magnesium-sulfate composition that resembles the reported compositions of more weathered shale; however, that composition could change if the Mill-processed water flowed into areas where the Mancos Shale was less weathered. On the basis of the widespread presence of uranium in the Mancos Shale and the distribution of aqueous uranium in the analog sites and other sites in the region, it appears likely that uranium in the groundwater of Many Devils Wash is naturally sourced from the Mancos Shale.
NASA Astrophysics Data System (ADS)
Statella, Thiago; Pina, Pedro; da Silva, Erivaldo Antônio
2015-04-01
We have developed a method to compute the albedo contrast between dust devil tracks and their surrounding regions on Mars. It is mainly based on Mathematical Morphology operators and uses all the points of the edges of the tracks to compute the values of the albedo contrast. It permits the extraction of more accurate and complete information, when compared to traditional point sampling, not only providing better statistics but also permitting the analysis of local variations along the entirety of the tracks. This measure of contrast, based on relative quantities, is much more adequate to establish comparisons at regional scales and in multi-temporal basis using imagery acquired in rather different environmental and operational conditions. Also, the substantial increase in the details extracted may permit quantifying differential depositions of dust by computing local temporal fading of the tracks with consequences on a better estimation of the thickness of the top most layer of dust and the minimum value needed to create dust devils tracks. The developed tool is tested on 110 HiRISE images depicting regions in the Aeolis, Argyre, Eridania, Noachis and Hellas quadrangles. As a complementary evaluation, we also performed a temporal analysis of the albedo in a region of Russell crater, where high seasonal dust devil activity was already observed before, comprising the years 2007-2012. The mean albedo of the Russell crater is in this case indicative of dust devil tracks presence and, therefore, can be used to quantify dust devil activity.
Sources and cycling of major ions and nutrients in Devils Lake, North Dakota
Lent, R.M.
1994-01-01
Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.
NASA Astrophysics Data System (ADS)
Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.
2017-12-01
Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the climate, weather, and human health [7]) compared to the relative small dust devils sampled during our field campaign. [1] Thomas and Gierasch (1985) Science 230 [2] Raack et al. (2017) Astrobiology [3] Oke et al. (2007) J. Arid Environ. 71 [4] Balme and Greeley (2006) Rev. Geophys. 44 [5] Christensen (1986) JGR 91 [6] Newman et al. (2002) JGR 107 [7] Gillette and Sinclair (1990) Atmos. Environ. 24
Real-Time Detection of Dust Devils from Pressure Readings
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri
2009-01-01
A method for real-time detection of dust devils at a given location is based on identifying the abrupt, temporary decreases in atmospheric pressure that are characteristic of dust devils as they travel through that location. The method was conceived for use in a study of dust devils on the Martian surface, where bandwidth limitations encourage the transmission of only those blocks of data that are most likely to contain information about features of interest, such as dust devils. The method, which is a form of intelligent data compression, could readily be adapted to use for the same purpose in scientific investigation of dust devils on Earth. In this method, the readings of an atmospheric- pressure sensor are repeatedly digitized, recorded, and processed by an algorithm that looks for extreme deviations from a continually updated model of the current pressure environment. The question in formulating the algorithm is how to model current normal observations and what minimum magnitude deviation can be considered sufficiently anomalous as to indicate the presence of a dust devil. There is no single, simple answer to this question: any answer necessarily entails a compromise between false detections and misses. For the original Mars application, the answer was sought through analysis of sliding time windows of digitized pressure readings. Windows of 5-, 10-, and 15-minute durations were considered. The windows were advanced in increments of 30 seconds. Increments of other sizes can also be used, but computational cost increases as the increment decreases and analysis is performed more frequently. Pressure models were defined using a polynomial fit to the data within the windows. For example, the figure depicts pressure readings from a 10-minute window wherein the model was defined by a third-degree polynomial fit to the readings and dust devils were identified as negative deviations larger than both 3 standard deviations (from the mean) and 0.05 mbar in magnitude. An algorithm embodying the detection scheme of this example was found to yield a miss rate of just 8 percent and a false-detection rate of 57 percent when evaluated on historical pressure-sensor data collected by the Mars Pathfinder lander. Since dust devils occur infrequently over the course of a mission, prioritizing observations that contain successful detections could greatly conserve bandwidth allocated to a given mission. This technique can be used on future Mars landers and rovers, such as Mars Phoenix and the Mars Science Laboratory.
Miller, Webb; Hayes, Vanessa M.; Ratan, Aakrosh; Petersen, Desiree C.; Wittekindt, Nicola E.; Miller, Jason; Walenz, Brian; Knight, James; Qi, Ji; Zhao, Fangqing; Wang, Qingyu; Bedoya-Reina, Oscar C.; Katiyar, Neerja; Tomsho, Lynn P.; Kasson, Lindsay McClellan; Hardie, Rae-Anne; Woodbridge, Paula; Tindall, Elizabeth A.; Bertelsen, Mads Frost; Dixon, Dale; Pyecroft, Stephen; Helgen, Kristofer M.; Lesk, Arthur M.; Pringle, Thomas H.; Patterson, Nick; Zhang, Yu; Kreiss, Alexandre; Woods, Gregory M.; Jones, Menna E.; Schuster, Stephan C.
2011-01-01
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations. PMID:21709235
Pearse, Anne-Maree; Rens, Willem; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; Cheng, Yuanyuan; Morris, Katrina; Taylor, Robyn; Stuart, Andrew; Belov, Katherine; Amemiya, Chris T.; Murchison, Elizabeth P.; Papenfuss, Anthony T.; Marshall Graves, Jennifer A.
2012-01-01
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD. PMID:22359511
NASA Technical Reports Server (NTRS)
2005-01-01
23 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, springtime dust devil creating a dark streak on the plains of Argyre. The small, bright dot is the dust devil. Many other dark streaks on the plains indicate the areas where other dust devils had passed within the past several weeks before this July 2005 image was acquired. Location near: 44.6oS, 40.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNotarbartolo di Sciara, Giuseppe; Lauriano, Giancarlo; Pierantonio, Nino; Cañadas, Ana; Donovan, Greg; Panigada, Simone
2015-01-01
The giant devil ray Mobula mobular, the only Mediterranean mobulid, is subject to mortality caused by directed and accidental captures in fisheries throughout the region. Whilst the combination of human impacts, limited range and a low reproductive potential is not inconsistent with its endangered listing, there are insufficient data to enable a quantitative assessment of trends. Without this, it is difficult to assess and prioritise threats and develop effective conservation actions. Using results from aerial surveys conducted between 2009 and 2014 over the Ligurian, Corsican, Sardinian, northern and central Tyrrhenian seas (626,228 km2), this study provides the first quantitative information on giant devil ray abundance and habitat choice in the western Mediterranean. Devil rays were observed in all seasons except winter, with their estimated abundance in the study area peaking in summer. The overall uncorrected mean density in the study area during summer was estimated at 0.0257 individuals km-2 (range: 0.017–0.044), resulting in a total abundance estimate of 6,092 (12.7%CV) individuals at the surface; once corrected for availability bias, this estimate indicates a summer presence of >12,700 devil rays in the study area. Rays were mostly observed alone even if occasionally, larger aggregations up to a maximum of 18 individuals were observed. Although observed throughout the study area, spatial modelling identified their preferred habitat to be over a broad strip connecting the Tuscan Archipelago to Eastern Sardinia, over a wide range of water depths ranging from 10 to 2000m. The observed seasonal changes in giant devil ray distribution in this study, combined with similar evidence from other areas in the Mediterranean, support the hypothesis that the species undertakes latitudinal migrations across the region, taking advantage of highly productive waters in the north during summer, and warmer southern waters during winter. PMID:26580814
Global potential of dust devil occurrence
NASA Astrophysics Data System (ADS)
Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl
2014-05-01
Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett., L18806.
NASA Astrophysics Data System (ADS)
Lorenz, Ralph
2015-11-01
A Monte-Carlo modeling approach (Lorenz, J. Atm. Sci., 2014) using a power law population function and empirical correlations between diameter and longevity can be used to reconcile single-station pressure records of vortex close-approaches with visual counts of dust devils and Large Eddy Simulations (LES). That work suggests that on Earth, the populations can be reconciled if dust-lifting occurs with a typical threshold corresponding to core pressure drop of 0.8 mb, a little higher than the ~0.3 mb estimated in laboratory experiments. A similar analysis can be conducted at Mars. The highest vortex production rates in LES, indicated from field encounters, and extrapolated from visual counts, appear to be of the order of 1000 per km2 per day.Recent field experiments at a playa near Goldstone, CA (Lorenz et al., Bulletin of the Seismological Society of America, in press) show that dust devils cause a ground tilt, due to the negative pressure load of the vortex on the elastic ground, that can be detected with a broadband seismometer like that on InSight. Dust devils therefore can serve as a ‘seismic source’ to characterize the shallow subsurface.Observations of the InSight landing area in Elysium by Reiss and Lorenz (Icarus, submitted) show that dust devil trails are abundant, but smaller in diameter than those at Gusev. This may indicate a shallower Planetary Boundary Layer (PBL) at this site and season : Fenton and Lorenz (Icarus, 2015) found that observed dust devil height and spacing in Amazonis relates to the PBL thickness.Quantitative assessment of dust devil effects (e.g. electrical and magnetic signatures) requires knowledge of encounter geometry, notably miss distance. A recent heuristic approach has been developed (Lorenz, Icarus, submitted) to fit an analytic vortex model to pressure, windspeed and direction histories to recover this geometry. Some ambiguities exist, but can be constrained with camera images and/or the azimuth history estimated from seismic data.
Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil.
Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish
2014-02-01
As apex predators disappear worldwide, there is escalating evidence of their importance in maintaining the integrity and diversity of the ecosystems they inhabit. The largest extant marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii) is threatened with extinction from a transmissible cancer, devil facial tumor disease (DFTD). The disease, first observed in 1996, has led to apparent population declines in excess of 95% in some areas and has spread to more than 80% of their range. We analyzed a long-term Tasmania-wide data set derived from wildlife spotlighting surveys to assess the effects of DFTD-induced devil decline on populations of other mammals and to examine the relative strength of top-down and bottom-up control of mesopredators between 2 regions with different environmental conditions. Collection of the data began >10 years before DFTD was first observed. A decrease in devil populations was immediate across diseased regions following DFTD arrival, and there has been no indication of population recovery. Feral cats (Felis catus) increased in areas where the disease was present the longest, and feral cat occurrence was significantly and negatively associated with devils. The smallest mesopredator, the eastern quoll (Dasyurus viverrinus), declined rapidly following DFTD arrival. This result suggests the species was indirectly protected by devils through the suppression of larger predators. Rainfall deficiency was also a significant predictor of their decline. Environmental variables determined the relative importance of top-down control in the population regulation of mesopredators. In landscapes of low rainfall and relatively higher proportions of agriculture and human settlement, top-down forces were dampened and bottom-up forces had the most effect on mesopredators. For herbivore prey species, there was evidence of population differences after DFTD arrival, but undetected environmental factors had greater effects. The unique opportunity to assess population changes over extensive temporal and spatial scales following apex predator loss further demonstrated their role in structuring ecosystems and of productivity in determining the strength of top-down control. © 2013 Society for Conservation Biology.
NASA Technical Reports Server (NTRS)
2004-01-01
22 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presents a fine illustration of the difference between streaks made by dust devils and streaks made by wind gusts. Dust devils are usually solitary, spinning vortices. They resemble a tornado, or the swirling motion of a familiar, Tasmanian cartoon character. Wind gusts, on the other hand, can cover a larger area and affect more terrain at the same time. The dark, straight, and parallel features resembling scrape marks near the right/center of this image are thought to have been formed by a singular gust of wind, whereas the more haphazard dark streaks that crisscross the scene were formed by dozens of individual dust devils, acting at different times. This southern summer image is located in Noachis Terra near 67.0oS, 316.2oW. Sunlight illuminates the scene from the upper left; the picture covers an area 3 km (1.9 mi) wide.
Perchlorate as a Ground-Water Tracer Along the Lower Colorado River
NASA Astrophysics Data System (ADS)
Justet, L.; Lico, M. S.
2008-12-01
Anthropogenic perchlorate was first observed in the lower Colorado River (NV and AZ) in 1997. The perchlorate source was traced upstream from Hoover Dam and Lake Mead to Las Vegas Wash. Perchlorate migrated through the local surface- and ground-water systems to the Wash from nearby manufacturing facilities in Henderson, NV, which had been operating since the 1940s. The Nevada Division of Environmental Protection (NDEP) began monitoring perchlorate in the lower Colorado River at Willow Beach, located about 18 km south of the Dam, in 1997. A 3 μg/L reduction was observed at Willow Beach in 2003-2004, coincident with remediation at the Henderson site in 1999-2004. This observed decrease indicates that the effects of remediation rapidly propagated through the surface-water system below the Dam. In July 2008 water samples were collected and analyzed for perchlorate from eight springs along the lower Colorado River below Hoover Dam, from a discharge tunnel in the country rock at Hoover Dam, and from Lake Mead (above and below the thermocline). Lake Mead water collected above the thermocline east of Sentinel Island contained 3.9 μg/L perchlorate, while water below the thermocline contained 1.8 μg/L. Perchlorate concentrations were lower than the 2 to 4 μg/L quantitation limit for the six springs located more than 2 km south of the Dam. Samples from Pupfish Springs, about 0.9 km south of the Dam, contained 6.4-6.8 μg/L perchlorate. Water collected from the discharge tunnel in the Dam contained 8.2 μg/L perchlorate. Perchlorate concentrations observed at Pupfish Springs and the discharge tunnel in the Dam in 2008 are similar to those reported downstream at Willow Beach prior to 2003-2004 by NDEP indicating that the ground water travel time from the Dam to Pupfish Springs is between 4 and 70 years and the maximum flow velocities are between about 13-200 m/y. These rapid velocity estimates suggest that faults and fractures in the area are an important control on discharge points in the vicinity of the Dam. The presence of perchlorate at two sites and absence or background concentrations at the other sites indicates the presence of multiple flow paths between the perchlorate source and the springs near the Dam or that the flow paths are more complex than previously thought.
The Electric Environment of Martian Dust Devils
NASA Astrophysics Data System (ADS)
Barth, E. L.; Farrell, W. M.; Rafkin, S. C.
2017-12-01
While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.
NASA Astrophysics Data System (ADS)
Cantor, B. A.; James, P. B.
The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed to date. With MOC we have observed that global dust events are not individual storms but are composed of a number of local and regional storms (sources) and that they do not signify climatic changes, but are only short-term perturbations to the general interannually repeatable Martian dust storm cycle.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.
2016-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
NASA Astrophysics Data System (ADS)
Shabani, A.; Zhang, X.
2017-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.
Elder, J F; Turner, B J
1994-01-01
The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879
Louis F. Wilson
1964-01-01
The walkingstick, Diapheromera femorata (Say), is a defoliator of deciduous trees in North America. Because of its shape, this insect is also commonly called the stickbug, specter, stick insect, prairie alligator, devil's horse, witch's horse, devil's darning needle, thick- thighed walkingstick, or northern walkingstick, depending on locality.
Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota
Ludden, A.P.; Frink, D.L.; Johnson, D.H.
1983-01-01
Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.
Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60
Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.
1968-01-01
Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough to harm fish. Data on alpha and beta particle activities in Devils Lake were insufficient to determine if present activities are less than, equal to, or more than activities before nuclear tests began.Miscellaneous surface waters not in the Devils Lake chain contained dissolved solids that ranged from 239 to 61,200 ppm. The lakes that spill infrequently and have little or no ground-water inflow and outflow generally contain high concentrations of dissolved solids.Salt balance computations for Devils Lake for 1952-60 indicate that a net of as much as 89,000 tons of salts was removed from the bed by the water in some years and as much as 35,000 tons was added to the bed in other years. For the 9-year period, the tons removed exceeded the tons added; the net removed averaged 2.7 tons per acre per year. Pickup of these salts from the bed increased the dissolved solids in the lake water an average of 193 ppni per year. Between 1952 and 1960, 201,000 tons of salt was added to the bed of East Devils Lake, 15,100 tons to the bed of western Stump Lake, and 421,000 tons to the bed of eastern Stump Lake.Laboratory examination of shore and bed material indicated that the shore contained less weight of salt per unit weight of dry, inorganic material than the bed. Calcium and bicarbonate were the chief constituents dissolved from bed material of Devils Lake, whereas sodium and sulfate were the chief constituents dissolved from bed material of East Bay, East Devils Lake, and eastern and western Stump Lakes. Generally, calcium and bicarbonate were the chief constitutents dissolved from shore material of all these lakes.Evidence indicates that not more than 20 percent of the salt that "disappeared" from the water of Devils Lake west of State Route 20 as the lake altitudes decreased years ago will redissolve if the lake altitude is restored.
Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A
2015-01-01
The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377
Stewart, N J; Bettiol, S S; Kreiss, A; Fox, N; Woods, G M
2008-10-01
As the platypus (Ornithorhynchus anatinus), the Tasmanian devil (Sarcophilus harrisi) and the eastern barred bandicoot (Perameles gunni) are currently at risk of serious population decline or extinction from fatal diseases in Tasmania, the goal of the present study was to describe the normal immune response of these species to challenge using the lymphocyte proliferation assay, to give a solid basis for further studies. For this preliminary study, we performed lymphocyte proliferation assays on peripheral blood mononuclear cells (PBMC) from the three species. We used the common mitogens phytohaemagglutinin (PHA), concanavalin A (ConA), lipopolysaccharide (LPS) and pokeweed mitogen (PWM). All three species recorded the highest stimulation index (SI) with the T-cell mitogens PHA and ConA. Tasmanian devils and bandicoots had greater responses than platypuses, although variability between individual animals was high. For the first time, we report the normal cellular response of the platypus, the Tasmanian devil and the eastern barred bandicoot to a range of commonly used mitogens.
Flies, Andrew S.; Lyons, A. Bruce; Corcoran, Lynn M.; Papenfuss, Anthony T.; Murphy, James M.; Knowles, Graeme W.; Woods, Gregory M.; Hayball, John D.
2016-01-01
The devil facial tumor disease (DFTD) is caused by clonal transmissible cancers that have led to a catastrophic decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The first transmissible tumor, now termed devil facial tumor 1 (DFT1), was first discovered in 1996 and has been continually transmitted to new hosts for at least 20 years. In 2015, a second transmissible cancer [devil facial tumor 2 (DFT2)] was discovered in wild devils, and the DFT2 is genetically distinct and independent from the DFT1. Despite the estimated 136,559 base pair substitutions and 14,647 insertions/deletions in the DFT1 genome as compared to two normal devil reference genomes, the allograft tumors are not rejected by the host immune system. Additionally, genome sequencing of two sub-strains of DFT1 detected greater than 15,000 single-base substitutions that were found in only one of the DFT1 sub-strains, demonstrating the transmissible tumors are evolving and that generation of neoantigens is likely ongoing. Recent evidence in human clinical trials suggests that blocking PD-1:PD-L1 interactions promotes antitumor immune responses and is most effective in cancers with a high number of mutations. We hypothesized that DFTD cells could exploit the PD-1:PD-L1 inhibitory pathway to evade antitumor immune responses. We developed recombinant proteins and monoclonal antibodies (mAbs) to provide the first demonstration that PD-1 binds to both PD-L1 and PD-L2 in a non-placental mammal and show that PD-L1 is upregulated in DFTD cells in response to IFN-γ. Immunohistochemistry showed that PD-L1 is rarely expressed in primary tumor masses, but low numbers of PD-L1+ non-tumor cells were detected in the microenvironment of several metastatic tumors. Importantly, in vitro testing suggests that PD-1 binding to PD-L1 and PD-L2 can be blocked by mAbs, which could be critical to understanding how the DFT allografts evade the immune system. PMID:28018348
Humanizing folk devils using ethnography.
Myers, Peter L
2018-01-01
The sociological concepts of the "moral panic" and the deviant "folk devil" apply to the drug panics in the United States over methamphetamine, heroin, and crack cocaine. Mothers or pregnant women who smoke crack cocaine, and their babies, are assigned exaggerated "demonic" attributes that result in stigma and societal rejection. Otherwise, ethnographic studies of drug users demonstrate realities that are other than what might be considered were one to merely look at their use and the consequences. These considerations are examined with respect to the image of folk devils, methadone program attendees, smokers of "blunts," opium den habitués, and others grouped together as negative influences as a result of their drug habits.
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... similar products. 319.760 Section 319.760 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat... a semiplastic cured meat food product made from finely comminuted ham and containing condiments...
9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... similar products. 319.760 Section 319.760 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat... a semiplastic cured meat food product made from finely comminuted ham and containing condiments...
The Devil and Daniel's Spreadsheet
ERIC Educational Resources Information Center
Burke, Maurice J.
2012-01-01
"When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data," notes the Common Core State Standards Initiative (2010, p. 72). This exploration of the recursive process in the Devil and Daniel Webster problem reveals that the symbolic spreadsheet fits this bill.…
Signal-adapted tomography as a tool for dust devil detection
NASA Astrophysics Data System (ADS)
Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.
2017-12-01
Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.
Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota
Vecchia, Aldo V.
2008-01-01
Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly generated future duration of the current wet period. On the basis of the simulations, and assuming ice-free conditions and calm wind, the Devils Lake flood elevation for an annualized flood risk of 1 percent (analogous to a “100-year” riverine flood) was estimated to be 1,454.6 feet for a 10-year time horizon (2008–17). Therefore, without adjusting for wind or ice, a residence near Devils Lake at elevation 1,454.6 feet has the same chance of being flooded sometime during the next 10 years as a residence at the edge of the 100-year flood plain along a river. Adjusting for the effects of wind or ice, which will increase the flood elevations for many locations near the lakes, was not within the scope of this study.
Point discharge current measurements beneath dust devils
USDA-ARS?s Scientific Manuscript database
We document for the first time observations of point discharge currents under dust devils using a novel compact sensor deployed in summer 2016 at the USDA-ARS Jornada Experimental Range in New Mexico, USA. A consistent signature is noted in about a dozen events seen over 40 days, with a positive cur...
Using Angels and Devils: A Board Game Developed for Play in Nursing Homes.
ERIC Educational Resources Information Center
Corbin, Sandra; Nelson, Thomas M.
1980-01-01
Studied effects on nursing home residents playing a discussion-stimulating board game called "Angels and Devils." Results indicate a high incidence of sensory deprivation and social isolation effects. These do not correlate with length of institutionalization, amount of social contact, or degree of medical restriction. (Author)
Escaping Devil's Island: Confronting Racism, Learning History
ERIC Educational Resources Information Center
Grant, Carl A.
2011-01-01
This article argues that African Americans, especially males living in urban areas, are physically and mentally trapped on a Devil's Island. The penal colony on the coast of French Guiana is a metaphor for the boundaries and constraints that close off opportunities and constrain African American historical knowledge. The article argues that…
Mars Global Surveyor MOC Images
NASA Technical Reports Server (NTRS)
1999-01-01
Images of several dust devils were captured by the Mars Orbiter Camera (MOC) during its global geodesy campaign. The images shown were taken two days apart, May 13, 1999 and May 15, 1999. Dust devils are columnar vortices of wind that move across the landscape and pick up dust. They look like mini tornadoes.
Air Quality at Devils Postpile National Monument, Sierra Nevada Mountains, California, USA
Joel D. Burley; Andrzej Bytnerowicz; Monica Buhler; Barbara Zielinska; Donald Schweizer; Ricardo Cisneros; Susan Schilling; Jennifer Chapman Varela; Mark McDaniel; Michelle Horn; Deanna Dulen
2016-01-01
Ambient concentrations of O3, PM2.5, NH3, NO, NO2, HNO3, SO2 and VOCs were measured at Devils Postpile National Monument (DEPO) during the summer seasons of 2013 and 2014. The measurements were impacted by the Aspen and Rim Fires in...
Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Lorenz, Ralph D.
2016-03-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a -2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The alignment of DDTs in combination with Mars Climate Database (MCD) predicted wind directions imply that dust devils are moving from SE to NW until early northern autumn with a reversal to NW-SE directions of movement at LS = 200° consistent with the seasonal reversal in direction of the Hadley circulation. DDT formation rates vary between 0.002 and 0.08 ddt km-2 sol-1. DDT area formation rates using the measured DDT widths, lengths, and formation rates are in the range of 0.0003-0.00006 km2 km-2 sol-1, implying that a given spot on the surface may be cleared of dust only once between ∼3000 and 16,000 sols (i.e. every ∼5-24 Mars years). Measured DDT formation rates were used to find a scaling factor to the seasonal DDA index, and then integrated over the year to estimate a mean annual DDT formation rate of 0.046 ddt km-2 sol-1. This translates into a solar panel clearing recurrence interval estimate of ∼11 Mars years using the mean annual DDT formation rate, and the mean DDT width and length from all measured DDTs. Due to several uncertainties this solar panel clearing recurrence interval for the InSight landing should be seen as an upper limit estimate.
To the theory of particle lifting by terrestrial and Martian dust devils
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2018-01-01
The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.
Devil's staircases and continued fractions in Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.
2013-12-01
Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.
Ehemann, N R; González-González, L V; Trites, A W
2017-03-01
Three rays opportunistically obtained near Margarita Island, Venezuela, were identified as lesser devil rays Mobula cf. hypostoma, but their disc widths were between 207 and 230 cm, which is almost double the reported maximum disc width of 120 cm for this species. These morphometric data suggest that lesser devil rays are either larger than previously recognized or that these specimens belong to an unknown sub-species of Mobula in the Caribbean Sea. Better data are needed to describe the distribution, phenotypic variation and population structure of this poorly known species. © 2017 The Fisheries Society of the British Isles.
"Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.; Smith, P.; White, B.; Farrell, W.
1999-01-01
Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.
"Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?
NASA Astrophysics Data System (ADS)
Marshall, J.; Smith, P.; White, B.; Farrell, W.
1999-09-01
Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.
Classification of 3 DES supernova with OzDES and DEVILS
NASA Astrophysics Data System (ADS)
Davies, L. J. M.; Driver, S. P.; Hashemizadeh, A.; Kushan, S. l.; Lidman, C.; Mannering, E.; Panther, F.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Zhang, B.; Mudd, D.; Swann, E. S.; Wiseman, P.; King, A.; Mould, J. R.; Calcino, J.; Bolejko, K.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Moller, A.; Yuan, F.; Davis, T. M.; Hinton, S.; Asorey, J.; Lewis, G. F.; Muthukrishna, D.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Maartens, R.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.
2018-06-01
We report new spectroscopic classifications by OzDES and DEVILS of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).
ERIC Educational Resources Information Center
Freedman, Eric
2007-01-01
This article traces the Devils Tower litigation in the context of the "Bear Lodge" alliance's theoretical underpinnings, particularly the interrelationship among culture, geographic place, and religion, as well as the institutional mechanisms that regulate litigation alliances in the U.S. judicial system. It discusses principal factors…
The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.
Patchett, Amanda L; Darby, Jocelyn M; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M
2016-01-01
The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.
Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota
Swenson, Herbert A.
1950-01-01
Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.
Patterns of Detection and Capture Are Associated with Cohabiting Predators and Prey
Lazenby, Billie T.; Dickman, Christopher R.
2013-01-01
Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival. PMID:23565172
Flies, Andrew S.; Blackburn, Nicholas B.; Lyons, Alan Bruce; Hayball, John D.; Woods, Gregory M.
2017-01-01
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology. PMID:28515726
A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.
NASA Astrophysics Data System (ADS)
Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.
2001-12-01
Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.
Andrzej Bytnerowicz; Joel D. Burley; Ricardo Cisneros; Haiganoush K. Preisler; Susan Schilling; Donald Schweizer; John Ray; Deanna Dulen; Christopher Beck; Bianca Auble
2013-01-01
Surface ozone (O3) was measured at the Devils Postpile National Monument (DEPO), eastern Sierra Nevada Mountains, California, during the 2007 (low-fire) and 2008 (high-fire) summer seasons. While mean and median values of O3 concentrations for the 2007 and 2008 summer seasons were similar, maximum O3...
The Draft National Curriculum for Primary Mathematics
ERIC Educational Resources Information Center
Thompson, Ian
2012-01-01
Draft curriculum documents offer a glimpse of the future. They demand a response as all too often the devil is in the detail. What are the devils and maybe demons that await primary mathematics? This forensic consideration of the content of the draft curriculum for primary mathematics catalogues a lack of evidence to underpin proposals. Is the…
A numerical study on dust devils with implications to global dust budget estimates
USDA-ARS?s Scientific Manuscript database
The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...
Instructional Note: Using "The Devil's Dictionary" to Teach Definitions
ERIC Educational Resources Information Center
Lane, Mary T.
2004-01-01
Known as Bitter Bierce, the writer Ambrose Bierce spent years ironically redefining the terms for a host of people, things, actions, and concepts, compiling his redefinitions into the "The Devil's Dictionary." In this article, the author describes how she uses this caustic work as a model for an exercise when her developmental writing class begins…
2015-02-12
This image captured by NASA 2001 Mars Odyssey spacecraft is of an unnamed crater in Noachis Terra. Part of the crater floor contains a dune field. Dust devil tracks are visible east of the dunes. Orbit Number: 57931 Latitude: -52.1733 Longitude: 18.0624 Instrument: VIS Captured: 2015-01-04 18:28 http://photojournal.jpl.nasa.gov/catalog/PIA19199
Speak Truth and Shame the Devil: An Ethnodrama in Response to Racism in the Academy
ERIC Educational Resources Information Center
Ward Randolph, Adah; Weems, Mary E.
2010-01-01
This ethnodrama examines how two African American women experience racism in the academe. Both scholars examine the social/political context of racism in higher education and its manifestation in institutional practices. Both authors seek to "speak truth and shame the devil" by examining institutional responses to the racism they encounter in…
Behum, Paul T.
1984-01-01
The Devils Fork Roadless Area is located at the eastern edge of the Appalachian coal region and is within the Cumberland Mountain section of the Appalachian Plateau physiographic province. Most of the area is drained by Devil Fork and its tributaries. Clinch Rock Branch of Straight Creek, Roddy Branch of Valley Creek, and Stinking Creek, all tributary to the Clinch River, drain small fringe tracts. Altitudes range from about 1,550 ft on the lower part of Straight Fork to about 3,490 ft at Cox Place on Little Mountain. Vegetation varies from mixed hardwoods in the uplands to thickets of conifer, rhododendron, and laurel in moist protected areas, as in coves along drainage courses.
Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki
2010-04-01
Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.
Siddle, Hannah V.; Kreiss, Alexandre; Tovar, Cesar; Yuen, Chun Kit; Cheng, Yuanyuan; Belov, Katherine; Swift, Kate; Pearse, Anne-Maree; Hamede, Rodrigo; Jones, Menna E.; Skjødt, Karsten; Woods, Gregory M.; Kaufman, Jim
2013-01-01
Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host–immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as β2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD. PMID:23479617
Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus).
Comanns, Philipp; Withers, Philip C; Esser, Falk J; Baumgartner, Werner
2016-11-01
Moisture-harvesting lizards, such as the Australian thorny devil, Moloch horridus, have the remarkable ability to inhabit arid regions. Special skin structures, comprising a micro-structured surface with capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and transport it to the mouth for ingestion. The ecological role of this mechanism is the acquisition of water from various possible sources such as rainfall, puddles, dew, condensation on the skin, or absorption from moist sand, and we evaluate here the potential of these various sources for water uptake by M. horridus The water volume required to fill the skin capillary system is 3.19% of body mass. Thorny devils standing in water can fill their capillary system and then drink from this water, at approximately 0.7 µl per jaw movement. Thorny devils standing on nearly saturated moist sand could only fill the capillary channels to 59% of their capacity, and did not drink. However, placing moist sand on skin replicas showed that the capillary channels could be filled from moist sand when assisted by gravity, suggesting that their field behaviour of shovelling moist sand onto the dorsal skin might fill the capillary channels and enable drinking. Condensation facilitated by thermal disequilibrium between a cool thorny devil and warm moist air provided skin capillary filling to approximately 0.22% of body weight, which was insufficient for drinking. Our results suggest that rain and moist sand seem to be ecologically likely water sources for M. horridus on a regular basis. © 2016. Published by The Company of Biologists Ltd.
78 FR 37103 - Amendment of VOR Federal Airways V-55 and V-169 in Eastern North Dakota
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... by removing reference to special use airspace (SUA) exclusionary language no longer needed. DATES... level (MSL) to 10,000 feet MSL and the Devils Lake West MOA existed from 4,000 feet MSL to 10,000 feet... not including, flight level (FL) 180. Within the proposed Devils Lake East MOA, V-55 would be...
Dancing with the Devil and Other Stories My Mother Told Me
ERIC Educational Resources Information Center
Madrid, E. Michael
2009-01-01
"Dancing with the Devil and Other Stories My Mother Told Me" is an analysis of the history and growth of a popular folktale genre that developed during the 15th century in Mexico and has persisted over time throughout the Southwest. The oral tradition and the telling of folktales are means by which the cultural traditions of people of…
Horizontal transfer of OC1 transposons in the Tasmanian devil.
Gilbert, Clement; Waters, Paul; Feschotte, Cedric; Schaack, Sarah
2013-02-27
There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials.
Quantifying global dust devil occurrence from meteorological analyses
Jemmett-Smith, Bradley C; Marsham, John H; Knippertz, Peter; Gilkeson, Carl A
2015-01-01
Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9–31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. Key Points Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate PMID:26681815
Horizontal transfer of OC1 transposons in the Tasmanian devil
2013-01-01
Background There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. Results Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. Conclusions This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials. PMID:23445260
Swirling Dust in Gale Crater, Mars, Sol 1613
2017-02-27
This frame from a sequence of images shows a dust-carrying whirlwind, called a dust devil, on lower Mount Sharp inside Gale Crater, as viewed by NASA's Curiosity Mars Rover during the summer afternoon of the rover's 1,613rd Martian day, or sol (Feb. 18, 2017). Set within a broader southward view from the rover's Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. Contrast has been modified to make frame-to-frame changes easier to see. A black frame provides a marker between repeats of the sequence. On Mars as on Earth, dust devils result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21483
Winograd, Isaac J.
2012-01-01
Utilizing a stable isotopic time series obtained from a speleothem (PC-1), which grew between 20.1 and 15.6 ka, Lachniet, Asmeron and Polyak (2011; hereafter LAP) present evidence for a significant cold event in the southern Great Basin at 18.6 ka, a finding that we accept. Supplementing this short record with a literature review, they go on to claim, as their central thesis, that the paleoclimate of the southwestern US was driven by “the transmission of atmospheric anomalies to the southwest…that coincided with deglacial climate changes in Greenland and the North Atlantic region”, not by a “dominant Pacific Ocean SST control” as suggested by SST time series off California and by the Devils Hole δ18O time series from the southern Great Basin. We do not find their central thesis supportable.
Geologic framework and hydrogeologic characteristics of the Edwards aquifer, Uvalde County, Texas
Clark, Allan K.
2003-01-01
The Edwards aquifer in Uvalde County is composed of Lower Cretaceous carbonate (mostly dolomitic limestone) strata of the Devils River Formation in the Devils River trend and of the West Nueces, McKnight, and Salmon Peak Formations in the Maverick basin. Rocks in the Devils River trend are divided at the bottom of the Devils River Formation into the (informal) basal nodular unit. Maverick basin rocks are divided (informally) into the basal nodular unit of the West Nueces Formation; into lower, middle, and upper units of the McKnight Formation; and into lower and upper units of the Salmon Peak Formation. The Edwards aquifer overlies the (Lower Cretaceous) Glen Rose Limestone, which composes the lower confining unit of the Edwards aquifer. The Edwards aquifer is overlain by the (Upper Cretaceous) Del Rio Clay, the basal formation of the upper confining unit. Upper Cretaceous and (or) Lower Tertiary igneous rocks intrude all stratigraphic units that compose the Edwards aquifer, particularly in the southern part of the study area.The Balcones fault zone and the Uvalde salient are the principal structural features in the study area. The fault zone comprises mostly en echelon, high-angle, and down-to-the-southeast normal faults that trend mostly from southwest to northeast. The Uvalde salient—resulting apparently from a combination of crustal uplift, diverse faulting, and igneous activity—elevates the Edwards aquifer to the surface across the central part of Uvalde County. Downfaulted blocks associated with six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—juxtapose the Salmon Peak Formation (Lower Cretaceous) in central parts of the study area against Upper Cretaceous strata in the southeastern part.The carbonate rocks of the Devils River trend and the Maverick basin are products of assorted tectonic and depositional conditions that affected the depth and circulation of the Cretaceous seas. The Devils River Formation formed in a fringing carbonate bank—the Devils River trend— in mostly open shallow marine environments of relatively high wave and current energy. The West Nueces, McKnight, and Salmon Peak Formations resulted mostly from partly restricted to open marine, tidal-flat, and restricted deep-basinal environments in the Maverick basin.The porosity of the Edwards aquifer results from depositional and diagenetic effects along specific lithostratigraphic horizons (fabric selective) and from structural and solutional features that can occur in any lithostratigraphic horizon (non-fabric selective). In addition to porosity depending upon the effects of fracturing and the dissolution of chemically unstable (soluble) minerals and fossils, the resultant permeability depends on the size, shape, and distribution of the porosity as well as the interconnection among the pores. Upper parts of the Devils River Formation and the upper unit of the Salmon Peak Formation compose some of the most porous and permeable rocks in Uvalde County.
Black, Andrew N; Seears, Heidi A; Hollenbeck, Christopher M; Samollow, Paul B
2017-04-01
The Leon Springs pupfish (Cyprinodon bovinus) is an endangered species currently restricted to a single desert spring and a separate captive habitat in southwestern North America. Following establishment of the captive population from wild stock in 1976, the wild population has undergone natural population size fluctuations, intentional culling to purge genetic contamination from an invasive congener (Cyprinodon variegatus) and augmentation/replacement of wild fish from the captive stock. A severe population decline following the most recent introduction of captive fish prompted us to examine whether the captive and wild populations have differentiated during the short time they have been isolated from one another. If so, the development of divergent genetic and/or morphologic traits between populations could contribute to a diminished ability of fish from one location to thrive in the other. Examination of genomewide single nucleotide polymorphisms and morphologic variation revealed no evidence of residual C. variegatus characteristics in contemporary C. bovinus samples. However, significant genetic and morphologic differentiation was detected between the wild and captive populations, some of which might reflect local adaptation. Our results indicate that genetic and physical characteristics can diverge rapidly between isolated subdivisions of managed populations, potentially compromising the value of captive stock for future supplementation efforts. In the case of C. bovinus, our findings underscore the need to periodically inoculate the captive population with wild genetic material to help mitigate genetic, and potentially morphologic, divergence between them and also highlight the utility of parallel morphologic and genomic evaluation to inform conservation management planning. © 2017 John Wiley & Sons Ltd.
Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis
Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.
2005-01-01
Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.
Burton, Bethany L.; Ball, Lyndsay B.
2011-01-01
Red Devil Mine, located in southwestern Alaska near the Village of Red Devil, was the state's largest producer of mercury and operated from 1933 to 1971. Throughout the lifespan of the mine, various generations of mills and retort buildings existed on both sides of Red Devil Creek, and the tailings and waste rock were deposited across the site. The mine was located on public Bureau of Land Management property, and the Bureau has begun site remediation by addressing mercury, arsenic, and antimony contamination caused by the minerals associated with the ore deposit (cinnabar, stibnite, realgar, and orpiment). In August 2010, the U.S. Geological Survey completed a geophysical survey at the site using direct-current resistivity and electromagnetic induction surface methods. Eight two-dimensional profiles and one three-dimensional grid of direct-current resistivity data as well as about 5.7 kilometers of electromagnetic induction profile data were acquired across the site. On the basis of the geophysical data and few available soil borings, there is not sufficient electrical or electromagnetic contrast to confidently distinguish between tailings, waste rock, and weathered bedrock. A water table is interpreted along the two-dimensional direct-current resistivity profiles based on correlation with monitoring well water levels and a relatively consistent decrease in resistivity typically at 2-6 meters depth. Three settling ponds used in the last few years of mine operation to capture silt and sand from a flotation ore processing technique possessed conductive values above the interpreted water level but more resistive values below the water level. The cause of the increased resistivity below the water table is unknown, but the increased resistivity may indicate that a secondary mechanism is affecting the resistivity structure under these ponds if the depth of the ponds is expected to extend below the water level. The electromagnetic induction data clearly identified the three monofills and indicate, in conjunction with the three-dimensional resistivity data, additional possible landfill features on the north side of Red Devil Creek. No obvious shallow feature was identified as a possible source for a spring that is feeding into Red Devil Creek from the north bank. However, a discrete, nearly vertical conductive feature observed on the direct-current resistivity line that passes within 5 meters of the spring may be worth investigating. Additional deep soil borings that better differentiate between tailings, waste rock, and weathered bedrock may be very useful in more confidently identifying these rock types in the direct-current resistivity data.
NASA Technical Reports Server (NTRS)
2005-01-01
12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere. Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerLa Noche de las Brujas Module. Nivel Primario. [The Night of the Witches Module. Primary Level.
ERIC Educational Resources Information Center
Espinoza, Delia
La Noche de las Brujas (Halloween) is the topic of this primary level unit. The objectives are to enable the child to: (1) draw scenery, using his imagination, about witches, castles, and devils; (2) write compositions on witches, devils, and Halloween; (3) explain the story "La Noche de las Brujas"; (4) tell about any adventures or…
ERIC Educational Resources Information Center
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…
ERIC Educational Resources Information Center
Bembenutty, Hefer
2007-01-01
This article presents an interview with Frank Pajares, an internationally recognized scholar in the field of motivation and self-efficacy. During the interview, Pajares talked about William James, what he learned from reading "The Little Prince," his self-efficacy beliefs, and his famous speech wherein he spoke of God, the Devil, and solving the…
Clark, Allan K.; Faith, Jason R.; Blome, Charles D.; Pedraza, Diana E.
2006-01-01
The southern segment of the Edwards aquifer in south-central Texas is one of the most productive subsurface reservoirs of potable water in the world, providing water of excellent quality to more than a million people in the San Antonio region, where the Environmental Protection Agency (EPA) has declared it to be a sole-source aquifer (van der Leeden and others, 1990). Depending on the depositional province within which the associated carbonate rocks originated (Maclay and Small, 1984), the Edwards aquifer is composed of several geologic formations (primarily limestone and dolostone) of Early Cretaceous age. Most water pumped from the Edwards aquifer comes form the Person and Kainer Formations, which were deposited over the San Marcos Platform. The principal source of ground water in study area is the Devils River Formation, which was deposited in the Devils River trend. The Devils River Formation provides large quantities of irrigation water to fertile bottomland areas of Medina and Uvalde Counties, where the success of farming and ranching activities has long depended upon water from the Edwards aquifer. The study area includes all of the Edwards aquifer recharge zone between the Sabinal River (on the west) and the Medina River (on the east) plus an updip fringe of the confined zone in east-central Uvalde and central Medina Counties. Over about ninety percent of the study area--within the Devils River trend--the Edwards aquifer is composed of the Georgetown Formation plus the underlying Devils River Formation. Over the remaining area--over the southwestern margin of the San Marcos platform--the Edwards aquifer consists of the Georgetown Formation plus the underlying Edwards Group (Rose, 1972), which comprises the Kainer and Person Formations.
AV-95 Sun Devil: High-Speed Military Rotorcraft
NASA Technical Reports Server (NTRS)
1996-01-01
The AV-95 Sun Devil must combine helicopter capabilities, such as vertical takeoff and landings (VTOL) and rotor-powered flight, along with long-duration cruise and high-speed dash capabilities unobtainable by conventional helicopters. To be able to perform both tasks, and perform them well, the AV-95 Sun Devil design incorporates several unconventional devices; the AV-95 uses two convertible turbofan engines, able to provide both shaft power for the main rotor and tall fan as well as jet thrust either separately or simultaneously. Other devices used for the AV-95 include a variable diameter main rotor and a blown flap. In helicopter mode, the AV-95 Sun Devil performs like a winged helicopter. The addition of wings to an attack helicopter results in two significant advantages. First, the addition of wings makes a helicopter more maneuverable than a wingless, but otherwise similar helicopter. Second, since the wings produce lift, rotor stall and compressibility effects can be significantly delayed at high tip velocities. In fixed-wing mode, the main rotor is completely off-loaded but slightly powered, and the rotor diameter has been minimized. The AV-95 Sun Devil has many advantages over other VTOL aircraft. The conversion process is simple and fast; conversion does not make the AV-95 vulnerable to enemy attack during conversion such as a tilt-wing or a tilt-rotor. Stop-rotor aircraft and a stowed rotor aircraft require heavy breaking of the rotor for conversion; this adds time for conversion and weight to the aircraft. Because the AV-95 never stops the rotor in flight, much weight is spared, and conversion is much simpler and faster.
Telomere dynamics and homeostasis in a transmissible cancer.
Ujvari, Beata; Pearse, Anne-Maree; Taylor, Robyn; Pyecroft, Stephen; Flanagan, Cassandra; Gombert, Sara; Papenfuss, Anthony T; Madsen, Thomas; Belov, Katherine
2012-01-01
Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential.
NASA Astrophysics Data System (ADS)
Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew
2017-10-01
We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.
Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold
NASA Technical Reports Server (NTRS)
Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.
2005-01-01
Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA02185 A Dust Devil Playground Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars. Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.SUBTASK 7.2 GLOBAL WARMING AND GREEHOUSE GASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaroslav Solc; Kurt Eylands; Jaroslav Solc Jr.
2005-01-01
Evaluation of current climatic trends and reconstruction of paleoclimatic conditions for Devils Lake have been conducted based on diatom-inferred salinity for the last 2000 years. The 3-year cross-disciplinary research, funded by the U.S. Department of Energy (DOE) was carried out by the Energy & Environmental Research Center (EERC) and St. Croix Watershed Research Station (SCWRS) at the Science Museum of Minnesota. The results indicate that frequent climatic fluctuations resulting in alternating periods of drought and wet conditions are typical for the northern Great Plains and suggest that the severity and length of extremes exceeded those on modern record. Devils Lakemore » has experienced five fresh periods and two minor freshening periods in the last 2000 years. Transitions between fresh and saline periods have been relatively fast, representing lake level changes that have been similar to those observed in the last 150 years. From 0 to 1070 A.D., Devils Lake showed more variable behavior, with fresh phases centered at 200, 500, 700, and 1000 A.D. From 1070 A.D. to present, Devils Lake was generally saline, experiencing two minor freshening periods at 1305-1315 and 1800-1820 A.D and the major current freshening from 1960 A.D. to present.« less
NASA Technical Reports Server (NTRS)
Farrell, W. M.; McLain, J. L.; Collier, M. R.; Keller, J. W.
2017-01-01
Analogous to terrestrial dust devils, charged dust in Mars dust devils should become vertically stratified in the convective features, creating large scale E-fields. This E-field in a Martian-like atmosphere has been shown to stimulate the development of a Townsend discharge (electron avalanche) that acts to dissipate charge in regions where charge build-up occurs. While the stratification of the charged dust is a source of the electrical energy, the uncharged particulates in the dust population may absorb a portion of these avalanching electrons, thereby inhibiting dissipation and leading to the development of anomalously large E-field values. We performed a laboratory study that does indeed show the presence of enhanced E-field strengths between an anode and cathode when dust-absorbing filaments (acting as particulates) are placed in the avalanching electron flow. Further, the E-field threshold condition to create an impulsive spark discharge increases to larger values as more filaments are placed between the anode and cathode. We conclude that the spatially separated charged dust creates the charge centers and E-fields in a dust devil, but the under-charged portion of the population acts to reduce Townsend electron dissipation currents, further fortifying the development of larger-than-expected E-fields.
Bender, Hannah S.; Murchison, Elizabeth P.; Pickett, Hilda A.; Deakin, Janine E.; Strong, Margaret A.; Conlan, Carly; McMillan, Daniel A.; Neumann, Axel A.; Greider, Carol W.; Hannon, Gregory J.; Reddel, Roger R.; Graves, Jennifer A. Marshall.
2012-01-01
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. PMID:23049977
Mars Atmospheric Chemistry in Electrified Dust Devils and Storms
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.
2005-01-01
Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.
Wiche, Gregg J.; Lent, Robert M.; Rannie, W. F.
1996-01-01
On the basis of three sediment-based chronologies, Fritz et al. ( 1994) concluded that during the ’Little Ice Age’ (about AD 1500 to 1850), the Devils Lake Basin generally had less effective moisture (precipitation minus evaporation) and warmer temperatures than at present. In this comment, we argue that historic data indicate that runoff and effective moisture were greater than at present. The largest nineteenth-century floods (AD 1826, 1852 and 1861) were significantly greater than the twentiethcentury floods, and flooding in the Red River of the North Basin occurred more frequently from AD 1800 to 1870 than since 1870. Between AD 1776 and 1870, the ratio of wet to dry years was about 2 to 1. Mean temperatures in all seasons were cooler for 1850-70 than for 1931-60. Lake levels of Devils Lake during the first half of the nineteenth century were higher than they are today, and, even when Devils Lake was almost dry, the salinity was less than the ’diatom-inferred’ salinity values that Fritz et al. (1994) estimated for 1800 through about 1850. We acknowledge the importance of high-resolution palaeoclimatic records, but interpretation of these records must be consistent with historic information.
NASA Astrophysics Data System (ADS)
Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio
2017-04-01
Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local scale. Instead, on Mars the presence of the dust devils has been confirmed at almost every latitude and altitude and it has been indicated as the possible main source of suspended dust outside the storm seasons. Hence, the study of the dust devils becomes of great importance in order to understand the atmospheric dust loading and the global climate of the planet. In addition, the dust lifting phenomena are probably one of the main source of atmospheric electrification on Mars and the measurement and study of the Martian boundary layer electric field is one of the main objectives of the future Martian space missions, such as ExoMars 2020. Indeed, this mission will accommodate "Dust Complex", a suite of sensors that will monitor lifted dust and atmospheric electric field on the surface of Mars. For these reasons, the present work represents a useful tool for the understanding of the dust lifting phenomena and their electrification both on Earth and on Mars.
Prediction Markets for Defense Acquisition: The Devil is in the Details
2010-05-01
1 Bill Gates, Pete Coughlan, Noah Myung, Jeremy Arkes Professors of Economics Naval Postgraduate School Prediction Markets for Defense Acquisition...Acquisition: The Devil is in the Details 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School,Monterey,CA,93943 8. PERFORMING
Rapid evolutionary response to a transmissible cancer in Tasmanian devils
Epstein, Brendan; Jones, Menna; Hamede, Rodrigo; Hendricks, Sarah; McCallum, Hamish; Murchison, Elizabeth P.; Schönfeld, Barbara; Wiench, Cody; Hohenlohe, Paul; Storfer, Andrew
2016-01-01
Although cancer rarely acts as an infectious disease, a recently emerged transmissible cancer in Tasmanian devils (Sarcophilus harrisii) is virtually 100% fatal. Devil facial tumour disease (DFTD) has swept across nearly the entire species' range, resulting in localized declines exceeding 90% and an overall species decline of more than 80% in less than 20 years. Despite epidemiological models that predict extinction, populations in long-diseased sites persist. Here we report rare genomic evidence of a rapid, parallel evolutionary response to strong selection imposed by a wildlife disease. We identify two genomic regions that contain genes related to immune function or cancer risk in humans that exhibit concordant signatures of selection across three populations. DFTD spreads between hosts by suppressing and evading the immune system, and our results suggest that hosts are evolving immune-modulated resistance that could aid in species persistence in the face of this devastating disease. PMID:27575253
Thinking of God moves attention.
Chasteen, Alison L; Burdzy, Donna C; Pratt, Jay
2010-01-01
The concepts of God and Devil are well known across many cultures and religions, and often involve spatial metaphors, but it is not well known if our mental representations of these concepts affect visual cognition. To examine if exposure to divine concepts produces shifts of attention, participants completed a target detection task in which they were first presented with God- and Devil-related words. We found faster RTs when targets appeared at compatible locations with the concepts of God (up/right locations) or Devil (down/left locations), and also found that these results do not vary by participants' religiosity. These results indicate that metaphors associated with the divine have strong spatial components that can produce shifts of attention, and add to the growing evidence for an extremely robust connection between internal spatial representations and where attention is allocated in the external environment. 2009 Elsevier Ltd. All rights reserved.
A Comparative Study Of Dust Devils
NASA Astrophysics Data System (ADS)
Lange, C. F.; Prieto, L. E.
2005-12-01
Spatial variations in the column of water vapour in the Martian near-surface are due to the combined effects of several process within water underground reservoirs and the atmosphere. Among these process, dust devils could be an important local factor in the water concentration levels. In fact, the apparently high occurrence of dust devils could potentially affect the mass transfer rate of water vapour from the Martian regolith. A detailed study of these atmospheric vortices may help to better understand the complex relation between the cycle of water and this Martian atmospheric event. Subsequently, field data are required to provide a close estimation of the dynamics presented in Martian surface. The upcoming Phoenix mission is being designed to investigate these natural events on Mars. However, field studies of dust devils are difficult because of their sporadic, unpredictable occurrence and distance. In contrast, laboratory simulations present a better physical insight into this complex swirling flow by consideration of a much simplified, and more controllable and reproducible model flow. The use of numerical simulations in addition to laboratory experiments can provide complementary information on flow properties in regions where measurements are difficult due to flow profiles. Computational models also allow for significant flexibility in the model layout and they are, therefore, ideally suited for a comparison of different types of model flows. A 3-D numerical study is presented for two different types of dust devil laboratory simulators (Ward, 1952 and Greeley et al., 2001). An initial numerical study was conducted to validate the simulation results with previous laboratory measurements (Lund and Snow, 1993). Secondly, a numerical comparison was carried out between the two tornado-like vortex representations based on kinematic similarities to provide a clear method to relate dust devils in several nature environments, laboratory simulations, and computational models. This was accomplished by examining features of the dust devils in the form of three main flow parameters: the ratio of the inflow layer height h to the updraft radius r_0 (aspect ratio), the radial Reynolds number characterizing the updraft zone, and the ratio of the tangential velocity to the mean radial velocity (swirl ratio) at the radius of the updraft zone, r_0. The detailed analysis of the numerical flow solutions led to a simple definition of h and r_0, valid for the types of model flows analyzed. This study is a necessary part of a larger effort to examine and compare both numerical and laboratory simulations of atmospheric vortices in terrestrial and Martian conditions. References [1] R. Greeley et al., XXXII Lunar and Planetary Science, 2001. [2] D. E. Lund and J. T. Snow, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, 1993, p. 297--306. [3] N. B. Ward, J. Atmos. Sci., 1972, 1194--1204.
Galloway, Joel M.
2011-01-01
In 2010, a two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Lake Ashtabula, North Dakota, was developed by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission to understand the dynamics of chemical constituents in the reservoir and to provide a tool for the management and operation of the Devils Lake State Outlet in meeting the water-quality standards downstream from Baldhill Dam. The Lake Ashtabula model was calibrated for hydrodynamics, sulfate concentrations, and total dissolved-solids concentrations to ambient conditions from June 2006 through June 2010. The calibrated model then was used to simulate four scenarios that represent various Devils Lake outlet options that have been considered for reducing the water levels in Devils Lake. Simulated water temperatures compared well with measured temperatures and differences varied spatially in Lake Ashtabula from June 2006 through June 2010. The absolute mean error ranged from 0.7 degrees Celsius to 1.0 degrees Celsius and the root mean square error ranged from 0.7 degrees Celsius to 1.1 degrees Celsius. Simulated sulfate concentrations compared well with measured concentrations in Lake Ashtabula. In general, simulated sulfate concentrations were slightly overpredicted with mean differences between simulated and measured sulfate concentrations ranging from -2 milligram per liter to 18 milligrams per liter. Differences between simulated and measured sulfate concentrations varied temporally in Lake Ashtabula from June 2006 through June 2010. In 2006, sulfate concentrations were overpredicted in the lower part of the reservoir and underpredicted in the upper part of the reservoir. Simulated total dissolved solids generally were greater than measured total dissolved-solids concentrations in Lake Ashtabula from June 2006 through June 2010. The mean difference between simulated and measured total dissolved-solids concentrations ranged from -3 milligrams per liter to 15 milligrams per liter, the absolute mean error ranged from 58 milligrams per liter to 100 milligrams per liter, and the root mean square error ranged from 73 milligrams per liter to 114 milligrams per liter. Simulated sulfate concentrations from four scenarios were compared to simulated ambient concentrations from June 2006 through June 2009. For scenario 1, the same location, outflow capacity, and sulfate concentration as the current (2010) Devils Lake State Outlet were assumed. The increased flow and sulfate concentration in scenario 1, beginning on May 31 and extending to October 31 each year, resulted in an increase in sulfate concentrations to greater than 450 milligrams per liter in the reservoir at site 7T (approximately the middle of the reservoir), starting July 5 in 2006, July 28 in 2007, and July 15 in 2008. Sulfate concentrations increased to greater than 450 milligrams per liter considerably later at site 1T (near the dam), starting October 8 in 2006, October 29 in 2007, and October 3 in 2008. For scenario 2, the same Devils Lake State Outlet sulfate concentration as scenario 1 was assumed, but the flow through the Devils Lake State Outlet was doubled, which resulted in a more rapid increase in sulfate concentrations in the lower part of the reservoir and slightly greater values at all four sites compared to scenario 1. Sulfate concentrations increased to greater than 450 milligrams per liter 61 days earlier in 2006, 67 days earlier in 2007, and 41 days earlier in 2008 at site 1T. For scenarios 3 and 4, possible increases in flow and concentration from the current outlet location (from the West Bay of Devils Lake) and from a proposed outlet from East Devils Lake were simulated. Conditions for scenario 3 resulted in a relatively rapid increase in sulfate concentrations in the reservoir, and concentrations were greater than 750 milligrams per liter in most years at all four sites. As expected, scenario 4 resulted in greater sulfate concentr
NASA Technical Reports Server (NTRS)
2006-01-01
10 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south (below) of an egg-shaped crater. Location near: 6.4oS, 349.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SummerClimatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota
Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.
2000-01-01
Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.
Adsorption and movement of water by skin of the Australian thorny devil (Agamidae: Moloch horridus)
NASA Astrophysics Data System (ADS)
Comanns, Philipp; Esser, Falk J.; Kappel, Peter H.; Baumgartner, Werner; Shaw, Jeremy; Withers, Philip C.
2017-09-01
Moisture-harvesting lizards, such as the Australian thorny devil Moloch horridus, have remarkable adaptations for inhabiting arid regions. Their microstructured skin surface, with channels in between overlapping scales, enables them to collect water by capillarity and passively transport it to the mouth for ingestion. We characterized this capillary water transport for live thorny devils using high-speed video analyses. Comparison with preserved specimens showed that live lizards are required for detailed studies of skin water transport. For thorny devils, there was no directionality in cutaneous water transport (unlike Phrynosoma) as 7 µl water droplets applied to the skin were transported radially over more than 9.2 mm. We calculated the total capillary volume as 5.76 µl cm-2 (dorsal) and 4.45 µl cm-2 (ventral), which is reduced to 50% filling by the time transportation ceases. Using micro-computed tomography and scanning electron microscopy of shed skin to investigate capillary morphology, we found that the channels are hierarchically structured as a large channel between the scales that is sub-divided by protrusions into smaller sub-capillaries. The large channel quickly absorbs water whereas the sub-capillary structure extends the transport distance by about 39% and potentially reduces the water volume required for drinking. An adapted dynamics function, which closely reflects the channel morphology, includes that ecological role.
Evolution of a contagious cancer: epigenetic variation in Devil Facial Tumour Disease
Ujvari, Beata; Pearse, Anne-Maree; Peck, Sarah; Harmsen, Collette; Taylor, Robyn; Pyecroft, Stephen; Madsen, Thomas; Papenfuss, Anthony T.; Belov, Katherine
2013-01-01
The emergence of Devil Facial Tumour Disease (DFTD), a highly contagious cancer, is driving Tasmanian devils (Sarcophilus harrisii) to extinction. The cancer is a genetically and chromosomally stable clonal cell line which is transmitted by biting during social interactions. In the present study, we explore the Devil Facial Tumour (DFT) epigenome and the genes involved in DNA methylation homeostasis. We show that tumour cells have similar levels of methylation to peripheral nerves, the tissue from which DFTD originated. We did not observe any strain or region-specific epimutations. However, we revealed a significant increase in hypomethylation in DFT samples over time (p < 0.0001). We propose that loss of methylation is not because of a maintenance deficiency, as an upregulation of DNA methyltransferase 1 gene was observed in tumours compared with nerves (p < 0.005). Instead, we believe that loss of methylation is owing to active demethylation, supported by the temporal increase in MBD2 and MBD4 (p < 0.001). The implications of these changes on disease phenotypes need to be explored. Our work shows that DFTD should not be treated as a static entity, but rather as an evolving parasite with epigenetic plasticity. Understanding the role of epimutations in the evolution of this parasitic cancer will provide unique insights into the role of epigenetic plasticity in cancer evolution and progression in traditional cancers that arise and die with their hosts. PMID:23135679
Adsorption and movement of water by skin of the Australian thorny devil (Agamidae: Moloch horridus).
Comanns, Philipp; Esser, Falk J; Kappel, Peter H; Baumgartner, Werner; Shaw, Jeremy; Withers, Philip C
2017-09-01
Moisture-harvesting lizards, such as the Australian thorny devil Moloch horridus , have remarkable adaptations for inhabiting arid regions. Their microstructured skin surface, with channels in between overlapping scales, enables them to collect water by capillarity and passively transport it to the mouth for ingestion. We characterized this capillary water transport for live thorny devils using high-speed video analyses. Comparison with preserved specimens showed that live lizards are required for detailed studies of skin water transport. For thorny devils, there was no directionality in cutaneous water transport (unlike Phrynosoma ) as 7 µl water droplets applied to the skin were transported radially over more than 9.2 mm. We calculated the total capillary volume as 5.76 µl cm -2 (dorsal) and 4.45 µl cm -2 (ventral), which is reduced to 50% filling by the time transportation ceases. Using micro-computed tomography and scanning electron microscopy of shed skin to investigate capillary morphology, we found that the channels are hierarchically structured as a large channel between the scales that is sub-divided by protrusions into smaller sub-capillaries. The large channel quickly absorbs water whereas the sub-capillary structure extends the transport distance by about 39% and potentially reduces the water volume required for drinking. An adapted dynamics function, which closely reflects the channel morphology, includes that ecological role.
Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets
Fenton, L.K.; Bandfield, J.L.; Ward, A.W.
2003-01-01
Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.
Telomere Dynamics and Homeostasis in a Transmissible Cancer
Ujvari, Beata; Pearse, Anne-Maree; Taylor, Robyn; Pyecroft, Stephen; Flanagan, Cassandra; Gombert, Sara; Papenfuss, Anthony T.; Madsen, Thomas; Belov, Katherine
2012-01-01
Background Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the “Hayflick limit”. Methodology/Principal Findings In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. Conclusions/Significance DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential. PMID:22952882
Curiosity Observes Whirlwinds Carrying Martian Dust
2017-02-27
Dust devils dance in the distance in this frame from a sequence of images taken by the Navigation Camera on NASA's Curiosity Mars rover on Feb. 12, 2017, during the summer afternoon of the rover's 1,607th Martian day, or sol. Within a broader context view, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. One dust devil appears at the right edge of the inset -- toward the south from the rover -- in the first few frames. Another appears on the left -- toward south-southeast -- later in the sequence. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. Portions of Curiosity are visible in the foreground. The cylindrical UHF (ultra-high frequency) antenna on the left is used for sending data to Mars orbiters, which relay the data to Earth. The angled planes to the right of this antenna are fins of the rover's radioisotope thermoelectric generator, which provides the vehicle's power. The post with a knob on top at right is a low-gain, non-directional antenna that can be used for receiving transmissions from Earth, as backup to the main high-gain antenna (not shown here) used for that purpose. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21482
Devils Lake Flood Control Project. Section 205. Detailed Project Report.
1983-10-01
Sd.U.JS IWE 00 RlEP0OAT II PERIOD COVERED SE~CTION 205 DETAILED PROJECT REPORT FLOOD CONTROL Final. Oct 1979-July 1983 PROJECT AT DEVILS LAKE. NORTH...a few feet. The light loading proposed for the site and thick cover of impervious material make more detailed evaluation of the strength and water...can cause low-oapaoity channels to overflow, resulting in flood damages to crops . Because the subbasin has no outlet near the existing water surface
[[The Devil in the Details: Women's Right to Abortion and Health Organization].
Pioggia, Alessandra
Often a woman's right to terminate a pregnancy for health reasons is considered as achieved by simply performing the intervention. But today isn't in doubt that the effective protection of health requires that health organizations carrying out performance which also affect other aspects: taking charge of women, information on services, respect for the dignity and autonomy of women, etc ... You could say that these are details, compared to the final performance. But, as we know, often the devil is in the details.
Whitfield, James B.; Jr., Robert J. Nuelle; III, Robert J. Nuelle
2018-01-01
Abstract The braconid wasp parasitoid Cotesia nuellorum Whitfield, new species, is described from specimens reared from a caterpillar of the hickory horned devil, Citheronia regalis (F.), and from a caterpillar of the luna moth, Actias luna (L.), in eastern Texas. The species is diagnosed with respect to other species of Cotesia recorded from North American Saturniidae, and details of its biology are provided. PMID:29674887
NASA Technical Reports Server (NTRS)
2004-01-01
31 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark sand dune patch that occurs on the floor of a southern hemisphere crater near 64.1oS, 197.2oW. Passing dust devils have disrupted the fine, bright dust that coats the surrounding terrain, leaving wildly-varied streak patterns. Dark dots to the left (west) of the dune are boulders. The picture covers an area 3 km (1.9 mi) wide; sunlight illuminates the scene from the upper left.
Lupines, manganese, and devil-sickness: an Anglo-Saxon medical response to epilepsy.
Dendle, P
2001-01-01
The most frequently prescribed herb for "devil-sickness" in the vernacular medical books from Anglo-Saxon England, the lupine, is exceptionally high in manganese. Since manganese depletion has been linked with recurring seizures in both clinical and experimental studies, it is possible that lupine administration responded to the particular pathophysiology of epilepsy. Lupine is not prescribed for seizures in classical Mediterranean medical sources, implying that the Northern European peoples (if not the Anglo-Saxons themselves) discovered whatever anticonvulsive properties the herb may exhibit.
NASA Technical Reports Server (NTRS)
Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.
1976-01-01
The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.
NASA Technical Reports Server (NTRS)
Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams
2010-01-01
This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.
Rose, Donna L.; Sandstrom, Mark W.
2003-01-01
Devils Lake rose dramatically during the 1990's, causing extensive flood damages. Because of the potential for continued flooding, the U.S. Army Corps of Engineers has been conducting studies to evaluate the feasibility of constructing and operating an outlet from Devils Lake. The occurrence of mercury in lakes, wetlands, and rivers and the potential for increased loading of mercury into the Sheyenne River as a result of a Devils Lake outlet needed to be evaluated as part of the studies. Sixteen lake, wetland, and river sites in the Devils Lake, Sheyenne River, Red River of the North, and Red Lake River Basins were sampled and analyzed for mercury constituents and other selected properties and constituents relevant to mercury aquatic chemistry. For the lake and wetland sites, whole-water methylmercury concentrations ranged from less than 0.04 to 3.53 nanograms per liter and whole-water total mercury concentrations ranged from 0.38 to 7.02 nanograms per liter. Conditions favorable for methylation of mercury generally exist at the lake and wetland sites, as indicated by larger dissolved methylmercury concentrations in near-bottom samples than in near-surface samples and by relatively large ratios of methylmercury to total mercury (generally greater than 10 percent for the summer sampling period). Total mercury concentrations were larger for the summer sampling period than for the winter sampling period for all lake and wetland sites. A wetland site in the upper Devils Lake Basin had the largest mercury concentrations for the lake and wetland sites. For the river sites, whole-water methylmercury concentrations ranged from 0.15 to 1.13 nanograms per liter and whole-water total mercury concentrations ranged from 2.00 to 26.90 nanograms per liter. Most of the mercury for the river sites occurred in particulate inorganic phase. Summer ratios of whole-water methylmercury to whole-water total mercury were 35 percent for Starkweather Coulee (a wetland-dominated site), near or less than 10 percent for the Sheyenne River sites, and less than 8 percent for the Red River of the North and Red Lake River sites. Although the number of samples collected during this investigation is small, results indicated an outlet from Devils Lake probably would not have adverse effects on mercury concentrations in the Sheyenne River upstream from Lake Ashtabula. However, because discharges in the Sheyenne River would increase during some periods, loads of mercury entering Lake Ashtabula also would increase. Lake Ashtabula probably serves as a sink for suspended sediment and mercury. Thus, a Devils Lake outlet probably would not have substantial effects on mercury concentrations and loads in the downstream part of the Sheyenne River or in the Red River of the North. More substantial effects could occur for Lake Ashtabula.
Sando, Steven K.; Wiche, G.J.; Lundgren, R.F.; Sether, Bradley A.
2003-01-01
Devils Lake rose dramatically during the 1990's, causing extensive flood damages. Because of the potential for continued flooding, the U.S. Army Corps of Engineers has been conducting studies to evaluate the feasibility of constructing and operating an outlet from Devils Lake. The occurrence of mercury in lakes, wetlands, and rivers and the potential for increased loading of mercury into the Sheyenne River as a result of a Devils Lake outlet needed to be evaluated as part of the studies.Sixteen lake, wetland, and river sites in the Devils Lake, Sheyenne River, Red River of the North, and Red Lake River Basins were sampled and analyzed for mercury constituents and other selected properties and constituents relevant to mercury aquatic chemistry. For the lake and wetland sites, whole-water methylmercury concentrations ranged from less than 0.04 to 3.53 nanograms per liter and whole-water total mercury concentrations ranged from 0.38 to 7.02 nanograms per liter. Conditions favorable for methylation of mercury generally exist at the lake and wetland sites, as indicated by larger dissolved methylmercury concentrations in near-bottom samples than in near-surface samples and by relatively large ratios of methylmercury to total mercury (generally greater than 10 percent for the summer sampling period). Total mercury concentrations were larger for the summer sampling period than for the winter sampling period for all lake and wetland sites. A wetland site in the upper Devils Lake Basin had the largest mercury concentrations for the lake and wetland sites.For the river sites, whole-water methylmercury concentrations ranged from 0.15 to 1.13 nanograms per liter and whole-water total mercury concentrations ranged from 2.00 to 26.90 nanograms per liter. Most of the mercury for the river sites occurred in particulate inorganic phase. Summer ratios of whole-water methylmercury to whole-water total mercury were 35 percent for Starkweather Coulee (a wetland-dominated site), near or less than 10 percent for the Sheyenne River sites, and less than 8 percent for the Red River of the North and Red Lake River sites.Although the number of samples collected during this investigation is small, results indicated an outlet from Devils Lake probably would not have adverse effects on mercury concentrations in the Sheyenne River upstream from Lake Ashtabula. However, because discharges in the Sheyenne River would increase during some periods, loads of mercury entering Lake Ashtabula also would increase. Lake Ashtabula probably serves as a sink for suspended sediment and mercury. Thus, a Devils Lake outlet probably would not have substantial effects on mercury concentrations and loads in the downstream part of the Sheyenne River or in the Red River of the North. More substantial effects could occur for Lake Ashtabula.
A 250,000-year climatic record from great basin vein calcite: Implications for Milankovitch theory
Winograd, I.J.; Szabo, B. J.; Coplen, T.B.; Riggs, A.C.
1988-01-01
A continuous record of oxygen-18 (??18O) variations in the continental hydrosphere during the middle-to-late Pleistocene has been obtained from a uranium-series dated calcitic vein in the southern Great Basin. The vein was deposited from ground water that moved through Devils Hole - an open fault zone at Ash Meadows, Nevada - between 50 and 310 ka (thousand years ago). The configuration of the ??18O versus time curve closely resembles the marine and Antarctic ice core (Vostok) ??18O curves; however, the U-Th dates indicate that the last interglacial stage (marine oxygen isotope stage 5) began before 147 ?? 3 ka, at least 17,000 years earlier than indicated by the marine ??18O record and 7,000 years earlier than indicated by the less well dated Antarctic ??18O record. This discrepancy and other differences in the timing of key climatic events suggest that the indirectly dated marine ??18O chronology may need revision and that orbital forcing may not be the principal cause of the Pleistocene ice ages.
Local and regional factors affecting atmospheric mercury speciation at a remote location
Manolopoulos, H.; Schauer, J.J.; Purcell, M.D.; Rudolph, T.M.; Olson, M.L.; Rodger, B.; Krabbenhoft, D.P.
2007-01-01
Atmospheric concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate (PHg) mercury were measured at two remote sites in the midwestern United States. Concurrent measurements of Hg0, PHg, and RGM obtained at Devil's Lake and Mt. Horeb, located approximately 65 km apart, showed that Hg0 and PHg concentrations were affected by regional, as well as local sources, while RGM was mainly impacted by local sources. Plumes reaching the Devil's Lake site from a nearby coal-fired power plant significantly impacted SO2 and RGM concentrations at Devil's Lake, but had little impact on Hg0. Our findings suggest that traditional modeling approaches to assess sources of mercury deposited that utilize source emissions and large-scale grids may not be sufficient to predict mercury deposition at sensitive locations due to the importance of small-scale sources and processes. We suggest the use of a receptor-based monitoring to better understand mercury source-receptor relationships. ?? 2007 NRC Canada.
Evidence for lack of homing by sea lampreys
Bergstedt, Roger A.; Seelye, James G.
1995-01-01
Recently metamorphosed sea lampreys Petromyzon marinus were captured in the Devil River, a tributary to Lake Huron, during summer and autumn 1990. They were tagged with a coded wire tag and returned to the river to continue their migration to Lake Huron to begin the parasitic (juvenile) phase of their life. During the spawning run in spring 1992 when the tagged animals were expected to mature and return to spawn, sea lampreys were trapped in nine tributaries to Lake Huron, including the Devil River; 47,946 animals were examined for coded wire tags, and 41 tagged animals were recovered. None of the 45 mature sea lampreys captured in the Devil River in 1992 were tagged, a proportion (0%) significantly lower than the proportion of the recently metamorphosed sea lampreys tagged in 1990. The distribution of tag recoveries among streams lakewide, however, was proportional to catch. Tagged sea lampreys did not appear to home, but instead seemed to select spawning streams through innate attraction to other sensory cues.
Simulation of a proposed emergency outlet from Devils Lake, North Dakota
Vecchia, Aldo V.
2002-01-01
From 1993 to 2001, Devils Lake rose more than 25 feet, flooding farmland, roads, and structures around the lake and causing more than $400 million in damages in the Devils Lake Basin. In July 2001, the level of Devils Lake was at 1,448.0 feet above sea level1, which was the highest lake level in more than 160 years. The lake could continue to rise to several feet above its natural spill elevation to the Sheyenne River (1,459 feet above sea level) in future years, causing extensive additional flooding in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin as well. The outlet simulation model described in this report was developed to determine the potential effects of various outlet alternatives on the future lake levels and water quality of Devils Lake.Lake levels of Devils Lake are controlled largely by precipitation on the lake surface, evaporation from the lake surface, and surface inflow. For this study, a monthly water-balance model was developed to compute the change in total volume of Devils Lake, and a regression model was used to estimate monthly water-balance data on the basis of limited recorded data. Estimated coefficients for the regression model indicated fitted precipitation on the lake surface was greater than measured precipitation in most months, fitted evaporation from the lake surface was less than estimated evaporation in most months, and ungaged inflow was about 2 percent of gaged inflow in most months. Dissolved sulfate was considered to be the key water-quality constituent for evaluating the effects of a proposed outlet on downstream water quality. Because large differences in sulfate concentrations existed among the various bays of Devils Lake, monthly water-balance data were used to develop detailed water and sulfate mass-balance models to compute changes in sulfate load for each of six major storage compartments in response to precipitation, evaporation, inflow, and outflow from each compartment. The storage compartments--five for Devils Lake and one for Stump Lake--were connected by bridge openings, culverts, or natural channels that restricted mixing between compartments. A numerical algorithm was developed to calculate inflow and outflow from each compartment. Sulfate loads for the storage compartments first were calculated using the assumptions that no interaction occurred between the bottom sediments and the water column and no wind- or buoyancy-induced mixing occurred between compartments. However, because the fitted sulfate loads did not agree with the estimated sulfate loads, which were obtained from recorded sulfate concentrations, components were added to the sulfate mass-balance model to account for the flux of sulfate between bottom sediments and the lake and for mixing between storage compartments. Mixing between compartments can occur during periods of open water because of wind and during periods of ice cover because of water-density differences between compartments. Sulfate loads calculated using the sulfate mass-balance model with sediment interaction and mixing between compartments closely matched sulfate loads computed from historical concentrations. The water and sulfate mass-balance models were used to calculate potential future lake levels and sulfate concentrations for Devils Lake and Stump Lake given potential future values of monthly precipitation, evaporation, and inflow. Potential future inputs were generated using a scenario approach and a stochastic approach. In the scenario approach, historical values of precipitation, evaporation, and inflow were repeated in the future for a particular sequence of historical years. In the stochastic approach, a statistical time-series model was developed to randomly generate potential future inputs. The scenario approach was used to evaluate the effectiveness of various outlet alternatives, and the stochastic approach was used to evaluate the hydrologic and water-quality effects of the potential outlet alternatives that were selected on the basis of the scenario analysis. Given potential future lake levels and sulfate concentrations generated using either the scenario or stochastic approach and potential future ambient flows and sulfate concentrations for the Sheyenne River receiving waters, daily outlet discharges could be calculated for virtually any outlet alternative. For the scenario approach, future ambient flows and sulfate concentrations for the Sheyenne River were generated using the same sequence of years used for generating water-balance data for Devils Lake. For the stochastic approach, a procedure was developed for generating daily Sheyenne River flows and sulfate concentrations that were "in-phase" with the generated water-balance data for Devils Lake. Simulation results for the scenario approach indicated that neither of the West Bay outlet alternatives provided effective flood-damage reduction without exceeding downstream water-quality constraints. However, both Pelican Lake outlet alternatives provided significant flood-damage reduction with only minor downstream water-quality changes. The most effective alternative for controlling rising lake levels was a Pelican Lake outlet with a 480-cubic-foot-per-second pump capacity and a 250-milligram-per-liter downstream sulfate constraint. However, this plan is costly because of the high pump capacity and the requirement of a control structure on Highway 19 to control the level of Pelican Lake. A less costly, though less effective for flood-damage reduction, plan is a Pelican Lake outlet with a 300-cubic-foot-per-second pump capacity and a 250-milligram-per-liter downstream sulfate constraint. The plan is less costly because the pump capacity is smaller and because the control structure on Highway 19 is not required. The less costly Pelican Lake alternative with a 450-milligramper- liter downstream sulfate constraint rather than a 250-milligram-per-liter downstream sulfate constraint was identified by the U.S. Army Corps of Engineers as the preferred alternative for detailed design and engineering analysis. Simulation results for the stochastic approach indicated that the geologic history of lake-level fluctuations of Devils Lake for the past 2,500 years was consistent with a climatic history that consisted of two climate states--a wet state, similar to conditions during 1980-99, and a normal state, similar to conditions during 1950-78. The transition times between the wet and normal climatic periods occurred randomly. The average duration of the wet climatic periods was 20 years, and the average duration of the normal climatic periods was 120 years. The stochastic approach was used to generate 10,000 independent sequences of lake levels and sulfate concentrations for Devils Lake for water years 2001-50. Each trace began with the same starting conditions, and the duration of the current wet cycle was generated randomly for each trace. Each trace was generated for the baseline (natural) condition and for the Pelican Lake outlet with a 300-cubic-foot-per-second pump capacity and a 450-milligram-per-liter downstream sulfate constraint. The outlet significantly lowered the probabilities of future lake-level increases within the next 50 years and did not substantially increase the probabilities of reaching low lake levels or poor water-quality conditions during the same period.
The persistence of large-scale blowouts in largely vegetated coastal dune fields
NASA Astrophysics Data System (ADS)
Delgado-Fernandez, Irene; Smyth, Thomas; Jackson, Derek; Davidson-Arnott, Robin; Smith, Alexander
2016-04-01
Coastal dunes move through natural phases of stability and instability during their evolution, displaying various temporal and spatial patterns across the dune field. Recent observations, however, have shown exceptionally rapid rates of stability through increased vegetative growth. This progressive vegetation colonisation and consequent loss of bare sand on coastal dune systems has been noted worldwide. Percentage reductions in bare sand of as much as 80% within just a few decades can been seen in examples from South Africa, Canada and Brazil as well as coastal dune sites across NW Europe. Despite these dramatic trends towards dune stabilisation, it is not uncommon to find particular examples of large-scale active blowouts and parabolic dunes within largely vegetated coastal dunes. While turbulence and airflow dynamics within features such as blowouts and other dune forms has been studied in detail within recent years, there is a lack of knowledge about what maintains dune mobility at these specific points in otherwise largely stabilized dune fields. This work explores the particular example of the 'Devil's Hole' blowout, Sefton Dunes, NW England. Approximately 300 m long by 100 m wide, its basin is below the water-table which leads to frequent flooding. Sefton Dunes in general have seen a dramatic loss of bare sand since the 1940s. However, and coinciding with this period of dune stabilisation, the 'Devil's Hole' has not only remained active but also grown in size at a rate of 4.5 m year-1 along its main axis. An exploration of factors controlling the maintenance of open bare sand areas at this particular location is examined using a variety of techniques including Computational Fluid Dynamics (CFD) airflow modelling and in situ empirical measurements of (short-term experiments) of wind turbulence and sand transport. Field measurements of wind parameters and transport processes were collected over a 2 week period during October 2015. Twenty three 3D ultrasonic anemometers were deployed at 0.5 m elevations over a grid covering sections of the blowout walls, deflation basin and depositional lobe. A number of high resolution sand traps and wenglor sensors were co-located with anemometers in the walls and basin, and a terrestrial laser scanner was used to collect high-resolution topographic data both before and after the strongest transport event recorded during the study period. Preliminary results indicate significant transport differences in operation at each of the two blow out walls as well as complex interactions between turbulence, superficial moisture content and up-wind sediment sources. This study represents a comprehensive examination of both wind and sediment flux patterns at high spatial and temporal resolution inside a large trough blowout feature; and reveals insights into why such systems are maintained as erosional features for long time periods.
Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.
2001-01-01
Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
...-0117; Airspace Docket No. 09-AGL-31] RIN 2120-AI92 Proposed Establishment of Restricted Areas R-5402, R-5403A, R- 5403B, R-5403C, R-5403D, R-5403E, R-5403F; Devils Lake, ND AGENCY: Federal Aviation... Restricted Areas R-5402, R-5403A, R-5403B, R- 5403C, R-5403D, R-5403E, R-5403F; Devils Lake, ND (76 FR 72869...
Hydrology and water quality of the Forest County Potawatomi Indian Reservation, Wisconsin
Lidwin, R.A.; Krohelski, J.T.
1993-01-01
Water quality of three lakes on the Reservation is variable and depends on the degree of connection with the ground-water system. In general, Bug Lake and Devils Lake are in poor hydraulic connection with the ground-water system, and their waters contain low concentrations of dissolved solids and alkalinity and low pH. King Lake is in good hydraulic connection with the ground-water system, and its waters contain higher concentrations of dissolved solids and alkalinity and higher pH than Bug and Devils Lakes.
Spatial distribution of chemical constituents in the Kuskokwim River, Alaska
Wang, Bronwen
1999-01-01
The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past mining. Crooked Creek had mercury concentrations greater than the background concentration. The transport of suspended sediment-associated trace elements was lower for all elements in the lower river than in the upper river, indicating storage of sediments and their associated metals within the river system.
Structured chaos in a devil's staircase of the Josephson junction.
Shukrinov, Yu M; Botha, A E; Medvedeva, S Yu; Kolahchi, M R; Irie, A
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Structured chaos in a devil's staircase of the Josephson junction
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Electrical Characteristics of Simulated Tornadoes and Dust Devils
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.
2012-01-01
It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.
Structured chaos in a devil's staircase of the Josephson junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukrinov, Yu. M.; Botha, A. E., E-mail: bothaae@unisa.ac.za; Medvedeva, S. Yu.
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior.more » These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.« less
Martian Dust Devils: Laboratory Simulations of Particle Threshold
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce
2003-01-01
An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.
A Devil's dictionary for mental health
Timms, Philip
2017-01-01
Clinical psychiatry, for all its emphasis on scientific rigour, is mediated mainly by words rather than by numbers. As with other professional areas, it has developed its own set of jargon words and phrases. Many of these are not the technical terms traditionally seen as jargon, but standard English words and phrases used in an idiosyncratic way. They therefore go unnoticed as jargon, while enfeebling our communications. I have used the template of Ambrose Bierce's The Devil's Dictionary to highlight some examples, with the aim of helping us all to talk, write and, perhaps, think more clearly. PMID:29018547
SUV Tracks On Mars? The 'Devil' is in the Details
NASA Technical Reports Server (NTRS)
1998-01-01
Sport Utility Vehicles (SUVs) on Mars? Imagine the MOC imaging team's surprise on the morning of April 27, 1998, as the latest images came in from the 'Red Planet.'
A picture taken by the camera on Mars Global Surveyor just one day earlier showed several thin, dark lines that--at first glance--looked like pathways blazed by off-road sport utility vehicles. Who's been driving around on Mars?The MOC image in question (#26403), seen here at full resolution of 13.8 meters (45 feet) per pixel, was obtained around 10:22 a.m. PDT on April 26, 1998, during Mars Global Surveyor's 264th orbit. North is approximately up, illumination is from the lower right. Located in eastern Arabia Terra near 16.5o N latitude, 311.4o W longitude, the image showed a number of natural features--small craters formed by meteor impact, several buttes and mesas left by erosion of the surrounding terrain, small dunes and drifts, and a mantle of dust that varies in thickness from place to place. But the new picture also showed two dark lines--each varying in width up to about 15 meters (49 feet)--that extended several kilometers/miles across the image.Lines like these have been seen before on Mars. They are most likely the result of dust devils--columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. They form when the ground heats up during the day, warming the air immediately above the surface. As pockets of warm air rise and interfere with one another, they create horizontal pressure variations that, combined with other meteorological winds, cause the upward moving air to spin (the direction of the spin is controlled by the same Coriolis forces that cause terrestrial hurricanes to spin in specific directions). As the spinning column of air moves across the surface, it occasionally encounters dust on the surface, which it can suck upward. This dust rises into the spinning air, giving the appearance of a tornado-like column that moves across the landscape. As the column of air moves, its ability to pick up dust varies--sometimes they hold a lot of dust and are nearly opaque; sometimes you cannot even see them. Dust-devils rarely last long, since their very motion changes the conditions that allowed them to form in the first place.Mars Pathfinder detected the passage of several dust devils during its 83 days of operation on Mars in 1997. Mariner 9 and the Viking landers and orbiters of the 1970s also found evidence that dust devils occur on Mars; indeed, some Viking Orbiter images actually show dust devil clouds. MOC image 26403 is the latest entry in the body of evidence for the work of wind in the modern martian environment. The MOC Science Team is continuing to study these and other streaks caused by wind interacting with the martian surface.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Climate change impacts on North Dakota: agriculture and hydrology
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Zhang, X.; Lim, Y.; Teng, W. L.
2011-12-01
North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed. One of the most dramatic examples of the consequences of this change is the Devils Lake flooding. Devils Lake is a terminal lake with a surface area of about 500 km2 in a 9,867 km2 closed watershed, located in the northeastern part of the state. The recent changes in climate interrupted the 5-7 year long wet/dry cycle, resulting in a persistently wet state. The change in the water balance has led to a substantial increase in the lake level from 427.0 m in 1940 to 434.6 m in 1993 to 443.2 m in 2011. The resulting flooding has threatened the local communities, costing $450 million in mitigation efforts thus far. If the elevation reaches 444.4 m, the saline, eutrophic lake will naturally spill into the Sheyenne River, eventually flowing into Lake Winnipeg. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for eight different locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing. For projections of climate change impacts on the hydrology of the Devils Lake basin, we additionally used the information on the spatial distribution of precipitation over the basin from the NASA TRMM TMPA 3B42-V6 product, which combines measurements from multiple satellites with rain gauge data and is available over a 0.25° × 0.25° grid. We used the DSSAT package to simulate the impact of climate change on wheat yields in eight locations in North Dakota, using the outputs of the six GCMs, as described above. For each time period, we ran the DSSAT 10 times, under different synthetic weather conditions, to adequately take into account climate variability. In general, averaged across the simulations and across all locations, the simulations demonstrate a decline in yields: -3.6% -4.0% in 2020s and still more substantial in 2050s and 2080s. However, the decline differs dramatically among the outputs from different GCMs and among the scenarios. In the Devils Lake basin, the simulations show increasing amount of winter precipitation, and also increasing potential evapotranspiration. Together with longer warm seasons, these changes in climate will likely reduce earlier estimates (Vecchia, 2008) of the risks of Devils Lake spillage. In the report, we provide details on the research of climate change impacts on the Devils Lake watershed, and on the agriculture of North Dakota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
This document is a brief progress report from each of the research and education projects that are currently funded through the ERWM contract. During third quarter 1993, approval was given by DOE for purchase of equipment. Equipment purchases were initiated and much of the equipment has been received and installed. The committees in charge of coordination of sampling and analyses associated with the collaborative research groups continued to meet and address these issues. Sampling has been done in the lower part of Devil`s Swamp and in the Devil`s Swamp Lake area. In addition, extensive sampling has been done in Bayoumore » Trepagnier and in Bayou St. John. During this period, Tulane and Xavier Universities continued working closely with Oak Ridge National Laboratories (ORNL). The ORNL 1993 summer student internship program was completed. Plans were made for expanding the program to support 8 students next summer. Leonard Price, a Xavier University Chemistry professor and John Walz, a Tulane University Engineering professor each spent 5 weeks at ORNL. During this time these faculty worked with ORNL researchers exploring mutual interests and discussing possible future collaborations. In September, Drs. Carl Gehrs, Lee Shugart and Marshall Adams of ORNL, visited the Tulane and Xavier campuses. They presented two seminars and met with several of the investigators being supported by the ERWM contract. Tulane/Xavier project administrators participated in the Office of Technology Development`s ``New Technologies and Program Exhibition`` in the Rayburn House Office Building on September 23 and in the Hart Senate Office Building on September 27.« less
Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro
2015-10-01
The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.
Geochemical survey of the Devil's Den Roadless Area, Rutland and Windsor counties, Vermont
Slack, J.F.; Atelsek, P.J.; Grosz, A.E.
1985-01-01
The Devils Den area is named for a large undercut cliff (Dale, 1915, p. 21) developed in Precambrian basement rocks. This undercut cliff forms a broad natural cave immediately west of and below Forest Service Road 10, at the head of Mt. Tabor Brook. Another much smaller cave is present in dolomite of probable Paleozoic (Early Cambrian) age on the east side of the same road. This smaller cave apparently is of artificial origin, having been made during early mining of the dolomite (Dale, 1915, p. 21). This man-made cave is the only evidence of previous mining activity within the study area.
DEVILS DEN ROADLESS AREA, VERMONT.
Slack, John F.; Sabin, Andrew E.
1984-01-01
A mineral-resource survey was made of the Devils Den Roadless Area, Vermont, Geochemical sampling found traces of gold, copper, barium, lead, molybdenum, silver, tin, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to identify any resource potential. The only apparent resources are nonmetallic commodities including abundant rock suitable for crushihg, and very small deposits of sand and gravel and marble; these also occur outside the roadless area. The area was also evaluated for bedrock uranium and thorium deposits, but not anomalously high radioactive bedrock was found. A potential may exist for oil or natural gas at great depth, but this cannot be evaluated by the present study.
Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.
Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas
2014-02-01
The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.
Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours
Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas
2014-01-01
The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746
Transmissible cancer in Tasmanian devils: localized lineage replacement and host population response
Hamede, Rodrigo K.; Pearse, Anne-Maree; Swift, Kate; Barmuta, Leon A.; Murchison, Elizabeth P.; Jones, Menna E.
2015-01-01
Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil (Sarcophilus harrisii) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness. PMID:26336167
Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site
NASA Astrophysics Data System (ADS)
Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.
2008-12-01
Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of in situ meteorological data from the Arctic regions on Mars. Modelling work shows that vertically oriented vortices with low pressure, warm cores, can develop on internal boundaries, such as those associated with cellular convection, and this is supported by observations. Simple cyclostrophic estimates of vortex wind speeds suggest that dust devils will form, but that most vortices will not be capable of lifting dust from the surface. So, at least in the first 102 sols, most of the Phoenix devils are dustless. References [1] F Ferri, PH Smith, M Lemmon, NO Renno; (2003) Dust devils as observed by Mars Pathfinder. JGR,108, NO. E12, 5133, doi:10.1029/2000JE001421. [2] Gheynani, B.T. and Taylor, P.A., (2008), Large Eddy Simulation of vertical vortices in highly convective Martian boundary layer, Paper 10 B.6, 18th Symposium on Boundary Layers and Turbulence, June 2008, Stockholm, Sweden
Katz, B.G.; Griffin, Dale W.
2008-01-01
Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (?? 18O and ??2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have ??18O and ??2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (??15N-NO3) values above 10 ??? in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (??15N-NO3 = 4.6-4.9 ???), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N,N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil's Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in the Ichetucknee Springs basin is highly vulnerable to contamination from multiple anthropogenic sources throughout the springs basin. ?? 2007 Springer-Verlag.
Satanic abuse, with focus on the situation in Finland.
Segerberg, M
1997-12-01
This paper outlines Satanism and devil worship as practised in the Western countries and reviews the occurrence of Satanism in Finland. Two principal groups can be distinguished: the Satanists, mainly adults embracing the philosophical aspects of Satanism with no interest in hurting others, and the devil worshippers of Satanic cults, who accept teenagers into their group and whose activity may take violent forms. The main Satanic cult activity is vandalism, but other activities are now becoming more aggressive: causing bodily and mental harm to members and victims and luring young people into criminal activity. The views of the police and the medical community are discussed in this paper and current intervention is examined.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-382, 5 June 2003
The spiraling feature near the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is known as a cycloidal marking. Patterns like this can also occur on Earth. On Mars, the cycloidalpattern--and all of the other dark streaks in this picture--are thought to have been formed by passing dust devils. On Earth, cycloidal markings have been observed to result from some tornadoes. The pattern is created when more than one vortex (spinning column of air) is traveling, and spinning, together. This picture is near 62.9oS, 234.7oW. Sunlight illuminates the scene from the upper left.DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, W.J.; King, H.D.; Gettings, M.E.
1988-01-01
The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.
NASA Technical Reports Server (NTRS)
Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.
2006-01-01
The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.
Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue
NASA Astrophysics Data System (ADS)
Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.
2018-06-01
The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.
Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.
2016-01-01
Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198
Clark, Allan K.; Small, Ted A.
1997-01-01
The stratigraphic units of the Edwards aquifer in south-central Uvalde County generally are porous and permeable. The stratigraphic units that compose the Edwards aquifer in south-central Uvalde County are the Devils River Formation in the Devils River trend; and the West Nueces, McKnight, and Salmon Peak Formations in the Maverick Basin. The Balcones fault zone is the principal structural feature in Uvalde County; however, the displacement along the fault zone is less in Uvalde County than in adjacent Medina and Bexar Counties to the east. The Uvalde Salient is a structural high in south-central Uvalde County, and consists of several closely connected crustal uplifts that bring Edwards aquifer strata to the surface generally forming prominent hills. The crustal uplifts forming this structural high are the remnants of intrusive and extrusive magnatic activity. Six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—cross the length of the study area from the southwest to the northeast juxtaposing the Lower Cretaceous Salmon Peak Formation at the surface in the northwestern part of the study area against Upper Cretaceous formations in the central part of the study area. In the study area, the porosity of the rocks in the Edwards aquifer is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, distribution of pores, and fissuring and dissolution. The middle 185 feet of the lower part of the Devils River Formation, the upper part of the Devils River Formation, and the upper unit of the Salmon Peak Formation probably are the most porous and permeable stratigraphic zones of the Edwards aquifer in south-central Uvalde County.
Earth Observations taken by the Expedition Seven crew
2003-06-22
ISS007-E-07842 (22 June 2003) --- This image, photographed by an Expedition 7 crewmember onboard the International Space Station (ISS), features Kitty Hawk, N.C., on North Carolinas Outer Banks. The view shows part of Pamlico Sound and the Atlantic side of the banks as well. This year the world celebrates a century of human flight with the 100th anniversary of the Wright Brothers' first flight at Kitty Hawk. The Wrights used the Outer Banks prevailing winds and the altitude gained by climbing a 90-foot hill (Kill Devil Hill) to successfully demonstrate powered flight. The large circle on the image is a road that wraps around Kill Devil Hill, now part of the Wright Brothers National Memorial.
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
NASA Astrophysics Data System (ADS)
Cotton, Laura J.; Eder, Wolfgang; Floyd, James
2018-03-01
Shallow-water carbonate deposits are well-known from the Eocene of the US Gulf Coast and Caribbean. These deposits frequently contain abundant larger benthic foraminifera (LBF). However, whilst integrated stratigraphic studies have helped to refine the timing of LBF overturning events within the Tethys and Indo-Pacific regions with respect to global bio- and chemo-stratigraphic records, little recent work has been carried out in the Americas. The American LBF assemblages are distinctly different from those of Europe and the Indo-Pacific. It is therefore essential that the American bio-province is included in studies of LBF evolution, biodiversity and climate events to understand these processes on a global scale.Here we present the LBF ranges from two previously unpublished sections spanning 35 and 29 m of the upper Eocene Ocala limestone, as the early stages of a larger project addressing the taxonomy and biostratigraphy of the LBF of Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for the biostratigraphy of the region. In addition, the study highlights the need for multiple sites to assess the LBF assemblages and fully constrain ranges across Florida and the US Gulf and suggests potential LBF events for future integrated stratigraphic study.
Li, H.-C.; Bischoff, J.L.; Ku, T.-L.; Zhu, Z.-Y.
2004-01-01
??18O, ??13C, total organic carbon, total inorganic carbon, and acid-leachable Li, Mg and Sr concentrations on 443 samples from 32 to 83 m depth in Owens Lake core OL-92 were analyzed to study the climatic and hydrological conditions between 60 and 155 ka with a resolution of ???200 a. The multi-proxy data show that Owens Lake overflowed during wet/cold conditions of marine isotope stages (MIS) 4, 5b and 6, and was closed during the dry/warm conditions of MIS 5a, c and e. The lake partially overflowed during MIS 5d. Our age model places the MIS 4/5 boundary at ca 72.5 ka and the MIS 5/6 boundary (Termination II) at ca 140 ka, agreeing with the Devils Hole chronology. The diametrical precipitation intensities between the Great Basin (cold/wet) and eastern China (cold/dry) on Milankovitch time scales imply a climatic teleconnection across the Pacific. It also probably reflects the effect of high-latitude ice sheets on the southward shifts of both the summer monsoon frontal zone in eastern Asia and the polar jet stream in western North America during glacial periods. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hagedorn, Benjamin
2015-04-01
Geochemical data deduced from groundwater and vein calcite were used to quantify groundwater recharge and interbasin flow rates in the Tule Desert (southeastern Nevada). 14C age gradients below the water table suggest recharge rates of 1-2 mm/yr which correspond to a sustainable yield of 5 × 10-4 km3/yr to 1 × 10-3 km3/yr. Uncertainties in the applied effective porosity value and increasing horizontal interbasin flow components at greater depths may bias these estimates low compared to those previously reported using the water budget method. The deviation of the groundwater δ18O time-series pattern for the Pleistocene-Holocene transition from that of the Devils Hole vein calcite (which is considered a proxy for local climate change) allows interbasin flow rates of northerly derived groundwater to be estimated. The constrained rates (75.0-120 m/yr) are slightly higher than those previously calculated using Darcy's Law, but translate into hydraulic conductivity values strikingly similar to those obtained from pump tests. Data further indicate that production wells located closer to the western mountainous margin will be producing mainly from locally derived mountain-system recharge whereas wells located closer to the eastern margin are more influenced by older, regionally derived carbonate groundwater.
NASA Astrophysics Data System (ADS)
Nolet, G.; Mercerat, D.; Zaroli, C.
2012-12-01
We present the first complete test of finite frequency tomography with banana-doughnut kernels, from the generation of seismograms in a 3D model to the final inversion, and are able to lay to rest all of the so-called `controversies' that have slowed down its adoption. Cross-correlation delay times are influenced by energy arriving in a time window that includes later arrivals, either scattered from, or diffracted around lateral heterogeneities. We present here the results of a 3D test in which we generate 1716 seismograms using the spectral element method in a cross-borehole experiment conducted in a checkerboard box. Delays are determined for the broadband signals as well as for five frequency bands (each one octave apart) by cross-correlating seismograms for a homogeneous pattern with those for a checkerboard. The large (10 per cent) velocity contrast and the regularity of the checkerboard pattern causes severe reverberations that arrive late in the cross-correlation window. Data errors are estimated by comparing linearity between delays measured for a model with 10 per cent velocity contrast with those with a 4 per cent contrast. Sensitivity kernels are efficiently computed with ray theory using the `banana-doughnut' kernels from Dahlen et al. (GJI 141:157, 2000). The model resulting from the inversion with a data fit with reduced χ2red=1 shows an excellent correspondence with the input model and allows for a complete validation of the theory. Amplitudes in the (well resolved) top part of the model are close to the input amplitudes. Comparing a model derived from one band only shows the power of using multiple frequency bands in resolving detail - essentially the observed dispersion captures some of the waveform information. Finite frequency theory also allows us to image the checkerboard at some distance from the borehole plane. Most disconcertingly for advocates of ray theory are the results obtained when we interpret cross-correlation delays with ray theory. We shall present an extreme case of the devil's checkerboard (the term is from Jacobsen and Sigloch), in which the sign of the anomalies in the checkerboard is reversed in the ray-theoretical solution, a clear demonstration of the reality of effects of the doughnut hole. We conclude that the test fully validates `banana-doughnut' theory, and disqualifies ray theoretical inversions of cross-correlation delays.
NASA Astrophysics Data System (ADS)
Jackson, C.; Todhunter, P. E.
2017-12-01
Since 1993, Devils Lake in North Dakota has experienced a prolonged rise in lake level and flooding of the lake's neighboring areas within the closed basin system. Understanding the relative contribution of climate change and land use change is needed to explain the historical rise in lake level, and to evaluate the potential impact of anthropogenic climate change upon future lake conditions and management. Four methodologies were considered to examine the relative contribution of climatic and human landscape drivers to streamflow variations: statistical, ecohydrologic, physically-based modeling, and elasticity of streamflow; for this study, ecohydrologic and climate elasticity were selected. Agricultural statistics determined that Towner and Ramsey counties underwent a crop conversion from small grains to row crops within the last 30 years. Through the Topographic Wetness Index (TWI), a 10 meter resolution DEM confirmed the presence of innumerable wetland depressions within the non-contributing area of the Mauvais Coulee Sub-basin. Although the ecohydrologic and climate elasticity methodologies are the most commonly used in literature, they make assumptions that are not applicable to basin conditions. A modified and more informed approach to the use of these methods was applied to account for these unique sub-basin characteristics. Ultimately, hydroclimatic variability was determined as the largest driver to streamflow variation in Mauvais Coulee and Devils Lake.
Devil's Slide: An evolving feature of California's coastal landscape
NASA Astrophysics Data System (ADS)
Thomas, M.; Loague, K.
2013-12-01
Coastal landslides in the United States remain a persistent threat to human life and urban development. The focus of this study is a landslide-prone section of the central California coastline, approximately 20 km south of San Francisco, known as Devil's Slide. This investigation employs an extensive aerial image inventory, digital elevation models (DEMs), and a water balance / limit-equilibrium approach to better understand the spatial and temporal characteristics of deep-seated bedrock slides at the site. Photographic surveys of the area reveal nearly three kilometers of headscarp and a complex network of slope failures that respond to hydrologic, seismic, and anthropogenic perturbations. DEM analysis suggests that, for a 145-year period (1866 to 2010), the study area experienced an average coastal retreat rate of 0.14 m yr-1 and an average volumetric loss of 11,216 m3 yr-1. At least 38% of the landscape evolution in the steep coastal terrain has been driven by slope failure events. A loosely coupled water balance / limit-equilibrium analysis quantitatively illustrates the precarious nature of the active landslide zone at the site. The slope is shown to be unstable for a large suite of equally-likely scenarios. The analyses presented herein suggest that future work should include a rigorous characterization of pore-water pressure development, driven by comprehensive simulations of subsurface hydrologic response, to improve our understanding of slope failure initiation at the Devil's Slide site.
Kiriake, Aya; Suzuki, Yasuko; Nagashima, Yuji; Shiomi, Kazuo
2013-08-01
The crude toxins from three species of venomous fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis) belonging to the order Scorpaeniformes exhibited mouse-lethal, hemolytic, edema-forming and nociceptive activities. In view of the antigenic cross-reactivity with the stonefish toxins, the primary structures of the stonefish toxin-like toxins from the three scorpaeniform fish were determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Based on the data obtained in gel filtration, immunoblotting and cDNA cloning, each toxin was judged to be a 160 kDa heterodimer composed of 80 kDa α- and β-subunits. The three scorpaeniform fish toxins contain a B30.2/SPRY domain (∼200 amino acid residues) in the C-terminal region of each subunit, as reported for the toxins from two species of lionfish and two species of stonefish. With respect to the amino acid sequence similarity, the scorpaeniform fish toxins are divided into the following two groups: toxins from three species of lionfish and those from devil stinger, two species of stonefish and waspfish. The phylogenetic tree generated also clearly supports the classification of the toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.
... combination of gymnema, hydroxycitric acid, and niacin-bound chromium by mouth can reduce body weight in people ... these products include alpha-lipoic acid, bitter melon, chromium, devil's claw, fenugreek, garlic, guar gum, horse chestnut, ...
... is an herb. The botanical name, Harpagophytum, means "hook plant" in Greek. This plant gets its name ... appearance of its fruit, which is covered with hooks meant to attach onto animals in order to ...
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-541, 11 November 2003
In some regions of Mars, dust devils create streaks by disrupting or removing thin coatings of fine, bright dust from the surface. This summertime view of terrain in southern Noachis Terra, acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), provides an example. Streak patterns such as these are commonly created during the spring and summer in the southern hemisphere; in autumn and winter they are often erased--perhaps by deposition of a new coating of dust--and then a completely different pattern is formed the following spring and summer. This image is located near 59.6oS, 328.8oW. The picture is 3 km (1.9 mi) wide and illuminated by sunlight from the upper left.Dust Devil in Spirit's View Ahead on Sol 1854
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009). The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854. West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.' This view is presented as a cylindrical projection with geometric seam correction.Devil's Staircase Wilderness Act of 2013
Sen. Wyden, Ron [D-OR
2013-02-14
House - 06/21/2013 Referred to the Subcommittee on Public Lands and Environmental Regulation. (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:
Devil's Staircase Wilderness Act of 2011
Sen. Wyden, Ron [D-OR
2011-04-07
Senate - 01/13/2012 Placed on Senate Legislative Calendar under General Orders. Calendar No. 277. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Devil's Staircase Wilderness Act of 2010
Sen. Wyden, Ron [D-OR
2009-06-16
Senate - 08/05/2010 Placed on Senate Legislative Calendar under General Orders. Calendar No. 527. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for the presence/absence of the SC phase under pressure.
Biogeochemistry of silica in Devils Lake: Implications for diatom preservation
Lent, R.M.; Lyons, B.
2001-01-01
Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867-1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the less resistant diatoms. Also, BSi accumulation may be proportional to the amount of silica input from tributary sources. Therefore, BSi accumulation chronologies from sediment cores may be effective records of tributary inflow.
National Fire News- Current Wildfires
... of Denali Bella Creek Southwest Area Forestry, DOF ST 2,631 0 Bismark Galena Zone BLM 876 ... of Hughes Devil's Elbow Southwest Area Forestry, DOF ST 180 0 Door Mountains Southwest Area Forestry, DOF ...
Visitor center flight room, detail of twin structural piers at ...
Visitor center flight room, detail of twin structural piers at northeast corner supporting flight room dome - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC
Context, view to north from mall; from left to right, ...
Context, view to north from mall; from left to right, flight markers, camp buildings, and visitor center - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC
Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity
NASA Astrophysics Data System (ADS)
Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.
2016-11-01
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.
Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity
NASA Technical Reports Server (NTRS)
Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.;
2016-01-01
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.
Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C
2006-06-01
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.
2012-11-13
This image from NASA 2001 Mars Odyssey spacecraft of Daedalia Planum shows the termination or end of a single flow. In this case it is the end of the brighter/rougher flow on the right side of the image.
Confronting Cost and Pricing Issues in Distance Education.
ERIC Educational Resources Information Center
Taylor, Thomas H.; Parker, G. D., III; Tebeaux, Elizabeth
2001-01-01
Asserts that "the devil is in the details" when determining costs and prices for distance delivery of courses, and describes Texas A&M University's process of determining cost and price for distance education courses. (EV)
Visitor center museum display, detail of diorama booth with raised ...
Visitor center museum display, detail of diorama booth with raised step; door to electrical door panel at left - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC
NASA Astrophysics Data System (ADS)
Spötl, Christoph; Dublyansky, Yuri; Moseley, Gina; Wendt, Kathleen; Edwards, Larry; Scholger, Robert; Woodhead, Jon
2016-04-01
Death Valley in eastern California holds North Americás record for the deepest, hottest and driest place. Despite these unfavourable boundary conditions speleothems are present in this hyperarid depression and the surrounding deserts and provide unique insights into long-term regional climate change and landscape evolution of this tectonically and geomorphologically highly active region. Most of the speleothems are inactive and exposed due to tectonic uplift and erosion. They differ from common speleothems, because the majority formed under phreatic conditions as part of a regional groundwater flow system that is still active today. Data from three sites will be discussed illustrating the spectrum of speleothem deposits and their modes of formation. At Devils Hole, the thermal aquifer and the associated subaqueous and water-table speleothems can be directly accessed and provide a record reaching back about 1 million years. At Travertine Point, close to modern discharge points of this large groundwater flow system, phreatic speleothems form near-vertical veins up to about 2 m wide showing evidence of high flow rates along these fractures, which are connected to fossil spring tufa deposits. Finally, outcrops along Titus Canyon expose several generations of speleothems documenting the progressive lowering of the regional groundwater table. The youngest calcite generation records the transition towards vadose conditions 500-400 ka ago.
Summary of Natural Hazard Statistics for 2017 in the United States
... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...
NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota
Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.
Summary of Natural Hazard Statistics for 2015 in the United States
... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...
Visitor center flight room,detail of modern soffit and original ribbedconcrete ...
Visitor center flight room,detail of modern soffit and original ribbed-concrete including original integrated duct work, view to northwest - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC
The role of water content in triboelectric charging of wind-blown sand.
Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah
2013-01-01
Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H(+)/OH(-) between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes.
NASA Astrophysics Data System (ADS)
Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo
2007-03-01
We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.
NASA Astrophysics Data System (ADS)
Chaplin, W. J.; Jiménez-Reyes, S. J.; Eff-Darwich, A.; Elsworth, Y.; New, R.
2008-04-01
Frequencies, powers and damping rates of the solar p modes are all observed to vary over the 11-yr solar activity cycle. Here, we show that simultaneous variations in these parameters give rise to a subtle cross-talk effect, which we call the `devil in the detail', that biases p-mode frequencies estimated from analysis of long power frequency spectra. We also show that the resonant peaks observed in the power frequency spectra show small distortions due to the effect. Most of our paper is devoted to a study of the effect for Sun-as-a-star observations of the low-l p modes. We show that for these data the significance of the effect is marginal. We also touch briefly on the likely l dependence of the effect, and discuss the implications of these results for solar structure inversions.
Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota
Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.
2005-01-01
Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.
NASA Astrophysics Data System (ADS)
Sutimin; Khabibah, Siti; Munawwaroh, Dita Anis
2018-02-01
A harvesting fishery model is proposed to analyze the effects of the presence of red devil fish population, as a predator in an ecosystem. In this paper, we consider an ecological model of three species by taking into account two competing species and presence of a predator (red devil), the third species, which incorporates the harvesting efforts of each fish species. The stability of the dynamical system is discussed and the existence of biological and bionomic equilibrium is examined. The optimal harvest policy is studied and the solution is derived in the equilibrium case applying Pontryagin's maximal principle. The simulation results is presented to simulate the dynamical behavior of the model and show that the optimal equilibrium solution is globally asymptotically stable. The results show that the optimal harvesting effort is obtained regarding to bionomic and biological equilibrium.
The role of water content in triboelectric charging of wind-blown sand
Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah
2013-01-01
Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H+/OH− between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes. PMID:23434920
Crawford, J.K.; Lenat, D.R.
1989-01-01
Three small streams in North Carolina 's northern Piedmont were studied to compare the effects of land use in their watersheds on water quality characteristics and aquatic biota. Devil 's Cradle Creek (agricultural watershed) had more than two times the sediment yield of Smith Creek (forested watershed) (0.34 tons/acre compared to 0.13 tons/acre), and Marsh Creek (urban watershed) had more than four times the yield of Smith Creek (0.59 tons/acre). Concentrations of nutrients were consistently highest in Devil 's Craddle Creek. Concentrations of total copper, iron, and lead in samples from each of the three streams at times exceeded State water quality standards as did concentrations of total zinc in samples from both Smith and Marsh Creeks. Successively lower aquatic invertebrate taxa richness was found in the forested, the agricultural, and the urban watershed streams. Invertebrate biota in Smith Creek was dominated by insects, such as Ephemeroptera, that are intolerant to stress from pollution, whereas Devil 's Cradle Creek was dominated by the more tolerant Diptera, and Marsh Creek was dominated by the most pollution-tolerant group, the Oligochaeta. Fish communities in the forested and agricultural watershed streams were characterized by more species and more individuals of each species, relative to a limited community in urban Marsh Creek. Three independent variables closely linked to land use--suspended-sediment yield, suspended-sediment load, and total lead concentrations in stream water--are inversely associated with the biological communities of the streams.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Desch, M. D.; Marshall, J. R.; Delory, G. T.; Kolecki, J. C.; Hillard, G. B.; Kaiser, M. L.; Haberle, R. M.; Zent, A. P.; Luhmann, J. G.
2000-01-01
In 1999, the NASA/Human Exploration and Development of Space (HEDS) enterprise selected a number of payloads to fly to the Martian surface in an 03 opportunity (prior to the MPL loss). Part of a proposed experiment, ECHOS, was selected to specifically understand the electrical charging hazards from tribocharged dust in the ambient atmosphere, in dust devils, and in larger storms. It is expected that Martian dust storms become tribocharged much like terrestrial dust devils which can possess almost a million elementary charges per cubic centimeter. The ECHOS package features a set of instruments for measuring electric effects: a radio to detect AC electric fields radiating from discharges in the storm,a DC electric field system for sensing electrostatic fields from concentrations of charged dust grains, and a lander electrometer chain for determining the induced potential on its body and MAV (Mars Ascent Vehicle) during the passages of a charged dust storm. Given that electricity is a systemic process originating from wind-blown dust, we also proposed to correlate the electrical measurements with fundamental fluid/meteorological observations, including wind velocity and vorticity, temperature, and pressure. Triboelectricity will also affect local chemistry, and chemical-sensing devices were also considered a feature of the package. The primary HEDS objectives of the ECHOS sensing suite is to discover and monitor the natural electrical hazards associated with dust devils and storms, and determine their enviro-effectiveness on human systems. However, ECHOS also has a strong footprint in the overarching science objectives of the Mars Surveyor Program.
Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh
2010-01-01
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
77 FR 54860 - Proposed Modification of VOR Federal Airway V-170 in the Vicinity of Devils Lake, ND
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... invited on the overall regulatory, aeronautical, economic, environmental, and energy-related aspects of...) radials; Jamestown;''. The magnetic radial information would be removed in the final rule. This proposed...
ERIC Educational Resources Information Center
Hershey, David R.
2002-01-01
Describes an activity demonstrating the importance of photoperiod on plant development. Uses the plant devil's backbone for the experiment and studies the details of photoperiodic requirement for plantlet formation. (Contains 12 references.) (YDS)
... 3 days and may require a hospital stay. Death is unlikely. DO NOT touch or eat any plant with which you are not familiar. Wash your hands after working in the garden or walking in the woods. Alternative Names Angel's trumpet; Devil's weed; Thorn apple; ...
NASA Astrophysics Data System (ADS)
Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.
2017-12-01
Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect our P measurements at Trib 3 basin, a considerably smaller basin compared to Mauvais Coulee, provide an opportunity to investigate the impacts of watershed scales on nutrient exports and c-q relationship. Finally, our study will lay a strong foundation for future nutrient modeling studies in the Devils Lake basin.
Bruening, Meg; van Woerden, Irene; Todd, Michael; Brennhofer, Stephanie; Laska, Melissa N; Dunton, Genevieve
2016-07-27
The majority of nutrition and physical activity assessments methods commonly used in scientific research are subject to recall and social desirability biases, which result in over- or under-reporting of behaviors. Real-time mobile-based ecological momentary assessments (mEMAs) may result in decreased measurement biases and minimize participant burden. The aim was to examine the validity of a mEMA methodology to assess dietary and physical activity levels compared to 24-hour dietary recalls and accelerometers. This study was a pilot test of the SPARC (Social impact of Physical Activity and nutRition in College) study, which aimed to determine the mechanism by which friendship networks impact weight-related behaviors among young people. An mEMA app, devilSPARC, was developed to assess weight-related behaviors in real time. A diverse sample of 109 freshmen and community mentors attending a large southwestern university downloaded the devilSPARC mEMA app onto their personal mobile phones. Participants were prompted randomly eight times per day over the course of 4 days to complete mEMAs. During the same 4-day period, participants completed up to three 24-hour dietary recalls and/or 4 days of accelerometry. Self-reported mEMA responses were compared to 24-hour dietary recalls and accelerometry measures using comparison statistics, such as match rate, sensitivity and specificity, and mixed model odds ratios, adjusted for within-person correlation among repeated measurements. At the day level, total dietary intake data reported through the mEMA app reflected eating choices also captured by the 24-hour recall. Entrées had the lowest match rate, and fruits and vegetables had the highest match rate. Widening the window of aggregation of 24-hour dietary recall data on either side of the mEMA response resulted in increased specificity and decreased sensitivity. For physical activity behaviors, levels of activity reported through mEMA differed for sedentary versus non-sedentary activity at the day level as measured by accelerometers. The devilSPARC mEMA app is valid for assessing eating behaviors and the presence of sedentary activity at the day level. This mEMA may be useful in studies examining real-time weight-related behaviors.
78 FR 65380 - Notice of Inventory Completion: University of Michigan, Ann Arbor, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... the University of Michigan, Ann Arbor, MI. The human remains were removed from Alpena, Isabella, Grand... removed from the Devil River Mound site (20AL1) in Alpena County, MI. A resident of Ossineke, MI...
Tribology: Diamonds are forever - or are they?
NASA Astrophysics Data System (ADS)
Fineberg, Jay
2011-01-01
The friction and wear of materials is part of our everyday experience, and yet these processes are not well understood. The example of diamond highlights wear processes that result from bumping atoms, showing that the devil is indeed in the details.
Lake-level frequency analysis for Devils Lake, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.
1996-01-01
Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model for generating precipitation, evaporation, and inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A method was developed for using long-term streamflow data for the Red River of the North at Grand Forks to reduce the variance in the estimated mean.Comparison of the annual lake-volume model and the water mass-balance model indicates the upper exceedance levels of the water mass-balance model increase much more rapidly than those of the annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea level for the water mass-balance model. The rapid increase is caused largely by the record precipitation and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the annual lake-volume model for computing exceedance levels for the 50-year planning horizon.
Lake-level frequency analysis for Devils Lake, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.
1995-01-01
Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model for generating precipitation, evaporation, and inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A method was developed for using long-term streamflow data for the Red River of the North at Grand Forks to reduce the variance in the estimated mean. Comparison of the annual lake-volume model and the water mass-balance model indicates the upper exceedance levels of the water mass-balance model increase much more rapidly than those of the annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea level for the water mass-balance model. The rapid increase is caused largely by the record precipitation and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the annual lake-volume model for computing exceedance levels for the 50-year planning horizon.
NASA Satellite Scares Up An Eerie Image of Haunted Lakes and Ghost Ships
2011-10-29
NASA Terra satellite presents this false color view of portions of Wisconsin and Michigan, including Devil Lake, Druid Lake, Ghost Lake, Spider Lake, and Witches Lake in Wisconsin; and Bat Lake, Corpse Pond and Witch Lake in Michigan.
Comparing and Contrasting Siblings: Defining the Self.
ERIC Educational Resources Information Center
Schachter, Frances Fuchs; Stone, Richard K.
1987-01-01
Deidentification is the phenomenon whereby siblings are defined as different or contrasting. In pathological deidentification, the natural flow of sibling conflict and reconciliation seems obstructed as one sibling is assigned the fixed identity of "devil," who constantly harasses the other, "angel," sibling. A clinical…
Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar
2011-10-01
Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (<30 cm) showed a spatial pattern similar to that of MeHg in sediments, where fish from the Devils River arm of the reservoir had higher muscle Hg concentrations than those collected in the Rio Grande arm. In 88 bass of legal sport fishing size (>35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.
Geology of Devils Tower National Monument, Wyoming
Robinson, Charles Sherwood
1956-01-01
Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower. The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member. The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3 deg - 5 deg towards the Tower. Beyond this distance, they dip at 2 deg - 5 deg from the Tower. The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.
Leistritz, F Larry; Leitch, Jay A; Bangsund, Dean A
2002-12-01
Devils Lake, located in a closed basin in northeastern North Dakota has over a century-long history of highly fluctuating water levels. The lake has risen nearly 25 feet (7.7 m) since 1993, more than doubling its surface area. Rising water levels have affected rural lands, transportation routes, and communities near the lake. In response to rising lake levels, Federal, state and local agencies have adopted a three-part approach to flood damage reduction, consisting of (1) upper basin water management to reduce the amount of water reaching the lake, (2) protection for structures and infrastructure if the lake continues to rise, and (3) developing an emergency outlet to release some lake water. The purpose of this study was to provide information about the net regional economic effects of a proposed emergency outlet for Devils Lake. An input-output model was used to estimate the regional economic effects of the outlet, under two scenarios: (1) the most likely future situation (MLS) and (2) a best case situation (BCS) (i.e., where the benefits from the outlet would be greatest), albeit an unlikely one. Regional economic effects of the outlet include effects on transportation (road and railroad construction), agriculture (land kept in production, returned to production sooner, or kept in production longer), residential relocations, and outlet construction expenditures. Effects are measured as changes in gross business volume (gross receipts) for various sectors, secondary employment, and local tax collections. The net regional economic effects of the proposed outlet would be relatively small, and consideration of these economic impacts would not strengthen the case for an outlet.
Strategy for a Military Spiritual Self-Development Tool
2008-12-12
and Islam in the Middle East (the Hebrew prophets developed their monotheistic faith during this period), Hinduism, Buddhism, and Jainism in India......concepts such as the Bible , Jesus, the Holy Spirit, hell, and the devil, thereby making them insensitive to cultural differences and therefore
Turnitin? Turnitoff: The Deskilling of Information Literacy
ERIC Educational Resources Information Center
Brabazon, Tara
2015-01-01
Plagiarism is a folk devil into which is poured many of the challenges, problems and difficulties confronting higher education. This article investigates how software--Turnitin in particular--is "solving" a particular "crisis" in universities. However, I investigate how alternative strategies for the development of information…
Modeling an explosion : the devil is in the details
Peter W. Hart; Alan W. Rudie
2011-01-01
The Chemical Safety and Hazards Investigation Board has recently encouraged chemical engineering faculty to address student knowledge about reactive hazards in their curricula. This paper presents a simple approach that may be used to illustrate the importance of these types of safety considerations.
Atmospheric laser Doppler velocimetry - An overview
NASA Technical Reports Server (NTRS)
Bilbro, J. W.
1980-01-01
Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.
Gallus, Susanne; Lammers, Fritjof
2016-01-01
The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686
NASA Astrophysics Data System (ADS)
Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon
2016-10-01
We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.
Tabor, R.W.
1994-01-01
The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-544, 14 November 2003
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired less than a week ago on 8 November 2003, shows a typical southern middle-to-high latitude scene at this time of year. It is summer in the southern hemisphere, and regions such as Promethei Terra, where this image was acquired, are being streaked by dust devils that remove or disrupt the coating of dust that was deposited over the region in the previous autumn or winter. While no active dust devils were captured in this scene, their tell-tale tracks are scratched all across the image. The circular features are the sites of buried meteor impact craters; their rims form dark rings; the material that fills the craters has become cracked. This picture is located near 68.1oS, 247.9oW. The area shown is approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.
Locke, Glenn L.
2008-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.
Dust lifting in GEM-Mars using a roughness length map
NASA Astrophysics Data System (ADS)
Daerden, F.; Neary, L.; Whiteway, J. A.; Hébrard, E.
2013-09-01
Lifting of size distributed dust due to surface wind stress and dust devils has been implemented in the GEM-Mars 3D-GCM. It turned out that a detailed surface roughness length map was necessary to bring the simulated dust opacities in accordance with observations.
ERIC Educational Resources Information Center
Harland, Darci
2013-01-01
Research projects are worth doing. They raise student interest in science and offer experience in authentic scientific practices. Implementing independent research projects among students requires the teacher to be skilled not only in scientific research but also in project management. Teachers' duties include--but are not limited…
The Muslim Problematic: Muslims, State Schools and Security
ERIC Educational Resources Information Center
Miah, Shamim
2016-01-01
Muslims are folk-devils that mark the ubiquitous moral panic. For some, the idea of the "Muslim problematic" signifies a long and worrying trend of creeping "Islamification" of state schools. For others, the discourse of the "Muslim problematic" reflects the ongoing racial patholigisation of Britain's minoritised…
Childism and Its Destructive Impact on Children.
ERIC Educational Resources Information Center
Snyder, Ross
Just as prejudicial stereotypes about race, sex, social class, and physical appearance have led to inhuman treatment, similar biased concepts exist that support inhuman and oppressive treatment of children. Various "childist" concepts categorize children as property, uncivilized devils, lumps of clay, tiny adults, or infallible angels.…
A Look at the Movies by Baldwin
ERIC Educational Resources Information Center
Bogle, Donald
1976-01-01
Notes that James Baldwin's new book--The Devil Finds Work--is a look by Baldwin at the movies, and that it is also a look by Baldwin at Baldwin, and the conflicting and contradictory effects the movies have had on his life and all of ours. (Author/AM)
Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas
NASA Astrophysics Data System (ADS)
Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.
2007-05-01
Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.
The Devil Takes a Look at Adventist Education.
ERIC Educational Resources Information Center
Knight, George R.
2001-01-01
Compares the educational philosophies of Hitler and the Seventh-day Adventist Church. While they both emphasize physical health, mental training, and character education, Hitler's motive was to promote a diabolical agenda. The article stresses the importance of reading deeper than mere words and practices to understand any author's philosophy and…
More Clever than the Devil: "Ujanja" as Schooling Strategy in Tanzania
ERIC Educational Resources Information Center
Vavrus, Frances
2015-01-01
This article explores the concept of "cleverness" as it is employed by Tanzanian youth to improve their likelihood of succeeding in school. It analyzes the Swahili term "ujanja," which combines cleverness, opportunism, and deception, while it also illustrates an educational anthropologist's ongoing process of familiarization…
Hiring Quality Teachers: The Devil Is in the Details
ERIC Educational Resources Information Center
Whitworth, Jerry; Deering, Thomas; Jones, Steve; Hardy, Sam
2016-01-01
Persistent and consistent criticism of our nation's educational system has increased pressure on school districts and teacher education programs to improve the quality of teachers in our public schools. While there is research regarding the characteristics of effective teachers, the difficulty is often in identifying and hiring those teacher…
ERIC Educational Resources Information Center
Dempsey, William M.
1997-01-01
A Rochester Institute of Technology (New York) program costing model designed to reflect costs more accurately allocates indirect costs according to salaries and wages, modified total direct costs, square footage of space used, credit hours, and student and faculty full-time equivalents. It allows administrators to make relative value judgments…
The Devil Is in the Details: Defining Civic Engagement
ERIC Educational Resources Information Center
Brabant, Margaret; Braid, Donald
2009-01-01
For "civic engagement" work to have meaningful and long-term impact upon students, partners, and postsecondary institutions, each institution must undertake the difficult work of defining civic engagement for itself such that the definition aligns with the institution's educational mission and local context. We argue that civic…
The report details the methods used and the result of the conversion of the National Acid Precipitation Assessment Program's (NAPAP's) alkaline material emissions information for wind erosion, unpaved roads, and dust devils from the' current spatial resolution to county-level res...
Helping Muslim Boys Succeed: The Case for History Education
ERIC Educational Resources Information Center
Wilkinson, Matthew L. N.
2014-01-01
Recent research suggests that Muslim boys have become the "New Folk Devils" of British education, who are characterised by resistance to formal education, especially at secondary level, and under-achievement. Since the 1990s, British Muslim boys would appear to have become increasingly alienated from compulsory schooling, especially in…
ERIC Educational Resources Information Center
Schott, James C.
1989-01-01
According to Robert L. Simonds, president and founder of the National Association of Christian Educators, public education is a stronghold of the devil that promulgates atheism and immorality. The key to controlling education is to establish Christian Parents' Committees in all 15,700 school districts across the U.S. and elect members to local…
The Electrostatic Environments of Mars: Atmospheric Discharges
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.
2016-01-01
The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.
The ethical aspects of gain sharing with physicians.
Thompson, Richard E
2004-01-01
Gain sharing arrangements involving physicians can be a model combination of ethical business practices and maximizing profits. Or, gain sharing can be as unethical as fee-splitting was at the turn of the century, and as corrupt as any conflict of interest. The devil is--or is not--in the details.
2016-05-26
www.arcic.army.mil/Articles/cdd-Force-Design-in-a-Constrained Environment.aspx. 45 Tzu , Sun . The Art of War... Bibliography Army Capabilities Integration Center. “Force 2025 and Beyond.” US Army. February 18, 2016. Accessed February 20, 2016. http
Ryberg, Karen R.; Vecchia, Aldo V.
2006-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.
2008-01-01
This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium concentrations in other matrices varied widely among drains and ponds, with at least one drain (for example, Trifolium 18) exhibiting especially high concentrations in food chain organisms (in detritus, 13.3-28.9 ug Se/g; in net plankton, 11.9-19.3 ug Se/g; in midge larvae, 12.7-15.4 ug Se/g) and fish (in mollies, 12.8-25.1 ug Se/g; in mosquitofish, 13.2-20.2 ug Se/g; all concentrations are dry weights). These elevated concentrations approached or exceeded average concentrations reported from flowing waters in seleniferous wetlands in the San Joaquin Valley.
ERIC Educational Resources Information Center
Asquith, Christina
2007-01-01
Last spring, at the height of the frenzy over accusations that three Duke University men's lacrosse players had gang raped a Black exotic dancer during a party, faculty from Duke's African and African American studies department chose to take a stand. With emotions running high, the faculty took out a full-page advertisement in student newspaper,…
"The Devil Made Me Do It": Teens, Drugs, and Satanism.
ERIC Educational Resources Information Center
Mercer, Joyce Ann
1993-01-01
Explores adolescent Satanism as a phenomenon of adolescent developmental issues, most frequently occurring in the context of chemical abuse. Explains what a cult is, reviews history of Church of Satan, identifies characteristics of adolescent Satanism, and provides a case study of 16-year-old male with chemical dependency who becomes involved in…
Top Ten Musings about Publishing Qualitative Manuscripts: Managing the Devil in the Details
ERIC Educational Resources Information Center
Palladino, John M.
2011-01-01
The purpose of this presentation was to engage in dialogue with editors of other qualitative journals and conference participants about the common roadblocks that hinder the publication possibilities for qualitative research studies. All audience participants were conference presenters and/or qualitative researchers, novice level and above. The…
The Antiunion Devil in the Details
ERIC Educational Resources Information Center
Jaleel, Rana
2010-01-01
Rightly or wrongly, a language of "firsts" has long permeated graduate student labor at New York University (NYU). In 2002, NYU's graduate student employees were the first in the nation to secure a union contract at a private university. In 2005, they were also the first to lose their contract, precipitating a bitter six-month-long…
When It Comes to Evaluating Psychodynamic Therapy, the Devil Is in the Details
ERIC Educational Resources Information Center
Anestis, Michael D.; Anestis, Joye C.; Lilienfeld, Scott O.
2011-01-01
Comments on the original article, "The efficacy of psychodynamic psychotherapy," by J. Shedler. As Shedler noted, some researchers have reflexively and stridently dismissed psychodynamic therapy (PT) as ineffective without granting outcome studies on this modality a fair hearing. We applaud Shedler's efforts to bring PT into the scientific…
Devil in the Details: Making Sensible Modifications to No Child Left Behind
ERIC Educational Resources Information Center
Ritter, Gary W.; Lucas, Christopher J.
2006-01-01
Achieving full compliance with the accountability provisions of the No Child Left Behind (NCLB) federal legislation poses major challenges for most of the nation's states. Structured, open-ended interviews were conducted with ranking representatives from a number of so-called high-readiness states: California, Florida, New York, South Carolina,…
The Devil in the Detail: Contradictory National Requirements and Bologna Master Degrees
ERIC Educational Resources Information Center
Sin, Cristina
2013-01-01
This article compares the national-level requirements for master degree provision in England, Denmark and Portugal following the implementation of the Bologna Process, and ponders upon the reconcilability of these requirements in cross-national initiatives (e.g. joint degrees). In all three countries, master degrees have to comply with the…
ERIC Educational Resources Information Center
Neal, Joan; Echternacht, Lonnie
1995-01-01
Experimental groups used four decision-making techniques--reverse brainstorming (RS), dialectical inquiry (DI), devil's advocacy (DA), and consensus--in evaluating writing assignments. Control group produced a better quality document. Student reaction to negative features of RS, DI, and DA were not significant. (SK)
Thinking of God Moves Attention
ERIC Educational Resources Information Center
Chasteen, Alison L.; Burdzy, Donna C.; Pratt, Jay
2010-01-01
The concepts of God and Devil are well known across many cultures and religions, and often involve spatial metaphors, but it is not well known if our mental representations of these concepts affect visual cognition. To examine if exposure to divine concepts produces shifts of attention, participants completed a target detection task in which they…
ERIC Educational Resources Information Center
Kane, Thomas J.; Staiger, Douglas O.; Geppert, Jeffrey
2002-01-01
The accountability debate tends to devolve into a battle between the pro-testing and anti-testing crowds. When it comes to the design of a school accountability system, the devil is truly in the details. A well-designed accountability plan may go a long way toward giving school personnel the kinds of signals they need to improve performance.…
A Conversation with Henry DePhilips, MD: The Doctor in the Teladoc House.
Wehrwein, Peter
2017-04-01
The CMO of Teladoc, one of the country's largest telemedicine providers, certainly knows how to sing the praises of the industry, and handle devil's advocate kind of questions as well. Most of Teledoc's customers are commercial insurers and employers. Medicare? Not so much. Medicaid makes "perfect sense."
ERIC Educational Resources Information Center
Luyben, William L.
2007-01-01
Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…
View of New Big Oak Flat Road seen from Old ...
View of New Big Oak Flat Road seen from Old Wawona Road near location of photograph HAER CA-148-17. Note road cuts, alignment, and tunnels. Devils Dance Floor at left distance. Looking northwest - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA
The devil is in the dispersers: Predictions of landscape connectivity change with demography
Nicholas B. Elliot; Samuel A. Cushman; David W. Macdonald; Andrew J. Loveridge
2014-01-01
Concern about the effects of habitat fragmentation has led to increasing interest in dispersal and connectivity modelling. Most modern techniques for connectivity modelling have resistance surfaces as their foundation. However, resistance surfaces for animal movement are frequently estimated without considering dispersal, despite being the principal natural mechanism...
Teaching and Avocations: An Idle Mind Is the Devil's Workshop Revisited.
ERIC Educational Resources Information Center
Werner, Peter
2002-01-01
Suggests that teachers at any career stage can use hobbies to regenerate the soul, ward off stress, and allow one to return to work refreshed. Notes that teachers can use their own hobbies to enhance student learning and encourage students to develop interests in useful and fulfilling avocations. (RS)
When Socratic Dialogue Is Flagging: Questions and Strategies for Engaging Students
ERIC Educational Resources Information Center
Gose, Michael
2009-01-01
The author studied the pedagogy of Socrates looking for teaching techniques that help maintain students' interest in an ongoing discussion. Socrates' use of such strategies as asking probing questions, expanding the discussion into its relationship to other ideas, assuming the role of the devil's advocate, and spending time on group maintenance…
NASA Astrophysics Data System (ADS)
Sokolović, I.; Mali, P.; Odavić, J.; Radošević, S.; Medvedeva, S. Yu.; Botha, A. E.; Shukrinov, Yu. M.; Tekić, J.
2017-08-01
The devil's staircase structure arising from the complete mode locking of an entirely nonchaotic system, the overdamped dc+ac driven Frenkel-Kontorova model with deformable substrate potential, was observed. Even though no chaos was found, a hierarchical ordering of the Shapiro steps was made possible through the use of a previously introduced continued fraction formula. The absence of chaos, deduced here from Lyapunov exponent analyses, can be attributed to the overdamped character and the Middleton no-passing rule. A comparative analysis of a one-dimensional stack of Josephson junctions confirmed the disappearance of chaos with increasing dissipation. Other common dynamic features were also identified through this comparison. A detailed analysis of the amplitude dependence of the Shapiro steps revealed that only for the case of a purely sinusoidal substrate potential did the relative sizes of the steps follow a Farey sequence. For nonsinusoidal (deformed) potentials, the symmetry of the Stern-Brocot tree, depicting all members of particular Farey sequence, was seen to be increasingly broken, with certain steps being more prominent and their relative sizes not following the Farey rule.
Climate Change Impacts on North Dakota: Agriculture and Hydrology
NASA Technical Reports Server (NTRS)
Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.
2011-01-01
North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.
McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A
2016-08-01
Our recent publication titled "Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog" aimed to describe how variation in diet contributes to population differences in toxin profiles of poison frogs. Some poison frogs (Family Dendrobatidae) sequester alkaloid toxins from their arthropod diet, which is composed mainly of ants and mites. Our publication demonstrated that arthropods from the stomach contents of three different frog populations were diverse in both chemistry and species composition. To make progress towards understanding this trophic relationship, our main goal was to identify alkaloids that are found in either ants or mites. With the remaining samples that were not used for chemical analysis, we attempted to identify the arthropods using DNA barcoding of cytochrome oxidase 1 (CO1). The critique of Heethoff, Norton, and Raspotnig refers to the genetic analysis of a small number of mites. Here, we respond to the general argument of the critique as well as other minor issues detailed by Heethoff, Norton, and Raspotnig.
Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing
NASA Technical Reports Server (NTRS)
2004-01-01
The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?
Increased dry season water yield in burned watersheds in Southern California
NASA Astrophysics Data System (ADS)
Kinoshita, Alicia M.; Hogue, Terri S.
2015-01-01
The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.
C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
2015-12-03
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
NASA Astrophysics Data System (ADS)
Barrie, J. Vaughn; Greene, H. Gary
2018-02-01
The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.
Complex Archaeological Prospection Using Combination of Non-destructive Techniques
NASA Astrophysics Data System (ADS)
Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.
2015-08-01
This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).
Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?
NASA Technical Reports Server (NTRS)
Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.
2015-01-01
Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.
Current nutraceuticals in the management of osteoarthritis: a review.
Akhtar, Nahid; Haqqi, Tariq M
2012-06-01
Osteoarthritis (OA) is a progressive degenerative joint disease that has a major impact on joint function and quality of life. Nutraceuticals and dietary supplements derived from herbs have long been used in traditional medicine and there is considerable evidence that nutraceuticals may play an important role in inflammation and joint destruction in OA. We review the biological effects of some medicinal fruits and herbs - pomegranate, green tea, cat's claw, devil's claw, ginger, Indian olibaum, turmeric and ananas - in an attempt to understand the pivotal molecular targets involved in inflammation and the joint destruction process and to summarize their toxicities and efficacy for OA management. So far there is insufficient reliable evidence on the effectiveness of ginger, turmeric and ananas. Pomegranate and green tea only have preclinical evidence of efficacy due to the lack of clinical data. In vivo and clinical studies are required to understand their targets and efficacy in OA. Limited in vitro and in vivo evidence is available for cat's claw and Indian olibaum. More extensive studies are required before long-term controlled trials of whole cat's claw and Indian olibaum extracts, or isolated active compounds, are carried out in patients with OA to determine their long-term efficacy and safety. Devil's claw has not been rigorously tested to determine its antiarthritic potential in in vitro and in vivo models. There is strong clinical evidence of the effectiveness of devil's claw in pain reduction. However, high-quality clinical trials are needed to determine its effectiveness. No serious side effects have been reported for any fruits and herbs. Overall, these studies identify and support the use of nutraceuticals to provide symptomatic relief to patients with OA and to be used as adjunct therapy for OA management. More high-quality trials are needed to provide definitive answers to questions related to their efficacy and safety for OA prevention and/or treatment.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] This image is from a region called Terra Sirenum in Mars' southern hemisphere. This region was named in 1958 for the Sea of the Sirens from Greek Mythology. This is not a sea, however, but a relatively dusty, high albedo region of Mars. There are numerous dust devil tracks that are apparent in the center- left of the image. The dust devils act like vacuum cleaners and lift dust off of the surface leaving a less dusty and relatively lower albedo surface behind. Dust devils are very common on Mars and are thought to be the primary mechanism for constantly lifting the dust into the atmosphere. Dust is constantly present in the Martian atmosphere in greater abundances than typically seen on Earth. The Martian dust is one of the main factors that affect the present Martian climate and clearly displays the relationship between Mars' geology and atmosphere.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Blakely, Richard J.; Langenheim, V.E.; Ponce, David A.; Dixon, Gary L.
2000-01-01
A high-resolution aeromagnetic survey of the Amargosa Desert and surrounding areas provides insights into the buried geology of this structurally complex region. The survey covers an area of approximately 7,700 km2 (2,970 mi2), extending from Beatty, Nevada, to south of Shoshone, California, and includes parts of the Nevada Test Site and Death Valley National Park. Aeromagnetic flight lines were oriented east-west, spaced 400 m (0.25 mi) apart, and flown at an altitude of 150 m (500 ft) above terrain, or as low as permitted by safety considerations. Characteristic magnetic anomalies occur over volcanic terranes, such as Yucca Mountain and the Greenwater Range, and over Proterozoic basement rocks, such as Bare Mountain and the Black Mountains. Linear magnetic anomalies caused by offsets of volcanic rocks permit detailed mapping of shallow faults in volcanic terranes. Of particular interest are subtle anomalies that overlie alluvial deposits at Devils Hole and Pahrump Valley. Alignments of springs along magnetic anomalies at these locales suggest that these anomalies are caused by faults that cut the alluvium, displace magnetic rocks at depth, and eventually influence ground-water flow. Linear magnetic anomalies over the Funeral Mountains appear to coincide with a prominent set of north-northeast-striking faults that cut the Precambrian Stirling Quartzite, rocks that are typically nonmagnetic. The position and orientation of these anomalies with respect to springs north of Furnace Creek suggest that the faults may act as conduits for the flow of water from the north into Death Valley, but the mineralogical cause of the anomalies is unknown.
Locke, Glenn L.; La Camera, Richard J.
2003-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.
Iran’s Youth Bulge and It’s Implications for U.S. National Security
2006-04-01
Sciolino, Elaine. “Radicalism: Is the Devil in the Demographics?” New York Times, 9 December 2001. Sen , Amartya . “Mortality as an Indicator of...validating their model and the independent variables’ significance. See Goldstone, et al., 2005, p. 17. 74 Goldstone, 2001, p. 166. See Amartya Sen’s
ERIC Educational Resources Information Center
Damphousse, Kelly R.; Crouch, Ben M.
1992-01-01
Studies common explanations for juvenile involvement in Satanism (participants manifest unique attributes that promote involvement or participants become involved through processes common to other deviance types). Data from interviews with 530 Texas youths incarcerated over 6 months for delinquency suggest that Satanism may emerge from unique and…
ERIC Educational Resources Information Center
Jiang, Lai; Elen, Jan
2011-01-01
Research has repeatedly established that the theoretical benefits of various scaffolds do not match their actual impact on learning. It has been argued that the instructional effectiveness of scaffolds largely depends on very detailed aspects of the learning activities associated with the scaffolds within specific environments. From this…
The Case for (Promoting) Marriage: The Devil Is in the Details
ERIC Educational Resources Information Center
Huston, Ted L.; Melz, Heidi
2004-01-01
This article considers the quality of the evidence that marriage confers unique benefits, and that, as such, social policies should be enacted to encourage couples, particularly those with few economic resources, to get married and stay together. Public concern about the future of marriage in the United States, we show, is rooted in demographic…
Schooling and Variation in the "COMT" Gene: The Devil Is in the Details
ERIC Educational Resources Information Center
Campbell, Daniel; Bick, Johanna; Yrigollen, Carolyn M.; Lee, Maria; Joseph, Antony; Chang, Joseph T.; Grigorenko, Elena L.
2013-01-01
Background: Schooling is considered one of the major contributors to the development of intelligence within societies and individuals. Genetic variation might modulate the impact of schooling and explain, at least partially, the presence of individual differences in classrooms. Method: We studied a sample of 1,502 children (mean age = 11.7 years)…
The Devil Is in the Details: A Response to the Report of the Postsecondary Review in Ontario
ERIC Educational Resources Information Center
Constantinou, Peter; Drea, Catherine
2005-01-01
This article discusses the recommendations of the Postsecondary Review Panel's Final Report--"Ontario: A Leader in Learning." The Postsecondary Review was announced by the government in the Ontario Budget 2004 to "review the design and funding of Ontario's postsecondary education system and recommend innovative ways in which its…
Wrestling the Devil in the Details: An Early Look at Restructuring in California
ERIC Educational Resources Information Center
Scott, Caitlin
2006-01-01
To learn more about district and school decision making for No Child Left Behind (NCLB) restructuring, the Center on Education Policy (CEP) turned to California, a state with a substantial number of schools in restructuring and several state and regional supports for making decisions about restructuring. In the summer and fall of 2005, CEP…
Mark E. Fenn; Mark A. Poth
1999-01-01
We report streamwater nitrate (NO,) concentrations for December 1995 to September 1998 from 19 sampling sites across a N deposition gradient in the San Bernardino Mountains. Streamwater NO3- concentrations in Devil Canyon (DC), a high-pollution area, and in previously reported data from the San Gabriel Mountains 40 km...
Teaching Students to Show, Not Tell
ERIC Educational Resources Information Center
Spitzer, Mark
2012-01-01
In his epic poem "A Season in Hell," the surly French poet Arthur Rimbaud proposes that the Devil likes writing that lacks "descriptive" qualities. Rimbaud then makes a stand in favor of descriptive writing by offering "these hideous pages from [his] notes of the damned." The author would not go so far as to say that nondescriptive writing is evil…
"Photographers Are the Devil": An Essay in the Historiography of Photographing Schools
ERIC Educational Resources Information Center
Hardcastle, John
2013-01-01
Today, the use of photographs in publications and exhibitions is commonplace, but this was not always so. This article shows how photographs of certain schools that have had lasting impact on design stand in ambiguous relationships to the buildings themselves. Photographs function as part of the design process; they record details of construction…
2013-09-19
environments. This can include the development of new and/or improved analytical and numerical models, rapid data-processing techniques, and new subsurface ... imaging techniques that include active and passive sensor modalities in a variety of rural and urban terrains. Of particular interest is the broadband
Keeping the Devil Away from Miss Jones: Censorship in Academia, 1976-1980.
ERIC Educational Resources Information Center
Woods, L. B.; And Others
Information on censorship in academia in the United States is presented, based on censorship cases reported in the "Newsletter on Intellectual Freedom" from 1976 to 1981. Cases occurring in academia accounted for 63 of the more than 800 cases reported. The states and institutions in which the censorship attacks occurred are identified, along with…
"Rubbing the Devil's Nose in It:" PTL's Jim Bakker under Investigation.
ERIC Educational Resources Information Center
Griffin, Keith H.
Despite its rapid rise as leader of the religious broadcasting industry, Jim Bakker's "PTL Club" (People That Love) has experienced numerous financial problems. In 1979, three former PTL vice-presidents charged that the club was diverting thousands of dollars in donations for missionary projects to the club's general fund to pay bills.…
ERIC Educational Resources Information Center
Cannizzaro, Sara; Gholami, Reza
2018-01-01
Using content analysis, this study investigated the coverage of the Trojan Horse news story aiming to ascertain whether its representation by the British press emphasized "Islamist extremism" over "poor school governance". The sample coverage was extracted from five national newspapers and ranged from 9 June (the date of…
Class and Home Problems. Modeling an Explosion: The Devil Is in the Details
ERIC Educational Resources Information Center
Hart, Peter W.; Rudie, Alan W.
2011-01-01
Within the past 15 years, three North American pulp mills experienced catastrophic equipment failures while using 50 wt% hydrogen peroxide. In two cases, explosions occurred when normal pulp flow was interrupted due to other process problems. To understand the accidents, a kinetic model of alkali-catalyzed decomposition of peroxide was developed.…
The Devil Is in the Details: In America, Can You Really Say "God" in School?
ERIC Educational Resources Information Center
Heinrich, Jill
2015-01-01
This article examines conflicts that have unfolded over the past 75 years regarding the separation of church and state in American public education. Through discussion of the Establishment and Free Exercise Clauses as articulated in the First Amendment to the "US Constitution," as well as influential court cases that have set legal…
A Class III Cultural Resource Inventory of a Portion of the Upper Souris River Valley, North Dakota
1989-03-01
E. Sully led a force from Fort Rice , near present Bismarck, to Devils Lake and then to the Souris River. Sully skirted the bottom of the Souris loop...Manning (1923), Mabel Manning (1924), Alice Wakelam (1933), Harvey Emmel (1936), State Bank of Keninare (1937), State of North Dakota (1939), William
The Devil in Mr. Smith: A Conversation with Jonathan Z. Smith
ERIC Educational Resources Information Center
Smith, Jonathan Z.; Pearson, Thomas; Gallagher, Eugene V.; Jensen, Tim; Fujiwara, Satoko
2014-01-01
This interview was recorded in November 2012 in Jonathan Z. Smith's Hyde Park graystone. Professor Smith offers insights into how he thinks about his classroom teaching and his students' learning through descriptions of various assignments and classroom activities he has developed over more than forty years of teaching. The discussion…
ERIC Educational Resources Information Center
Moore, Ryan
2012-01-01
In the 1920s, jazz was widely condemned as "the devil's music," and "Ladies' Home Journal" warned its readers that young people were being morally corrupted as they danced along to "the abominable jazz orchestra with its voodoo-born minors and its direct appeal to the sensory center." But within a few decades, jazz was fully absorbed into the…
Beating the Devil Out of Them: Corporal Punishment in American Families.
ERIC Educational Resources Information Center
Straus, Murray A.; Donnelly, Denise A.
The question of whether corporal punishment is an effective method of discipline has been hotly debated by parents, teachers, and child-rearing experts. Based on studies of over 9,000 families, this book describes the extent to which parents in the United States use corporal punishment (such as spanking and slapping) and its effects on their…
Sympathy for the Devil: Killing the Other in "Milk" and "The Reader"
ERIC Educational Resources Information Center
Beck, Bernard
2009-01-01
Two recent, highly rated movies depict central characters who are involved in killing members of groups despised in their societies. In "Milk" and "The Reader," the characters of Dan White and Hanna Schmitz, respectively, are treated with empathy and a search for understanding. Their personal sufferings and confusions are highlighted, and the…
Jimmy Carter, Palestinian Art, and Brandeis
ERIC Educational Resources Information Center
Jankowski, Paul
2007-01-01
The principle, in the author's mind, is simple enough--to allow expression on campus when it is not hateful or defamatory or threatening, and to encourage it when it is civil and open-minded and of probable interest to some members of the community. The devil lies in the practice. In this article, the author discusses various issues that have…
ERIC Educational Resources Information Center
Lamson-Nussbaum, Jorie
2013-01-01
The author waits in the hot and oppressive air while dust devils are born and die over the newly plowed field. It is a dry spring and she prays for rain. The lupine beans withered to dry threads last week and the corn that sprouted in a green haze over the north field is turning to brown paper. However, driving north, the author discovers the Rum…
ERIC Educational Resources Information Center
Gandhi, Allison Gruner; Murphy-Graham, Erin; Petrosino, Anthony; Chrismer, Sara Schwartz; Weiss, Carol H.
2007-01-01
In an effort to promote evidence-based practice, government officials, researchers, and program developers have developed lists of model programs in the prevention field. This article reviews the evidence used by seven best-practice lists to select five model prevention programs. The authors' examination of this research raises questions about the…
ERIC Educational Resources Information Center
Carroll, Thomas G.
2005-01-01
Every child deserves a quality education. Providing competent, caring, qualified teachers in schools organized for success is the way to get there, but the devil is in the details. By tinkering on the edges, adopting piecemeal approaches to attracting, supporting, and retaining highly qualified teachers for the students who need them most, the…
Origin of Bright Dust Devil Track on Mars
NASA Astrophysics Data System (ADS)
Hamada, K.; Kurita, K.; Nishizawa, S.
2017-09-01
we performed detailed in- vestigation on DDT in specific regions where BDDT are abundantly observed; in and around Schiaparelli Crater and Amazonis Planitia by using CTX images. We found 1) BDDT are confined to localized regions while DDDT are distributed broadly in these regions, 2) in 10km scale both BDDT and DDDT exhibit dom- inant orientations, 3) existence of banded DDT.
The Devil Is in the Details: Issues of Exclusion in an Inclusive Educational Environment
ERIC Educational Resources Information Center
Slobodzian, Jean Theodora
2009-01-01
In response to federal legislation and societal views that seek to provide free and appropriate education for each child. Public schools are now opening their doors to a wide variety of learners. General-education teachers are challenged to make their classrooms more inclusive. This year-long-ethnographic study explores the experiences of 20…
The Devil Is in the Details: Development of Policy and Procedure in the Battle River Project
ERIC Educational Resources Information Center
Gleddie, Doug L.
2012-01-01
Objective: Guidelines from a variety of jurisdictions for the health-promoting schools (HPS) approach include healthy school policy as a critical element. Research also supports the importance of policy; however, there seems to be a lack of information on how to develop and implement policy. The article examines the processes involved in one…
2012-10-01
earlier, LEMV experienced schedule delays of at least 10 months, largely rooted in technical, design, and engineering problems in scaling up the airship ...had informal coordination with the Blue Devil Block 2 effort in the past. For example, originally both airships had several diesel engine ...DEFENSE ACQUISITIONS Future Aerostat and Airship Investment Decisions Drive Oversight and Coordination Needs
ERIC Educational Resources Information Center
Katz, Richard N., Ed.
The six chapters of this volume address issues related to emerging technologies and competition as higher education leaders plan for their institutions' development. A preface identifies common themes of the individual papers, including changes in higher education enabled by or driven by information technology, the authors' shared belief that the…
78 FR 49603 - Norfolk Southern Railway Company-Abandonment Exemption-in Marengo County, Ala
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... crossing of the mouth of Devil's Run Slough where the slough joins the Black Warrior River) and milepost... Run Slough at the request of the United States Coast Guard (USCG), because USCG views the bridge... environmental issues,\\2\\ formal expressions of intent to file an OFA under 49 CFR 1152.27(c)(2),\\3\\ and trail...
2012-12-01
terror perpetrated by Joseph Stalin. The casualties from the entirety of the prerevolutionary terrorist movement pale in comparison to the body count of...movement’s ideologues, the nihilist movement generated limited social change and an even smaller body count . No wholesale murder a la Zaichnevski or...were able to count on some degree of support from the other.115 Mere 111 McCauley and Moskalenko
ERIC Educational Resources Information Center
Romanova, Natalia; Gor, Kira
2017-01-01
The study investigated the processing of Russian gender and number agreement by native (n = 36) and nonnative (n = 36) participants using a visual lexical decision task with priming. The design included a baseline condition that helped dissociate the underlying components of priming (facilitation and inhibition). The results showed no differences…
The Devil and the Deep Blue Sea: Dyadic Narcissism and the Problem of Individuation
ERIC Educational Resources Information Center
Sprince, Jenny
2009-01-01
This paper addresses issues of infantile gender identity as they are demonstrated through group processes amongst the carers of disturbed adolescents. It uses this and other clinical material to explore gender narcissism--both male and female. It examines how such narcissism is linked to sado-masochism, and how it can impede a healthy development…
Linguistic representations and memory architectures: The devil is in the details.
Chacón, Dustin Alfonso; Momma, Shota; Phillips, Colin
2016-01-01
Attempts to explain linguistic phenomena as consequences of memory constraints require detailed specification of linguistic representations and memory architectures alike. We discuss examples of supposed locality biases in language comprehension and production, and their link to memory constraints. Findings do not generally favor Christiansen & Chater's (C&C's) approach. We discuss connections to debates that stretch back to the nineteenth century.
The Devil May Be in the Details: How the Characteristics of SCHIP Programs Affect Take-Up
ERIC Educational Resources Information Center
Wolfe, Barbara; Scrivner, Scott
2005-01-01
In this paper, we explore whether the specific design of a state's program has contributed to its success in meeting two objectives of the Children's Health Insurance Program (SCHIP): increasing the health insurance coverage of children in lower-income families and doing so with a minimum reduction in their private health insurance coverage…
The New Folk Devils: Muslim Boys and Education in England
ERIC Educational Resources Information Center
Shain, Farzana
2011-01-01
Muslim boys, once regarded as passive, hard working and law-abiding, have been recast in the public imagination in recent years. Now the stereotypical image is of volatile, aggressive hotheads who are in danger of being brainwashed into terrorism, or of would-be gangsters who are creating no-go areas in English towns and cities. This timely and…
Culture Shock: A Teacher's Guide To Accompany the Four-Part PBS Series Premiering January 2000.
ERIC Educational Resources Information Center
Jaffee, Cyrisse, Ed.; Sharma, Amina, Ed.
This teacher's guide accompanies the four videos ("Born to Trouble: Adventures of Huckleberry Finn"; "The Shock of the Nude: Manet's Olympia"; "Hollywood Censored: Movies, Morality and the Production Code"; and "The Devil's Music: 1920s Jazz") of the PBS "Culture Shock" series. The guide suggests that the videos could be used in the…
Test-Retest Effects in Treatment Studies of Reading Disability: The Devil Is in the Detail
ERIC Educational Resources Information Center
McArthur, Genevieve
2007-01-01
Reynolds and Nicolson ("Dyslexia," 2007; 13: 78-96) claim to show that the "dyslexia dyspraxia attention-deficit treatment" (DDAT) benefits children with reading difficulties. However, Rack, Snowling, Hulme, and Gibbs ("Dyslexia," 2007; 13: 97-104) argue that because this study did not include an untrained control group then "all that needs to be…
"Look for the Small Print--Even when It's Not There"
ERIC Educational Resources Information Center
Marsden, Gordon
2010-01-01
There are things in the skills White Paper that those who care passionately about lifelong learning and the empowerment of adult learners will welcome. But as well as admiring the angels in the architecture, the author contends, they need to look for the devils in the detail. The White Paper cannot be considered apart from the spending review…
Paul B. Alaback
1984-01-01
Preliminary information on general landscape patterns in southeast Alaska suggests that two major, compositionally distinct vegetation zones can be defined for the closed-forest type: western hemlock-Sitka spruce/Alaska huckleberry/bunchberry on the uplands, and Sitka spruce/devils club-salmonberry on alluvial flats and terraces.Recent clearcuts (0 to 30...
Playing with Words: Child Voices in British Fantasy Literature 1749-1906
ERIC Educational Resources Information Center
Tomlinson, Johanna Ruth Brinkley
2014-01-01
Two children, Dan and Una, sit in the woods and listen to a story of Britain's early history told to them by Sir Richard, a spirit conjured from the past for this instructive purpose. In this tale, Sir Richard gains treasure by defeating the "devils" that terrorize a village of African people. In many ways, this framed narrative sets up…
Devils in Disguise: The Carnegie Project, the Cherokee Nation, and the 1960s
ERIC Educational Resources Information Center
Cobb, Daniel M.
2007-01-01
In this article, the author talks about the experiences of many of the people involved in the Carnegie Project, an effort in the 1960s to establish ties with the "tribal community"--people who spoke Cherokee as their first language and lived in small kin-related settlements spread across five counties in northeastern Oklahoma--and…
"Making the Devil Useful": Film Studies in the English Curriculum.
ERIC Educational Resources Information Center
Bruder, Carolyn R.
Film is not often taught for itself and by itself; it is too often viewed as the handmaiden of literature. More often than not it is taught in English departments because: (1) like novels, poems, plays and philosophical arguments, it is a humanistic text; (2) film writers and directors have historically turned to literary texts as their source…
Small, Ted A.; Clark, Allan K.
2000-01-01
The hydrogeologic subdivisions of the Edwards aquifer outcrop in Medina County generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The most porous and permeable rocks of the Devils River Formation in Medina County appear to be in the top layer. The upper member of the Glen Rose Limestone, the lower confining unit, has much less porosity and permeability than that observed in the Edwards aquifer.The Edwards aquifer has relatively large porosity and permeability resulting, in part, from the development or redistribution of secondary porosity. Lithology, stratigraphy, diagenesis, and karstification account for the effective porosity and permeability in the Edwards aquifer outcrop. Karst features that can greatly enhance effective porosity and permeability in the Edwards aquifer outcrop include sinkholes, dolines, and caves. The Edwards aquifer rocks in Medina County change from the eight-member Edwards Group to the essentially indivisible Devils River Formation. The facies change occurs along a line extending northwestward from just south of Medina Lake.
Random complex dynamics and devil's coliseums
NASA Astrophysics Data System (ADS)
Sumi, Hiroki
2015-04-01
We investigate the random dynamics of polynomial maps on the Riemann sphere \\hat{\\Bbb{C}} and the dynamics of semigroups of polynomial maps on \\hat{\\Bbb{C}} . In particular, the dynamics of a semigroup G of polynomials whose planar postcritical set is bounded and the associated random dynamics are studied. In general, the Julia set of such a G may be disconnected. We show that if G is such a semigroup, then regarding the associated random dynamics, the chaos of the averaged system disappears in the C0 sense, and the function T∞ of probability of tending to ∞ \\in \\hat{\\Bbb{C}} is Hölder continuous on \\hat{\\Bbb{C}} and varies only on the Julia set of G. Moreover, the function T∞ has a kind of monotonicity. It turns out that T∞ is a complex analogue of the devil's staircase, and we call T∞ a ‘devil’s coliseum'. We investigate the details of T∞ when G is generated by two polynomials. In this case, T∞ varies precisely on the Julia set of G, which is a thin fractal set. Moreover, under this condition, we investigate the pointwise Hölder exponents of T∞.
Superstitions of George Bartisch.
Blanchard, Donald L
2005-01-01
George Bartisch was a 16th century German ophthalmologist who published the first ophthalmology textbook in the vernacular for laymen and non-university-trained practitioners. His treatments and understanding of diseases rested firmly on Greek tradition, but he also was very involved in the superstitions of the day. This essay looks at the man and his mores. Bartisch believed that much of the suffering of patients had to do with sins they had committed, and that the devil was the active force in the world inflicting this punishment. Often, he believed, witches would carry out the devil's hexes, in the form of either hot or cold witchcraft. Bartisch also felt that astrology played a major role in the outcome of surgery. Because of that he practiced only during certain astrological signs, and in the proper waxing and waning phases of the moon. He also linked many common problems to sins. For example, presbyopia was presented as due to excessive use of alcohol. Glasses were to be avoided because he felt they destroyed vision in themselves. Despite these superstitions and misconceptions, Bartisch was an honorable professional and his books give insight into the making of a good ophthalmologist.
Pharmacological Treatment of Neonatal Opiate Withdrawal: Between the Devil and the Deep Blue Sea
Liu, Anthony; Björkman, Tracey; Stewart, Caroline; Nanan, Ralph
2011-01-01
Illicit drug use with opiates in pregnancy is a major global health issue with neonatal withdrawal being a common complication. Morphine is the main pharmacological agent administered for the treatment of neonatal withdrawal. In the past, morphine has been considered by and large inert in terms of its long-term effects on the central nervous system. However, recent animal and clinical studies have demonstrated that opiates exhibit significant effects on the growing brain. This includes direct dose-dependent effects on reduction in brain size and weight, protein, DNA, RNA, and neurotransmitters—possibly as a direct consequence of a number of opiate-mediated systems that influence neural cell differentiation, proliferation, and apoptosis. At this stage, we are stuck between the devil and the deep blue sea. There are no real alternatives to pharmacological treatment with opiates and other drugs for neonatal opiate withdrawal and opiate addiction in pregnant women. However, pending further rigorous studies examining the potential harmful effects of opiate exposure in utero and the perinatal period, prolonged use of these agents in the neonatal period should be used judiciously, with caution, and avoided where possible. PMID:21760818