DOE Office of Scientific and Technical Information (OSTI.GOV)
Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.
This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationshipsmore » of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.« less
Geology of the Devonian black shales of the Appalachian basin
Roen, J.B.
1983-01-01
Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.
Geology of the Devonian black shales of the Appalachian Basin
Roen, J.B.
1984-01-01
Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.
East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.
2012-01-01
Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).
Barnett, S.F.; Ettensohn, F.R.; Norby, R.D.
1996-01-01
Black shales previously interpreted to be Late Devonian cave-fill or slide deposits are shown to be much older Middle Devonian black shales only preserved locally in Middle Devonian grabens and structural lows in central Kentucky. This newly recognized - and older -black-shale unit occurs at the base of the New Albany Shale and is named the Carpenter Fork Bed of the Portwood Member of the New Albany Shale after its only known exposure on Carpenter Fork in Boyle County, central Kentucky; two other occurrences are known from core holes in east-central Kentucky. Based on stratigraphic position and conodont biostratigraphy, the unit is Middle Devonian (Givetian: probably Middle to Upper P. varcus Zone) in age and occurs at a position represented by an unconformity atop the Middle Devonian Boyle Dolostone and its equivalents elsewhere on the outcrop belt. Based on its presence as isolated clasts in the overlying Duffin Bed of the Portwood Member, the former distribution of the unit was probably much more widespread - perhaps occurring throughout western parts of the Rome trough. Carpenter Fork black shales apparently represent an episode of subsidence or sea-level rise coincident with inception of the third tectophase of the Acadian orogeny. Deposition, however, was soon interrupted by reactivation of several fault zones in central Kentucky, perhaps in response to bulge migration accompanying start of the tectophase. As a result, much of central Kentucky was uplifted and tilted, and the Carpenter Fork Bed was largely eroded from the top of the Boyle, except in a few structural lows like the Carpenter Fork graben where a nearly complete record of Middle to early Late Devonian deposition is preserved.
Subsurface stratigraphy of upper Devonian clastics in southern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, D.W.; Patchen, D.G.
Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less
Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they closely approximate the thermal maturity patterns in the Marcellus Shale, Upper Devonian Rhinestreet Shale Member, and Upper Devonian Huron Member of the Ohio Shale, which are the most important source rocks for oil and gas in the Appalachian basin (de Witt and Milici, 1989; Klemme and Ulmishek, 1991). The Marcellus, Rhinestreet, and Huron units are black-shale source rocks for oil and (or) gas in the Lower Devonian Oriskany Sandstone, the Upper Devonian sandstones, the Middle and Upper Devonian black shales, and the Upper Devonian-Lower Mississippian(?) Berea Sandstone (Patchen and others, 1992; Roen and Kepferle, 1993; Laughrey and Baldassare, 1998).
Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, I.M.; Frankie, W.T.; Moody, J.R.
The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less
The Devonian Marcellus Shale and Millboro Shale
Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.
2014-01-01
The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.
Late Devonian shale deposition based on known and predicted occurrence of Foerstia in Michigan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, R.D.
The fossil Foerstia (Protosalvinia) marks a time zone within Late Devonian shale sequences in the eastern US. Its recent discovery in Michigan has led to more accurate correlations among the three large eastern basins. Subdivisions of the Devonian-Mississippi shale sequence in Michigan based on gamma-ray correlations reveal an idealized black shale geometry common to other eastern black shales, such as the Sunbury of Michigan and Ohio, the Clegg Creek of Indiana, the Dunkirk of Pennsylvania and New York, and the lower Huron of Ohio and West Virginia. In Michigan, Foerstia occurs at a stratigraphic position postulated to mark a majormore » change in depositional conditions and source areas. This position strengthens the physical and paleontologic evidence for a formal division of the Antrim. Isopach maps of the shale sequence above and below Foerstia show a relatively uniform and continuous black shale deposit (units 1A, 1B, and 1C) below Foerstia. This deposit is unlike the wedge of sediment found above Foerstia, which is composed of a western facies (Ellsworth) and an eastern facies (upper Antrim) that should be combined in a single stratigraphic unit conforming to Forgotson's concept of a format.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankie, W.T.
The Kentucky Geological Survey (KGS) at the University of Kentucky is conducting a 2-year research project funded by the Gas Research Institute (GRI) to study hydrocarbon production from the Devonian shale in eastern Kentucky. Objectives are to develop an understanding of relationships between stratigraphy and hydrocarbon production, create a data base, and prepare geologic reports for each county in the study area. Data were compiled from the KGS, GRI Eastern Gas Data System (EGDS), U. S. Department of Energy (DOE), and industry. Research for Letcher County was completed and 270 Devonian wells were entered into the KGS computer data base.more » Devonian black-shale units were correlated using gamma-ray logs. Structure and isopach maps, and stratigraphic cross sections have been constructed. An isopotential map defining areas of equal initial gas production has been prepared. Statistics for Letcher County have been run on the data base using Datatrieve software package. Statistical analyses focused on different types of formation treatments and the resulting production. Temperature logs were used to detect gas-producing intervals within the Mississippian-Devonian black-shale sequence. The results of the research provide the petroleum industry with a valuable tool for gas exploration in the Devonian shales.« less
NASA Astrophysics Data System (ADS)
Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray
2018-05-01
SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence ofmore » benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.« less
Scott, Clinton T.; Slack, John F.; Kelley, Karen Duttweiler
2017-01-01
Black shales of the Late Devonian to Early Mississippian Bakken Formation are characterized by high concentrations of organic carbon and the hyper-enrichment (> 500 to 1000s of mg/kg) of V and Zn. Deposition of black shales resulted from shallow seafloor depths that promoted rapid development of euxinic conditions. Vanadium hyper-enrichments, which are unknown in modern environments, are likely the result of very high levels of dissolved H2S (~ 10 mM) in bottom waters or sediments. Because modern hyper-enrichments of Zn are documented only in Framvaren Fjord (Norway), it is likely that the biogeochemical trigger responsible for Zn hyper-enrichment in Framvaren Fjord was also present in the Bakken basin. With Framvaren Fjord as an analogue, we propose a causal link between the activity of phototrophic sulfide oxidizing bacteria, related to the development of photic-zone euxinia, and the hyper-enrichment of Zn in black shales of the Bakken Formation.
Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.
1994-01-01
Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.
West, Mareta N.
1978-01-01
The U.S. Geological Survey (USGS), in a cooperative agreement with the U.S. Department of Energy (DOE), is participating in the Eastern Gas Shales Project. The purpose of the DOE project is to increase the production of natural gas from eastern United States shales in petroliferous basins through improved exploration and extraction techniques. The USGS participation includes stratigraphic studies which will contribute to the characterization and appraisal of the natural gas resources of Devonian shale in the Appalachian basin.This cross section differs from others in this series partly because many of the shales in the eastern part of the basin are less radioactive than those farther west and because in this area shales that may be gas-productive are not necessarily highly radioactive and black.
Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.
2015-01-01
Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, R.E.; Nance, S.W.
On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less
NASA Astrophysics Data System (ADS)
Li, Yifan; Schieber, Juergen
2015-11-01
The Devonian Chattanooga Shale contains an uppermost black shale interval with dispersed phosphate nodules. This interval extends from Tennessee to correlative strata in Kentucky, Indiana, and Ohio and represents a significant period of marine phosphate fixation during the Late Devonian of North America. It overlies black shales that lack phosphate nodules but otherwise look very similar in outcrop. The purpose of this study is to examine what sets these two shales apart and what this difference tells us about the sedimentary history of the uppermost Chattanooga Shale. In thin section, the lower black shales (PBS) show pyrite enriched laminae and compositional banding. The overlying phosphatic black shales (PhBS) are characterized by phosbioclasts, have a general banded to homogenized texture with reworked layers, and show well defined horizons of phosphate nodules that are reworked and transported. In the PhBS, up to 8000 particles of P-debris per cm2 occur in reworked beds, whereas the background black shale shows between 37-88 particles per cm2. In the PBS, the shale matrix contains between 8-16 phosphatic particles per cm2. The shale matrix in the PhBS contains 5.6% inertinite, whereas just 1% inertinite occurs in the PBS. The shale matrix in both units is characterized by flat REE patterns (shale-normalized), whereas Phosbioclast-rich layers in the PhBS show high concentrations of REEs and enrichment of MREEs. Negative Ce-anomalies are common to all samples, but are best developed in association with Phosbioclasts. Redox-sensitive elements (Co, U, Mo) are more strongly enriched in the PBS when compared to the PhBS. Trace elements associated with organic matter (Cu, Zn, Cd, Ni) show an inverse trend of enrichment. Deposited atop a sequence boundary that separates the two shale units, the PhBS unit represents a transgressive systems tract and probably was deposited in shallower water than the underlying PBS interval. The higher phosphate content in the PhBS is interpreted as the result of a combination of lower sedimentation rates with reworking/winnowing episodes. Three types of phosphatic beds that reflect different degrees of reworking intensity are observed. Strong negative Ce anomalies and abundant secondary marcasite formation in the PhBS suggests improved aeration of the water column, and improved downward diffusion of oxygen into the sediment. The associated oxidation of previously formed pyrite resulted in a lowering of pore water pH and forced dissolution of biogenic phosphate. Phosphate dissolution was followed by formation of secondary marcasite and phosphate. Repeated, episodic reworking caused repetitive cycles of phosphatic dissolution and reprecipitation, enriching MREEs in reprecipitated apatite. A generally "deeper" seated redox boundary favored P-remineralization within the sediment matrix, and multiple repeats of this process in combination with wave and current reworking at the seabed led to the formation of larger phosphatic aggregates and concentration of phosphate nodules in discrete horizons.
NASA Astrophysics Data System (ADS)
Wegerer, Eva; Sachsenhofer, Reinhard; Misch, David; Aust, Nicolai
2016-04-01
Mineralogical data of 112 core samples from 12 wells are used to investigate lateral and vertical variations in the lithofacies of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets-Basin. Sulphur and carbonate contents as well as organic geochemical parameters, including TOC and Hydrogen Index have been determined on the same sample set within the frame of an earlier study (Sachsenhofer et al. 2010). This allows the correlation of inorganic and organic composition of the black shales. Aims of the study are to distinguish between detrital and authigenic minerals, to relate the lithofacies of the black shales with the tectono-stratigraphic sequences of the Dniepr-Donets Basin, to contribute to the reconstruction of the depositional environment and to relate diagenetic processes with the thermal history of the basin. Mineral compositions were determined primarily using XRD-measurements applying several measurement procedures, e.g. chemical and temperature treatment, and specific standards. Major differences exist in the mineralogical composition of the black shales. For example, clay mineral contents range from less than 20 to more than 80 Vol%. Kaolinite contents are significantly higher in rocks with a Tournaisian or Early Visean age than in any other stratigraphic unit. This is also true for two Lower Visean coal samples from the shallow north-westernmost part of the basin. Chlorite contents reach maxima in uppermost Visean and overlying rocks. Quartz contents are often high in Upper Visean rocks and reach maxima in Bashkirian units. Feldspar-rich rocks are observed in Devonian sediments from the north-western part of the study area and may reflect the proximity to a sediment source. Carbonate contents are typically low, but reach very high values in some Tournaisian, Lower Visean and Serpukhovian samples. Pyrite contents reach maxima along the basin axis in Tournaisian and Visean rocks reflecting anoxic conditions. Mixed layer minerals are dominated by illite. Their presence in samples from depth exceeding 5 km reflects the low thermal overprint of Paleozoic rocks in the north-western Dniepr-Donets-Basin.
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering allmore » the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.« less
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
Cramer, Bradley D.; Saltzman, Matthew R.; Day, J.E.; Witzke, B.J.
2008-01-01
Latest Famennian marine carbonates from the mid-continent of North America were examined to investigate the Late Devonian (very late Famennian) Hangenberg positive carbon-isotope (??13 Ccarb) excursion. This global shift in the ?? 13C of marine waters began during the late Famennian Hangenberg Extinction Event that occurred during the Middle Siphonodella praesulcata conodont zone. The post-extinction recovery interval spans the Upper S. praesulcata Zone immediately below the Devonian-Carboniferous boundary. Positive excursions in ?? 13 Ccarb are often attributed to the widespread deposition of organic-rich black shales in epeiric sea settings. The Hangenberg ??13 Ccarb excursion documented in the Louisiana Limestone in this study shows the opposite trend, with peak ??13 Ccarb values corresponding to carbonate production in the U.S. mid-continent during the highstand phase of the very late Famennian post-glacial sea level rise. Our data indicate that the interval of widespread black shale deposition (Hangenberg Black Shale) predates the peak isotope values of the Hangenberg ??13 Ccarb excursion and that peak values of the Hangenberg excursion in Missouri are not coincident with and cannot be accounted for by high Corg burial in epeiric seas. We suggest instead that sequestration and burial of Corg in the deep oceans drove the peak interval of the ??13Ccarb excursion, as a result of a change in the site of deep water formation to low-latitude epeiric seas as the global climate shifted between cold and warm states.
Organic content of Devonian shale in western Appalachian basin.
Schmoker, J.W.
1980-01-01
In the organic-rich facies of the Devonian shale in the western part of the Appalachian basin, the distribution of organic matter provides an indirect measure of both gas in place and the capacity of the shale to supply gas to permeable pathways.The boundary between organic-rich ('black') and organic-poor ('gray') facies is defined here as 2% organic content by volume. The thickness of organic-rich facies ranges from 200ft in central Kentucky to 1000ft along the Kentucky-West Virginia border. The average content of the organic-rich facies increases from 5% by volume on the edge to 16% in central Kentucky. The net thickness of organic matter in the organic-rich facies shows the amount of organic material in the shale, and is the most fundamental of the organic-content characterizations. Net thickness of organic matter ranges between 20 and 80ft (6.1 and 24.4m) within the mapped area.-from Author
Leventhal, Joel S.
1979-01-01
Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.
Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.
2016-04-11
Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.
Leventhal, J.S.
1991-01-01
In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.
A review of the organic geochemistry of shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.; Meyer, R.E.
1987-06-01
Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...
Formation resistivity as an indicator of oil generation in black shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hester, T.C.; Schmoker, J.W.
1987-08-01
Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less
Sedimentology of gas-bearing Devonian shales of the Appalachian Basin
NASA Astrophysics Data System (ADS)
Potter, P. E.; Maynard, J. B.; Pryor, W. A.
1981-01-01
Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.
Eastern Devonian shales: Organic geochemical studies, past and present
Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.
1983-01-01
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.
Eastern Devonian shales: Organic geochemical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, I.A.; Hatchner, P.G.; Miknis, F.P.
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less
NASA Astrophysics Data System (ADS)
Loevezijn, Gerard B. S. van; Raven, J. G. M.
2017-12-01
The Santa Lucía Formation represents the major phase in Devonian reef development of the Cantabrian Zone (Cantabrian Mountains, northwest Spain). In the present study the transition from the carbonate platform deposits of the Santa Lucía Formation to the overlying euxinic basinal deposits of the Huergas Formation is described. These transitional strata are connected to the Basal Choteč Event and represent a condensed sedimentation of micritic dark-grey and black limestones with an upward increase of dark shale intercalations with iron mineralisation surfaces and storm-induced brachiopod coquinas. The transitional beds are grouped into a new unit, the Cabornera Bed, which consists of limestone, limestone-shale and shale facies associations, representing a sediment-starved euxinic offshore area just below the storm wave base. Four stages in reef decline can be recognised: a reef stage, an oxygen-depleted, nutrient-rich stage, a siliciclastic-influx stage and a pelagic-siliciclastic stage. Additional geochemical and geophysical investigations are needed to verify the results presented herein.
Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids
Enomoto, Catherine B.; Coleman, James L.; Haynes, John T.; Whitmeyer, Steven J.; McDowell, Ronald R.; Lewis, J. Eric; Spear, Tyler P.; Swezey, Christopher S.
2012-01-01
Detailed and reconnaissance field mapping and the results of geochemical and mineralogical analyses of outcrop samples indicate that the Devonian shales of the Broadtop Synclinorium from central Virginia to southern Pennsylvania have an organic content sufficiently high and a thermal maturity sufficiently moderate to be considered for a shale gas play. The organically rich Middle Devonian Marcellus Shale is present throughout most of the synclinorium, being absent only where it has been eroded from the crests of anticlines. Geochemical analyses of outcrop and well samples indicate that hydrocarbons have been generated and expelled from the kerogen originally in place in the shale. The mineralogical characteristics of the Marcellus Shale samples from the Broadtop Synclinorium are slightly different from the averages of samples from New York, Pennsylvania, northeast Ohio, and northern West Virginia. The Middle Devonian shale interval is moderately to heavily fractured in all areas, but in some areas substantial fault shearing has removed a regular "cleat" system of fractures. Conventional anticlinal gas fields in the study area that are productive from the Lower Devonian Oriskany Sandstone suggest that a continuous shale gas system may be in place within the Marcellus Shale interval at least in a portion of the synclinorium. Third-order intraformational deformation is evident within the Marcellus shale exposures. Correlations between outcrops and geophysical logs from exploration wells nearby will be examined by field trip attendees.
Dissolved methane in New York groundwater, 1999-2011
Kappel, William M.; Nystrom, Elizabeth A.
2012-01-01
New York State is underlain by numerous bedrock formations of Cambrian to Devonian age that produce natural gas and to a lesser extent oil. The first commercial gas well in the United States was dug in the early 1820s in Fredonia, south of Buffalo, New York, and produced methane from Devonian-age black shale. Methane naturally discharges to the land surface at some locations in New York. At Chestnut Ridge County Park in Erie County, just south of Buffalo, N.Y., several surface seeps of natural gas occur from Devonian black shale, including one behind a waterfall. Methane occurs locally in the groundwater of New York; as a result, it may be present in drinking-water wells, in the water produced from those wells, and in the associated water-supply systems (Eltschlager and others, 2001). The natural gas in low-permeability bedrock formations has not been accessible by traditional extraction techniques, which have been used to tap more permeable sandstone and carbonate bedrock reservoirs. However, newly developed techniques involving horizontal drilling and high-volume hydraulic fracturing have made it possible to extract previously inaccessible natural gas from low-permeability bedrock such as the Marcellus and Utica Shales. The use of hydraulic fracturing to release natural gas from these shale formations has raised concerns with water-well owners and water-resource managers across the Marcellus and Utica Shale region (West Virginia, Pennsylvania, New York and parts of several other adjoining States). Molofsky and others (2011) documented the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus gas-development activities, although pre-development samples were not available for comparison. In order to manage water resources in areas of gas-well drilling and hydraulic fracturing in New York, the natural occurrence of methane in the State's aquifers needs to be documented. This brief report presents a compilation of data on dissolved methane concentrations in the groundwater of New York available from the U.S. Geological Survey (USGS) National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis).
Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.
2011-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).
Germanium and uranium in coalified wood bom upper Devonian black shale
Breger, I.A.; Schopf, J.M.
1955-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.
Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona
Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.
2014-01-01
The most studied source intervals are the Pennsylvanian black shales that were deposited during relative high stands in an otherwise evaporitic basin. These black shales are the source for most of the discovered hydrocarbons in the Paradox Basin. A second oil type can be traced to either a Mississippian or Permian source rock to the west, and therefore requires long-distance migration to explain its presence in the basin. Upper Cretaceous continental to nearshore-marine sandstones are interbedded with coal beds that have recognized coalbed methane potential. Precambrian and Devonian TPSs are considered hypothetical, as both are known to have organic-rich intervals, but no discovered hydrocarbons have been definitively typed back to either of these units.
Ryder, Robert T.
1996-01-01
INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the Michigan basin, and 4) improve estimates of the recoverable gas in the Antrim Shale gas plays (Dolton, 1995). This review of published literature on the characteristics of Antrim Shale fractures, their origin, and their controls on gas production will help to define objectives and goals in future U.S. Geological Survey studies of Antrim Shale gas resources.
Germanium and uranium in coalified wood from Upper Devonian black shale
Breger, Irving A.; Schopf, James M.
1954-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.
Leventhal, J.S.
1981-01-01
Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.
Causes of the great mass extinction of marine organisms in the Late Devonian
NASA Astrophysics Data System (ADS)
Barash, M. S.
2016-11-01
The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70-82%. Major crises occurred at the Frasnian-Famennian and Devonian-Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.
Perkins, R.B.; Piper, D.Z.; Mason, C.E.
2008-01-01
The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Beverly; Harris, David; Keith, Brian
2008-06-30
This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons,more » and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.« less
Hackley, Paul C.; Ryder, Robert T.; Trippi, Michael H.; Alimi, Hossein
2013-01-01
To better estimate thermal maturity of Devonian shales in the northern Appalachian Basin, eleven samples of Marcellus and Huron Shale were characterized via multiple analytical techniques. Vitrinite reflectance, Rock–Eval pyrolysis, gas chromatography (GC) of whole rock extracts, and GC–mass spectrometry (GCMS) of extract saturate fractions were evaluated on three transects that lie across previously documented regional thermal maturity isolines. Results from vitrinite reflectance suggest that most samples are immature with respect to hydrocarbon generation. However, bulk geochemical data and sterane and terpane biomarker ratios from GCMS suggest that almost all samples are in the oil window. This observation is consistent with the presence of thermogenic gas in the study area and higher vitrinite reflectance values recorded from overlying Pennsylvanian coals. These results suggest that vitrinite reflectance is a poor predictor of thermal maturity in early mature areas of Devonian shale, perhaps because reported measurements often include determinations of solid bitumen reflectance. Vitrinite reflectance interpretations in areas of early mature Devonian shale should be supplanted by evaluation of thermal maturity information from biomarker ratios and bulk geochemical data.
Rowan, E.L.; Kraemer, T.F.
2012-01-01
Samples of natural gas were collected as part of a study of formation water chemistry in oil and gas reservoirs in the Appalachian Basin. Nineteen samples (plus two duplicates) were collected from 11 wells producing gas from Upper Devonian sandstones and the Middle Devonian Marcellus Shale in Pennsylvania. The samples were collected from valves located between the wellhead and the gas-water separator. Analyses of the radon content of the gas indicated 222Rn (radon-222) activities ranging from 1 to 79 picocuries per liter (pCi/L) with an overall median of 37 pCi/L. The radon activities of the Upper Devonian sandstone samples overlap to a large degree with the activities of the Marcellus Shale samples.
Enomoto, Catherine B.; Trippi, Michael H.; Higley, Debra K.; Rouse, William A.; Dulong, Frank T.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Marra, Kristen R.; Le, Phuong A.; Woodall, Cheryl A.; Schenk, Christopher J.
2018-04-19
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 10.7 trillion cubic feet of natural gas in Upper Devonian shales of the Appalachian Basin Province.
Pashin, J.C.; Ettensohn, F.R.
1992-01-01
Oxygen-deficient biofacies models rely on lithologic and paleontologic attributes to identify distinctive biofacies interpreted to reflect levels of oxygenation in anaerobic, dysaerobic, and aerobic parts of a stratified water column. This study of the Bedford fauna from the Bedford Shale of Ohio and Kentucky and from adjacent black-shale units reports faunal distributions different from those predicted by the accepted models. This study suggests that, although oxygenation was an important factor that determined the taxonomic makeup of the fauna, bacterially mediated nutrient recycling and substrate characteristics were more important than oxygenation in determining faunal distribution in the dysaerobic zone. ?? 1992.
Devonian-Carboniferous boundary succession in Eastern Taurides, Turkey
NASA Astrophysics Data System (ADS)
Atakul-Özdemir, Ayşe; Altıner, Demir; Özkan-Altıner, Sevinç
2015-04-01
The succession covering the Devonian-Carboniferous boundary in Eastern Taurides comprises mainly limestones, shales and siltstones. The studied section starts at the base with bioturbated limestones alternating with shales and is followed upwards by platy limestones, and continues with the alternations of bioturbated and platy limestones. Towards the upper part of the succession the alternations of limestone, shales and siltstones reappear again and the top of the section is capped by quartz arenitic sandstone. The studied section spanning the Uppermost Devonian-Lower Carboniferous interval yields a not very abundant, but quite important assemblage of conodont taxa including species of Bispathodus, Polygnathus, Palmatolepis, Spathognathodus and Vogelgnathus. The uppermost Devonian part of the succession is characterized by the presence of Bispathodus costatus, Bispathodus aculeatus aculeatus, Polygnathus communis communis, Palmatolepis gracilis gracilis and Spathognathodus sp.. The Lower Carboniferous in the studied section is represented by the appearance of Polygnathus inornatus and Polygnathus communis communis. Based on the recovered conodont assemblages, Devonian-Carboniferous boundary in Eastern Turides has been determined by the appearance and disappearance of major conodont species.
NASA Astrophysics Data System (ADS)
Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.
2017-12-01
Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale accumulation anywhere in the CAOB would be unlikely due to the paleoenvironment and arc topography, so additional multiproxy techniques are required for recognition of the Kellwasser Event in regions such as the HSG, which are outside of the basins where they have historically been studied. Carmichael et al. (2014) Paleo3 399, 394-403.
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Devonian shale wells in Michigan. 270.306 Section 270.306 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) Attesting the applicant has no knowledge of any information not described in the application which is...
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Harir, Mourad; Carrizo, Daniel; Schmitt-Kopplin, Philippe; Amils, Ricardo
2018-03-01
The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community, which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The cooccurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.
NASA Astrophysics Data System (ADS)
Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao
2018-05-01
Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, P.E.; Maynard, J.B.; Pryor, W.A.
Studies of shales in the Appalachian area are reported (mainly in the form of abstracts of reports or manuscripts). They discuss the geology, lithology, stratigraphy, radioactivity, organic matter, the isotopic abundance of carbon and sulfur isotopes, etc. of shales in this area with maps. One report discusses Devonian paliocurrents in the central and northern Appalachian basin. Another discusses sedimentology of the Brallier Formation. The stratigraphy of upper Devonian shales along the southern shore of Lake Erie was also studied. (LTN)
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Rakociński, Michał; Racki, Grzegorz; Bond, David P. G.; Sobień, Katarzyna; Claeys, Philippe
2013-03-01
Rhythmical alternations between limestone and shales or marls characterize the famous Kowala section, Holy Cross Mountains, Poland. Two intervals of this section were studied for evidence of orbital cyclostratigraphy. The oldest interval spans the Frasnian-Famennian boundary, deposited under one of the hottest greenhouse climates of the Phanerozoic. The youngest interval encompasses the Devonian-Carboniferous (D-C) boundary, a pivotal moment in Earth's climatic history that saw a transition from greenhouse to icehouse. For the Frasnian-Famennian sequence, lithological variations are consistent with 405-kyr and 100-kyr eccentricity forcing and a cyclostratigraphic floating time-scale is presented. The interpretation of observed lithological rhythms as eccentricity cycles is confirmed by amplitude modulation patterns in agreement with astronomical theory and by the recognition of precession cycles in high-resolution stable isotope records. The resulting relative time-scale suggests that ˜800 kyr separate the Lower and Upper Kellwasser Events (LKE and UKE, respectively), two periods of anoxia that culminated in massive biodiversity loss at the end of the Frasnian. Th/U and pyrite framboid analyses indicate that during the UKE, oxygen levels remained low for 400 kyr and δ13Corg measurements demonstrate that more than 600 kyr elapsed before the carbon cycle reached a steady state after a +3‰ UKE excursion. The Famennian-Tournaisian (D-C) interval also reveals eccentricity and precession-related lithological variations. Precession-related alternations clearly demonstrate grouping into 100-kyr bundles. The Famennian part of this interval is characterized by several distinctive anoxic black shales, including the Annulata, Dasberg and Hangenberg shales. Our high-resolution cyclostratigraphic framework indicates that those shales were deposited at 2.2 and 2.4 Myr intervals respectively. These durations strongly suggest a link between the long-period (˜2.4 Myr) eccentricity cycle and the development of the Annulata, Dasberg and Hangenberg anoxic shales. It is assumed that these black shales form under transgressive conditions, when extremely high eccentricity promoted the collapse of small continental ice-sheets at the most austral latitudes of western Gondwana.
NASA Astrophysics Data System (ADS)
Hamilton, Stewart M.; Grasby, Stephen E.; McIntosh, Jennifer C.; Osborn, Stephen G.
2015-02-01
Baseline groundwater geochemical mapping of inorganic and isotopic parameters across 44,000 km2 of southwestern Ontario (Canada) has delineated a discreet zone of natural gas in the bedrock aquifer coincident with an 8,000-km2 exposure of Middle Devonian shale. This study describes the ambient geochemical conditions in these shales in the context of other strata, including Ordovician shales, and discusses shale-related natural and anthropogenic processes contributing to hydrogeochemical conditions in the aquifer. The three Devonian shales—the Kettle Point Formation (Antrim equivalent), Hamilton Group and Marcellus Formation—have higher DOC, DIC, HCO3, CO2(aq), pH and iodide, and much higher CH4(aq). The two Ordovician shales—the Queenston and Georgian-Bay/Blue Mountain Formations—are higher in Ca, Mg, SO4 and H2S. In the Devonian shale region, isotopic zones of Pleistocene-aged groundwater have halved in size since first identified in the 1980s; potentiometric data implicate regional groundwater extraction in the shrinkage. Isotopically younger waters invading the aquifer show rapid increases in CH4(aq), pH and iodide with depth and rapid decrease in oxidized carbon species including CO2, HCO3 and DIC, suggesting contemporary methanogenesis. Pumping in the Devonian shale contact aquifer may stimulate methanogenesis by lowering TDS, removing products and replacing reactants, including bicarbonate, derived from overlying glacial sedimentary aquifers.
Nilsen, T.H.; Moore, T.E.
1982-01-01
The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak Creek are typically organized into fining-upward fluvial cycles. The maximum clast size is about 3 cm in this area. The Kanayut in this region is 200-500 m thick and can be divided into the Ear Peak, Shainin Lake, and Stuver Members. The upper contact of the Kanayut with the Kayak Shale is very gradational at Kakivilak Creek and very abrupt at Siavlat Mountain. Paleocurrents from fluvial strata of the Kanayut indicate sediment transport toward the west and south in both the western and central Brooks Range. The maximum clast size distribution generally indicates westward fining from the Shainin Lake region.
Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors
Enomoto, Catherine B.; Coleman, James L.; Swezey, Christopher S.; Niemeyer, Patrick W.; Dulong, Frank T.
2015-01-01
The presence of conventional anticlinal gas fields in the study area that are productive from the underlying Lower Devonian Oriskany Sandstone suggests that an unconventional (or continuous) shale gas system may be in place within the Marcellus Shale in the study area. Results of this study indicate that the Marcellus Shale in the Broadtop synclinorium generally is similar in organic geochemical nature throughout its extent, and based on the sample analyses, there are no clearly identifiable high potential areas (or “sweet spots”) in the study area. This report contains analyses of 132 outcrop and well drill-cuttings samples.
Drilling of a deviated well: E. C. Newell 10056-D Meigs County, Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, J.A.
1982-09-30
The Department of Energy's (DOE) Eastern Gas Shales Program (EGSP) has focused primarily on the resource characterization of the Devonian shales in the Appalachian, Michigan and Illinois Basins, where the collective volume of gas in place is estimated to be on the order of 280 Tcf. From an early assessment of the petrophysical properties of these shales, attention now has turned to an understanding of the mechanisms controlling production of this unconventional-gas source. However, present knowledge of the production history of the Devonian shales is inadequate for an accurate estimation of the gas reserves, the optimum well spacing for gasmore » extraction, and the preferred stimulation techniques to be used. As part of this program, a Deviated Well Test was designed to evaluate the spacing of natural fractures in the Devonian shale in Meigs County, Ohio as a follow-on test to further define shale production characteristics and to assess the benefit of additional section gained by drilling through the producing interval at the approximate angle for dip of 60/sup 0/ from vertical. The Columbia Gas Transmission Company, E.C. Newell 10056-D well, on the same site as a previous Off-Set Well Test, was selected for this investigation. This report summarizes drilling operations on this Deviated Well Test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelder, T.; Whitaker, A.
2006-07-15
Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and Devonian black shale of the Central and Southern Appalachians reflect an approximately rectilinear stress field with a dimension > 1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were buried to the oil window during the 10-15 m.y. period straddling the Pennsylvanian-Permian boundary. The AWSF was generated during the final assembly of Pangea as a consequence of plate-boundary tractions arising from late-stage oblique convergence, where maximum horizontal stress, S-H, of the AWSF was parallel to the direction of closuremore » between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans-current faults at around 30{sup o}. Following > 10 m.y. of dextral slip during tightening of Gondwana against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting on master basement decollements to produce the local orocline-shaped Alleghanian map pattern seen today.« less
Indirect and direct tensile behavior of Devonian oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.P.; Chen, J.L.; Dana, G.F.
1984-03-01
Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less
Benefits of applying technology to Devonian shale wells. Topical report, July-December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voneiff, G.W.; Gatens, J.M.
1993-01-01
The report summarizes the benefits of applying technology to Devonian Shales wells in the Appalachian Basin. The results of the work suggest that an intermediate level of technology application, with an incremental cost of $6,700/well, is best for routine application in the Devonian Shales. The technology level uses conventional well tests, rock mechanical properties logs, a borehole camera, and a moderate logging suite. Most of these tools and technologies should be used on only a portion of the wells in multi-well projects, reducing the per well cost of the technology. Determining the correct reservoir description is critical to optimizing themore » stimulation treatment. The most critical reservoir properties are bulk and matrix permeabilities, net pay, stress profile, and natural fracture spacing in the direction perpendicular to induced hydraulic fractures. Applying technology to improve the accuracy of the reservoir description can significantly increase well profitability.« less
Epstein, J.B.
1986-01-01
The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author
Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio
NASA Technical Reports Server (NTRS)
Johnson, G. O.
1981-01-01
In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.
NASA Astrophysics Data System (ADS)
Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa
2014-02-01
The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin settings, their mineralogy and attendant preservative potential is primarily a function of continental climate and provenance making these deposits a sensitive recorder of land as well as oceanographic change.
NASA Astrophysics Data System (ADS)
Uveges, B. T.; Junium, C. K.; Boyer, D.; Cohen, P.; Day, J. E.
2017-12-01
The Frasnian-Famennian Biotic Crisis (FFBC) is among the `Big Five' mass extinctions in ecological severity, and was particularly devastating to shallow water tropical faunas and reefs. The FFBC is associated with two organic rich black shale beds collectively known as the Lower and Upper Kellwasser Events(KWEs). Sedimentary N and C isotopes offer insight into the biogeochemical processing of nutrients, and therefore the oceanographic conditions in a basin. In particular, biological production within and around the chemocline can impart a distinct signature to the particulate organic matter (POM) preserved in sediments. Here we present bulk δ15N and δ13Corg isotope data from the Late Devonian Appalachian, and Illinois Basins (AB and IB), with a focus on intervals encompassing the KWEs. Broadly, δ15N values were depleted (-1.0 to +4.0‰), and are consistent with other intervals of black shale deposition, such as OAEs, with the IB being generally more enriched. In both the IB and AB, black shales were 15N depleted compared to the interbedded grey shales on average by 2.3 and 1.0‰ respectively. Organic carbon isotopes exhibit the broad, positive excursions that are typical of the KWEs globally ( 3.5‰ from background). Superimposed over the increase in δ13Corg are sharp decreases in δ13Corg, to as low as -30‰, found at the base of the black shale beds in the both basins. In the context of the pattern of δ15N, this suggests that the mobility of the chemocline and the degree of stratification exert a primary control on both δ15N and δ13Corg. Chemocline movement, or alternatively chemocline collapse, would lead to greater areal extent/upwelling of low oxygen deep waters, rich in isotopically depleted remineralized nutrients (DIN and DIC), leading to the production and eventual preservation of depleted POM in the black shales. Applying this model to the KWEs, which saw more expansive deposits of anoxic facies, we propose that the black shales associated with the KWEs, and thus the FFBC, were the result of exacerbated chemocline fluctuations already inherent to the basin system. The resultant influx of low oxygen, high nutrient water would have not only placed stress on shallow water organisms, but may have also induced eutrophication through spurred primary productivity of organic matter, compounding the the severity of the event.
NASA Astrophysics Data System (ADS)
Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.
2018-04-01
Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.
Alligator ridge district, East-Central Nevada: Carlin-type gold mineralization at shallow depths
Nutt, C.J.; Hofstra, A.H.
2003-01-01
Carlin-type deposits in the Alligator Ridge mining district are present sporadically for 40 km along the north-striking Mooney Basin fault system but are restricted to a 250-m interval of Devonian to Mississippian strata. Their age is bracketed between silicified ca. 45 Ma sedimentary rocks and unaltered 36.5 to 34 Ma volcanic rocks. The silicification is linked to the deposits by its continuity with ore-grade silicification in Devonian-Mississippian strata and by its similar ??18O values (_e1???17???) and trace element signature (As, Sb, Tl, Hg). Eocene reconstruction indicates that the deposits formed at depths of ???300 to 800 m. In comparison to most Carlin-type gold deposits, they have lower Au/Ag, Au grades, and contained Au, more abundant jasperoid, and textural evidence from deposition of an amorphous silica precursor in jasperoid. These differences most likely result from their shallow depth of formation. The peak fluid temperature (_e1???230??C) and large ??18OH2O value shift from the meteroric water line (_e1???20???) suggest that ore fluids were derived from depths of 8 km or more. A magnetotelluric survey indicates that the Mooney Basin fault system penetrates to mid-crustal depths. Deep circulation of meteoric water along the Mooney Basin fault system may have been in response to initial uplift of the East Humboldt-Ruby Mountains metamorphic core complex; convection also may have been promoted by increased heat flow associated with large magnitude extension in the core complex and regional magmatism. Ore fluids ascended along the fault system until they encountered impermeable Devonian and Mississippian shales, at which point they moved laterally through permeable strata in the Devonian Guilmette Formation, Devonian-Mississippian Pilot Shale, Mississippian Joana Limestone, and Mississippian Chainman Shale toward erosional windows where they ascended into Eocene fluvial conglomerates and lake sediments. Most gold precipitated by sulfidation of host-rock Fe and mixing with local ground water in zones of lateral fluid flow in reactive strata, such as the Lower Devonian-Mississippian Pilot Shale.
Organic metamorphism in the Lower Mississippian-Upper Devonian Bakken shales-II: Soxhlet extraction.
Price, L.C.; Ging, T.; Love, A.; Anders, D.
1986-01-01
We report on Soxhlet extraction (and subsequent related analyses) of 39 Lower Mississippian-Upper Devonian Bakken shales from the North Dakota portion of the Williston Basin, and analyses of 28 oils from the Basin. Because of the influence of primary petroleum migration, no increase in the relative or absolute concentrations of hydrocarbons or bitumen was observed at the threshold of intense hydrocarbon generation (TIHG), or during mainstage hydrocarbon generation in the Bakken shales. Thus, the maturation indices that have been so useful in delineating the TIHG and mainstage hydrocarbon generation in other studies were of no use in this study, where these events could clearly be identified only by Rock-Eval pyrolysis data. The data of this study demonstrate that primary petroleum migration is a very efficient process. Four distinctive classes of saturated hydrocarbon gas chromatograms from the Bakken shales arose from facies, maturation, and primary migration controls. As a consequence of maturation, the % of saturated hydrocarbons increased in the shale extract at the expense of decreases in the resins and asphaltenes. Measurements involving resins and asphaltenes appear to be excellent maturation indices in the Bakken shales. Two different and distinct organic facies were present in immature Bakken shales. -from Authors
NASA Technical Reports Server (NTRS)
Beier, J. A.; Hayes, J. M.
1989-01-01
The upper part of the New Albany Shale is divided into three members. In ascending order, these are (1) the Morgan Trail Member, a laminated brownish-black shale; (2) the Camp Run Member, an interbedded brownish-black and greenish-gray shale; and (3) the Clegg Creek Member, also a laminated brownish-black shale. The Morgan Trail and Camp Run Members contain 5% to 6% total organic carbon (TOC) and 2% sulfide sulfur. Isotopic composition of sulfide in these members ranges from -5.0% to -20.0%. C/S plots indicate linear relationships between abundances of these elements, with a zero intercept characteristic of sediments deposited in a non-euxinic marine environment. Formation of diagenetic pyrite was carbon limited in these members. The Clegg Creek Member contains 10% to 15% TOC and 2% to 6% sulfide sulfur. Isotopic compositions of sulfide range from -5.0% to -40%. The most negative values occur in the uppermost Clegg Creek Member and are characteristic of syngenetic pyrite, formed within an anoxic water column. Abundances of carbon and sulfur are greater and uncorrelated in this member, consistent with deposition in as euxinic environment. In addition, DOP (degree of pyritization) values suggest that formation of pyrite was generally iron limited throughout Clegg Creek deposition, but sulfur isotopes indicate that syngenetic (water-column) pyrite becomes an important component in the sediment only in the upper part of the member. At the top of the Clegg Creek Member, a zone of phosphate nodules and trace-metal enrichment coincides with maximal TOC values. During euxinic deposition, phosphate and trace metals accumulated below the chemocline because of limited vertical circulation in the water column. Increased productivity would have resulted in an increased flux of particulate organic matter to the sediment, providing an effective sink for trace metals in the water column. Phosphate and trace metals released from organic matter during early diagenesis resulted in precipitation of metal-rich phosphate nodules.
NASA Astrophysics Data System (ADS)
Jirásek, Jakub; Otava, Jiří; Matýsek, Dalibor; Sivek, Martin; Schmitz, Mark D.
2018-03-01
The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U-Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.
NASA Astrophysics Data System (ADS)
Johnson, Sean C.; Large, Ross R.; Coveney, Raymond M.; Kelley, Karen D.; Slack, John F.; Steadman, Jeffrey A.; Gregory, Daniel D.; Sack, Patrick J.; Meffre, Sebastien
2017-08-01
Highly metalliferous black shales (HMBS) are enriched in organic carbon and a suite of metals, including Ni, Se, Mo, Ag, Au, Zn, Cu, Pb, V, As, Sb, Se, P, Cr, and U ± PGE, compared to common black shales, and are distributed at particular times through Earth history. They constitute an important future source of metals. HMBS are relatively thin units within thicker packages of regionally extensive, continental margin or intra-continental marine shales that are rich in organic matter and bio-essential trace elements. Accumulation and preservation of black shales, and the metals contained within them, usually require low-oxygen or euxinic bottom waters. However, whole-rock redox proxies, particularly Mo, suggest that HMBS may have formed during periods of elevated atmosphere pO2. This interpretation is supported by high levels of nutrient trace elements within these rocks and secular patterns of Se and Se/Co ratios in sedimentary pyrite through Earth history, with peaks occurring in the middle Paleoproterozoic, Early Cambrian to Early Ordovician, Middle Devonian, Middle to late Carboniferous, Middle Permian, and Middle to Late Cretaceous, all corresponding with time periods of HMBS deposition. This counter-intuitive relationship of strongly anoxic to euxinic, localized seafloor conditions forming under an atmosphere of peak oxygen concentrations is proposed as key to the genesis of HMBS. The secular peaks and shoulders of enriched Se in sedimentary pyrite through time correlate with periods of tectonic plate collision, which resulted in high nutrient supply to the oceans and consequently maximum productivity accompanying severe drawdown into seafloor muds of C, S, P, and nutrient trace metals. The focused burial of C and S over extensive areas of the seafloor, during these anoxic to euxinic periods, likely resulted in an O2 increase in the atmosphere, causing short-lived peaks in pO2 that coincide with the deposition of HMBS. As metals become scarce, particularly Mo, Ni, Se, Ag, and U, the geological times of these narrow HMBS horizons will become a future focus for exploration.
Upper Devonian outcrop stratigraphy, southwestern Virginia and southeastern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennison, J.M.; Filer, J.K.; Rossbach, T.J.
Ongoing outcrop studies are resulting in the extension of existing formal lithostratigraphic units and revision of previously less refined subdivisions of Upper Devonian strata in southwestern Virginia and southeastern West Virginia. A 425 km (263 mi) long stratigraphic cross-section has been constructed primarily from the outcrop belt along the Allegheny Structural Front, supplemented by sections from nearby outcrop belts. This NE-SW striking cross-section is oblique to the nearly due N-S depositional strike of the Upper Devonian Acadian orogenic wedge. To the southwest, the Upper Devonian section thins from 2,100 meters (6,900 feet) to 230 meters (756 feet) as progressively moremore » distal deposits are encountered. An integrated approach has been taken to establish chronostratigraphic control within the cross-section. The best time markers include particularly regressive parasequences which can be identified across facies boundaries (especially the Pound and Briery Gap Sandstones and their equivalents), volcanic ashes, and an organic-rich shale zone marking the base of a major transgression (equivalent to the base of the Huron Shale in Ohio and the Dunkirk Shale of New York). These tools provide chronostratigraphic correlation through the undivided Brallier Formation. Supplemental control includes biostratigraphic markers as well as marine dull redbeds within the Foreknobs which parallel other time lines and may represent partially reduced influxes of oxidized coastal plain sediments during minor parasequence scale regressions.« less
NASA Astrophysics Data System (ADS)
Yang, J.; Torres, M. E.; Haley, B. A.; McKay, J. L.; Algeo, T. J.; Hakala, A.; Joseph, C.; Edenborn, H. M.
2013-12-01
Black shales commonly targeted for shale gas development were deposited under low oxygen concentrations, and typically contain high As levels. The depositional environment governs its solid-phase association in the sediment, which in turn will influence degree of remobilization during hydraulic fracturing. Organic carbon (OC), trace element (TE) and REE distributions have been used as tracers for assessing deep water redox conditions at the time of deposition in the Midcontinent Sea of North America (Algeo and Heckel, 2008), during large-scale oceanic anoxic events (e.g., Bunte, 2009) and in modern OC-rich sediments underlying coastal upwelling areas (e.g., Brumsack, 2006). We will present REE and As data from a collection of six different locations in the continental US (Kansas, Iowa, Oklahoma, Kentucky, North Dakota and Pennsylvania), ranging in age from Devonian to Upper Pennsylvanian, and from a Cretaceous black shale drilled on the Demerara Rise during ODP Leg 207. We interpret our data in light of the depositional framework previously developed for these locations based on OC and TE patterns, to document the mechanisms leading to REE and As accumulation, and explore their potential use as environmental proxies and their diagenetic remobilization during burial, as part of our future goal to develop a predictive evaluation of arsenic release from shales and transport with flowback waters. Total REE abundance (ΣREE) ranged from 35 to 420 ppm in an organic rich sample from Stark shale, KS. PAAS-normalized REE concentrations ranged from 0.5 to 7, with the highest enrichments observed in the MREE (Sm to Ho). Neither the ΣREE nor the MREE enrichments correlated with OC concentrations or postulated depositional redox conditions, suggesting a principal association with aluminosilicates and selective REE fractionation during diagenesis. In the anoxic reducing environments in which black shales were deposited, sulfide minerals such as FeS2 trap aqueous arsenic in the crystal lattice, but As is also known to bind to the charged surfaces of clay minerals. Our arsenic concentration data show that the highest abundances (up to 70 ppm) are found in sediments with the highest total sulfur concentration (to 2.6 ppm), but there was no clear correlation with organic carbon or aluminosilicate content. We compare our results with preliminary data from a series of flowback waters sampled from ten producing wells in Pennsylvania and from high-pressure high-temperature experimental leaching of Marcellus shale samples.
187Re - 187Os nuclear geochronometry: age dating with permil precision
NASA Astrophysics Data System (ADS)
Roller, Goetz
2016-04-01
Recently, 187Re - 187Os nuclear geochronometry, a new dating method combining ideas of nuclear astrophysics with geochronology, has successfully been used to calculate two-point-isochron (TPI) ages for Devonian black gas shales using the isotopic signature of an r-process geochronometer as one data point in a TPI diagram [1]. Based upon a nuclear production ratio 187Re/188Os = 5.873, TPI ages were calculated for 12 SDO-1 (Devonian Ohio Shale, Appalachian Basin) aliquants, for which repeated Re-Os measurements are reported in the literature [2]. TPI ages range from 384.5 ± 2.7 Ma (187Os/188Osi = 0.29413 ± 0.00023) to 387.7 ± 2.1 Ma (187Os/188Osi = 0.29407 ± 0.00019) with a mean of 386.67 ± 1.79 Ma). The result is consistent with the isochronous age from the 12 aliquants alone (386 ± 16 Ma, 187Os/188Osi = 0.31±0.31), which is bracketed by U-Pb ages for the Belpre Ash (381.1 ± 3.3 Ma) and the Tioga Ash bed (390.0 ± 2.5 Ma) [3] from the Appalachian Basin. Hence, SDO-1 can be assigned to the Givetian stage (varcus-zone) of the Middle Devonian, close to the Eifelian/Givetian boundary (using the time-scale of [3] or [4]). If an age is calculated from an isochron diagram for the 12 aliquants including the nuclear geochronometer, a permil precision can be achieved, an interesting feature with respect to any effort towards calibrating the Geologic Timescale. Additionally, a Th/U evolution (or: Th/U-time) diagram can be plotted using U-Pb zircon age data and Th/U ratios from volcanic rocks and ashes reported in the literature [3] for specific Devonian samples from the Appalachian Basin. Since the Re-Os age obtained for SDO-1 can also be connected to its Th/U ratio, it turns out, that Th/U ratios might be helpful age indicators, as demonstrated for the Devonian using the U-Pb and Re-Os datasets. [1] Roller (2015), GSA Abstr. with Programs 47, #248-14. [2] Du Vivier et al. (2014), Earth Planet. Sci. Lett. 389, 23 - 33. [3] Tucker et al. (1998), Earth Planet. Sci. Lett. 158, 175 - 186. [4] Kaufmann (2006), Earth-Sci. Revs. 76, 175 - 190.
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
Hosterman, John W.; Loferski, Patricia J.
1978-01-01
The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertainmore » to the Devonian gas shales of the Appalachian basin in Pennsylvania. Geologic data and interpretations are summarized and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochen, J.E.; Hopkins, C.W.
1993-12-31
;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.
Graphite Black shale of Vendas de Ceira, Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina
2017-04-01
The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is quite abundant at the site. The main difference to the graphite shale is the high porosity of the brown shale with 14.7% and the low volume weight of 23 kN/m3, evidencing the distinct characteristics of the graphite schists. The maximum strength was evaluated by the Schmidt hammer, as the point load test could not be performed as the rock was very soft. The maximum estimated values on dry samples were 32 MPa for sample A and 85 MPa for sample C. The results show a singular material characterized by significant heterogeneity. It can be concluded that for the graphite schists the smaller particle size and higher porosity make the soft rock extremely weatherable when decompressed and exposed to water, as a result of high capillary tension and reduced cohesion. They also exhibit high expansion and an enormous degradation of the rock presenting a behaviour close to a soil. The graphite black schist is a highly weatherable soft rock, without expansive minerals, with small pores, in which the porosity, low strength and low cohesion allow their rapid degradation when decompressed and exposed to the action of Water.
Dyman, T.S.; Wilcox, L.A.
1983-01-01
The U.S. Geological Survey and Petroleum Information Corporation in Denver, Colorado, developed the Eastern Gas Shale Project (EGSP)Data System for the U.S. Department of Energy, Morgantown, West Virginia. Geological, geochemical, geophysical, and engineering data from Devonian shale samples from more than 5800 wells and outcrops in the Appalachian basin were edited and converted to a Petroleum Information Corporation data base. Well and sample data may be retrieved from this data system to produce (1)production-test summaries by formation and well location; (2)contoured isopach, structure, and trendsurface maps of Devonian shale units; (3)sample summary reports for samples by location, well, contractor, and sample number; (4)cross sections displaying digitized log traces, geochemical, and lithologic data by depth for wells; and (5)frequency distributions and bivariate plots. Although part of the EGSP Data System is proprietary, and distribution of complete well histories is prohibited by contract, maps and aggregated well-data listings are being made available to the public through published reports. ?? 1983 Plenum Publishing Corporation.
NASA Astrophysics Data System (ADS)
Sahoo, S. K.; Jin, H.
2017-12-01
The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.
NASA Astrophysics Data System (ADS)
Pašava, Jan; Kříbek, Bohdan; Dobeš, Petr; Vavřín, Ivan; Žák, Karel; Delian, Fan; Tao, Zhang; Boiron, Marie-Christine
2003-01-01
The Dafulou and Huile vein and stratabound cassiterite-sulfide deposits and sheeted ore veins at the Kangma cassiterite-sulfide deposit are located in the eastern part of the Dachang tin field. These deposits are hosted in a sedimentary sequence containing significant concentrations of organic matter in the form of Lower Devonian calcareous black shales and hornfels. These rocks together with the younger intrusion of Longxianggai granite (91±2 Ma) actively participated in the formation of Sn-polymetallic deposits. The following three major stages have been distinguished in stratiform and vein-type orebodies at Dafulou, Huile and Kangma: stage I (cassiterite, pyrrhotite, arsenopyrite, tourmaline, carbonate), stage II - main sulfide stage (quartz, cassiterite, arsenopyrite, pyrrhotite, sphalerite, stannite, pyrite, carbonates) and stage III (native Bi, galena, electrum, sulfosalts). Stage IV (post-ore), recognized at Huile is represented by barren carbonates and zeolites. Whole rock geochemistry has revealed that at Dafulou, Bi and Cu correlate strongly with S, whereas V and Pb correlate well with Corg (organic carbon). The similar distribution patterns of selected elements in average slightly mineralized low-Ca black shales indicate a fluid composition similar for all deposits studied. Studies of graphitization of the organic matter in black shales adjacent to orebodies indicate that d(002) and FWHM (full width in half maximum)/peak height values gradually decrease in the following sequence: Dafulou deposit → Kangma deposit → Huile deposit. The pyrolysate of wall rocks at the Dafulou deposit is relatively enriched in asphaltenes and maltenes (55.6-72.0% of the pyrolysate) comparable with pyrolysate obtained from more distal black shales (19.2-28.5%). Typical GC-MS spectra of pyrolysate from distal black shales are dominated by alkanes in the n-C15 to n-C25 range, aromatic molecules being represented mostly by alkyl-naphthalenes. In contrast, only traces of aliphatic hydrocarbons in the n-C14 to n-C18 range and elemental sulfur were identified in pyrolysates from pyrrhotitized wall rocks. The earliest fluid inclusions of the studied system occur in the quartz-tourmaline-cassiterite assemblage of stage I at Dafulou. These inclusions are H2O-CO2-CH4-rich, with 10 to 20 vol% of aqueous phase. P-T conditions of the trapping of inclusions are estimated to be up to 400 °C and 1.3 to 2.0 kbar (between 5.0 and 7.5 km under lithostatic pressure). In contrast, the presence of a low density gaseous CO2-CH4 phase indicates relatively low pressures during the formation of the breccia-type quartz-calcite-cassiterite-sulfide mineralization (stage II), when P-T conditions probably reached approx. 380 to 400 °C and 0.6 kbar (up to 6 km under hydrostatic pressure). Fluid inclusion data and oxygen isotope thermometry indicate that cassiterite-sulfide ores of the main sulfide stage (stage II) formed from aqueous-carbonic fluid (CO2/CH4 =≈10) at temperatures of up to 390 °C at Dafulou and in a temperature range of 250 to 360 °C at Huile and 260 to 370 °C at Kangma. The δ34S values of sulfides from Dafulou range mostly between -1 and -6‰, whereas sulfides from the Kangma and Huile deposits are characterized by more negative δ34S values (between -8 and -11‰, and between -9 and -12‰, respectively). These data suggest that bacteriogenic sulfides of black shales were a dominant source of reduced sulfur for epigenetic (vein and replacement) mineralization. Oxygen isotopic compositions of five quartz-cassiterite pairs from Dafulou and Huile show a relatively narrow range of calculated oxygen isotope temperatures (250-320 °C, using the equation of Alderton 1989) and high δ18Ofluid values between +8 and +10‰ (SMOW), which are in agreement with fluid derivation from and/or high temperature equilibration with the Longxianggai granite. The carbon and oxygen isotope composition of carbonates reflects variable carbon sources. Stage I calcite is characterized by narrow ranges of δ13C (-7.0 to -9.5‰ PDB) and δ18O (+15.0 to +17.5‰ SMOW). This calcite shows ubiquitous deformation, evidenced by intense development of twins. Fluid compositions calculated at 330 °C for the Dafulou and Huile deposits and at 270-300 °C for the Kangma deposit (δ18Ofluid between +10.0 and +11.5‰ SMOW, δ13Cfluid between -5.5 and -7.5‰ PDB), agree with fluid derivation from and/or equilibration with the peraluminous, high-δ18O Longxianggai granite and suggest a significant influence of contact metasedimentary sequences (carbon derived from decomposition and/or alteration of organic matter of calcareous black shales). The δ13 C values of organic matter from the Lower to Upper Devonian host rocks at the Dafulou deposit (-24.0 and -28.0‰) fit with a marine origin from algae. However, organic matter adjacent to the host rock-ore contact displays a slight enrichment in 13C. The organic carbon from the Huile and Kangma deposits is even more 13C enriched (-24.6 to -23.5‰). The most heavy δ13 C values (-16.5‰) were detected in hornfels sampled at the contact of the Upper Devonian sediments with the Longxianggai granite. The δ13C data broadly correlate with the degree of structural ordering (degree of graphitization) of organic matter, which indicates that both variables are related to thermal overprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Over, D.J.
In western New York State interbedded pyritic silty green and dark grey shales and siltstone of the Hanover Member, Java Formation, West Falls Group, are overlain by thick pyritic dark grey-black shale of the Dunkirk Member of the Canadaway formation. The dark shales in the upper Hanover and Dunkirk contain a diverse and well preserved conodont fauna which allows precise placement of the Frasnian-Famennian boundary at several described sections. At Pt. Gratiot, in far western New York State, the contact between the Hanover and Dunkirk is disconformable. The Frasnian-Famennian boundary is marked by a pyritic lag deposit at the basemore » of the Dunkirk which contains Palmatolepis triangularis and Pa. subperlobata. The underlying upper Hanover is characterized by Pa. bogartensis , Pa. cf. Pa. rhenana, Pa. winchelli, and Ancyrognathus (asymmetricus/calvini) Eastward, in the direction of the paleo-source area, the Frasnian-Famennian boundary is within the upper Hanover Member. At Irish Gulf the boundary is recognized within a 10 cm thick laminated pyritic dark grey shale bed 3.0 m below the base of the Dunkirk. Palmatolepis triangularis and Pa. subperlobata occur below a conodont-rich lag layer in the upper 2 cm of the bed. Palmatolepis bogartensis , Pa. cf. Pa. rhenana, Ancyrodella curvata, and Icriodus alternatus occur in the underlying 8 cm. Palmatolepis triangularis and Pa. winchelli occur in an underlying dark shale bed separated from the boundary bed by a hummocky cross-bedded siltstone layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
Barbot, Elise; Vidic, Natasa S; Gregory, Kelvin B; Vidic, Radisav D
2013-03-19
The exponential increase in fossil energy production from Devonian-age shale in the Northeastern United States has highlighted the management challenges for produced waters from hydraulically fractured wells. Confounding these challenges is a scant availability of critical water quality parameters for this wastewater. Chemical analyses of 160 flowback and produced water samples collected from hydraulically fractured Marcellus Shale gas wells in Pennsylvania were correlated with spatial and temporal information to reveal underlying trends. Chloride was used as a reference for the comparison as its concentration varies with time of contact with the shale. Most major cations (i.e., Ca, Mg, Sr) were well-correlated with chloride concentration while barium exhibited strong influence of geographic location (i.e., higher levels in the northeast than in southwest). Comparisons against brines from adjacent formations provide insight into the origin of salinity in produced waters from Marcellus Shale. Major cations exhibited variations that cannot be explained by simple dilution of existing formation brine with the fracturing fluid, especially during the early flowback water production when the composition of the fracturing fluid and solid-liquid interactions influence the quality of the produced water. Water quality analysis in this study may help guide water management strategies for development of unconventional gas resources.
NASA Astrophysics Data System (ADS)
Carmichael, S. K.; Wang, Z.; Waters, J. A.; Dombrowski, A. D.; Batchelor, C. J.; Coleman, D. S.; Suttner, T.; Kido, E.
2017-12-01
The Late Devonian Frasnian-Famennian (F-F) boundary at 372 Ma is associated with the Kellwasser Event, an ocean anoxia event that is often associated with positive δ13C excursions and commonly represented by black shales. However, approximately 88% of the studies of the Kellwasser Event are based on sites from deep epicontinental basins and epeiric seas, and most of these sites are located on the Euramerican paleocontinent. In contrast to the positive δ13C excursions found in most basinal study sites, the δ13C signatures in three separate shallow water, island-arc F-F sections in the Junggar Basin in northwestern China (Wulankeshun, Boulongour Reservoir, and Genare) all show negative excursions in the stratigraphic location of the Kellwasser Event [1-3]. The δ18O values in both carbonates and/or conodont apatite likewise show negative excursions within the shallow water facies at each site, but have relatively constant signatures within the deeper water facies. 87Sr/86Sr values range from 0.70636-0.70906 at the base of the Boulongour Reservoir section and 0.70746-0.71383 at the base of the Wulankeshun section but both Sr signaures stabilize with relatively constant values closer to modeled Late Devonian seawater in deeper water and/or offshore facies. The fossil assemblages at the base of the Boulongour and Wulankeshun sections each correspond to euryhaline/brackish conditions, while microtextures in Ti-bearing phases within clastic sediments as well as isotope mixing models suggest submarine groundwater discharge signatures rather than diagenetic alteration. Preliminary framboidal pyrite distributions in these sections also show evidence for sub/dysoxic (rather than euxinic or anoxic) conditions that correspond to the stratigraphic Kellwasser interval. Positive δ13C excursions and the presence of black shales are thus not prerequisites for recognition of the Kellwasser Event, particularly in shallow water paleoenvironments that are not topographically favorable to shale accumulation and may have significant coastal groundwater or surface water inputs. [1] Suttner et al. (2014) J. of Asian Earth Sci. 80, 101-118. [2] Carmichael et al. (2014) Paleo3 399, 394-403. [3] Wang et al. (2016) Paleo3 448, 279-297.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrinak, V.M.
The Eastern Devonian Gas Shales Technology Review is a technology transfer vehicle designed to keep industry and research organizations aware of major happenings in the shales. Four issues were published, and the majority of the readership was found to be operators. Under the other major task in this project, areal and analytic analyses of the basin resulted in reducing the study area by 30% while defining a rectangular coordinate system for the basin. Shale-well cost and economic models were developed and validated, and a simplified flow model was prepared.
The geology of Burnsville Cove, Bath and Highland Counties, Virginia
Swezey, Christopher; Haynes, John T.; Lambert, Richard A.; White, William B.; Lucas, Philip C.; Garrity, Christopher P.
2015-01-01
Burnsville Cove is a karst region in Bath and Highland Counties of Virginia. A new geologic map of the area reveals various units of limestone, sandstone, and siliciclastic mudstone (shale) of Silurian through Devonian age, as well as structural features such as northeast-trending anticlines and synclines, minor thrust faults, and prominent joints. Quaternary features include erosional (strath) terraces and accumulations of mud, sand, and gravel. The caves of Burnsville Cove are located within predominantly carbonate strata above the Silurian Williamsport Sandstone and below the Devonian Oriskany Sandstone. Most of the caves are located within the Silurian Tonoloway Limestone, rather than the Silurian-Devonian Keyser Limestone as reported previously.
Kolata, Dennis R.; Huff, W.D.; Bergstrom, Stig M.
1998-01-01
Stratal patterns of the Middle Ordovician Hagan K-bentonite complex and associated rocks show that the Black River-Trenton unconformity in the North American midcontinent formed through the complex interplay of eustasy, sediment accumulation rates, siliciclastic influx, bathymetry, seawater chemistry, and perhaps local tectonic uplift. The unconformity is diachronous and is an amalgamated surface that resulted from local late Turinian lowstand exposure followed by regional early Chatfieldian transgressive drowning and sediment starvation. The duration of the unconformity is greatest in southern Wisconsin, northern Illinois, and northern Indiana, where the Deicke and Millbrig K-bentonite Beds converge at the unconformity. On the basis of published isotopic ages for the Deicke and Millbrig beds, it is possible that in these regions erosion and non-deposition spanned a period of as much as 3.2 m.y. Two broad coeval depositional settings are recognized within the North American midcontinent during early Chatfieldian time. 1) An inner shelf, subtidal facies of fossiliferous shale (Spechts Ferry Shale Member and Ion Shale Member of the Decorah Formation) and argillaceous lime mudstone and skeletal wackestone (Guttenberg and Kings Lake Limestone Members) extended from the Canadian shield and Transcontinental arch southeastward through Minnesota, Wisconsin, Iowa, and Missouri. 2) A seaward, relatively deep subtidal, sediment-starved, middle shelf extended eastward from the Mississippi Valley region to the Taconian foreland basins in the central and southern Appalachians and southward through the pericratonic Arkoma and Black Warrior basins. In the inner shelf region, the Black River-Trenton unconformity is a composite of at least two prominent hardground omission surfaces, one at the top of the Castlewood and Carimona Limestone Members and the other at the top of the Guttenberg and Kings Lake Limestone Members, both merging to a single surface in the middle shelf region. The inner and middle shelves redeveloped later in approximately the same regions during Devonian and Mississippian time.
Active Microbial Methane Production and Organic Matter Degradation in a Devonian Black Shale
NASA Astrophysics Data System (ADS)
Martini, A. M.; Petsch, S. T.; Nuesslein, K.; McIntosh, J. C.
2003-12-01
Microorganisms employ many novel strategies to derive energy and obtain nutrients, and in doing so alter the chemistry of their environments in ways that are significant for formation and transformation of geologic materials. One such strategy is natural gas generation in sedimentary basins. Previous research has shown that stable isotopic signatures of CH4, CO2 and H2O in formation waters of gas-producing black shales indicate a microbial origin for several economically viable natural gas reserves. However, these signatures leave several intriguing issues unaddressed, including the identity of the organisms and their metabolic roles and impacts on mineral, isotopic and biomarker signatures. We hypothesize that the extreme reducing conditions required for sedimentary basin methanogenesis are simply the end product of a cascade of microbial processes, initiated by anaerobic respiration of shale organic matter through NO3, SO4 and/or Fe(III) reduction, secondary processing of anaerobe biomass by fermentative organisms yielding volatile fatty acids and H2, and ultimately CO2 reduction and/or acetate fermentation to produce CH4. This research holds importance for the several aspects of the geochemical carbon cycle. It describes anaerobic hydrocarbon degradation leading to methanogenesis in a sedimentary basin; in many instances this activity has generated economically viable reserves of natural gas. It also provides a benchmark detailing how post-depositional microbial activity in rocks may confound and overprint ancient biosignatures. Interpretation of past environmental conditions depends on molecular and isotopic signatures contained in ancient sedimentary rocks, separated from signatures of metabolically similar modern microbiota living in sedimentary basins. In addition, this research sheds light on an unrecognized and thus unconstrained source of reduced gases to Earth's atmosphere, important for understanding the rates and controls on carbon cycling through geologic time.
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.
2010-01-01
Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.
Poppe, Lawrence J.; Popenoe, Peter; Poag, C. Wylie; Swift, B. Ann
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. These marine strata, which are equivalent to the Tippecanoe sequence in Florida, underlie the post-rift unconformity and represent part of a disjunct fragment of Gondwana that was sutured to the North American craton during the late Palaeozoic Alleghanian orogeny. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic (Bajocian and younger) sandstones and shales and marginal marine Lower Cretaceous sandstones, calcareous shales and carbonates, which contain scattered beds of coal and evaporite. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The abundance of carbonates and evaporites in this interval, which reflects marine influences within the embayment, increases upwards, eastwards and southwards. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are primarily semiconsolidated marine carbonates. Palaeocene to middle Eocene strata are commonly cherty; middle Miocene to Pliocene strata are massive and locally phosphatic and glauconitic; Quaternary sediments are dominated by unconsolidated carbonate sands. The effects of eustatic changes and shifts in the palaeocirculation are recorded in the Upper Cretaceous and Tertiary strata.
The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers
OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko
2015-01-01
Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853
NASA Astrophysics Data System (ADS)
Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.
2014-12-01
DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon. The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰. In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands. 1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively. We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.
Araujo, Carla Viviane; Borrego, Angeles G.; Cardott, Brian; das Chagas, Renata Brenand A.; Flores, Deolinda; Goncalves, Paula; Hackley, Paul C.; Hower, James C.; Kern, Marcio Luciano; Kus, Jolanta; Mastalerz, Maria; Filho, João Graciano Mendonça; de Oliveira Mendonça, Joalice; Rego Menezes, Taissa; Newman, Jane; Suarez-Ruiz, Isabel; Sobrinho da Silva, Frederico; Viegas de Souza, Igor
2014-01-01
This paper presents results of an interlaboratory exercise on organic matter optical maturity parameters using a natural maturation series comprised by three Devonian shale samples (Huron Member, Ohio Shale) from the Appalachian Basin, USA. This work was conducted by the Thermal Indices Working Group of the International Committee for Coal and Organic Petrology (ICCP) Commission II (Geological Applications of Organic Petrology). This study aimed to compare: 1. maturation predicted by different types of petrographic parameters (vitrinite reflectance and spectral fluorescence of telalginite), 2. reproducibility of the results for these maturation parameters obtained by different laboratories, and 3. improvements in the spectral fluorescence measurement obtained using modern detection systems in comparison with the results from historical round robin exercises.Mean random vitrinite reflectance measurements presented the highest level of reproducibility (group standard deviation 0.05) for low maturity and reproducibility diminished with increasing maturation (group standard deviation 0.12).Corrected fluorescence spectra, provided by 14 participants, showed a fair to good correspondence. Standard deviation of the mean values for spectral parameters was lowest for the low maturity sample but was also fairly low for higher maturity samples.A significant improvement in the reproducibility of corrected spectral fluorescence curves was obtained in the current exercise compared to a previous investigation of Toarcian organic matter spectra in a maturation series from the Paris Basin. This improvement is demonstrated by lower values of standard deviation and is interpreted to reflect better performance of newer photo-optical measuring systems.Fluorescence parameters measured here are in good agreement with vitrinite reflectance values for the least mature shale but indicate higher maturity than shown by vitrinite reflectance for the two more mature shales. This red shift in λmax beyond 0.65% vitrinite reflectance was also observed in studies of Devonian shale in other basins, suggesting that the accepted correlation for these two petrographic thermal maturity parameters needs to be re-evaluated.A good linear correlation between λmax and Tmax for this maturation series was observed and λmax 600 nm corresponds to Tmax of 440 °C. Nevertheless if a larger set of Devonian samples is included, the correlation is polynomial with a jump in λmax ranging from 540 to 570 nm. Up to 440 °C of Tmax, the λmax, mostly, reaches up to 500 nm; beyond a Tmax of 440 °C, λmax is in the range of 580–600 nm. This relationship places the “red shift” when the onset of the oil window is reached at Tmax of 440 °C. Moreover, the correlation between HI and λmax (r2 = 0.70) shows a striking inflection and decrease in HI above a λmax of 600 nm, coincident with the approximate onset of hydrocarbon generation in these rocks.
Strapoc, D.; Mastalerz, Maria; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R.
2010-01-01
This study involved analyses of kerogen petrography, gas desorption, geochemistry, microporosity, and mesoporosity of the New Albany Shale (Devonian-Mississippian) in the eastern part of the Illinois Basin. Specifically, detailed core analysis from two locations, one in Owen County, Indiana, and one in Pike County, Indiana, has been conducted. The gas content in the locations studied was primarily dependent on total organic carbon content and the micropore volume of the shales. Gas origin was assessed using stable isotope geochemistry. Measured and modeled vitrinite reflectance values were compared. Depth of burial and formation water salinity dictated different dominant origins of the gas in place in the two locations studied in detail. The shallower Owen County location (415-433 m [1362-1421 ft] deep) contained significant additions of microbial methane, whereas the Pike County location (832-860 m [2730-2822 ft] deep) was characterized exclusively by thermogenic gas. Despite differences in the gas origin, the total gas in both locations was similar, reaching up to 2.1 cm3/g (66 scf/ton). Lower thermogenic gas content in the shallower location (lower maturity and higher loss of gas related to uplift and leakage via relaxed fractures) was compensated for by the additional generation of microbial methane, which was stimulated by an influx of glacial melt water, inducing brine dilution and microbial inoculation. The characteristics of the shale of the Maquoketa Group (Ordovician) in the Pike County location are briefly discussed to provide a comparison to the New Albany Shale. Copyright ??2010. The American Association of Petroleum Geologists. All rights reserved.
Discovering Fossils--A Hands-on Lab.
ERIC Educational Resources Information Center
Goldstein, Alan
2002-01-01
Describes fossil investigations developed and provided by the Falls of the Ohio State Park near Louisville, Kentucky. The Devonian shale beds contain representatives of over 600 species including corals, sponges, brachiopods, mollusks, and echinoderms. Rather than focusing on identification, the activities emphasize the past ecological…
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface
Doveton, J.H.; Merriam, D.F.
2004-01-01
Pennsylvanian black shales in Kansas have been studied on outcrop for decades as the core unit of the classic Midcontinent cyclothem. These shales appear to be highstand condensed sections in the sequence stratigraphic paradigm. Nuclear log suites provide several petrophysical measurements of rock chemistry that are a useful data source for chemostratigraphic studies of Pennsylvanian black shales in the subsurface. Spectral gamma-ray logs partition natural radioactivity between contributions by U, Th, and K sources. Elevated U contents in black shales can be related to reducing depositional environments, whereas the K and Th contents are indicators of clay-mineral abundance and composition. The photoelectric factor log measurement is a direct function of aggregate atomic number and so is affected by clay-mineral volume, clay-mineral iron content, and other black shale compositional elements. Neutron porosity curves are primarily a response to hydrogen content. Although good quality logs are available for many black shales, borehole washout features invalidate readings from the nuclear contact devices, whereas black shales thinner than tool resolution will be averaged with adjacent beds. Statistical analysis of nuclear log data between black shales in successive cyclothems allows systematic patterns of their chemical and petrophysical properties to be discriminated in both space and time. ?? 2004 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.
1978-10-01
This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered.more » It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)« less
McCartan, Lucy; Bradshaw, Margaret A.
1987-01-01
The Horlick Formation of Early Devonian age is as thick as 50 m and consists of subhorizontal, interbedded subarkosic sandstone and chloritic shale and mudstone. The Horlick overlies an erosion surface cut into Ordovician granitic rocks and is, in turn, overlain by Carboniferous and Permian glacial and periglacial deposits. Textures, sedimentary structures, and ubiquitous marine body fossils and animal traces suggest that the Horlick was deposited on a shallow shelf having moderate wave energy and a moderate tidal range. The source terrane probably lay to the north, and longshore transport was toward the west.
Black shale - Its deposition and diagenesis.
Tourtelot, H.A.
1979-01-01
Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.
Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M
2012-03-20
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
Regional stratigraphy and petroleum potential, Ghadames basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emme, J.J.; Sunderland, B.L.
1991-03-01
The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less
Leventhal, J.S.; Hosterman, J.W.
1982-01-01
Core samples of Devonian shales from five localities in the Appalachian basin have been analyzed chemically and mineralogically. The amounts of major elements are similar; however, the minor constituents, organic C, S, phosphate and carbonate show ten-fold variations in amounts. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As and Mn show variations in amounts that can be related to the minor constituents. All samples contain major amounts of quartz, illite, two types of mixed-layer clays, and chlorite in differing quantities. Pyrite, calcite, feldspar and kaolinite are also present in many samples in minor amounts. Dolomite, apatite, gypsum, barite, biotite and marcasite are present in a few samples in trace amounts. Trace elements listed above are strongly controlled by organic C with the exception of Mn which is associated with carbonate minerals. Amounts of organic C generally range from 3 to 6%, and S is in the range of 2-5%. Amounts of trace elements show the following general ranges in ppm (parts per million): Co, 20-40; Cu, 40-70; U, 10-40; As, 20-40; V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, and the organic C and sulfide S together created an environment that immobilized and preserved these trace elements. Closely spaced samples showing an abrupt transition in color also show changes in organic C, S and trace-element contents. Several associations exist between mineral and chemical content. Pyrite and marcasite are the only minerals found to contain sulfide-S. In general, the illite-chlorite mixed-layer clay mineral shows covariation with organic C if calcite is not present. The enriched trace elements are not related to the clay types, although the clay and organic matter are intimately associated as the bulk fabric of the rock. ?? 1982.
Kelley, Karen D.; Leach, David L.; Johnson, Craig A.
2000-01-01
Stratiform shale-hosted massive sulfide deposits, sulfidebearing concretions and vein breccias, and barite deposits are widespread in sedimentary rocks of Late Devonian to Permian age in the northern Brooks Range. All of the sulfide-bearing concretions and vein breccias are hosted in mixed continental-marine clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. The clastic rocks and associated sulfide occurrences underlie chert and shale of Mississippian-Pennsylvanian(?) age that contain large stratiform massive sulfide deposits like that at Red Dog. The relative stratigraphic position of the vein breccias, as well as previously published mineralogical, geochemical, and lead-isotope data, suggest that the vein breccias formed coevally with overlying shale-hosted massive sulfide deposits and that they may represent pathways of oreforming hydrothermal fluids. Barite deposits are hosted either in Mississippian chert and limestone (at essentially the same stratigraphic position as the shale-hosted massive sulfide deposits) or Permian chert and shale. Although most barite deposits have no associated base-metal mineralization, barite occurs with massive sulfide deposits at the Red Dog deposit.Galena and sphalerite from most vein breccias have δ34S values from –7.3 to –0.7‰ (per mil) and –5.1 to 3.6‰, respectively; sphalerite from sulfide-bearing concretions have δ34S values of 0.7 and 4.7‰. This overall range in δ34S values largely overlaps with the range previously determined for galena and sphalerite from shale-hosted massive sulfide deposits at Red Dog and Drenchwater. The Kady vein-breccia occurrence is unusual in having higher δ34S values for sphalerite (12.1 to 12.9‰) and pyrite (11.3‰), consistent with previously published values for the shale-hosted Lik deposit. The correspondence in sulfur isotopic compositions between the stratiform and vein-breccia deposits suggests that they share a common source of reduced sulfur, or derived reduced sulfur by similar geochemical processes. Most likely, the reduced sulfur was derived by biogenic sulfate reduction (BSR) or thermochemical sulfate reduction (TSR) of seawater sulfate during Devonian-Mississippian time.The δ18O values of quartz from the vein breccias are between 16.6 and 19.9‰. Using the sphalerite-galena sulfur isotopic temperature of 188°±25°C, the calulated hydrothermal fluids had δ18O values of 4.2 to 7.5‰. The calculated range of δ18O values of the fluids is similar to that of pore fluids in equilibrium with sedimentary rocks during diagenesis at 100°– 190°C.
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
This report describes the retrospective case study for northeastern Pennsylvania, which was conducted in Bradford and Susquehanna Counties where some of the most intensive unconventional gas production from the Devonian-age Marcellus Shale has occurred. Gas production from the M...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, D.R. II; Yancey, T.E.; Mapes, R.H.
1983-03-01
A new model for the succession of Pennsylvanian fossil communities, preserved in cyclothems, is proposed on the basis of more than 200 fossil localities in the Mid-Continent, Appalachians, and north Texas. Early models for Mid-Continent cyclothems placed the black shales in shallow water, with maximum transgression at the fusulinid-bearing zone in the overlying limestone. The most recent model proposed that the black phosphatic shales, which commonly occur between two subtidal carbonates, are widespread and laterally continuous over great distances and represent maximum transgression. The black phosphatic shales contain: ammonoids; inarticulate brachiopods; radiolarians; conularids; shark material and abundant and diverse conodonts.more » The black shales grade vertically and laterally into dark gray-black shales which contain many of the same pelagic and epipelagic forms found in the phosphatic black shales. This facies contains the deepest water benthic community. Most of these forms are immature, pyritized, and generally are preserved as molds. The dark gray-black facies grades into a medium gray shale facies which contains a mature molluscan fauna. The medium gray shale grades into a lighter gray facies, which is dominated by brachiopods, crinoids, and corals, with occasional bivalves and gastropods. (These facies are interpreted as being a moderate to shallow depth shelf community). The brachiopid-crinoid community is succeeded by shallow water communities which may have occupied shoreline, lagoonal, bay, interdeltaic, or shallow prodeltaic environments.« less
Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite
Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.
2008-01-01
We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations. ?? 2008 Elsevier Ltd. All rights reserved.
Reconnaissance for uranium in black shale, Northern Rocky Mountains and Great Plains, 1953
Mapel, W.J.
1954-01-01
Reconnaissance examinations for uranium in 22 formations containing black shale were conducted in parts of Montana, North Dakota, Utah, Idaho, and Oregon during 1953. About 150 samples from 80 outcrop localities and 5 oil and gas wells were submitted for uranium determinations. Most of the black shale deposits examined contain less than 0.003 percent uranium; however, thin beds of black shale at the base of the Mississippian system contain 0.005 percent uranium at 2 outcrop localities in southwestern Montana and as much as 0.007 percent uranium in a well in northeastern Montana. An eight-foot bed of phosphatic black shale at the base of the Brazer limestone of Late Mississippian age in Rich County, Utah, contains as much as 0.009 percent uranium. Commercial gamma ray logs of oil and gas wells drilled in Montana and adjacent parts of the Dakotas indicate that locally the Heath shale of Late Mississippian age contains as much as 0.01 percent equivalent uranium, and black shales of Late Cretaceous age contain as much as 0.008 percent equivalent uranium.
Munsell color value as related to organic carbon in Devonian shale of Appalachian basin
Hosterman, J.W.; Whitlow, S.I.
1981-01-01
Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors
NASA Astrophysics Data System (ADS)
Ahmad, N. R.; Jamin, N. H.
2018-04-01
The research was inspired by series of geological studies on Semanggol formation found exposed at North Perak, South Kedah and North Kedah. The chert unit comprised interbedded chert-shale rocks are the main lithologies sampled in a small-scale outcrop of Pokok Sena area. Black shale materials were also observed associated with these sedimentary rocks. The well-known characteristics of shale that may swell when absorb water and leave shrinkage when dried make the formation weaker when load is applied on it. The presence of organic materials may worsen the condition apart from the other factors such as the history of geological processes and depositional environment. Thus, this research is important to find the preliminary relations of the geotechnical properties of soft rocks and the geological reasoning behind it. Series of basic soil tests and 1-D compression tests were carried out to obtain the soil parameters. The results obtained gave some preliminary insight to mechanical behaviour of these two samples. The black shale and weathered interbedded chert-shale were classified as sandy-clayey-SILT and clayey-silty-SAND respectively. The range of specific gravity of black shale and interbedded chert/shale 2.3 – 2.6 and fall in the common range of shale and chert specific gravity value. In terms of degree of plasticity, the interbedded chert/shale samples exhibit higher plastic degree compared to the black shale samples. Results from oedometer tests showed that black shale samples had higher overburden pressure (Pc) throughout its lifetime compare to weathered interbedded chert-shale, however the compression index (Cc) of black shale were 0.15 – 0.185 which was higher than that found in interbedded chert-shale. The geotechnical properties of these two samples were explained in correlation with their provenance and their history of geological processes involved which predominantly dictated the mechanical behaviour of these two samples.
NASA Astrophysics Data System (ADS)
Al-Aasm, I. S.; Morad, S.; Durocher, S.; Muir, I.
1996-11-01
An integrated approach combining CSFe relationships, stable isotopic compositions, and lithofacies characterization was utilized to constrain the palaeoenvironmental and early diagenetic conditions of Middle-Upper Devonian (Eifelian-Frasnian) mudrocks from the Mackenzie Mountains, Northwest Territories, Canada. These rocks include the Hare Indian Formation (informally subdivided into the lower Bluefish Member and the Hare Indian Upper Member), Carcajou Marker and Canol Formation. The Bluefish Member is dominated by black, laminated, organic-rich shales (TOC = 0.35-10.34 wt.%; av. 5.83 wt.) with moderate degrees of pyritization (DOP) of 0.34-0.67 (av. 0.55). These mudrocks were deposited in dysoxic marine bottom-waters that became progressively more oxygenated with time. Variations in TOC, DOP and organic matter δ 13C PDB values (-29.7% to -19.9%; av. -27.2%) are attributed to repeated clastic dilution and increased input of terrestrial organic matter in association with shallowing-upward ramp-clinothem cycles. Pyrite δ 34S CDT values (-32.7% to -18.8%; av. -24.9%) indicate an open system, bacteriogenic seawater-sulphate reduction. Conversely, the overlying Hare Indian Upper Member, characterized by clinothem facies, is composed of grey to green mudstone with minor argillaceous limestones and considerably less organic matter contents (TOC = 0.28-2.99 wt.%; δ 13C = -29.5% to -22.5%). Deposition occurred in oxic to slightly dysoxic waters (DOP = 0.20-0.54; δ 34S = -23.0% to -20.9%), depending on the palaeotopographic location along the depositional slope. A rapid rise in sea level drowned the carbonate 'ramp' member of the Ramparts Formation and produced the thin, organic-rich Carcajou Marker. Bottom-water stagnation that resulted from subdued ramp palaeotopography produced anoxic sea bottom. Black, laminated, organic-rich shales from the Canol Formation (TOC = 1.37-6.68 wt.%) are very similar to those of the Bluefish Member, and are likewise basinal sediments. However, TOC, DOP and organic-matter δ 13C PDB values (-29.1% to -20.8%; av. -26.2%) do not show pronounced variations and indicate that low-energy, quietwater conditions persisted over relatively long, uninterrupted periods of time. High DOP values (0.72-0.93) throughout the Canol Formation suggest that deposition occurred in anoxic bottom-waters, but as basin-fill conditions continued there was a shift to a dysoxic environment (DOP = 0.55-0.65), which grades into nearshore and offshore sequences of the overlying Imperial Formation. In contrast with the Hare Indian Formation, much heavier δ 34S CDT values of pyrite in Canol mudrocks (-11.1% to +5.3%; av. -3.1%) point to bacterial sulphate reduction in a closed to semi-closed system with respect to seawater sulphate.
Cruse, A.M.; Lyons, T.W.
2004-01-01
Regional geochemical differences within a laterally continuous, cyclic Pennsylvanian (Upper Carboniferous) shale in midcontinent North America are interpreted in light of models of glacioeustatic forcing and new views on water-column paleoredox stability and trace-metal behavior in black shale environments. Specifically, we characterize differences in transition metal (Fe, Mn, Mo, V, Ni, Zn, Pb and U) concentrations in black shales of the Hushpuckney Shale Member of the Swope Limestone in Iowa and equivalent black shale beds of the Coffeyville Formation in Oklahoma. Although C-S-Fe systematics and uniform 34S-depleted isotope ratios of pyrite indicate pervasive euxinic deposition (anoxic and sulfidic bottom waters) for these shales, regional variations can be inferred for the efficiency of Mo scavenging and for the rates of siliciclastic sedimentation as expressed in spatially varying Fe/Al ratios. Black shales in Iowa show Mo enrichment roughly five times greater than that observed in coeval euxinic shales in Oklahoma. By contrast, Fe/Al ratios in Oklahoma shales are as much as five times greater than the continental ratio of 0.5 observed in the over- and underlying oxic facies and in the coeval black shales in Iowa. Recent work in modern marine settings has shown that enrichments in Fe commonly result from scavenging in a euxinic water column during syngenetic pyrite formation. In contrast to Fe, the concentrations of other transition metals (Mo, V, Ni, Pb, Zn, U) are typically more enriched in the black shales in Iowa relative to Oklahoma. The transition metal trends in these Paleozoic shales are reasonably interpreted in terms of early fixation in organic-rich sediments due to euxinic water-column conditions. However, regional variations in (1) rates of siliciclastic input, (2) organic reservoirs, including relative inputs of terrestrial versus marine organic matter, and (3) additional inputs of metals to bottom waters from contemporaneous hydrothermal vents are additional key controls that lead to geographic variation in the extent of metal enrichments preserved in ancient organic-rich sediments. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Meyers, P. A.
2013-12-01
Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.
D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity
Lis, G.P.; Schimmelmann, A.; Mastalerz, Maria
2006-01-01
Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.
Price, L.C.; Daws, T.; Pawlewicz, M.
1986-01-01
The Williston basin is an intracratonic basin extending across parts of several states, principally North Dakota, on the US/Canadian frontier. A sequence of up to 16 000 ft of Phanerozoic rocks exists in the basin; the Bakken formation is a relatively thin clastic unit composed of three members, of which the middle one is a black shale. Both core chip and cutting chip samples from a series of widely-distributed well locations were taken for laboratory analysis. Pyrolysis data showed 'wide variations' in maturity indices in samples from equivalent depths at different well locations. This suggests that a number of different palaeoheat-flow regimes have existed in the basin, resulting in the optimization of hydrocarbon formation processes at varying depths at different localities. The vitrinite reflectance profiles presented illustrate the expected trend of linearly-increasing maturity with depth to around 6500 ft. Between 6700 and 10 000 ft, however, this trend is interrupted by two 'reversals'. It is suggested that these reversals are due to suppression of the vitrinite reflectance values in samples with high concentrations of H-rich organic matter, and that they may therefore be associated with transitions from 'terrestrial-derived' to marine-depositional conditions. Consequently, the precise identification of the thresholds of intense hydrocarbon generation within the basin is problematic.-J.M.H.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Onoue, T.; Horie, K.; Sakamoto, R.; Teraji, S.; Aihara, Y.
2012-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The Dixon Island (3195+15 Ma) - Cleaverville (3108+13 Ma) formations formed volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling as DXCL1 at 2007 and DXCL2 at 2011, lithology was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. These sequences formed coarsening and thickening upward black shale-BIF sequences. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. Especially, CL3 core, which drilled through the Iron formation, shows siderite-chert beds above black shale identified before magnetite lamination bed. The magnetite bed formed very thin laminated bed with siderite lamination. This magnetite bed was covered by black shale beds again. New U-Pb SHRIMP data of the pyroclastic in black shale is 3109Ma. Estimated 2-8 cm/1000year sedimentation rate are identified in these sequences. Our preliminary result show that siderite and chert layers formed before magnetite iron sedimentation. The lower-upper sequence of organic carbon rich black shales are similar amount of organic content and 13C isotope (around -30per mill). So we investigate that the Archean iron formation, especially Cleaverville iron formation, was highly related by hydrothermal input and started pre-syn iron sedimentation at anoxic oceanic condition.
NASA Astrophysics Data System (ADS)
Bábek, Ondřej; Faměra, Martin; Hladil, Jindřich; Kapusta, Jaroslav; Weinerová, Hedvika; Šimíček, Daniel; Slavík, Ladislav; Ďurišová, Jana
2018-02-01
Red pelagic sediments are relatively common in the Phanerozoic. They are often interpreted as products of sea-bottom oxidation during greenhouse climate showing a conspicuous alternation with black shales and thus carrying important palaeoceanographic information. The Lower Devonian (Pragian) carbonate strata of the Prague Basin, Czech Republic (Praha Formation) contain a marked band of red pelagic carbonate, up to 15 m thick, which can be correlated for several tens of km. We investigated seven sections (17 to 255 m thick) of the Prague Basin using the methods of facies analysis, outcrop gamma-ray logging, diffuse reflectance spectroscopy, optical microscopy, element geochemistry, magneto-mineralogy and electron microprobe analysis. The aim was to find the mineral carriers of the red colour, investigate the stratigraphic context of the red carbonates and evaluate the local and global prerequisites for their formation. The red pigmentation represents enrichment by hematite with respect to goethite. Approximately 31% of the total reflectance falling in the red colour band represents a threshold for red coloration. The red pigmentation is carried by submicronic hematite dispersed in argillaceous pelagic calcilutite and/or inside skeletal allochems. Gamma-ray log correlation indicates that the red carbonate band developed in stratigraphic levels with low sedimentation rates, typically from 1 to 7.1 mm/kyr, which are comparable to the Mesozoic Rosso Ammonitico facies. The red beds and the whole Praha Formation (Pragian to early Emsian) are characterized by low TOC values (< 0.05%) and low U/Th, Mo/Al, V/Al, Zn/Al, Cu/Al and P/Al ratios indicating oligotrophic, highly oxic sea-bottom conditions. This period was characterized by global cooling, a drop in silicate weathering rates and in atmospheric pCO2 levels. The lower Devonian successions of the Prague Basin indicate that switching between two greenhouse climatic modes, colder oligotropic and warmer mesotrophic, may have been responsible for the alternation of red and grey carbonate strata, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ver Straeten, C.A.
1992-01-01
The K-bentonite-rich interval of the Esopus Formation (eastern New York and northeastern Pennsylvania) overlies the coeval Oriskany/Glenerie/Ridgely Formations and ranges from 1 to 6.3 m in thickness. Six to seventeen soapy-feeling, yellow, tan, green, or gray clay to claystone beds (0.001 to 0.5 m-thick) interbedded with thin siltstone and chert beds (0.02--1 m-thick) characterize outcrops in eastern New York. Heavy mineral separates from these layers yield abundant uncorraded euhedral zircons and apatites, indicating that these are K-bentonites. In eastern Pennsylvania, the westernmost outcrop of the Esopus Formation displays a 2.3 m-thick massive, soapy-feeling clay to claystone-dominated interval. The presence ofmore » both coarse, highly abraded and small, fragile, pristine-appearing zircons and apatites from a 20 cm sampled interval may indicate a complex amalgamation/reworking history to the relatively thick, clay-dominated strata. Similar clay/claystone-rich strata have been found in the lower 0.15 to 1 m of the Beaverdam Member (Needmore Formation) in central Pennsylvania. Interbedded clays and claystones with or without minor siltstone beds characterize some outcrops. Other localities are clay-dominated, with minor amounts of quartz sand present in strata immediately overlying the Ridgely Sandstone. These newly discovered K-bentonite-rich strata mark a transition from shelfal orthoquartzites and carbonates to basinal black/dark gray shales similar to the overlying Middle Devonian Tioga ash interval. Deposition of ash-rich strata, associated with increased volcanic activity, coincided with subsidence of the foreland basin/relative sea level rise. These events were concurrent with a flush of siliciclastic sediments into the basin and are indicative of the onset of an early tectophase of the Devonian Acadian Orogeny.« less
Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirmani, K.U.; Elhaj, F.
1988-08-01
The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less
NASA Astrophysics Data System (ADS)
You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.
2017-12-01
Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.
Late Devonian conodonts and event stratigraphy in northwestern Algerian Sahara
NASA Astrophysics Data System (ADS)
Mahboubi, Abdessamed; Gatovsky, Yury
2015-01-01
Conodonts recovered from the Late Devonian South Marhouma section comprise 5 genera with 31 species (3 undetermined). The fauna establishes the presence of MN Zones 5, undifferentiated 6/7, 8/10 for the Middle Frasnian, the MN Zones 11, 12, 13 for the Upper Frasnian as well as the Early through Late triangularis Zones in the basal Famennian. The outcropping lithological succession is one of mostly nodular calcilutites alternating with numerous marly and shaly deposits, which, in the lower and upper part, comprise several dysoxic dark shale intervals. Among these the Upper Kellwasser horizon can be precisely dated and as such the presence of the terminal Frasnian Kellwasser Event is recognized for the first time in Algeria. Both the Middlesex and Rhinestreet Events cannot yet be precisely located, but supposedly occur among the dark shale horizons in the lower part of the section. However, their assignment to a precise level has so far not been established. Though poor in conodont abundance the South Marhouma section provides first evidence of the presence of several Montagne Noire conodont zones within the so far widely unstudied Frasnian of the Ougarta Chain. As such it is considered representative for the northwestern Algerian Saoura region.
History of gas production from Devonian shale in eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemper, J.R.; Frankie, W.T.; Smath, R.A.
More than 10,500 wells that penetrate the Devonian shale have been compiled into a data base covering a 25-county area of eastern Kentucky. This area includes the Big Sandy gas field, the largest in the Appalachian basin, and marginal areas to the southwest, west, and northwest. The development of the Big Sandy gas field began in the 1920s in western Floyd County, Kentucky, and moved concentrically outward through 1970. Since 1971, the trend has been for infill and marginal drilling, and fewer companies have been involved. The resulting outline of the Big Sandy gas field covers most of Letcher, Knott,more » Floyd, Martin, and Pike Counties in Kentucky; it also extends into West Virginia. Outside the Big Sandy gas field, exploration for gas has been inconsistent, with a much higher ratio of dry holes. The results of this study, which was partially supported by the Gas Research Institute (GRI), indicate that certain geologic factors, such as fracture size and spacing, probably determine the distribution of commercial gas reserves as well as the outline of the Big Sandy gas field. Future Big Sandy infill and extension drilling will need to be based on an understanding of these factors.« less
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Lis, G.P.; Mastalerz, Maria; Schimmelmann, A.; Lewan, M.D.; Stankiewicz, B.A.
2005-01-01
FTIR absorbance signals in kerogens and macerals were evaluated as indices for thermal maturity. Two sets of naturally matured type-II kerogens from the New Albany Shale (Illinois Basin) and the Exshaw Formation (Western Canada Sedimentary Basin) and kerogens from hydrous pyrolysis artificial maturation of the New Albany Shale were characterized by FTIR. Good correlation was observed between the aromatic/aliphatic absorption ratio and vitrinite reflectance R 0. FTIR parameters are especially valuable for determining the degree of maturity of marine source rocks lacking vitrinite. With increasing maturity, FTIR spectra express four trends: (i) an increase in the absorption of aromatic bands, (ii) a decrease in the absorption of aliphatic bands, (iii) a loss of oxygenated groups (carbonyl and carboxyl), and (iv) an initial decrease in the CH2/CH3 ratio that is not apparent at higher maturity in naturally matured samples, but is observed throughout increasing R0 in artificially matured samples. The difference in the CH2/CH 3 ratio in samples from natural and artificial maturation at higher maturity indicates that short-term artificial maturation at high temperatures is not fully equivalent to slow geologic maturation at lower temperatures. With increasing R0, the (carboxyl + carbonyl)/aromatic carbon ratio generally decreases, except that kerogens from the Exshaw Formation and from hydrous pyrolysis experiments express an intermittent slight increase at medium maturity. FTIR-derived aromaticities correlate well with R0, although some uncertainty is due to the dependence of FTIR parameters on the maceral composition of kerogen whereas R0 is solely dependent on vitrinite. ?? 2005 Elsevier Ltd. All rights reserved.
Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements
Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.
2009-01-01
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.
Geological fieldwork in the Libyan Sahara: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Meinhold, Guido; Whitham, Andrew; Howard, James P.; Morton, Andrew; Abutarruma, Yousef; Bergig, Khaled; Elgadry, Mohamed; Le Heron, Daniel P.; Paris, Florentin; Thusu, Bindra
2010-05-01
Libya is one of the most hydrocarbon-rich countries in the world. Its large oil and gas reserves make it attractive to international oil and gas companies, which provide the impetus for field-based research in the Libyan Sahara. North Africa is made up of several enormous intracratonic basins, two of which are found in southern Libya: the Murzuq Basin, in the southwest, and the Kufra Basin, in the southeast, separated by the Tibesti Massif. Both basins are filled with Palaeozoic and Mesozoic clastic sedimentary rocks reaching up to 5 km in thickness. These basins developed from the Cambrian onwards following an earlier period of orogenesis (the Panafrican Orogeny) in the Neoproterozoic. Precambrian metasediments and granitoids are unconformably overlain by Cambrian and Ordovician conglomerates and sandstones. They show a transitional environment from continental to shallow marine. Skolithos-bearing sandstone is common in Ordovician strata. By the Late Ordovician, ice masses had developed across West Gondwana. Upon melting of the ice sheets in the latest Hirnantian, large volumes of melt water and sediment were released that were transported to the periphery of Gondwana. In Libya, these sediments are predominantly highly mature sandstones, which, in many places, are excellent hydrocarbon reservoirs. Polished and striated surfaces in these sandstones clearly point to their glaciogenic origin. Following Late Ordovician deglaciation, black shale deposition occurred in the Silurian. Some of the shales are characterised by high values of total organic carbon (TOC). These shales are commonly referred to as ‘hot shales' due to their associated high uranium content, and are the major source rock for Early Palaeozoic-sourced hydrocarbons in North Africa. Late Ordovician glaciogenic sediments and the Early Silurian ‘hot shales' are therefore the main focus of geological research in the Libyan Sahara. Fluvial conglomerates and sandstones of Devonian age unconformably overlie these strata. Marine intervals occur in the Late Devonian, and the Carboniferous is characterised by shallow marine clastic sediments with carbonate horizons. Permian rocks are only known from subsurface drill cores and comprise continental and deltaic facies. The centre of the Murzuq Basin has been relatively well investigated by drilling and seismic profiles. The basin margins, however, lack detailed geological investigation. In comparison, the Kufra Basin is underexplored with few boreholes drilled. Our studies have focused on the eastern and northern margins of the Murzuq Basin and the northern, eastern and western margins of the Kufra Basin. The main objective of fieldwork has been to characterise the Infracambrian-Lower Palaeozoic stratigraphy, deduce the structural evolution of each study area, and to collect samples for follow-up analyses including provenance studies and biostratigraphy. In addition to outcrop-based fieldwork shallow boreholes up to 70 m depth were successfully drilled in the Early Silurian shales. The unweathered samples retrieved from two of the boreholes have been used for biostratigraphical and whole-rock geochemical investigations. The provenance study of the sandstone succession with conventional heavy mineral analysis together with U-Pb zircon dating provides, for the first time, an understanding of the ancient source areas. Because most of the Early Palaeozoic succession in southern Libya is barren of fossils, heavy mineral chemostratigraphy is moreover used as a correlation test on surface outcrops in the Kufra and Murzuq basins.
Barker, C.E.; Pawlewicz, M.; Cobabe, E.A.
2001-01-01
A transect of three holes drilled across the Blake Nose, western North Atlantic Ocean, retrieved cores of black shale facies related to the Albian Oceanic Anoxic Events (OAE) lb and ld. Sedimentary organic matter (SOM) recovered from Ocean Drilling Program Hole 1049A from the eastern end of the transect showed that before black shale facies deposition organic matter preservation was a Type III-IV SOM. Petrography reveals that this SOM is composed mostly of degraded algal debris, amorphous SOM and a minor component of Type III-IV terrestrial SOM, mostly detroinertinite. When black shale facies deposition commenced, the geochemical character of the SOM changed from a relatively oxygen-rich Type III-IV to relatively hydrogen-rich Type II. Petrography, biomarker and organic carbon isotopic data indicate marine and terrestrial SOM sources that do not appear to change during the transition from light-grey calcareous ooze to the black shale facies. Black shale subfacies layers alternate from laminated to homogeneous. Some of the laminated and the poorly laminated to homogeneous layers are organic carbon and hydrogen rich as well, suggesting that at least two SOM depositional processes are influencing the black shale facies. The laminated beds reflect deposition in a low sedimentation rate (6m Ma-1) environment with SOM derived mostly from gravity settling from the overlying water into sometimes dysoxic bottom water. The source of this high hydrogen content SOM is problematic because before black shale deposition, the marine SOM supplied to the site is geochemically a Type III-IV. A clue to the source of the H-rich SOM may be the interlayering of relatively homogeneous ooze layers that have a widely variable SOM content and quality. These relatively thick, sometimes subtly graded, sediment layers are thought to be deposited from a Type II SOM-enriched sediment suspension generated by turbidities or direct turbidite deposition.
Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs
NASA Astrophysics Data System (ADS)
Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.
2008-12-01
CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.
NASA Astrophysics Data System (ADS)
Zou, C.; Nie, X.; Qiao, L.; Pan, L.; Hou, S.
2013-12-01
The Longmaxi Shale in the Lower Silurian has been recognized as a favorable target of shale gas exploration in Sichuan basin, China. One important feature of shale gas reservoirs is of high total organic carbon (TOC). Many studies have shown that the spectral gamma-ray measurements are positively correlated to the TOC contents. In this study, the spectral gamma ray responses of five shale outcrop profiles are measured in Chongqing and its adjacent areas, Sichuan basin. Three of the five profiles are located in Qijiang, Qianjiang and Changning in Chongqing, and the other two are located in Qilong and Houtan in Guizhou. The main lithologies of the profiles include mainly black shale, gray shale and silty shale. The spectral gamma-ray measurements provide the contents of potassium (K), uranium (U), and thorium (Th). The result of the five profiles shows that the K and Th contents of gray shale are close to the ones of black shale, while the U contents in the black shale are significantly higher than that in the other rocks. The TOC contents are estimated by using the outcrop-based measurements with an empirical formula. The result shows that the TOC contents are the highest in black shale of Changning profile. It indicates that there is a most promising exploration potential for shale gas in this area. In the future, the outcrop data will be used to construct detailed lithofacies profiles and establish relationships between lithofacies both in outcrop and the subsurface gamma-ray logs. Acknowledgment: We acknowledge the financial support of the National Natural Science Foundation of China (41274185) and the Fundamental Research Funds for the Central Universities.
Reconnaissance of ground-water resources in the Eastern Coal Field Region, Kentucky
Price, William E.; Mull, D.S.; Kilburn, Chabot
1962-01-01
In the Eastern Coal Field region of Kentucky, water is obtained from consolidated sedimentary rocks ranging in age from Devonian to Pennsylvanian and from unconsolidated sediments of Quaternary age. About 95 percent of the area is underlain by shale, sandstone, and coal of Pennsylvanian age. Principal factors governing the availability of water in the region are depth, topographic location, and the lithology of the aquifer penetrated. In general, the yield of the well increases as the depth increases. Wells drilled in topographic lows, such as valleys, are likely to yield more water than wells drilled on topographic highs, such as hills. Sand and gravel, present in thick beds in the alluvium along the Ohio River, form the most productive aquifer in the Eastern Coal Field. Of the consolidated rocks in the region sandstone strata are the best aquifers chiefly because joints, openings along bedding planes, and intergranular pore spaces are best developed in them. Shale also supplies water to many wells in the region, chiefly from joints and openings along bedding planes. Coal constitutes a very small part of the sedimentary section, but it yields water from fractures to many wells. Limestone yields water readily from solution cavities developed along joint and bedding-plane openings. The availability of water in different parts of the region was determined chiefly by analyzing well data collected during the reconnaissance. The resulting water-availability maps, published as hydrologic investigations atlases (Price and others, 1961 a, b; Kilburn and others, 1961) were designed to be used in conjunction with this report. The maps were constructed by dividing the region into 5 physiographic areas, into 10 subareas based chiefly on lithologic facies, and, in the case of the Kanawha section, into 2 quality-of-water areas. The 5 physiographic areas are the Knobs, Mississippian Plateau, Cumberland Plateau section, Kanawha section, and Cumberland Mountain section. The 10 subareas are as follows: 1. The Chattanooga shale. This black shale yields only enough water for a minimum domestic supply-100 to 500 gpd (gallons per day). 2. Mississippian-Devonian rocks exposed along Pine Mountain. These rocks consist of shale, limestone, and sandstone. The limestone yields water to springs, and faulted limestone and sandstone lying below drainage may yield several hundred gallons per minute to wells. 3. Mississippian rocks exposed along the western margin of the region. These rocks consist of thick limestone underlain by shale. The limestone yields enough water for a modern domestic supply (more than 500 gpd) , and discharges as much as 100 gpm (gallons per minute) to springs. The shale yields only enough water for a minimum domestic supply. 4. Subarea 1 of the Lee formation of Pennsylvanian age. The thin shaly rocks of this subarea generally yield only enough water for a minimum domestic supply. 5. Subarea 2 of the Lee formation of Pennsylvanian age. This subarea is predominantly underlain by massive sandstones; it generally yields enough water for a modern domestic supply, and in some places, enough water for small public and industrial supplies. 6. Subarea 1 of the Breathitt and Conemaugh formations of Pennsylvanian age. Rocks in this subarea contain more shale than sandstone. Wells in this subarea range from adequate for a minimum domestic supply to adequate for a modern domestic supply. 7. Subarea 2 of the Breathitt formation of Pennsylvanian age and undifferentiated post-Lee Pennsylvanian rocks. Wells in this subarea yield enough water for a modern domestic supply, and in many places, enough water for small public and industrial supplies. 8. Alluvium along the Ohio River. Mostly composed of glacial outwash sand and gravel, the alluvium is reported to yield as much as 360 gpm to wells. 9. Alluvium along the Big Sandy River and lower reaches of its Tug and Levisa Forks. Where consisting mostly of sand,
Irradiation of organic matter by uranium decay in the Alum Shale, Sweden
NASA Astrophysics Data System (ADS)
Lewan, M. D.; Buchardt, B.
1989-06-01
The Alum Shale of Sweden contains black shales with anomalously high uranium concentrations in excess of 100 ppm. Syngenetic or early diagenetic origin of this uranium indicates that organic matter within these shales has been irradiated by decaying uranium for approximately 500 Ma. Radiation-induced polymerization of alkanes through a free-radical cross-linking mechanism appears to be responsible for major alterations within the irradiated organic matter. Specific radiation-induced alterations include generation of condensate-like oils at reduced yields from hydrous pyrolysis experiments, decrease in atomic H/C ratios of kerogens, decrease in bitumen/organic-carbon ratios, and a relative increase in low-molecular weight triaromatic steroid hydrocarbons. Conversely, stable carbon isotopes of kerogens, reflectance of vitrinite-like macerais, oil-generation kinetics, and isomerization of 20R to 20S αα C 29-steranes were not affected by radiation. The radiation dosage needed to cause the alterations observed in the Alum Shale has been estimated to be in excess of 10 5 Mrads with respect to organic carbon. This value is used to estimate the potential for radiation damage to thermally immature organic matter in black shales through the geological rock record. High potential for radiation damage is not likely in Cenozoic and Mesozoic black shales but becomes more likely in lower Paleozoic and Precambrian black shales.
Wilke, Franziska D H; Schettler, Georg; Vieth-Hillebrand, Andrea; Kühn, Michael; Rothe, Heike
2018-05-18
The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters (Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of unconventional gas can be accompanied by serious health risks due to the release of toxic chemical components and natural occurring radionuclides into the return flow water and their near-surface accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales by interaction with drilling fluids containing additives that are commonly employed for shale gas exploitation. We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 μg/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 μg/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of 238 U is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of 238 U, the 226 Ra activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania
Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K
2013-01-01
Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters—indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. PMID:23560830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, V.S.
1980-06-01
This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author indexmore » following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.« less
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; ...
2017-10-25
Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.
Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less
Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.
2016-01-01
Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (<70 g/L) of meteoric origin in the middle and upper Permian hydrocarbon reservoirs (1.2–2.5 km depth; Guadalupian and Leonardian age) likely represent meteoric waters that infiltrated through and dissolved halite and anhydrite in the overlying evaporite layer. Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (<100 g/L) in Devonian and deeper reservoirs (>3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.
The provenance of low-calcic black shales
NASA Astrophysics Data System (ADS)
Quinby-Hunt, M. S.; Wilde, P.
1991-04-01
The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.
Self-cementing properties of oil shale solid heat carrier retorting residue.
Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle
2013-06-01
Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.
Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR
Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.
2005-01-01
Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.
Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.
1979-01-01
A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata. In fresh rock, bluish-white opaline-like silica (chalcedonic quartz) fills microfractures, and is believed to have originated by diagenetic mobilization of opaline silica from radiolarian tests and sponge spicules. As revealed by microscopic study, the Gibellini facies originally consisted of siliceous muds, slimes, and oozes high in organic constituents. The organic matter is amorphous flaky and stringy sapropel, and probably includes remains of bacteria, phytoplankton, zooplankton, and minor higher plants. Recognizable organic remnants include radiolarian tests, sponge spicules, conodonts, brachiopod shells, algae, and humic debris. Diagnostic radiolarians indicate a Late Devonian age for the Gibellini facies of the Woodruff Formation. Some pyrite is disseminated through the rock and may be primary (syngenetic) but significant pyrite and marcasite occur in chalcedonic quartz veinlets and appear to be diagenetic. In fresh rock, black solid bitumen and liquid oil fill voids and microfractures. These early phase hydrocarbons probably were released during diagenesis from complex nonhydrocarbon molecular structures originating from living organisms, and formed without any major thermal degradation of the kerogen. Gas chromatographic analysis of the saturated hydrocarbon fraction indicates a very complex mixture dominated by branched and cyclic compounds. Conodont and palynomorph color alteration, vitrinite reflectance, and other organic geochemical data suggest that the organic matter in the rock is thermally immature and has not been subjected to temperatures greater than 60?C since deposition in Devonian time. All of these characteristics are consistent with the interpretation of a relatively low temperature and a shallow-burial history for the Gibellini facies on ridge 7129.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkin, J.E.; Conkin, B.M.
1994-04-01
Internal units within the Columbus Limestone (Early Devonian Emsian [Schoharie] to Middle Devonian Eifelian [late Onesquethawan]) and the Delaware Formation (Middle Devonian early Givetian [Cazenovian]) of central Ohio are separated by disconformities of the magnitude of paracontinuities. Stauffer (1909) divided the Columbus Limestone into zones A--H and the Delaware Formation into zones I--M. Within the Columbus, the A Zone (conglomerate at the base of Bellepoint Member) disconformably overlies Late Silurian beds. The D zone at top of the Bellepoint Member (bearing the Kawkawlin Metabentonite horizon) is overlain paracontinuously by the Marblehead Member (Lower Paraspirifer acuminatus-Spirifer macrothyris to Brevispirifer gregarius-Moellerina greeneimore » zones [= E--G zones]), with the Onondagan Indian Nation Metabentonite in the top of the G Zone. The Marblehead Member is overlain paracontinuously by a bone bed at base of the Venice Member (H zone = Upper Paraspirifer acuminatus- Spirifer duodenarius'' Zone). I Zone (Dublin Shale=Marcellus) of the Delaware Formation overlies the Columbus and has two bone beds at its base; Tioga Metabentonite (restricted) overlies the I Zone bone beds and is a few tenths to 1.85 feet above the base of the I Zone. Paracontinuities and bone beds occur at the bases of J, K, and L zones. Conkin and Conkin (1975) have shown Stauffer's (1909) M Zone is an extension of his L Zone. The Olentangy paracontinuously overlies the L Zone.« less
Uranium in the Upper Cambrian black shale of Sweden
McKelvey, Vincent Ellis
1955-01-01
The Peltura zone of the Upper Cambrian black shales of Sweden contains about 0.02 percent uranium. Maximum amounts are present in rocks deposited in an embayment in the sea and in rocks in or closely adjacent to that part of the vertical sequence that contains maximum amounts of distillable oil, total organic matter, pyrite, and a black highly uraniferous kerogen called "kolm". Available data suggest that the precipitation of uranium is favored by a low redox potential and that the uranium in the shale matrix may be in fine-grained kolm.
Investigating Rare Earth Element Systematics in the Marcellus Shale
NASA Astrophysics Data System (ADS)
Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.
2014-12-01
The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our conclusions on the impact of depositional setting and diagenetic remobilization and authigenic mineral formation on the REE system in the Marcellus Shale.
NASA Astrophysics Data System (ADS)
Jia, Y.; McCulloch, M.; Charlotte, A.
2003-12-01
To address the question of the redox state of the Precambrian atmosphere-hydrosphere system via sediments requires measurement of redox sensitive trace elements, and inter-element ratios, in deep water black shales with a chemical sedimentary "hydrogenic" component. This approach is endorsed by recent progress in research of redox-sensitive trace metals records in late Proterozoic and Phanerozoic sedimentary rocks, which has provided important clues to how the redox state of depositional environments has changed over time. Many conventional studies, in contrast, have been on first cycle volcanogenic turbidites with a minimal hydrogenic input (Taylor and McLennan, 1995). Accordingly, we have analyzed the redox-sensitive, trace element compositions of the 2.1 Ga black shales in Birimian Blet, West Africa, and the 2.7 Ga Archean counterparts in Timmins, Canada, Tati Belt, Botswana, and Kanowna District, Western Australia. These pyrite-bearing black shales, which were originally argillaceous sediments containing organic matter and low in thermal maturity, were primarily deposited in the deep-sea pelagic environments. Th/U ratios are lower in the Proterozoic shales (0.38-0.82, average 0.67), and Archean shales (0.47-3.65, average 2.43) relative to "conventional" Archean upper crust (3.8), PAAS (4.7), or average upper continental crust (3.8). Calculated U concentrations from hydrogenic component are between 0.90 and 2.45 in the Proterozoic shales, and range from 0.06 to 0.96 for the Archean black shales. Given the conservative behavior of Th in the sedimentary cycle, variably low Th/U ratios in these Precambrian black shales signify that U6+, soluble in oxidized surface waters, was reduced to insoluble U4+ in reducing bottom waters, as in the contemporary Black Sea. The results are consistent with a locally to globally oxidized atmosphere-shallow hydrosphere pre-2.0 Ga. Taylor, S.R., and McLennan, S.C., 1995. The geochemical evolution of the continental crust: Reviews of Geophysics, v. 33. p. 241-265.
Heterogeneity of shale documented by micro-FTIR and image analysis.
Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt
2014-12-01
In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Meyers, P. A.
2011-12-01
A curious depletion of 13C in the organic matter of marine black shales has been widely recognized ever since the advent of carbon isotope measurements half a century ago. Paleozoic and Mesozoic black shales commonly have del13C values between -29 and -26 permil, whereas modern marine organic matter has values between -22 and -18 permil. The black shale values mimic those of continental organic matter, yet sedimentary settings and Rock-Eval results indicate that the organic matter is marine in origin. This presentation will overview and discuss hypotheses to explain the isotopically light values of the black shales. First, the preferential removal of isotopically heavier organic matter components such as carbohydrates by diagenesis will be examined and shown to be wanting. Second, the possible oxidation of isotopically light methane released from clathrates that would have altered the DIC pool available to phytoplankton will be considered and also be found unlikely. A third possibility - that greater concentrations of CO2 in the greenhouse atmospheres that corresponded with deposition of many black shales allowed greater discrimination against 13C during photosynthesis - will be evaluated from del13C values of bulk carbon and of algal and land-plant biomarker molecules. Finally, the possibility that stronger stratification of the surface ocean may have magnified photic zone recycling of organic matter and reincorporation of its isotopically light carbon into fresh biomass will be considered. Although the fourth possibility is contrary to the conditions of vertical mixing of nutrients that exist in modern upwelling systems and that are responsible for their high productivity, it is consistent with the strongly stratified conditions that accompanied the high productivity that produced the Pliocene-Pleistocene sapropels of the Mediterranean Sea. Because the sapropels and most Phanerozic black shales share del15N values near 0 permil, nitrogen fixation evidently was important to most of these carbon-rich sequences, implying that well-developed surface stratification was central to their formation. On this basis, the 13C-depletion common to most Phanerozoic black shales is evidence of periods of high productivity over large areas of poorly mixed ancient oceans and constitutes an isotopic signal and an environmental scenario very different to what is known in the modern ocean.
Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia
Ulmishek, Gregory F.
2001-01-01
The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.
Breen, Kevin J.; Revesz, Kinga; Baldassare, Fred J.; McAuley, Steven D.
2007-01-01
In January 2001, State oil and gas inspectors noted bubbles of natural gas in well water during a complaint investigation near Tioga Junction, Tioga County, north-central Pa. By 2004, the gas occurrence in ground water and accumulation in homes was a safety concern; inspectors were taking action to plug abandoned gas wells and collect gas samples. The origins of the natural-gas problems in ground water were investigated by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, in wells throughout an area of about 50 mi2, using compositional and isotopic characteristics of methane and ethane in gas and water wells. This report presents the results for gas-well and water-well samples collected from October 2004 to September 2005. Ground water for rural-domestic supply and other uses near Tioga Junction is from two aquifer systems in and adjacent to the Tioga River valley. An unconsolidated aquifer of outwash sand and gravel of Quaternary age underlies the main river valley and extends into the valleys of tributaries. Fine-grained lacustrine sediments separate shallow and deep water-bearing zones of the outwash. Outwash-aquifer wells are seldom deeper than 100 ft. The river-valley sediments and uplands adjacent to the valley are underlain by a fractured-bedrock aquifer in siliciclastic rocks of Paleozoic age. Most bedrock-aquifer wells produce water from the Lock Haven Formation at depths of 250 ft or less. A review of previous geologic investigations was used to establish the structural framework and identify four plausible origins for natural gas. The Sabinsville Anticline, trending southwest to northeast, is the major structural feature in the Devonian bedrock. The anticline, a structural trap for a reservoir of deep native gas in the Oriskany Sandstone (Devonian) (origin 1) at depths of about 3,900 ft, was explored and tapped by numerous wells from 1930-60. The gas reservoir in the vicinity of Tioga Junction, depleted of native gas, was converted to the Tioga gas-storage field for injection and withdrawal of non-native gases (origin 2). Devonian shale gas (shallow native gas) also has been reported in the area (origin 3). Gas might also originate from microbial degradation of buried organic material in the outwash deposits (origin 4). An inventory of combustible-gas concentrations in headspaces of water samples from 91 wells showed 49 wells had water containing combustible gases at volume fractions of 0.1 percent or more. Well depth was a factor in the observed occurrence of combustible gas for the 62 bedrock wells inventoried. As well-depth range increased from less than 50 ft to 51-150 ft to greater than 151 ft, the percentage of bedrock-aquifer wells with combustible gas increased. Wells with high concentrations of combustible gas occurred in clusters; the largest cluster was near the eastern boundary of the gas-storage field. A subsequent detailed gas-sampling effort focused on 39 water wells with the highest concentrations of combustible gas (12 representing the outwash aquifer and 27 from the bedrock aquifer) and 8 selected gas wells. Three wells producing native gas from the Oriskany Sandstone and five wells (two observation wells and three injection/withdrawal wells) with non-native gas from the gas-storage field were sampled twice. Chemical composition, stable carbon and hydrogen isotopes of methane (13CCH4 and DCH4), and stable carbon isotopes of ethane (13CC2H6) were analyzed. No samples could be collected to document the composition of microbial gas originating in the outwash deposits (outwash or 'drift' gas) or of native natural gas originating solely in Devonian shale at depths shallower than the Oriskany Sandstone, although two of the storage-field observation wells sampled reportedly yielded some Devonian shale gas. Literature values for outwash or 'drift' gas and Devonian shale gases were used to supplement the data collection. Non-native gases fr
Gold and platinum in shales with evidence against extraterrestrial sources of metals
Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.; Glascock, M.D.; Denison, J.R.
1992-01-01
Few black shales contain concentrations of precious metals higher than average continental crust (i.e. ???5 ppb Au). Yet Au and Pt alloys have been reported from the Kupferschiefer in Poland. Moreover, thin sulfide beds in certain Chinese and Canadian shales contain several hundred ppb Au, Pd and Pt and average ???4% Mo and ???2.5% Ni in an association that is difficult to explain. Volcanic and non-volcanic exhalations, hydrothermal epigenesis involving either igneous or sedex fluids, biogenic processes and low-temperature secondary enrichment are among the possible factors involved in deriving Ni, PGE and Au for black shales and sulfide beds in black shales. Extraterrestrial sources have been invoked in some cases (e.g., the Cambrian of China). However, available data on abundances of PGE indicate relatively low values for Ir (<0.02-2 ppb) in comparison with amounts for other PGE (up to 700 ppb Pt and 1255 ppb Pd). These data and high contents for Mo are not consistent with extraterrestrial sources of metals for Chinese shales and Ni-Mo-sulfide beds. Data are less complete for the U.S. shales, but nevertheless are suggestive of earthly origins for PGE. ?? 1992.
Evaluation of methane sources in groundwater in northeastern Pennsylvania.
Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K
2013-01-01
Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters--indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. © 2013, Cabot Oil and Gas Corporation. Groundwater © 2013, National GroundWater Association.
Hydrocarbon potential of Morocco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achnin, H.; Nairn, A.E.M.
1988-08-01
Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less
Milici, Robert C.; Swezey, Christopher S.
2006-01-01
The U.S. Geological Survey (USGS) recently completed an assessment of the technically recoverable undiscovered hydrocarbon resources of the Appalachian Basin Province. The assessment province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia and Alabama. The assessment was based on six major petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) extends generally from New York to Tennessee. This petroleum system has produced a large proportion of the oil and natural gas that has been discovered in the Appalachian basin since the drilling of the Drake well in Pennsylvania in 1859. For assessment purposes, the TPS was divided into 10 assessment units (plays), 4 of which were classified as conventional and 6 as continuous. The results were reported as fully risked fractiles (F95, F50, F5 and the Mean), with the fractiles indicating the probability of recovery of the assessment amount. Products reported were oil (millions of barrels of oil, MMBO), gas (billions of cubic feet of gas, BCFG), and natural gas liquids (millions of barrels of natural gas liquids, MMBNGL). The mean estimates for technically recoverable undiscovered hydrocarbons in the TPS are: 7.53 MMBO, 31,418.88 BCFG (31.42 trillion cubic feet) of gas, and 562.07 MMBNGL.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, G.; Dong, D.; Wang, Y.
2016-12-01
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V+Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.
Higley, Debra K.; Henry, M.E.; Lewan, M.D.; Pitman, Janet K.
2003-01-01
The data files and explanations presented in this report were used to generate published material-balance approach estimates of amounts of petroleum 1) expelled from a source rock, and the sum of 2) petroleum discovered in-place plus that lost due to 3) secondary migration within, or leakage or erosion from a petroleum system. This study includes assessment of cumulative production, known petroleum volume, and original oil in place for hydrocarbons that were generated from the New Albany Shale source rocks.More than 4.00 billion barrels of oil (BBO) have been produced from Pennsylvanian-, Mississippian-, Devonian-, and Silurian-age reservoirs in the New Albany Shale petroleum system. Known petroleum volume is 4.16 BBO; the average recovery factor is 103.9% of the current cumulative production. Known petroleum volume of oil is 36.22% of the total original oil in place of 11.45 BBO. More than 140.4 BBO have been generated from the Upper Devonian and Lower Mississippian New Albany Shale in the Illinois Basin. Approximately 86.29 billion barrels of oil that was trapped south of the Cottage Grove fault system were lost by erosion of reservoir intervals. The remaining 54.15 BBO are 21% of the hydrocarbons that were generated in the basin and are accounted for using production data. Included in this publication are 2D maps that show the distribution of production for different formations versus the Rock-Eval pyrolysis hydrogen-indices (HI) contours, and 3D images that show the close association between burial depth and HI values.The primary vertical migration pathway of oil and gas was through faults and fractures into overlying reservoir strata. About 66% of the produced oil is located within the generative basin, which is outlined by an HI contour of 400. The remaining production is concentrated within 30 miles (50 km) outside the 400 HI contour. The generative basin is subdivided by contours of progressively lower hydrogen indices that represent increased levels of thermal maturity and generative capacity of New Albany Shale source rocks. The generative basin was also divided into seven oil-migration catchments. The catchments were determined using a surface-flow hydrologic model with contoured HI values as input to the model.
NASA Astrophysics Data System (ADS)
Botor, Dariusz
2018-03-01
The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and 3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian - Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.
NASA Astrophysics Data System (ADS)
Yum, J.; Meyers, P. A.; Bernasconi, S. M.; Arnaboldi, M.
2005-12-01
The mid-Cretaceous (Cenomanian- Turonian) was characterized as a peak global greenhouse period with highest sea level, highest CO2 concentration in atmosphere and low thermal gradients from the poles to the equator. The depositional environment of the organic-carbon-rich black shales that typify this period remains an open question. A total of 180 Cenomanian- Turonian core samples were selected from multiple ODP and DSDP sites in the Atlantic Ocean: 530 (Cape Basin), 603 (Hatteras Rise), 641 (Galicia Bank), 1257-1261 (Demerara Rise), 1276 (Newfoundland Basin). Total organic carbon and nitrogen concentrations and isotopic compositions were measured to investigate variations in the proto-Atlantic Ocean paleoceanographic conditions that contributed to the origin of the black shales for this period. These new data were combined with existing data from Sites 367 (Senegal Rise), 530, and 603. Both the black shales and the organic-carbon-poor background sediments (less than 1 percent) have carbon isotope values between -29 to -22 permil. The C/N ratios of the background sediments are low (less than 20) compared to those of the black shales (20-40). Nitrogen isotope values range from 0 to 4 permil in the background samples. All black shales have similarly low nitrogen isotope values that range between -4 to 0 permil. These exceptionally low values are inferred to reflect the productivity of blue green algae and cyanobacteria under strongly surface stratified oceanic conditions. Although carbon isotope and C/N values of black shales show almost similar patterns at each location, there are site-specific shifts in these data that could be related to the amount of continental run off and/or the effect of latitude. Our multi-site comparison suggests that specially stratified depositional environments that could produce and accumulate the abnormally high carbon concentrations in sediments occurred throughout the proto-Atlantic ocean during the mid-Cretaceous. However, regional factors affected the amount and origin of organic matter delivered to each location.
Geology and hydrocarbon potential of the Oued Mya Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1992-01-01
The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less
Włodarczyk, Agnieszka; Lirski, Maciej; Fogtman, Anna; Koblowska, Marta; Bidziński, Grzegorz; Matlakowska, Renata
2018-01-01
Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium , and Sulfuricaulis . This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.
Fix, Carolyn E.
1956-01-01
The bibliography consists of annotations or abstracts of selected reports that pertain to the geology and occurrence of uranium in marine black shales and their metamorphic equivalents in the United States. Only those reports that were available to the public prior to June 30, 1956, are included. Most of the reports may be consulted in the larger public, university, or scientific libraries. A few reports that have been released to the public in open file may be consulted at designated offices of the Geological Survey. An effort has been made to include only those references to shales whose uranium is believed to be of syngenetic origin and whose major source of radioactivity is uranium. Many general papers on the geology of uranium deposits refer to marine black shales, and some of these general papers have been included.
Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis
Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.
1982-01-01
The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.
Tuttle, M.L.W.; Breit, G.N.
2009-01-01
Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.
Higley, Debra K.
2011-01-01
In 2010 the U.S. Geological Survey assessed undiscovered oil and gas resources for the Anadarko Basin Province of Colorado, Kansas, Oklahoma, and Texas. The assessment included three continuous (unconventional) assessment units (AU). Mean undiscovered resources for the (1) Devonian Woodford Shale Gas AU are about 16 trillion cubic feet of gas (TCFG) and 192 million barrels of natural gas liquids (MMBNGL), (2) Woodford Shale Oil AU are 393 million barrels of oil (MMBO), 2 TCFG, and 59 MMBNGL, and (3) Pennsylvanian Thirteen Finger Limestone-Atoka Shale Gas AU are 6.8 TCFG and 82 MMBNGL. The continuous gas AUs are mature for gas generation within the deep basin of Oklahoma and Texas. Gas generation from the Woodford Shale source rock started about 335 Ma, and from the Thirteen Finger Limestone-Atoka Shale AU about 300 Ma. Maturation results are based on vitrinite reflectance data, and on 1D and 4D petroleum system models that calculated vitrinite reflectance (Ro), and Rock-Eval and hydrous pyrolysis transformation (HP) ratios through time for petroleum source rocks. The Woodford Shale Gas AU boundary and sweet spot were defined mainly on (1) isopach thickness from well-log analysis and published sources; (2) estimated ultimate recoverable production from existing, mainly horizontal, wells; and (3) levels of thermal maturation. Measured and modeled Ro ranges from about 1.2% to 5% in the AU, which represents marginally mature to overmature for gas generation. The sweet spot included most of the Woodford that was deposited within eroded channels in the unconformably underlying Hunton Group. The Thirteen Finger Limestone-Atoka Shale Gas AU has no known production in the deep basin. This AU boundary is based primarily on the gas generation window, and on thickness and distribution of organic-rich facies from these mainly thin shale and limestone beds. Estimates of organic richness were based on well-log signatures and published data.
Yang, Jon; Verba, Circe; Torres, Marta; ...
2018-02-01
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jon; Verba, Circe; Torres, Marta
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
NASA Astrophysics Data System (ADS)
Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei
2006-08-01
The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.
Black shale deposition during Toarcian super-greenhouse driven by sea level
NASA Astrophysics Data System (ADS)
Hermoso, M.; Minoletti, F.; Pellenard, P.
2013-12-01
One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere-ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the oxygen availability in the water column whose nature has still to be determined through cyclostratigraphic analysis.
Black shale deposition during Toarcian super-greenhouse driven by sea level
NASA Astrophysics Data System (ADS)
Hermoso, M.; Minoletti, F.; Pellenard, P.
2013-07-01
One of the most elusive aspects of the Toarcian Oceanic Anoxic Event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the T-OAE (defined by the overarching positive trend in the carbon isotopes). In the present studied, we have attempted to establish a sequence stratigraphy framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by > 10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the Atmosphere-Ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales were restricted to epicontinental seas (higher Mo to TOC ratios) during a period of relative high sea level, and carbon isotopes returning to pre-T-OAE values. Comparing palaeoredox proxies with the inferred sequence stratigraphy for Sancerre suggests that episodes of short-term organic carbon enrichment were primarily driven by third-order sea level changes. These black shales exhibit remarkably well-expressed higher-frequency cyclicities in the concentration of redox-sensitive elements such as iron or vanadium whose nature has still to be determined through cyclostratigraphic analysis.
Trace elements reconnaissance investigations in New Mexico and adjoining states in 1951
Bachman, George O.; Read, Charles B.
1952-01-01
In the summer and fall of 1951, a reconnaissance search was made in New Mexico and adjacent states for uranium in coal and carbonaceous shale, chiefly of Mesozoic age, and black marine shale of Paleozoic age. Tertiary volcanic rocks, considered to be a possible source for uranium in the coal and associated rocks, were examined where the volcanic rocks were near coal-bearing strata. Uranium in possibly commercial amounts was found at La Ventana Mesa, Sandoval County, New Mexico. Slightly uranifeous coal and carbonaceous shale were found near San Ysidro, Sandoval County, and on Beautiful Mountain, San Juan County, all in New Mexico, and at Keams Canyon, Navajo County, and near Tuba City, Coconino County, in Arizona. Except for La Ventana deposit, none appeared to be of economic importance at the time this report was written, but additional reconnaissance investigations have been underway this field season, in the area where the deposits occur. Marine black shale of Sevonian age was examined in Otero and Socorro Counties, New Mexico and Gila County, Arizona. Mississippian black shale in Socorro County and Pennsylvanian black shale in Taos County, New Mexico were also tested. Equivalent uranium content of samples of these shales did not exceed 0.004 percent. Rhyolitic tuff from the Mount Taylor region is slightly radioactive as is the Bandelier tuff in the Nacimiento region and in the Jemez Plateau. Volcanic rocks in plugs and dikes in the northern Chuska Mountains and to the north in New Mexico as well as in northeastern Arizona and southeastern Utah are slightly radioactive. Coal and carbonaceous rocks in the vicinity of these and similar intrusions are being examined.
Dumoulin, Julie A.; White, Tim
2005-01-01
Micromorphologic evidence indicates the presence of paleosols in drill-core samples from four sedimentary units in the Red Dog area, western Brooks Range. Well-developed sepic-plasmic fabrics and siderite spherules occur in claystones of the Upper Devonian through Lower Mississippian(?) Kanayut Conglomerate (Endicott Group), the Pennsylvanian through Permian Siksikpuk Formation (Etivluk Group), the Jurassic through Lower Cretaceous Kingak(?) Shale, and the Lower Cretaceous Ipewik Formation. Although exposure surfaces have been previously recognized in the Endicott Group and Kingak Shale on the basis of outcrop features, our study is the first microscopic analysis of paleosols from these units, and it provides the first evidence of subaerial exposure in the Siksikpuk and Ipewik Formations. Regional stratigraphic relations and geochemical data support our interpretations. Paleosols in the Siksikpuk, Kingak, and Ipewik Formations likely formed in nearshore coastal-plain environments, with pore waters subjected to inundation by the updip migration of slightly brackish ground water, whereas paleosols in the Kanayut Conglomerate probably formed in a more distal setting relative to a marine basin.
NASA Astrophysics Data System (ADS)
Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.
2012-12-01
Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in Pennsylvania allows comparison of behaviors of REE in the organic-rich vs. organic-poor end members under the same climate conditions. Our study shows that black shale bedrock has much higher REE contents compared to the Rose Hill gray shale. The presence of reactive phases such as organic matter, carbonates and sulfides in black shale and their alteration greatly enhance the release of REE and other metals to surface environments. This observation suggests that weathering of black shale is thus of particular importance in the global REE cycles, in addition to other heavy metals that impact the health of terrestrial and aquatic ecosystems. Finally, our ongoing investigation of four more gray shale watersheds in Virginia, Tennessee, Alabama, and Puerto Rico will allow for a comparison of shale weathering along a climosequence. Such a systematic study will evaluate the control of air temperature and precipitation on REE release from gray shale weathering in eastern USA.
NASA Astrophysics Data System (ADS)
Choi, Jiyoung; Hong, Sung Kyung; Lee, Hyun Suk
2017-04-01
In this study, we investigate organic matter characteristics from the analysis of Rock-Eval6 and biomarker, and estimate methane concentration from headspace method in the Devonian Horn River Formation, which is one of the largest shale reservoir in western Canada. The Horn River Formation consists of the Evie, Otterpark and Muskwa members in ascending stratigraphic order. Total Organic Carbon (TOC) ranges from 0.34 to 7.57 wt%, with an average of 2.78 wt%. The Evie, middle Otterpark and Muskwa members have an average TOC of more than 3%, whereas those of the lower and upper Otterpark Member are less than 2%. Based on Pristane/n-C17 (0.2 0.6) and Phytane/n-C18 (0.3 0.9) ratios, the organic matter in the Evie, middle Otterpark and Muskwa members mainly consists of type II kerogen which are formed in reducing marine environment. Thermal maturity were examined through the use of the distributions of Phenanthrene (P) and Methylphenantrenes (MP) based on m/z 178 and 192 mass chromatograms, respectively (Radke et al., 1982). The methylphenanthrene index (MPI-1) are calculated as follows : MPI-1 = 1.5 × (2MP+3MP)/(P+1MP+9MP), and Ro are calculated as follows : Ro = -0.6 × MPI-1 + 2.3. Estimated Ro ranges between 1.88 and 1.93%, which indicates the last stage of wet gas generation. The methane concentrations in headspace range from 15 to 914 ppmv, with an average of 73.5 ppmv. The methane concentrations in the Evie, middle Otterpark and Muskwa members (up to 914 ppmv) are higher than those of the lower and upper Otterpark Member (up to 75 ppmv). Considering the organic geochemical characteristics and gas concentrations, the shale gas potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members.
NASA Astrophysics Data System (ADS)
Junium, C. K.; Bornemann, A.; Bown, P. R.; Friedrich, O.; Moriya, K.; Kirtland Turner, S.; Whiteside, J. H.
2013-12-01
The recovery of Cretaceous, Cenomanian-Turonian black shales deposited during Oceanic Anoxic Event 2 (OAE 2) at Site U1407, South East Newfoundland Ridge (SENR), was an unexpected but fortuitous discovery that fills a gap in the pelagic Tethyan and North Atlantic geologic records. Drilling operations recovered the OAE sequence in all three holes drilled at Site U1407 defined initially on the basis of lithology and calcareous nannofossil biostratigraphy and confirmed by carbon isotope stratigraphy post-expedition. The SENR OAE 2 sequence is a classic chalk sequence punctuated by a prominent black band. Prior to OAE 2, greenish white pelagic carbonate is interrupted by thin, 2 to 5 cm thick organic-rich, gray calcareous clays. A sharp transition from greenish-white chalk to carbonate-poor sediments marks the occurrence of the organic carbon-rich black band. Within the black band are finely laminated to massive, pyritic black shales and laminated gray clays that are relatively organic carbon-lean, free of preserved benthic foraminifera and rich in radiolarians. Finely laminated greenish-gray marls overlay the black band and grade into approximately 1 meter of greenish white chalks with common 1cm chert layers and nodules. The remainder of the Turonian sequence is characterized by a notable transition to pink chalks. The thickness of the black band ranges from 15-40 cm between Holes A through C. The differences in the thickness of beds between Holes is due in part to drilling disturbances and mass wasting indicated by slump features in the overlying Turonian strata. Core scanning XRF and carbon isotopes can help resolve the nature of these differences and inform future sampling and study. Carbonate and organic carbon isotopes reveal that the δ13C excursion marking the initiation of OAE 2 is below the base of the black band. At U1407A the δ13C rise is immediately below (3 cm) the black shale, with δ13C maxima in the black band. At U1407C the initial δ13C rise is below the black shale by 60 cm, in the underlying chalk. The temporal transience of TOC-enrichment is typical of OAE 2 sequences, particularly in the Tethyan realm (Gubbio, Italy; Ferriby, UK; Tarfaya, Morocco; Wunsorf, Germany), but the mechanism is unknown. In many ways, Site U1407 bears the distinct characteristics of the Tethyan region. Prior to the OAE, there are several black and dark gray bands interbedded with carbonate-rich (>80 wt. %), greenish white chalks. The color progression of white to black to pink through the OAE at U1407 is similar to C-T boundary sequences from the Umbria-Marche basin of Italy. The greenish white to pink nannofossil chalks are reminiscent of the Scaglia Bianca/Rossa limestones that bound the Bonarelli horizon. Associated lithologies include the presence of radiolarian sands interbedded with the black shales and cherts. This stratigraphic progression is similar to the Italian sequences, but the δ13C stratigraphy indicates that the excursion leads black shale deposition and in this sense is more similar to shallow continental records from the UK, USA and mainland Europe. This new δ13C record can be used to correlate SENR with other OAE 2 sections, allowing us to better understand possible mechanisms for the temporal transience of the black shales and paleoceanographic change during OAE2.
Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.
2007-01-01
Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.
A geologic framework for mineralization in the western Brooks Range
Young, Lorne E.
2004-01-01
The Brooks Range is a 950-km-long north-vergent fold and thrust belt, which was formed during Mesozoic convergence of the continental Arctic Alaska terrane and the oceanic Angayucham terrane and was further shortened and uplifted in Tertiary time. The Arctic Alaska terrane consists of parautochthonous rocks and the Endicott Mountains and De Long Mountains subterranes. The Endicott Mountains allochthon of the western Brooks Range is the setting for many sulfide and barite occurrences, such as the supergiant Red Dog zinc-lead mine. Mineralization is sediment hosted and most commonly is present in black shale and carbonate turbidites of the Mississippian Kuna Formation. The reconstructed Kuna basin is a 200 by +600 km feature that represents the culmination of a remarkable chain of events that includes three fluvial-deltaic and two or more orogenic cycles, Middle Devonian to Mississippian episodes of extension and igneous activity, and the emergence of a seaward Lower Proterozoic landmass that may have constituted a barrier to marine circulation. Mississippian extension and related horst-and-graben architecture in the western Brooks Range is manifested in part by strong facies variability between coeval units of allochthons and structural plates. Shallow marine to possibly nonmarine arkose, platform to shelf carbonate, slope-to-basin shale, chert and carbonate turbidites, and submarine volcanic rocks are all represented in Mississippian time. The structural setting of Mississippian sedimentation, volcanism, and mineralization in the Kuna basin may be comparable to documented Devono-Mississippian extensional sags or half-grabens in the subsurface north of the Brooks Range. Climate, terrestrial ecosystems, multiple fluvial-deltaic aquifers, and structural architecture affected the liberation, movement, and redeposition of metals in ways that are incompletely understood.
40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska
Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.
2004-01-01
The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to completely recrystallized. The 40Ar/39Ar age spectra and inverse isochron plots of the multicomponent whole-rock sandstone samples are more complex than those of single minerals. However, different minerals have different Ca/K and Cl/K ratios and closure temperatures, and these properties were used to identify portions of spectra dominated by argon release from specific minerals. 40Ar/39Ar laser step-heating analyses of Late Devonian sandstone whole rocks produced spectra that record a two-stage resetting history: a Carboniferous hydrothermal event first and later Mesozoic to Tertiary events, which are in agreement with geologic constraints. The 40Ar/39Ar ages and the similar mineralogy, lead isotope composition, and relative stratigraphic positions support the interpretation that the shale-hosted massive sulfide deposits and most vein-breccia occurrences are temporally and genetically related, and that they are different expressions of Carboniferous basinal dewatering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, G.A.; Drozd, R.J.; Daniel, J.A.
The Mississippi Heath Formation exposed in Fergus County, central Montana, is comprised predominantly of nearshore, marine, black, calcareous shales and carbonates with minor anhydrite and coal beds. The black shales and limestones have been considered as sources for shale oil via Fischer Assay and pyrolysis analysis. These shales are potential source units for the oils reservoired in the overlying Pennsylvanian Tyler Formation sands located 50 mi (80 km) to the east of the Fergus County Heath sediment studied. Heath Formation rocks from core holes were selectively sampled in 2-ft increments and analyzed for their source rock characteristics. Analyses include percentmore » total organic carbon (%TOC), Rock-Eval pyrolysis, pyrolysis-gas chromatography, and characterization of the total soluble extracts using carbon isotopes and gas chromatography-mass Spectrometry. Results indicated that the Heath was an excellent potential source unit that contained oil-prone, organic-rich (maximum of 17.6% TOC), calcareous, black shale intervals. The Heath and Tyler formations also contained intervals dominated by gas-prone, organic-rich shales of terrestrial origin. Three oils from the Tyler Formation sands in Musselshell and Rosebud counties were characterized by similar methods as the extracts. The oils were normally mature, moderate API gravity, moderate sulfur, low asphaltene crudes. Oil to source correlations between the Heath shale extracts and the oils indicated the Heath was an excellent candidate source rock for the Tyler reservoired oils. Conclusions were based on excellent matches between the carbon isotopes of the oils and the kerogen-kerogen pyrolyzates, and from the biomarkers.« less
Enomoto, Catherine B.; Olea, Ricardo A.; Coleman, James L.
2014-01-01
The Middle Devonian Marcellus Shale in the Appalachian basin extends from central Ohio on the west to eastern New York on the east, and from north-central New York on the north to northern Tennessee on the south. Its thickness ranges from 0 feet (ft) where it pinches out to the west to as much as 700 ft in its eastern extent. Within the Broadtop synclinorium, the thickness of the Marcellus Shale ranges from 250 to 565 ft. Although stratigraphic complexities have been documented, a significant range in thickness most likely is because of tectonic thickening from folds and thrust faults. Outcrop studies in the Valley and Ridge and Appalachian Plateaus provinces illustrate the challenges of interpreting the relation of third-order faults, folds, and “disturbed” zones to the regional tectonic framework. Recent field work within the Valley and Ridge province determined that significant faulting and intraformational deformation are present within the Marcellus Shale at the outcrop scale. In an attempt to determine if this scale of deformation is detectable with conventional wireline logs, petrophysical properties (primarily mineralogy and porosity) were measured by interpretation of gamma-ray and bulk-density logs. The results of performing a statistical correlation of wireline logs from nine wells indicated that there are discontinuities within the Millboro Shale (undifferentiated Marcellus Shale and Mahantango Formation) where there are significant thickness differences between wells. Also, some intervals likely contain mineralogy that makes these zones more prone to layer-shortening cleavage duplexes. The Correlator program proved to be a useful tool in a region of contractional deformation.
Lindquist, Sandra J.
1999-01-01
The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.
NASA Astrophysics Data System (ADS)
Böcker, Johannes; Littke, Ralf
2016-03-01
In the central Upper Rhine Graben (URG), several major oil fields have been sourced by Liassic Black Shales. In particular, the Posidonia Shale (Lias ɛ, Lower Toarcian) acts as excellent and most prominent source rock in the central URG. This study is the first comprehensive synthesis of Liassic maturity data in the URG area and SW Germany. The thermal maturity of the Liassic Black Shales has been analysed by vitrinite reflectance (VRr) measurements, which have been verified with T max and spore coloration index (SCI) data. In outcrops and shallow wells (<600 m), the Liassic Black Shales reached maturities equivalent to the very early or early oil window (ca. 0.50-0.60 % VRr). This maturity is found in Liassic outcrops and shallow wells in the entire URG area and surrounding Swabian Jura Mountains. Maximum temperatures of the Posidonia Shale before graben formation are in the order of 80-90 °C. These values were likely reached during Late Cretaceous times due to significant Upper Jurassic and minor Cretaceous deposition and influenced by higher heat flows of the beginning rift event at about 70 Ma. In this regard, the consistent regional maturity data (VRr, T max, SCI) of 0.5-0.6 % VRr for the Posidonia Shale close to surface suggest a major burial-controlled maturation before graben formation. These consistent maturity data for Liassic outcrops and shallow wells imply no significant oil generation and expulsion from the Posidonia Shale before formation of the URG. A detailed VRr map has been created using VRr values of 31 wells and outcrops with a structure map of the Posidonia Shale as reference map for a depth-dependent gridding operation. Highest maturity levels occur in the area of the Rastatt Trough (ca. 1.5 % VRr) and along the graben axis with partly very high VRr gradients (e.g. well Scheibenhardt 2). In these deep graben areas, the maximum temperatures which were reached during upper Oligocene to Miocene times greatly exceed those during the Cretaceous.
Bunner, Danny W.
1993-01-01
The Midwestern Basins and Arches Regional Aquifer-Systems Analysis (RASA) is one of 28 projects that were identified by Congress in 1978, after a period of severe drought, to be studied by the U.S. Geological Survey (Sun, 1984). The Midwestern Basins and Arches RASA study area in parts of Indiana, Ohio, Michigan, and Illinois is defined by either the limestone-shale contact of rocks of Devonian age or by the contact of the land with surface-water bodies (fig. 1).
The New Albany shale in Illinois: Emerging play or prolific source
Crockett, Joan; Morse, David E.
2010-01-01
The New Albany shale (Upper Devonian) in the Illinois basin is the primary hydrocarbon source rock for the basins nearly 4 billion bbl of oil production to date. The gas play is well-established in Indiana and Western Kentucky. One in-situ oil producing well was reported in a multiply competed well in the New Albany at Johnsonville field in Wayne County, Illinois. The Illinois gas and oil wells at Russellville, in Lawrence County are closely associated with the 0.6% reflectance contour, which suggests a higher level of thermal maturity in this area. Today, only one field, Russellville in eastern Lawrence County has established commercial production in the Ness Albany in Illinois. Two wildcat wells with gas shows were drilled in recent years in southern Saline County, where the New Albany is relatively deeply buried and close to faults associated with the Fluorspar District.
Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco).
Galindo, C; Mougin, L; Fakhi, S; Nourreddine, A; Lamghari, A; Hannache, H
2007-01-01
Attention has been focused recently on the use of Moroccan black oil shale as the raw material for production of a new type of adsorbent and its application to U and Th removal from contaminated wastewaters. The purpose of the present work is to provide a better understanding of the composition and structure of this shale and to determine its natural content in uranium and thorium. A black shale collected from Timahdit (Morocco) was analyzed by powder X-ray diffraction and SEM techniques. It was found that calcite, dolomite, quartz and clays constitute the main composition of the inorganic matrix. Pyrite crystals are also present. A selective leaching procedure, followed by radiochemical purification and alpha-counting, was performed to assess the distribution of naturally occurring radionuclides. Leaching results indicate that 238U, 235U, 234U, 232Th, 230Th and 228Th have multiple modes of occurrence in the shale. U is interpreted to have been concentrated under anaerobic conditions. An integrated isotopic approach showed the preferential mobilization of uranium carried by humic acids to carbonate and apatite phases. Th is partitioned between silicate minerals and pyrite.
Slack, John F.; Selby, David; Dumoulin, Julie A.
2015-01-01
Trace element and Os isotope data for Lisburne Group metalliferous black shales of Middle Mississippian (early Chesterian) age in the Brooks Range of northern Alaska suggest that metals were sourced chiefly from local seawater (including biogenic detritus) but also from externally derived hydrothermal fluids. These black shales are interbedded with phosphorites and limestones in sequences 3 to 35 m thick; deposition occurred mainly on a carbonate ramp during intermittent upwelling under varying redox conditions, from suboxic to anoxic to sulfidic. Deposition of the black shales at ~335 Ma was broadly contemporaneous with sulfide mineralization in the Red Dog and Drenchwater Zn-Pb-Ag deposits, which formed in a distal marginal basin.Relative to the composition of average black shale, the metalliferous black shales (n = 29) display large average enrichment factors (>10) for Zn (10.1), Cd (11.0), and Ag (20.1). Small enrichments (>2–<10) are shown by V, Cr, Ni, Cu, Mo, Pd, Pt, U, Se, Y, and all rare earth elements except Ce, Nd, and Sm. A detailed stratigraphic profile over 23 m in the Skimo Creek area (central Brooks Range) indicates that samples from at and near the top of the section, which accumulated during a period of major upwelling and is broadly correlative with the stratigraphic levels of the Red Dog and Drenchwater Zn-Pb-Ag deposits, have the highest Zn/TOC (total organic carbon), Cu/TOC, and Tl/TOC ratios for calculated marine fractions (no detrital component) of these three metals.Average authigenic (detrital-free) contents of Mo, V, U, Ni, Cu, Cd, Pb, Ge, Re, Se, As, Sb, Tl, Pd, and Au show enrichment factors of 4.3 × 103 to 1.2 × 106 relative to modern seawater. Such moderate enrichments, which are common in other metalliferous black shales, suggest wholly marine sources (seawater and biogenic material) for these metals, given similar trends for enrichment factors in organic-rich sediments of modern upwelling zones on the Namibian, Peruvian, and Chilean shelves. The largest enrichment factors for Zn and Ag are much higher (1.4 × 107 and 2.9 × 107, respectively), consistent with an appreciable hydrothermal component. Other metals such as Cu, Pb, and Tl that are concentrated in several black shale samples, and are locally abundant in the Red Dog and Drenchwater Zn-Pb-Ag deposits, may have a partly hydrothermal origin but this cannot be fully established with the available data. Enrichments in Cr (up to 7.8 × 106) are attributed to marine and not hydrothermal processes. The presence in some samples of large enrichments in Eu (up to 6.1 × 107) relative to modern seawater and of small positive Eu anomalies (Eu/Eu* up to 1.12) are considered unrelated to hydrothermal activity, instead being linked to early diagenetic processes within sulfidic pore fluids.Initial Os isotope ratios (187Os/188Os) calculated for a paleontologically based depositional age of 335 Ma reveal moderately unradiogenic values of 0.24 to 0.88 for four samples of metalliferous black shale. A proxy for the ratio of coeval early Chesterian seawater is provided by initial (187Os/188Os)335 Ma ratios of four unaltered black shales of the coeval Kuna Formation that average 1.08, nearly identical to the initial ratio of 1.06 for modern seawater. Evaluation of possible sources of unradiogenic Os in the metalliferous black shales suggests that the most likely source was mafic igneous rocks that were leached by externally derived hydrothermal fluids. This unradiogenic Os is interpreted to have been leached by deeply circulating hydrothermal fluids in the Kuna basin, followed by venting of the fluids into overlying seawater.We propose that metal-bearing hydrothermal fluids that formed Zn-Pb-Ag deposits such as Red Dog or Drenchwater vented into seawater in a marginal basin, were carried by upwelling currents onto the margins of a shallow-water carbonate platform, and were then deposited in organic-rich muds, together with seawater- and biogenically derived components, by syngenetic sedimentary processes. Metal concentration in the black shales was promoted by high biologic productivity, sorption onto organic matter, diffusion across redox boundaries, a low sedimentation rate, and availability of H2S in bottom waters and pore fluids.
NASA Astrophysics Data System (ADS)
Forshaw, Joline; Jarvis, Ian; Trabucho-Alexandre, João; Tocher, Bruce; Pearce, Martin
2014-05-01
The hypothesised reduction of oxygen within the oceans during the Cretaceous is believed to have led to extended intervals of regional anoxia in bottom waters, resulting in increased preservation of organic matter and the deposition of black shales. Episodes of more widespread anoxia, and even euxinia, in both bottom and surface waters are associated with widespread black shale deposition during Ocean Anoxic Events (OAEs). The most extensive Late Cretaceous OAE, which occurred ~ 94 Ma during Cenomanian-Turonian boundary times, and was particularly well developed in the proto-North Atlantic and Tethyan regions, lasted for around 500 kyr (OAE2). Although the causes of this and other events are still hotly debated, research is taking place internationally to produce a global picture of the causes and consequences of Cretaceous OAEs. Understanding OAEs will enable a better interpretation of the climate fluctuations that ensued, and their association with the widespread deposition of black shales, rising temperatures, increased pCO2, enhanced weathering, and increased nutrient fluxes. The Eagle Ford Formation, of Cenomanian - Turonian age, is a major shale gas play in SW and NE Texas, extending over an area of more than 45,000 km2. The formation, which consists predominantly of black shales (organic-rich calcareous mudstones), was deposited during an extended period of relative tectonic quiescence in the northern Gulf Coast of the Mexico Basin, bordered by reefs along the continental shelf. The area offers an opportunity to study the effects of OAE2 in an organic-rich shelf setting. The high degree of organic matter preservation in the formation has produced excellent oil and gas source rocks. Vast areas of petroleum-rich shales are now being exploited in the Southern States of the US for shale gas, and the Eagle Ford Shale is fast becoming one of the countries largest producers of gas, oil and condensate. The Eagle Ford Shale stratigraphy is complex and heterogeneous, making further study essential before these resources can be fully developed. Therefore, a thorough understanding of the subsurface sediments within a coherent stratigraphic framework is required before exploitation can be optimimised. Here, we present initial palynological data (dinoflagellate cyst abundance), in conjunction with geochemistry, from material obtained from the Maverick Basin in the southwestern area of Eagle Ford Shale deposition. Results are presented as part of a wider study of the Eagle Ford Shale, utilising both core and outcrop material, that is using dinoflagellate cysts and chemostratigraphy to develop an improved stratigraphic framework and to reconstruct depositional palaeoenvironments in the basin.
Shale Gas characteristics of Permian black shales (Ecca group, Eastern Cape, South Africa)
NASA Astrophysics Data System (ADS)
Geel, Claire; Booth, Peter; Schulz, Hans-Martin; Horsfield, Brian; de Wit, Maarten
2013-04-01
This study involves a comprehensive and detailed lithological, sedimentalogical, structural and geochemical description of the lower Ecca Group in the Eastern Cape, South Africa. The Ecca group hosts a ~ 245 million year old organic-rich black shale, which has recently been the focus of interest of petroleum companies worldwide. The shale was deposited under anoxic conditions in a setting which formed as a consequence of retro-arc foreland basin development related to the Cape Fold Belt. This sedimentary/tectonic environment provided the conditions for deeply buried black shales to reach maturity levels for development in the gas window. The investigation site is called the Greystone Area and is situated north of Wolwefontein en route to Jansenville. The area has outcrops of the Dwyka, the Ecca and the lower Beaufort Groups. The outcrops were mapped extensively and the data was used in conjunction with GIS software to produce a detailed geological map. North-south cross sections were drawn to give indication of bed thicknesses and formation depths. Using the field work, data two boreholes were accurately sited on the northern limb of a shallow easterly plunging syncline. The first borehole reached 100m and the second was drilled to 292m depth (100m percussion and 192m core). The second borehole was drilled 200m south of the first, to penetrate the formations at a greater depth and to avoid surface weathering. Fresh core from the upper Dwyka Group, the Prince Albert Formation, the Whitehill Formation, Collingham Formation and part of the Ripon Formation were successfully extracted and a detailed stratigraphic log has been drawn up. The core was sampled during extraction and the samples were immediately sent to the GFZ in Potsdam, Germany, for geochemical analyses. As suspected the black shales of the the Whitehill Formation are high in organic carbon and have an average TOC value of 4.5%, whereas the Prince Albert and Collingham Formation are below 1%. Tmax values and the evolution of organic material to bitumen characterise these sediments as overmature. The HI and OI results reveal that the Collingham and Whitehill sediments are type II kerogen and the Prince Albert is type III kerogen sediment. XRD data shows major rock forming minerals of the black shales to be quartz, illite, muscovite and chlorite with some plagioclase and large amounts of accessory pyrite. Average meso-and macro-porosity of these black shales is 1.5% and SEM images confirm that these sediments are tightly packed. The samples are highly affected by the Cape Fold Belt due to its location so far south and is unlikely to hold gas at this position, however this ongoing investigation will give greater insight to the gas potential of these black shales which are found more north of the region. At the GFZ open system pyrolyses and thermovaporization analyses are still underway.
Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada
NASA Technical Reports Server (NTRS)
Hayashi, K. I.; Fujisawa, H.; Holland, H. D.; Ohmoto, H.
1997-01-01
Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.
The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks
NASA Astrophysics Data System (ADS)
Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali
2017-04-01
Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were sequestered out of seawater into pyritic shales at a higher rate than into crusts. Se enrichment in roll-fronts relates to the initial mobilisation of trace elements in oxidised conditions, and later precipitation downgradient in reduced conditions. Results highlight the potential for sedimentary types of Se- and Te-bearing deposits. The enrichment of elements of high value for future technologies in sedimentary rocks deserve careful assessment for potential future resources, and should be monitored during exploration and mobilisation due to the potential contamination effects. This work forms part of the NERC-funded 'Security of Supply of Mineral Resources' project, which aims to detail the science needed to sustain the security of supply of strategic minerals in a changing environment.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.
2013-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron formation (eg. Hamersley BIF). So we investigate that the Cleaverville iron formation, which is one of the best well known Mesoarchean iron formation, was already started cyanobacteria oxygen production system to used pre-syn iron sedimentation at anoxic oceanic condition.
Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.
2012-01-01
Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1 C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1 103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85 103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar) from mineral grains in the shale matrix is regulated by temperature, natural gases obtain and retain a record of the thermal conditions of the source rock. Therefore, noble gases constitute a valuable technique for distinguishing the genetic source and post-genetic processes of natural gases.
Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.
2003-01-01
The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next younger Famennian Stage. The Northern Antelope Range section is located near the top of the west side of the proto-Antler forebulge. Because of its unusual, tectonically active location, unmatched at any other Nevada localities, this section records only four regional and global events during a timespan slightly longer than that of the Devils Gate section. The global semichatovae rise and late Frasnian mass extinction event are largely masked because of the depositional complexities resulting from this location.
Zooplankton fecal pellets link fossil fuel and phosphate deposits
Porter, K.G.; Robbins, E.I.
1981-01-01
Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.
Paleozoic Hydrocarbon-Seep Limestones
NASA Astrophysics Data System (ADS)
Peckmann, J.
2007-12-01
To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods, which suggest a maximal age of 126 million years for this group. 1. Peckmann et al. (1999) Facies 40, 281. 2. Peckmann et al. (2007) Palaios 22, 114. 3. Peckmann et al. (2001) Geology 29, 271. 4. Buggisch and Krumm (2005) Facies 51, 566. 5. Himmler et al. (submitted) Palaeogeogr., Palaeoclimatol., Palaeoecol.
NASA Astrophysics Data System (ADS)
Suttner, Thomas J.; Kido, Erika; Chen, Xiuqin; Mawson, Ruth; Waters, Johnny A.; Frýda, Jiří; Mathieson, David; Molloy, Peter D.; Pickett, John; Webster, Gary D.; Frýdová, Barbora
2014-02-01
Late Devonian to Early Carboniferous stratigraphic units within the 'Zhulumute' Formation, Hongguleleng Formation (stratotype), 'Hebukehe' Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and 'Hebukehe' formations are biostratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argillaceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding 'Hebukehe' Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. 'Blastoid Hill') and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepening of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.
NASA Astrophysics Data System (ADS)
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; Stewart, Brian W.
2018-02-01
We investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from -7.8 to -6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns. Limestone units thought to have formed under open ocean (oxic) conditions have δ238U values and REE patterns consistent with modern seawater. The δ238U values in whole rock shale and authigenic phases are greater than those of modern seawater and the upper crust. The δ238U values of reduced phases (the oxidizable fraction consisting of organics and sulfide minerals) are ∼0.6‰ greater than that of modern seawater. Bulk shale and carbonate cement extracted from the shale have similar δ238U values, and are greater than δ238U values of adjacent limestone units. We suggest these trends are due to the accumulation of chemically and, more likely, biologically reduced U from anoxic to euxinic bottom water as well as the influence of diagenetic reactions between pore fluids and surrounding sediment and organic matter during diagenesis and catagenesis.
Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia
Ulmishek, Gregory F.
2001-01-01
The North Caspian basin is a petroleum-rich but lightly explored basin located in Kazakhstan and Russia. It occupies the shallow northern portion of the Caspian Sea and a large plain to the north of the sea between the Volga and Ural Rivers and farther east to the Mugodzhary Highland, which is the southern continuation of the Ural foldbelt. The basin is bounded by the Paleozoic carbonate platform of the Volga-Ural province to the north and west and by the Ural, South Emba, and Karpinsky Hercynian foldbelts to the east and south. The basin was originated by pre-Late Devonian rifting and subsequent spreading that opened the oceanic crust, but the precise time of these tectonic events is not known. The sedimentary succession of the basin is more than 20 km thick in the central areas. The drilled Upper Devonian to Tertiary part of this succession includes a prominent thick Kungurian (uppermost Lower Permian) salt formation that separates strata into the subsalt and suprasalt sequences and played an important role in the formation of oil and gas fields. Shallow-shelf carbonate formations that contain various reefs and alternate with clastic wedges compose the subsalt sequence on the 1 basin margins. Basinward, these rocks grade into deep-water anoxic black shales and turbidites. The Kungurian salt formation is strongly deformed into domes and intervening depressions. The most active halokinesis occurred during Late Permian?Triassic time, but growth of salt domes continued later and some of them are exposed on the present-day surface. The suprasalt sequence is mostly composed of clastic rocks that are several kilometers thick in depressions between salt domes. A single total petroleum system is defined in the North Caspian basin. Discovered reserves are about 19.7 billion barrels of oil and natural gas liquids and 157 trillion cubic feet of gas. Much of the reserves are concentrated in the supergiant Tengiz, Karachaganak, and Astrakhan fields. A recent new oil discovery on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec
Colton, G.W.
1962-01-01
The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f
Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.
2015-01-01
In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.
Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W
2015-04-07
The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.
New Advances in Re-Os Geochronology of Organic-rich Sedimentary Rocks.
NASA Astrophysics Data System (ADS)
Creaser, R. A.; Selby, D.; Kendall, B. S.
2003-12-01
Geochronology using 187Re-187Os is applicable to limited rock and mineral matrices, but one valuable application is the determination of depositional ages for organic-rich clastic sedimentary rocks like black shales. Clastic sedimentary rocks, in most cases, do not yield depositional ages using other radioactive isotope methods, but host much of Earth's fossil record upon which the relative geological timescale is based. As such, Re-Os dating of black shales has potentially wide application in timescale calibration studies and basin analysis, if sufficiently high precision and accuracy could be achieved. This goal requires detailed, systematic studies and evaluation of factors like standard compound stoichiometry, geologic effects, and the 187Re decay constant. Ongoing studies have resulted in an improved understanding of the abilities, limitations and systematics of the Re-Os geochronometer in black shales. First-order knowledge of the effects of processes like hydrocarbon maturation and low-grade metamorphism is now established. Hydrocarbon maturation does not impact the ability of the Re-Os geochronometer to determine depositional ages from black shales. The Re-Os age determined for the Exshaw Fm of western Canada is accurate within 2σ analytical uncertainty of the known age of the unit (U-Pb monazite from ash, conodont biostratigraphy). This suggests that the large improvement in precision attained for Re-Os dating of black shales by Cohen et al (ESPL 1999) over the pioneering work of Ravizza & Turekian (GCA 1989), relates to advances in analytical methodologies and sampling strategies, rather than a lack of disturbance by hydrocarbon maturation. We have found that a significant reduction in isochron scatter can be achieved by using an alternate dissolution medium, which preferentially attacks organic matter in which Re and Os are largely concentrated. This likely results from a more limited release of detrital Os and Re held in silicate materials during dissolution, compared with the inverse aqua regia medium used for Carius tube analysis. Using these "organic-selective" dissolution techniques, precise depositional ages have now been obtained from samples with very low TOC contents ( ˜0.5%), meaning that a greater range of clastic sedimentary rocks is amenable for Re-Os age dating. Well-fitted Re-Os isochrons of plausible geological age have also been determined from low-TOC shales subjected to chlorite-grade regional metamorphism. These results further illustrate the wide, but currently underutilized, potential of the Re-Os geochronometer in shales. The precision of age data attainable by the Re-Os system directly from black shales can be better than +/- 1% uncertainty (2σ , derived from isochron regression analysis), and the derived ages are demonstrably accurate.
Silurian and Devonian in Vietnam—Stratigraphy and facies
NASA Astrophysics Data System (ADS)
Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy
2013-09-01
Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Osborn, S.; Down, A.; Vengosh, A.
2012-12-01
The acceleration in production of natural gas from shale formations through horizontal drilling and hydraulic fracturing has altered the landscape of domestic energy production in the USA. Yet shale gas exploration has generated an increased awareness of risks to drinking water quality amid concerns for the possible migration of stray gas or hydraulic fracturing fluid and/or flowback brine to shallow drinking water aquifers. The degree to which shallow drinking water is at risk from hydraulic fracturing could depend upon the hydraulic connectivity between the shale gas formations and the surface. In this study, we analyzed the geochemistry of over 400 water samples located across six counties of northeastern Pennsylvania in the three principle aquifers, two Upper Devonian Age bedrock aquifers (Catskill and Lock Haven) and one Quaternary Age (Alluvium) that overlie the Marcellus Formation. Based on a detailed analysis of major (Br, Cl, Na, Mg, Ba, and Sr) and trace (Li) element geochemistry, coupled with utilization of a specific spectrum of isotopic tracers (87Sr/86Sr, 228Ra/ 226Ra, 2H/H, 18O/16O), we identify a salinized (Cl> 20 mg/L) shallow groundwater type which suggests conservative mixing relationships between fresh shallow groundwater and an underlying brine. Identification of the brine source is complicated as many of the brines in the northern Appalachian Basin likely share a common origin as the expelled remnants of the formation of the Silurian Salina evaporate deposits. To determine the ultimate source of the diluted brine we compared the observed geochemistry to over 80 brines produced from northern Appalachian Basin formations. The shallow salinized groundwater most closely resembles diluted produced water from the Middle Devonian Marcellus Formation. The 18O/16O and 2H/H of the salinized groundwater indicate that the brine is likely diluted with post-glacial (<10,000 ybp) meteoric water. Combined, these data indicate that hydraulic connections allowed cross formational migration of brine from deeper formations (1-2 kilometers below ground surface) and subsequent dilution. The occurrence of the saline water does not appear to be correlated with the location of shale-gas wells. Also, salinized groundwater with similar major element chemistry was reported prior to the most recent shale-gas development in the region. The source of the salinized water is likely not the recent drilling and hydraulic fracturing; instead brine migrated into the shallow aquifers and was recently diluted through natural pathways and processes. However, the presence of natural hydraulic connections to deeper formations suggests specific structural and hydrodynamic regimes in northeastern Pennsylvania where shallow drinking water resources are at greater risk of contamination, particularly with fugitive gases, during drilling and hydraulic fracturing of shale gas. The severity of the risk could depend upon the presence of pathways that allow the migration of fluids into the shallow aquifers on human time scales.
New insights on the Karoo shale gas potential from borehole KZF-1 (Western Cape, South Africa)
NASA Astrophysics Data System (ADS)
Campbell, Stuart A.; Götz, Annette E.; Montenari, Michael
2016-04-01
A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2013 concluded that there could be as much as 390 Tcf recoverable reserves of shale gas in the southern and south-western parts of the Karoo Basin. This would make it the 8th-largest shale gas resource in the world. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. Within the framework of the Karoo Research Initiative (KARIN), two deep boreholes were drilled in the Eastern and Western Cape provinces of South Africa. Here we report on new core material from borehole KZF-1 (Western Cape) which intersected the Permian black shales of the Ecca Group, the Whitehill Formation being the main target formation for future shale gas production. To determine the original source potential for shale gas we investigated the sedimentary environments in which the potential source rocks formed, addressing the research question of how much sedimentary organic matter the shales contained when they originally formed. Palynofacies indicates marginal marine conditions of a stratified basin setting with low marine phytoplankton percentages (acritarchs, prasinophytes), good AOM preservation, high terrestrial input, and a high spores:bisaccates ratio (kerogen type III). Stratigraphically, a deepening-upward trend is observed. Laterally, the basin configuration seems to be much more complex than previously assumed. Furthermore, palynological data confirms the correlation of marine black shales of the Prince Albert and Whitehill formations in the southern and south-western parts of the Karoo Basin with the terrestrial coals of the Vryheid Formation in the north-eastern part of the basin. TOC values (1-6%) classify the Karoo black shales as promising shale gas resources, especially with regard to the high thermal maturity (Ro >3). The recently drilled deep boreholes in the southern and south-western Karoo Basin, the first since the SOEKOR exploration programmes of the 1960's and 1970's, provide new core material to determine the likely current potential for retention of shale gas with regard to the structural and thermal history of the basin. Thus, the KARIN research program will produce a valuable data set for future unconventional gas exploration and production in South Africa.
Higley, Debra K.
2013-01-01
The Upper Devonian and Lower Mississippian Woodford Shale is an important petroleum source rock for Mississippian reservoirs in the Anadarko Basin Province of Oklahoma, Kansas, Texas, and Colorado, based on results from a 4D petroleum system model of the basin. The Woodford Shale underlies Mississippian strata over most of the Anadarko Basin portions of Oklahoma and northeastern Texas. The Kansas and Colorado portions of the province are almost entirely thermally immature for oil generation from the Woodford Shale or potential Mississippian source rocks, based mainly on measured vitrinite reflectance and modeled thermal maturation. Thermal maturities of the Woodford Shale range from mature for oil to overmature for gas generation at present-day depths of about 5,000 to 20,000 ft. Oil generation began at burial depths of about 6,000 to 6,500 ft. Modeled onset of Woodford Shale oil generation was about 330 million years ago (Ma); peak oil generation was from 300 to 220 Ma.Mississippian production, including horizontal wells of the informal Mississippi limestone, is concentrated within and north of the Sooner Trend area in the northeast Oklahoma portion of the basin. This large pod of oil and gas production is within the area modeled as thermally mature for oil generation from the Woodford Shale. The southern boundary of the trend approximates the 99% transformation ratio of the Woodford Shale, which marks the end of oil generation. Because most of the Sooner Trend area is thermally mature for oil generation from the Woodford Shale, the trend probably includes short- and longer-distance vertical and lateral migration. The Woodford Shale is absent in the Mocane-Laverne Field area of the eastern Oklahoma panhandle; because of this, associated oil migrated from the south into the field. If the Springer Formation or deeper Mississippian strata generated oil, then the southern field area is within the oil window for associated petroleum source rocks. Mississippian fields along the western boundary of the study area were supplied by oil that flowed northward from the Panhandle Field area and westward from the deep basin.
NASA Astrophysics Data System (ADS)
Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.
2015-09-01
We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this sink (i.e. adsorption onto Mn-oxides in well oxygenated surface oceans and/or subaerial environments or incomplete thiomolybdate formation in weakly sulfidic settings) remains debated, but its relevance becomes more important closer to the Great Oxidation Event and is probably related to already weakly oxidizing conditions even prior to the 2.5 Ga "whiff of oxygen".
Bentonite deposits of the northern Black Hills district, Wyoming, Montana, and South Dakota
Knechtel, Maxwell M.; Patterson, Sam H.
1962-01-01
The northern Black Hills bentonite mining district includes parts of Crook County, Wyo., Carter County, Mont., and Butte County, S. Dak. Within this district, many beds of bentonite occur interspersed with sedimentary strata of Cretaceous age that have an average total thickness of about 3,000 feet and consist chiefly of marine shale, marl, and argillaceous sandstone. The bentonite beds occur in formations ranging upward from the Newcastle sandstone to the lower part of the Mitten black shale member of the Pierre shale. Tertiary (?) and Quaternary deposits of gravel, sand, and silt are present on extensive terraces, and deposits of such materials also extend along stream courses in all parts of the district. The overall geologic structure of the district is that of a broad northwestward- plunging anticline, in which the strata dip gently toward the northeast, north, and northwest. The overall structure is interrupted, however, by several subordinate folds which bring the bentonite beds to the surface repeatedly, so that large resources of bentonite are present under light overburden. The northern Black Hills district is an important source of commercial gel-forming sodium-type bentonite. During the period 1941-56 more than 5 million tons of raw bentonite was mined, most of which came from the Clay Spur bed near the top of the Mowry shale; a few thousand tons was mined from bed A in the Newcastle sandstone. Calcium-type bentonite occurs in bed B in the Mowry shale and in bed I at the base of the Mitten black shale member. Seven other beds are sufficiently thick and continuous to warrant consideration as prospective sources of bentonite for industrial use. Most of the bentonite produced is sold for use (a) as an ingredient of drilling mud; (b) for preparing metallurgical molding sand of superior dry strength; and (c) for the bonding material used in pelletizing taconite iron ore of the Lake Superior region. The results of drilling-mud and foundry-sand bonding-clay tests of several hundred samples, as well as analyses of selected samples, chiefly by X-ray, differential thermal, base exchange and spectrographic methods, are included in this report.
NASA Astrophysics Data System (ADS)
Urbancic, T.; Viegas, G. F.; Baig, A.
2017-12-01
We observe conflicting stress drop estimates of M0 to M4 injection-induced earthquakes in two regions of the Western Canadian Sedimentary Basin. Induced earthquakes in the Horn River Basin show lower stress drops than induced earthquakes in the Duvernay Basin by a factor of 10 to 20. Higher stress drop earthquakes have a significant role in seismic hazard as they generate higher frequency strong ground motions which can potentially cause more damages, making it important to understand its causes. Both earthquake datasets occur below shale reservoirs under hydraulic-fracture stimulation programs. Both treatment programs target the same shale formation (Muskwa in Horn River Basin and Duvernay in Duvernay Basin) at approximately the same depth (3 km). Both reservoirs are located to the edge of the Western Canadian Sedimentary Basin bordering the Rocky Mountains and are under the same tectonic setting, both currently and during the Devonian depositional phase. The major observable difference is the local geology. While the Horn River Basin in northeast British Columbia shows mostly continuous horizontal stratification the Duvernay shale in the Fox Creek region in Alberta drapes over Leduc Formation reefs which cross-cut it as chains of reefs, isolated atolls and isolated pinnacles. Schultz et al. (2017) showed that induced seismicity in the Duvernay Basin region occurs primarily in the margins of the Devonian carbonate reefs (10 to 20 km away) where optimally oriented basement faults exist. The fault system is in part associated with basement tectonism and isostatic compensation mechanisms involved in the reefs diagenesis. We propose that the observed stress drop differences are caused by different regional stress characteristics, with events occurring in more stressed regions having higher stress drops. These areas of higher stress are found at the margins of the denser Leduc reefs formation and may be caused either by load transfer, isostatic compensation mechanisms, and accumulation of strain energy in the underlying fault system. The geological setting in which earthquakes occur may be a more important factor than previously considered in seismic hazard studies.
Sedimentary manganese metallogenesis in response to the evolution of the Earth system
NASA Astrophysics Data System (ADS)
Roy, Supriya
2006-08-01
The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O 2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn 2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O 2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO 2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn 2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO 2 drawdown causing glaciation on the Neoproterozoic Rodinia supercontinent. Tectonic rifting and mantle outgassing led to deglaciation. Dissolved Mn 2+ and Fe 2+ concentrated earlier in highly saline stagnant seawater below the ice cover were exported to shallow shelves by transgression during deglaciation. During the Sturtian glacial-interglacial event (ca. 750-700 Ma), interstratified Mn oxide and BIF deposits of Damara sequence, Namibia, was formed. The Varangian (≡ Marinoan; ca. 600 Ma) cryogenic event produced Mn oxide and BIF deposits at Urucum, Jacadigo Group, Brazil. The Datangpo interglacial sequence, South China (Liantuo-Nantuo ≡ Varangian event) contains black shale-hosted Mn carbonate deposits. The Early Paleozoic witnessed several glacioeustatic sea level changes producing small Mn carbonate deposits of Tiantaishan (Early Cambrian) and Taojiang (Mid-Ordovician) in black shale sequences, China, and the major Mn oxide-carbonate deposits of Karadzhal-type, Central Kazakhstan (Late Devonian). The Mesozoic period of intense plate movements and volcanism produced greenhouse climate and stratified oceans. During the Early Jurassic OAE, organic-rich sediments host many Mn carbonate deposits in Europe (e.g., Úrkút, Hungary) in black shale sequences. The Late Jurassic giant Mn Carbonate deposit at Molango, Mexico, was also genetically related to sea level change. Mn carbonates were always derived from Mn oxyhydroxides during early diagenesis. Large Mn oxide deposits of Cretaceous age at Groote Eylandt, Australia and Imini-Tasdremt, Morocco, were also formed during transgression-regression in greenhouse climate. The Early Oligocene giant Mn oxide-carbonate deposit of Chiatura (Georgia) and Nikopol (Ukraine) were developed in a similar situation. Thereafter, manganese sedimentation was entirely shifted to the deep seafloor and since ca. 15 Ma B.P. was climatically controlled (glaciation-deglaciation) assisted by oxygenated polar bottom currents (AABW, NADW). The changes in climate and the sea level were mainly tectonically forced.
1983-09-01
cold winters. Coldest temperatures ir. winter months are caused by high pressure systems which move rapidly dohn from central Canada cr Hudson Eay... dolomitic marble; or sand (30 to 60 feet), Glacial till (30 to 50 feet), and bedrock. The materials occurring above the bedrock in the vicinity of the...Trenton Group Iberville formation Noncalcareous black shale interbedded with 1000 dolomite . Stony point formation Predominantly calcareous black shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.R.; Dean, S.L.; Barton, C.C.
1977-01-01
Methods results, and conclusions formulated during a prototype fractographic logging study of seventy-five feet of oriented Devonian shale core are summarized. The core analyzed is from the Nicholas Combs No. 7239 well located twelve miles due north of Hazard, Kentucky. The seventy-five foot core length was taken from a cored section lying between 2369.0 feet (subsea) and 2708.0 feet (subsea). Total core length is 339.0 feet. The core was extracted from the upper Devonian Ohio and Olentangy shale formations. Results indicate that there are few tectonic (pre-core) fractures within the studied core section. The region may nevertheless be cut atmore » core sample depth by well-defined vertical or inclined tectonic fractures that the vertically drilled test core didn't intersect. This is likely since surface Plateau systematic fractures in other Plateau areas are vertical to sub-vertical and seldom have a frequency of less than one major fracture per foot. The remarkable directional preference of set three fractures about strikes of N 40/sup 0/ E, N 10/sup 0/ W, N 45/sup 0/ W, suggests some incipient pre-core rock anisotropy or stored directional strain energy. If this situation exists, the anisotropy strike change or stored strain variance from N 40/sup 0/ E to N 45/sup 0/ W downcore remains an unanswered question. Tectonic features, indicating local and/or regional movement plans, are present on and within the tectonichorizontal fracture set one. Slickensides had a preferred orientation within several core levels, and fibrous-nonfibrous calcite serves as fracture fillings.« less
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Yoshimaru, S.; Miki, T.; Sakai, S.; Ikehara, M.; Yamaguchi, K. E.; Ito, T.; Onoue, T.; Takehara, M.; Tetteh, G. M.; Nyame, F. K.
2016-12-01
The Paleoproterozoic Era are one of the most rapid environmental change when the earth surface environment was affected by formation of continents and increasing atmospheric oxygen levels. Major oxidation of Great Oxidation Event (GOE) are reported this ages (eg. Holland, 2006; Condie, 2001; Lyons et al., 2014). The nature of deep sea environments at this time have not been clearly identified and oceanic sediments are mostly involved in subduction. The Paleoproterozoic Birimian Greenstone Belt is an ophiolitic volcaniclastic sequence in Ghana, with depositional age of over 2.3-2.2 Ga (Petersson et al., 2016). Detail research was conducted of the Ashanti (Axim-Konongo) Belt of the Birimian Greenstone Belt along the coast near Cape Three Points area. Very thick volcaniclastic and organic-rich sedimentary rocks, which we now refer to as the Cape Three Points Group, crop out in the lower part of the Birimian Greenstone Belt. Stratigraphically, three unit identified; the lower portion contains thick vesicular volcaniclastic rocks, the middle portion is made up of laminated volcaniclastics and black shale, and the upper portion dominated by fine laminated volcaniclastics with more black shale sequence. Continuous core drilling from Dec 3-12th 2015 of the upper part of the sequence intersected saprolite to a depth of 30m and fresh, well preserved stratigraphy with graded bedding and lamination to a depth of 195m. Half cut cores show well laminated organic rich black shale and relative carbonate rich layers with very fine pyrite grains. SHRIMP age data from a porphyry intrusion into this sequence indicate an age of 2250 Ma. Carbon isotope analysis shows δ13C = -43 to -37‰ for black shale with the very light isotope values for cyanobacterial signature.The fining-upward sequences, well laminated bed and black shales and REE data suggest this sequence situated partly silent stagnant with volcanic activity ocean floor environment around an oceanic island arc condition.
NASA Astrophysics Data System (ADS)
Seifert, A.; Gleixner, G.
2008-12-01
We investigated the degradation of black shale organic matter by microbial communities. We inoculated two columns respectively, with the fungi Schizophyllum commune, the gram-positive bacterium Pseudomonas putida and the gram-negative bacteria Streptomyces griseus and Streptomyces chartreusis. These microorganisms are known to degrade a wide variety of organic macromolecules. Additionally, we had two sets of control columns. To one set the same nutrient solution was added as to the inoculated columns and to the other set only sterile deionised water was supplied. All columns contained 1.5 kg of freshly crushed not autoclaved black shale material with a particle size of 0.63-2 mm. The columns were incubated at 28° C and 60% humidity in the dark. The aim was to investigate, which microorganisms live on black shales and if these microorganisms are able to degrade ancient organic matter. We used compound specific stable isotope measurement techniques and compound specific 14C-dating methods. After 183 days PLFAs were extracted from the columns to investigate the microbial community, furthermore we extracted on one hand total-DNA of column material and on the other hand DNA from pure cultures isolates which grew on Kinks-agar B, Starch-casein-nitrate-agar (SCN) and on complete-yeast-medium-agar (CYM). According to the PLFA analysis bacteria dominated in the columns, whereas in pure cultures more fungi were isolated. A principal component analysis revealed differences between the columns in accordance with the inoculation, but it seems that the inoculated microorganisms were replaced by the natural population. For AMS measurements palmitic acid (C 16:0) was re-isolated from total-PLFA-extract with a preparative fraction collector (PFC). Preliminary results of the study revealed that microorganisms are able to degrade black shale material and that PLFA analysis are useful methods to be combined with analysis of stable isotope and 14C measurements to study microbial degradation processes.
Total Petroleum Systems of the Carpathian - Balkanian Basin Province of Romania and Bulgaria
Pawlewicz, Mark
2007-01-01
The U.S. Geological Survey defined the Moesian Platform Composite Total Petroleum System and the Dysodile Schist-Tertiary Total Petroleum System, which contain three assessment units, in the Carpathian-Balkanian Basin Province of Romania and Bulgaria. The Moesian Platform Assessment Unit, contained within the Moesian Platform Composite Total Petroleum System, is composed of Mesozoic and Cenozoic rocks within the Moesian platform region of southern Romania and northern Bulgaria and also within the Birlad depression in the northeastern platform area. In Romania, hydrocarbon sources are identified as carbonate rocks and bituminous claystones within the Middle Devonian, Middle Jurassic, Lower Cretaceous, and Neogene stratigraphic sequences. In the Birlad depression, Neogene pelitic strata have the best potential for generating hydrocarbons. In Bulgaria, Middle and Upper Jurassic shales are the most probable hydrocarbon sources. The Romania Flysch Zone Assessment Unit in the Dysodile Schist-Tertiary Total Petroleum System encompasses three structural and paleogeographic subunits within the Pre-Carpathian Mountains region: (1) the Getic depression, a segment of the Carpathian foredeep; (2) the flysch zone of the eastern Carpathian Mountains (also called the Marginal Fold nappe); and (3) the Miocene zone (also called the Sub-Carpathian nappe). Source rocks are interpreted to be Oligocene dysodile schist and black claystone, along with Miocene black claystone and marls. Also part of the Dysodile Schist-Tertiary Total Petroleum System is the Romania Ploiesti Zone Assessment Unit, which includes a zone of diapir folds. This zone lies between the Rimnicu Sarat and Dinibovita valleys and between the folds of the inner Carpathian Mountains and the external flanks of the Carpathian foredeep. The Oligocene Dysodile Schist is considered the main hydrocarbon source rock and Neogene black marls and claystones are likely secondary sources; all are thought to be at their maximum thermal maturation. Undiscovered resources in the Carpathian-Balkanian Basin Province are estimated, at the mean, to be 2,076 billion cubic feet of gas, 1,013 million barrels of oil, and 116 million barrels of natural gas liquids.
Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.
2012-01-01
The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).
NASA Astrophysics Data System (ADS)
Wang, Guochang; Cheng, Guojian; Carr, Timothy R.
2013-04-01
The organic-rich Marcellus Shale was deposited in a foreland basin during Middle Devonian. In terms of mineral composition and organic matter richness, we define seven mudrock lithofacies: three organic-rich lithofacies and four organic-poor lithofacies. The 3D lithofacies model is very helpful to determine geologic and engineering sweet spots, and consequently useful for designing horizontal well trajectories and stimulation strategies. The NeuroEvolution of Augmenting Topologies (NEAT) is relatively new idea in the design of neural networks, and shed light on classification (i.e., Marcellus Shale lithofacies prediction). We have successfully enhanced the capability and efficiency of NEAT in three aspects. First, we introduced two new attributes of node gene, the node location and recurrent connection (RCC), to increase the calculation efficiency. Second, we evolved the population size from an initial small value to big, instead of using the constant value, which saves time and computer memory, especially for complex learning tasks. Third, in multiclass pattern recognition problems, we combined feature selection of input variables and modular neural network to automatically select input variables and optimize network topology for each binary classifier. These improvements were tested and verified by true if an odd number of its arguments are true and false otherwise (XOR) experiments, and were powerful for classification.
Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.
2011-01-01
The Cannery Formation consists of green, red, and gray ribbon chert, siliceous siltstone, graywacke-chert turbidites, and volcaniclastic sandstone. Because it contains early Permian fossils at and near its type area in Cannery Cove, on Admiralty Island in southeastern Alaska, the formation was originally defined as a Permian stratigraphic unit. Similar rocks exposed in Windfall Harbor on Admiralty Island contain early Permian bryozoans and brachiopods, as well as Mississippian through Permian radiolarians. Black and green bedded chert with subordinate lenses of limestone, basalt, and graywacke near Kake on Kupreanof Island was initially correlated with the Cannery Formation on the basis of similar lithology but was later determined to contain Late Devonian conodonts. Permian conglomerate in Keku Strait contains chert cobbles inferred to be derived from the Cannery Formation that yielded Devonian and Mississippian radiolarians. On the basis of fossils recovered from a limestone lens near Kake and chert cobbles in the Keku Strait area, the age of the Cannery Formation was revised to Devonian and Mississippian, but this revision excludes rocks in the type locality, in addition to excluding bedded chert on Kupreanof Island east of Kake that contains radiolarians of Late Pennsylvanian and early Permian age. The black chert near Kake that yielded Late Devonian conodonts is nearly contemporaneous with black chert interbedded with limestone that also contains Late Devonian conodonts in the Saginaw Bay Formation on Kuiu Island. The chert cobbles in the conglomerate in Keku Strait may be derived from either the Cannery Formation or the Saginaw Bay Formation and need not restrict the age of the Cannery Formation, regardless of their source. The minimum age of the Cannery Formation on both Admiralty Island and Kupreanof Island is constrained by the stratigraphically overlying fossiliferous Pybus Formation, of late early and early late Permian age. Because bedded radiolarian cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villamil, T.; Kauffman, E.G.
1993-02-01
The Late Cretaceous Villeta Group and La Luna Formation shows remarkable depositional cyclicity attributable to Milankovitch climate cycles. Each 30-60 cm thick hemicycle is composed of a basal gray shale, a medial black, organic-rich shale, and an upper gray shale with a dense argillaceous limestone cap. Fourier time-series analysis revealed peak frequencies of 500, 100, and 31 ka (blending 21 and 42 ka data). ThiS cyclicity reflects possibly wet cooler (shale) to dry, possibly warm (limestone) climatic changes and their influence on relative sea level, sedimentation rates/patterns, productivity, water chemistry and stratification. Wet/cool hemicycles may produce slight lowering of sealevel,more » increased rates of clay sedimentation, diminished carbonate production, water stratification, increased productivity among noncalcareous marine plankton, and increased Corg production and storage. Dry/warm hemicycles may produce a slight rise in sealevel, and return to normal marine conditions with low Corg storage. Source rock quality may depend upon the predominance of wet over dry climatic phases. Differences between climate-forced cyclicity and random facies repetition, are shown by contrasting observed lithological patterns and geochemical signals with litho- and chemostratigraphy generated from random models. Accomodation space plots (Fischer plots) for cyclically interbedded black shale-pelagic limestone sequences, allowed prediction of facies behavior, shoreline architecture, and quantitative analysis of relative sea level. The synchroneity of Milankovitch cycles and changes in hemicycle stacking patterns, were tested against a new high-resolution event-chronostratigraphic and biostratigraphic framework for NW South America. Geochemical spikes and hemicycle stacking patterns occur consistently throughout the sections measured, supporting the correlation potential of cyclostratigraphy.« less
Tucker, R.D.; Osberg, P.H.; Berry, H.N.
2001-01-01
The zone of Acadian collision between the Medial New England and Composite Avalon terranes is well preserved in Maine. A transect from northwest (Rome) to southeast (Camden) crosses the eastern part of Medial New England comprising the Central Maine basin, Liberty-Orrington thrust sheet, and Fredericton trough, and the western part of Composite Avalon, including the Graham Lake, Clarry Hill, and Clam Cove thrust sheets. U-Pb geochronology of events before, during, and after the Acadian orogeny helps elucidate the nature and distribution of tectonostrati& graphic belts in this zone and the timing of some Acadian events in the Northern Appalachians. The Central Maine basin consists of sedimentary and volcanic rocks of Middle Ordovician (???470 to ???460 Ma) age overlain with probable conformity by latest Ordovician(?) through earliest Devonian marine rift and flysch sedimentary rocks; these are intruded by weakly to undeformed plutonic rocks of Early and Middle Devonian age (???399??378 Ma). The Fredericton trough consists of Early Silurian gray pelite and sandstone to earliest Late Silurian calcareous turbidite, deformed and variably metamorphosed prior to the emplacement of Late Silurian (???422 Ma) and Early to Late Devonian (???418 to ???368 Ma) plutons. The Liberty-Orrington thrust sheet consists of Cambrian(?)-Ordovician (>???474 to ???469 Ma and younger) clastic sedimentary and volcanic rocks intruded by highly deformed Late Silurian (???424 to ???422 Ma) and Devonian (???418 to ???389 Ma) plutons, possibly metamorphosed in Late Silurian time (prior to ???417 Ma), and metamorphosed to amphibolite facies in Early to Middle Devonian time (???400 to ???381 Ma). The Graham Lake thrust sheet contains possible Precambrian rocks, Cambrian sedimentary rocks with a volcanic unit dated at ???503 Ma, and Ordovician rocks with possible Caradocian Old World fossils, metamor& phosed and deformed in Silurian time and intruded by mildly to undeformed Late Silurian (???421 Ma) and Late Devonian (???371 to ???368 Ma) plutons. The Clarry Hill thrust sheet consists of poorly studied, highly metamorphosed Cambrian(?) rocks. The Clam Cove thrust sheet contains highly deformed Precambrian limestone, shale, sandstone, and conglomerate, metamorphosed to epidote amphibolite facies and intruded by a mildly deformed pluton dated at ???421 Ma. Metamorphism, deformation, and voluminous intrusive igneous activity of Silu& rian age are common to both the most southeastern parts of Medial New England and the thrust sheets of Composite Avalon. In contrast to Medial New England, the thrust sheets of Composite Avalon show only modest effects of Devonian deformation and metamorphism. Regional stratigraphic relations, paleontologic findings, and U-Pb geochronology suggest that the Graham Lake, Clarry Hill, and Clam Cove thrust sheets are far-traveled allochthons that were widely separated from Medial New England in the Silurian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Tyne, A.M.
1995-09-01
Seven subsurface Onondaga reefs have been found in southwestern New York (6) and northwestern Pennsylvania (1). These reefs have had a maximum thickness of about 200 feet and cover an area of a few hundred acres. They are similar to nearly 30 smaller reefs in the same geologic section which have previously been found along the Onodaga outcrop. The discovery well for Onodaga reef gas, although not recognized as such at the time, was the No. 1 Quinlan Oil. The well was drilled in 1933 in the Town of Olean, Cattaraugus County, New York near the New York-Pennsylvania State line.more » The first of the more recent Onondaga reef discoveries occurred in 1967 at Wyckoff in the Town of Jasper, Steuben County, New York. This discovery touched off a leasing and seismic exploration boom in this area of New York. As a result of these studies, two more reefs were discovered in 1971, two in 1974 and the last so far in 1981. These seven reefs have produced 7.1 billion cubic feet of gas. The smallest, Flatstone, has production to data of about 700 million cubic feet. The Onondaga reefs are of basal Onondaga, or Edgecliff, age. The Edgecliff is a light gray, coarsely crystalline, biostromal limestone. Onondaga reefs may have begun forming on somewhat higher parts of the sea floor in crinoid thickets. Because the Onondaga is considerably thicker in that area these so-called {open_quotes}reefs{close_quotes} are buried entirely within the total Onondaga section. They have been called reefs mainly because gas shows have been encountered in the lower Onondaga when it was drilled through by wells aiming for deeper Medina sandstones gas production. Nevertheless, gas production from them has been minimal. The seal consists of surrounding and overlapping black and gray middle Devonian Hamilton shales. The basal portions are surrounded by onlapping upper Onondaga limestones. The source of the gas is believed to be the highly organic Hamilton shale.« less
NASA Astrophysics Data System (ADS)
Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.
2017-06-01
The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the Aptian to Albian compressional tectonics of the Carpathians. The deepening of the Moldavide Basin from the Cenomanian is most probably linked to a significant sea-level rise.
NASA Astrophysics Data System (ADS)
Bombardiere, L.; Farrimond, P.; Tyson, R. V.; Forster, A.; Sinninghe-Damsté, J.
2003-04-01
The uppermost Cenomanian "anoxic event" (i.e. OAE2) in the Umbria-Marche Basin is recorded by a 0.7-1.2 metre thick interval (the Bonarelli Level) consisting of black, organic-rich laminated mudstones ("black shales"), radiolarian layers and grey-greenish, organic-poor claystones. The occurrence of the radiolarian layers and the organic-poor claystones defines three lithological sub-units which can be correlated at basin scale. In addition, a number of thin black shales ("Bonarelli precursors") has been observed in the limestones underlying the Bonarelli Level; their occurrence appears to be tuned with Milankovitch cycles. This study investigates palaeoproductivity and preservation in the Bonarelli Level and in the precursors using a high resolution molecular biomarker analysis. The onset of the Bonarelli deposition (i.e. the lower sub-unit) is characterized by a drastic increase in the relative abundance of compounds associated with algal precursors (e.g. steranes and phytane). Equally, the same interval shows an increase in the biomarker proxies related to the intensity of oxygen depletion (e.g. homohopane index). The other two Bonarelli sub-units also reflect fluctuations in oxic-anoxic conditions and palaeoproductivity. As the molecular compounds thought to reflect qualitative changes in palaeoproductivity and anoxia do not exhibit any significant differencies between the precursor black shales and the Bonarelli Level, the palaeoenvironmental conditions leading to organic-rich sediments were presumably similar. The results from the Italian sites have been compared with two other OAE2 localities, both characterized by proximal depositional settings: Oued Bahloul (Tunisia) and Tarfaya (Morocco). This work is supported by the European Community's Improving Human Potential Programme under contract HPRN-CT-1999-00055, C/T-NET.
The Permo-Triassic uranium deposits of Gondwanaland
NASA Astrophysics Data System (ADS)
le Roux, J. P.; Toens, P. D.
The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.
NASA Astrophysics Data System (ADS)
Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.
2017-12-01
The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.
Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview
NASA Astrophysics Data System (ADS)
Soua, Mohamed
2014-12-01
During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete geochemical review has been undertaken from published papers and unpublished internal reports to better assess these important source intervals.
Rowan, E.L.; Engle, M.A.; Kirby, C.S.; Kraemer, T.F.
2011-01-01
Radium activity data for waters co-produced with oil and gas in New York and Pennsylvania have been compiled from publicly available sources and are presented together with new data for six wells, including one time series. When available, total dissolved solids (TDS), and gross alpha and gross beta particle activities also were compiled. Data from the 1990s and earlier are from sandstone and limestone oil/gas reservoirs of Cambrian-Mississippian age; however, the recent data are almost exclusively from the Middle Devonian Marcellus Shale. The Marcellus Shale represents a vast resource of natural gas the size and significance of which have only recently been recognized. Exploitation of the Marcellus involves hydraulic fracturing of the shale to release tightly held gas. Analyses of the water produced with the gas commonly show elevated levels of salinity and radium. Similarities and differences in radium data from reservoirs of different ages and lithologies are discussed. The range of radium activities for samples from the Marcellus Shale (less than detection to 18,000 picocuries per liter (pCi/L)) overlaps the range for non-Marcellus reservoirs (less than detection to 6,700 pCi/L), and the median values are 2,460 pCi/L and 734 pCi/L, respectively. A positive correlation between the logs of TDS and radium activity can be demonstrated for the entire dataset, and controlling for this TDS dependence, Marcellus shale produced water samples contain statistically more radium than non-Marcellus samples. The radium isotopic ratio, Ra-228/Ra-226, in samples from the Marcellus Shale is generally less than 0.3, distinctly lower than the median values from other reservoirs. This ratio may serve as an indicator of the provenance or reservoir source of radium in samples of uncertain origin.
Installation Restoration Program. Phase I. Records Search, Hancock Field, New York.
1982-07-01
purplish red, red, gray, green or black shale (major fraction) and shaly dolomite (minor fraction). The unit is poorly stra- tified and reaches a... fractured and jointed locally. At Hancock Field, the Vernon is typically overlain by a thin layer of glacial till. Test borings advanced at the Semi...the consolidated rock aquifer, composed of shales and dolomitic shales of the previously described Vernon Formation. Water is contained in this unit
NASA Astrophysics Data System (ADS)
Long, H.; Long, H.; Nekvasil, H.; Liu, Y.
2001-12-01
As a member of Hetang Formation, lower Cambrian, the Zhangcun-Zhengfang vanadium-bearing black shales are spread in the sea basin outside of the Ancient Jiangnan Island Arc. The composition of black shales is silicalite + siltstone + detrital carbonate. A large amount of hyalophane has been discovered in the shales and the hyalophane-rich rock is the major type of vanadium-host rock. The barium content in the hyalophane is up to 18.91%. The vanadium mainly exists in vanadiferous illite and several Ti-V oxides, possibly including a new mineral. The chemical formula of this kind of Ti-V oxide is V2O3¡nTiO2, n=4¡ª9, according to the electronic microprobe studies. The micro X-ray diffraction studies show the new mineral may be triclinic. The shales are rich in Ba, K, V and contain only trace Na and Mn while all the compositions of the shales except carbonate have a low content of Mg and Ca. According to the authors¡_ study, V obviously has a relationship with Ba and Se, which are from the volcano or hydrothermal activities, and the basic elements Cr, Co, Ni, Ti and Fe. It may present that they are from the same source. Thus, it seems that they are not from the ¡rnormal¡_ sedimentary environment and may be from the hydrothermal deposition. The REE models show that silicalite may be the hydrothermal deposit that does not mix with seawater while the REE models of hyalopahne-rich rock is similar to some modern hydrothermal deposits in the seafloor. The subtle negative anomaly of Yb may reflect the REE model of basalt in the seafloor. The geology and geochemistry of the shales indicate that the shales may be of hydrothermal genesis. Silicalite may be the typical ¡r pure¡_ hydrothermal sediment and hyalophane-rich rock may be the product of hydrothermal activity while the hydrothermal fluid passes the continent source material in the sedimentary process. V, Ti, Ba and Si may be from the volcanic rock in the seafloor and the Al and K may be from the continent.
Evaporite karst of northern lower Michigan
Black, T.J.
1997-01-01
Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian depos its are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum, and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the "solution front" Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing-seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group.
Egenhoff, Sven O.; Fishman, Neil S.
2013-01-01
Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.
Irwin, William P.; Mankinen, Edward A.
1998-01-01
The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.
Unconventional shallow biogenic gas systems
Shurr, G.W.; Ridgley, J.L.
2002-01-01
Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are not clear. Large quantities of water are coproduced with the gas, and geochemical data indicate that the water is fairly fresh and relatively young. Current thinking holds that biogenic gas was generated, and perhaps continues to be, when glacial meltwater descended into the plumbing system provided by fractures. Other examples of late-generation systems include the Devonian New Albany Shale on the eastern margin of the Illinois basin and the Tertiary coalbed methane production on the northwestern margin of the Powder River basin. Both types of biogenic gas systems have a similar resource development history. Initially, little technology is used, and gas is consumed locally; eventually, sweet spots are exploited, widespread unconventional reservoirs are developed, and transport of gas is interstate or international. However, drilling and completion techniques are very different between the two types of systems. Early-generation systems have water-sensitive reservoir rocks, and consequently water is avoided or minimized in drilling and completion. In contrast, water is an important constituent of late-generation systems; gas production is closely tied to dewatering the system during production. Existing production and resource estimates generally range from 10 to 100 tcf for both types of biogenic gas systems. Although both system types are examples of relatively continuous accumulations, the geologic frameworks constrain most-economic production to large geologic structures on the margins of basins. Shallow biogenic gas systems hold important resources to meet the increased domestic and international demands for natural gas.
Dennis, L.W.; Maciel, G.E.; Hatcher, P.G.; Simoneit, B.R.T.
1982-01-01
Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500??C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration. ?? 1982.
NASA Astrophysics Data System (ADS)
Niedźwiedzki, G.
2012-04-01
Numerous trackways and isolated prints with digit impressions, which are similar to the foot anatomy of early tetrapods such as Ichthyostega, were found on the three dolomite bed-surfaces in the lower part of the Wojciechowice Formation exposed in the Zachełmie Quarry in the Holy Cross Mountains (south-central Poland), (Niedźwiedzki et al., 2010). The age of the tetrapod track-bearing strata is well-constrained, but the detailed sedimentology of the lower section with tetrapod ichnites is still under study. The Wojciechowice Formation represent one of the first carbonate stages of a transgressive succession that begins with Early Devonian continental to marginal marine clastics and culminates in the development of a Givetian coral-stromatoporoid carbonate platform. The tetrapod track-bearing complex is composed of grey to reddish, thin- to medium-bedded dolomitic shales and marly dolomite mudstones. These deposits from the tetrapod track-bearing horizon lack definitive marine body fossils, and may have formed in a marginal marine environment, e.g. around a coastal lagoon. Mudcracks, columnar peds, root traces, and microbially induced sedimentary structures were found in three distinct pedotypes of very weakly to weakly developed paleosols (Retallack, 2011). Conodonts of the costatus zone (mid-Eifelian) were found 20 m above the uppermost surface with tetrapod tracks in limestones of the upper Wojciechowice Formation, which contain also brachiopod and crinoidal debris. The overlying Kowala Formation is a marine coral limestone and dolostone. The parts of profile with tetrapod ichnites and invertebrate and conodont fossils contain also records of invertebrate traces. Seven ichnotaxa are distributed among four recognized ichnoassemblages. The recognized ichnocoenoses are typical for the shallow-marine (Cruziana ichnofacies) and land-water transitional (Skolithos/Psilonichnus ichnofacies) carbonate depositional environments. The ichnocoenoses are dominated by trace fossils produced by arthropods (probably crustaceans), a group that can create large and distinctive burrows. The palaeoecological information from the Zachełmie section has direct bearing on the interpretation of environmental aspects of tetrapod emergence and terrestrialization. It should be fully integrated with data from other Devonian tetrapod tracksites. Niedźwiedzki, G., Szrek P., Narkiewicz K., Narkiewicz M. and Ahlberg P.E. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature, 463: 43-48. Retallack, G.J. 2011. Woodland Hypothesis for Devonian Tetrapod Evolution. The Journal of Geology, 119, 3: 235-258
Strontium isotopic study of subsurface brines from Illinois basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
hetherington, E.A.; Stueber, A.M.; Pushkar, P.
1986-05-01
The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /supmore » 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.« less
Petroleum potential of the Reggane Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudjema, A.; Hamel, M.; Mohamedi, A.
1990-05-01
The intracratonic Reggane basin is located on the Saharan platform, southwest of Algeria. The basin covers an area of approximately 140,000 km{sup 2}, extending between the Eglab shield in the south and the Ougarta ranges in the north. Although exploration started in the early 1950s, only a few wells were drilled in this basin. Gas was discovered with a number of oil shows. The sedimentary fill, mainly Paleozoic shales and sandstones, has a thickness exceeding 5,000 m in the central part of the basin. The reservoirs are Cambrian-Ordovician, Siegenian, Emsian, Tournaisian, and Visean sandstones with prospective petrophysical characteristics. Silurian Uppermore » Devonian and, to a lesser extent Carboniferous shales are the main source rocks. An integrated study was done to assess the hydrocarbon potential of this basin. Tectonic evolution source rocks and reservoirs distribution maturation analyses followed by kinetic modeling, and hydrogeological conditions were studied. Results indicate that gas accumulations could be expected in the central and deeper part of the basin, and oil reservoirs could be discovered on the basin edge.« less
Nebel-Jacobsen, Yona; Nebel, Oliver; Wille, Martin; Cawood, Peter A
2018-01-17
Plate tectonics and associated subduction are unique to the Earth. Studies of Archean rocks show significant changes in composition and structural style around 3.0 to 2.5 Ga that are related to changing tectonic regime, possibly associated with the onset of subduction. Whole rock Hf isotope systematics of black shales from the Australian Pilbara craton, selected to exclude detrital zircon components, are employed to evaluate the evolution of the Archean crust. This approach avoids limitations of Hf-in-zircon analyses, which only provide input from rocks of sufficient Zr-concentration, and therefore usually represent domains that already underwent a degree of differentiation. In this study, we demonstrate the applicability of this method through analysis of shales that range in age from 3.5 to 2.8 Ga, and serve as representatives of their crustal sources through time. Their Hf isotopic compositions show a trend from strongly positive εHf initial values for the oldest samples, to strongly negative values for the younger samples, indicating a shift from juvenile to differentiated material. These results confirm a significant change in the character of the source region of the black shales by 3 Ga, consistent with models invoking a change in global dynamics from crustal growth towards crustal reworking around this time.
Kirschbaum, Mark A.; Schenk, Christopher J.; Cook, Troy A.; Ryder, Robert T.; Charpentier, Ronald R.; Klett, Timothy R.; Gaswirth, Stephanie B.; Tennyson, Marilyn E.; Whidden, Katherine J.
2012-01-01
The U.S. Geological Survey assessed unconventional oil and gas resources of the Upper Ordovician Utica Shale and adjacent units in the Appalachian Basin Province. The assessment covers parts of Maryland, New York, Ohio, Pennsylvania, Virginia, and West Virginia. The geologic concept is that black shale of the Utica Shale and adjacent units generated hydrocarbons from Type II organic material in areas that are thermally mature for oil and gas. The source rocks generated petroleum that migrated into adjacent units, but also retained significant hydrocarbons within the matrix and adsorbed to organic matter of the shale. These are potentially technically recoverable resources that can be exploited by using horizontal drilling combined with hydraulic fracturing techniques.
NASA Astrophysics Data System (ADS)
Yamaguchi, K. E.; Kiyokawa, S.; Naraoka, H.; Ikehara, M.; Ito, T.; Suganuma, Y.; Sakamoto, R.; Hosoi, K.
2010-12-01
To obtain drillcores of Mesoarchean black shales with negligible modern weathering, we conducted continental drilling at Cleaverville coast in Pilbara, Western Australia. We recovered 3.2Ga sulfidic black shales of the Cleaverville Group from three drillholes (~200m in total), namely DX, CL1, and CL2. Information on the geology of the drilling site has been reported [1, 2]. Here we report the discovery of Mo enrichment in the 3.2Ga DXCL-DP black shales. We analyzed total chemical compositions of forty black shale samples from drillcore DX and fifty-six of those from CL1 and CL2. Molybdenum concentrations for DX samples ranged from 0.3 to 12.9ppm (Avg±1σ= 1.8±1.9ppm), and those for CL1 and CL2 (combined) ranged from 0.8 to 3.3ppm (Avg±1σ= 1.4±0.4ppm). The highest concentration of Mo occurs in Corg-rich sample, and is comparable to that of the contemporaneous Fig Tree Group in South Africa [3, 4]. The highest concentration of Mo in the DXCL-DP samples, ~13ppm, is lower than that found in the 2.5 Ga Mt. McRae Shale of the Hamersley Group, Western Australia (maximums are ~17ppm [5], and ~40ppm [6]). However, it is much higher, by thirteen times, than the average Mo concentration in the Phanerozoic shales (1ppm [7]). No significant enrichment of Mo was expected to occur in the before-GOE black shales if pO2 was as low as <10-6 PAL. Sulfur isotope analysis revealed, based on the variable δ34S values (-1.9 ~ +26.8‰), that bacterial sulfate reduction was so extensive in the 3.2Ga deep marine environments that sulfate utilization by sulfate-reducers was near completion [8]. Production of bacteriogenic sulfide would have enhanced fixation of dissolved Mo into sulfide minerals in sediments. This is rather a common process occurring in oxygen-depleted environments in the modern ocean ([9]). A combined enrichment of Mo, Corg, and S, together with high δ34S values for a sedimentary formation may be used as a strong evidence for operation of modern-day style sedimentary Mo enrichment. This further implies that oxygenation of the atmosphere and (at least the surface) oceans was significant during deposition of the sediments, ~800Ma earlier than commonly thought ([10]). Operation of present-day style geochemical cycle of Mo in the Mesoarchean surface environments suggests early evolution of atmosphere, oceans, and microbial biosphere. References: [1] Kiyokawa et al, 2006, GSAB 118: 3-22. [2] Yamaguchi et al, 2009, Sci. Drill. 7: 34-37. [3] Yamaguchi, 2002, Ph.D. dissertation, Penn State Univ. [4] Yamaguchi & Ohmoto, 2002, GSA Abstract [5] Naraoka et al, 2001, 4th Int'l Archaean Symp., Perth. [6] Anbar et al, 2007, Science 317: 1903-1906. [7] Vine & Tourtelot, 1970, Econ. Geol. 65: 253-272. [8] Sakamoto et al, 2010, Fall AGU Mtg. [9] Morford & Emerson, 1999, GCA 63: 1735-1750. [10] Bekker et al, 2004, Nature 427: 117-120.
The Architecture and Frictional Properties of Faults in Shale
NASA Astrophysics Data System (ADS)
De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.
2015-12-01
The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.
Cretaceous planktic foraminiferal biostratigraphy of the Calera Limestone, Northern California, USA
Sliter, W.V.
1999-01-01
The Calera Limestone is the largest, most stratigraphically extensive limestone unit of oceanic character included in the Franciscan Complex of northern California. The aim of this paper is to place the Calera Limestone at its type locality (Rockaway Beach, Pacifica) in a high-resolution biostratigraphy utilizing planktic foraminifers studied in thin section. A section, about 110 m-thick, was measured from the middle thrust slice exposed by quarrying on the southwest side of Calera Hill at Pacifica Quarry. Lithologically, the section is divided in two units; a lower unit with 73 m of black to dark-grey limestone, black chert and tuff, and an upper unit with 36.8 m of light-grey limestone and medium-grey chert. Two prominent black-shale layers rich in organic carbon occur 11 m below the top of the lower black unit and at the boundary with overlying light-grey unit, yielding a total organic content (TOC) of 4.7% and 1.8% t.w., respectively. The fossiliferous Calera Limestone section measured at Pacifica Quarry, from the lower black shale, contains eleven zones and three subzones that span approximately 26 m.y. from the early Aptian to the late Cenomanian. The zones indentified range from the Globigerinelloides blowi Zone to the Dicarinella algeriana Subzone of the Rotalipora cushmani Zone. Within this biostratigraphic interval, the Ticinella bejaouaensis and Hedbergella planispira Zones at the Aptian/Albian boundary are missing as are the Rotalipora subticinensis Subzone of the Biticinella breggiensis Zone and the overlying Rotalipora ticinensis Zone in the late Albian owing both to low-angle thrust faulting and to unconformities. The abundance and preservation of planktic foraminifers are poor in the lower part and improve only within the upper G. algerianus Zone. The faunal relationship indicate that the lower black shale occurs in the upper part of the G. blowi Zone and correlates with the Selli Event recognized at global scale in the early Aptian. The upper black shale occurs at or near the boundary between the G. ferreolensis and G. algerianus Zone in the late Aptian. This black layer, or Thalmann Event as named here, seems to represent the sedimentary expression, at the scale of Permanente Terrane, of a global perturbation of the carbon cycle.
Vitrinite equivalent reflectance of Silurian black shales from the Holy Cross Mountains, Poland
NASA Astrophysics Data System (ADS)
Smolarek, Justyna; Marynowski, Leszek; Spunda, Karol; Trela, Wiesław
2014-12-01
A number of independent methods have been used to measure the thermal maturity of Silurian rocks from the Holy Cross Mountains in Poland. Black shales are characterized by diverse TOC values varying from 0.24-7.85%. Having calculated vitrinite equivalent reflectance using three different formulas, we propose that the most applicable values for the Silurian rocks are those based on Schmidt et al. (2015) equation. Based on this formula, the values range from % 0.71 VReqvVLR (the vitrinite equivalent reflectance of the vitrinite-like macerals) to % 1.96 VReqvVLR. Alternative, complementary methods including Rock Eval pyrolysis and parameters based on organic compounds (CPI, Pr/n-C17, Ph/n-C18, MPI1, and MDR) from extracts did not prove adequate as universal thermal maturity indicators. We have confirmed previous suggestions that Llandovery shales are the most likely Silurian source rocks for the generation of hydrocarbons in the HCM.
Mesozoic black shales, source mixing and carbon isotopes
NASA Astrophysics Data System (ADS)
Suan, Guillaume
2016-04-01
Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.
Evolution of Early Paleoproterozoic Ocean Chemistry as Recorded by Black Shales
NASA Astrophysics Data System (ADS)
Scott, C.; Bekker, A.; Lyons, T. W.; Planavsky, N. J.; Wing, B. A.
2010-12-01
In recent years, Precambrian biogeochemists have focused largely on the abundance, speciation and isotopic composition of major and trace elements preserved in organic carbon-rich black shales in order to track the co-evolution of ocean chemistry and life on Earth. Despite the fact that the period from 2.5 to 2.0 Ga hosted major events in Earth’s history, such as the Great Oxidation Event (GOE), an era of global glaciations, a massive and long-lived carbon isotope excursion and the end to banded iron formation (BIF) deposition, each with the potential to directly alter global biogeochemical cycles, it is perhaps best known for its unknowns. In order to help close this gap in our understanding of the evolution of Precambrian ocean chemistry we present a detailed biogeochemical study of Paleoproterozoic black shales deposited between 2.5 and 2.0 Ga. Our study integrates Fe speciation, trace metal chemistry and C, S and N isotope analyses to provide a thorough characterization of marine biogeochemical cycles as they responded to the GOE and set the stage for the demise of BIFs at ca. 1.8 Ga. Our data reveal an ocean that was both surprising similar to, and demonstrably different from, Archean and later Proterozoic oceans. Of particular interest, we find that ferruginous and euxinic conditions co-existed during this period and that sea water trace metal inventories fluctuated dramatically in conjunction with major carbon isotope excursions. By comparing our Paleoproterozoic contribution with recent biogeochemical studies of other Precambrian black shales we can begin to track first order changes in ocean chemistry without the major time gaps that have plagued previous attempts.
Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.
2013-01-01
Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty mudstone immediately above this contains radiolarians, foraminifers, conodonts, and halobiid bivalve fragments. The upper (limestone) member (29 m thick) is lime mudstone with monotid bivalves and late Norian radiolarians, overlain by gray chert that contains Rhaetian (latest Triassic) radiolarians; Rhaetian strata have not previously been documented in the Otuk. Rare gray to black shale interbeds in the upper member have as much as 3.4 weight percent TOC. At least 35 m of black mudstone overlies the limestone member; these strata lack interbeds of oil shale and chert that are characteristic of the Blankenship, and instead they resemble the Kingak Shale. Vitrinite reflectance values (2.45 and 2.47 percent Ro) from two samples of black shale in the chert member indicate that these rocks reached a high level of thermal maturity within the dry gas window. Regional correlations indicate that lithofacies in the Otuk Formation vary with both structural and geographic position. For example, the shale member of the Otuk in the Wolverine Creek plate includes more limy layers and less barite (as blades, nodules, and lenses) than equivalent strata in the structurally higher Red Dog plate of the EMA, but it has fewer limy layers than the shale member in the EMA ~450 kilometers (km) to the east at Tiglukpuk Creek. The limestone member of the Otuk is thicker in the Wolverine Creek plate than in the Red Dog plate and differs from this member in EMA sections to the east in containing an upper cherty interval that lacks monotids; a similar interval is seen at the top of the Otuk Formation ~125 km to the west (Lisburne Peninsula). Our observations are consistent with the interpretations of previous researchers that Otuk facies become more distal in higher structural positions and that within a given structural level more distal facies occur to the west. Recent paleogeographic reconstructions indicate that the Otuk accumulated at a relatively high paleolatitude with a bivalve fauna typical of the Boreal realm. A suite of δ13Corg (carbon isotopic composition of carbon) data (n=38) from the upper Siksikpuk Formation through the Otuk Formation and into the Kingak(?) Shale in DDH 927 shows a pattern of positive and negative excursions similar to those reported elsewhere in Triassic strata. In particular, a distinct negative excursion at the base of the Otuk (from ‒23.8 to ‒31.3‰ (permil, or parts per thousand)) likely correlates with a pronounced excursion that marks the Permian-Triassic boundary at many localities worldwide. Another feature of the Otuk δ13Corg record that may correlate globally is a series of negative and positive excursions in the lower member. At the top of the Otuk in DDH 927, the δ13Corg values are extremely low and may correlate with a negative excursion that is widely observed at the Triassic-Jurassic boundary.
Geology and hydrocarbon potential of the Oued Mya basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1993-09-01
The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less
NASA Astrophysics Data System (ADS)
Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa
2015-04-01
Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible suboxic to anoxic conditions of the bottom and pore waters during the formation of Vesiku bone bed. In Ohesaare (Pridoli), the REE compositions were nearly identical across all the morphotypes and histologies of acanthodian microremains showing flat REE patterns with slight depletion in HREE. There were no visible enrichment in MREE, indicating relatively good preservation of original bioapatite and likely absence of any pronounced fractionated REE incorporation during later stages of diagenesis. The shale normalised (La/Yb)SN and (La/Sm)SN REE ratio compilations showed addsorption as dominating REE uptake mechanism across all the studied microfossils. The absence of well-defined Ce anomaly suggest oxic palaeoseawater conditions, which agrees with existing interpretations of Ohesaare sequence as high-energy shoal and regressive open ocean sedimentary environment.
NASA Astrophysics Data System (ADS)
Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk
2017-04-01
The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.
NASA Astrophysics Data System (ADS)
Lowery, C.; Snedden, J.; Cunningham, R.; Barrie, C.; Leckie, R. M.
2016-12-01
The largest carbon isotope excursions (CIEs) of the Cretaceous are associated with widespread evidence for marine anoxia and have been termed Oceanic Anoxic Events (OAEs). OAEs were originally thought to be globally-correlative intervals of black shales, but black shale deposition is an inherently provincial phenomenon driven by local conditions, and black shales associated with individual OAEs are often slightly diachronous and can be absent in some regions. Workers currently favor a definition of OAEs that is focused on the positive carbon isotope excursion driven by the global burial of organic matter and resulting carbon cycle perturbation; i.e., recording the global, rather than local, changes. While this is certainly the best way to define a global event, differences in the expression of the event between regions can be used to study the nature of the event itself. The greater Gulf of Mexico region in southern North America offers an excellent example of the diachroneity of black shale deposition and anoxia during one of the largest OAEs, the Cenomanian-Turonian OAE2. The Western Interior Seaway (WIS), flooded the interior of North America from the Gulf of Mexico up through the Canadian Arctic. In Texas and elsewhere across the WIS, high marine organic matter deposition and proxies for anoxia (especially benthic foraminifera and redox sensitive trace metals) are common before the event, but decrease at its onset, and in some places increase again after the event. Further south, across the Mexican shelf, deeper shelf environments remain dysoxic/anoxic through the event, while several carbonate platforms remain oxygenated during the event, but drown and record anoxic bottom waters shortly afterward. Here, we present new bulk carbonate and organic carbon isotopes and planktic and benthic foraminiferal populations from a 90 m core in southern Mississippi, USA, to present the first record of OAE2 from the northern Gulf of Mexico. In particular, we use foraminiferal populations to study the local redox conditions before, during, and after OAE2, and compare them to records from Mexico and across the WIS in order to understand regional patterns of environmental change, their underlying paleoclimatic and paleoceanographic drivers, and what this reveals about the overall development of OAE2.
NASA Astrophysics Data System (ADS)
Jin, L.; Ma, L.; Dere, A. L. D.; White, T.; Brantley, S. L.
2014-12-01
Rare earth elements (REE) have been identified as strategic natural resources and their demand in the United States is increasing rapidly. REE are relatively abundant in the Earth's crust, but REE deposits with minable concentrations are uncommon. One recent study has pointed to the deep-sea REE-rich muds in the Pacific Ocean as a new potential resource, related to adsorption and concentration of REE from seawater by hydrothermal iron-oxyhydroxides and phillipsite (Kato et al., 2010). Finding new REE deposits will be facilitated by understanding global REE cycles: during the transformation of bedrock into soils, REEs are leached into natural waters and transported to oceans. At present, the mechanisms and factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we systematically studied soil profiles and bedrock in seven watersheds developed on shale bedrock along a climate transect in the eastern USA, Puerto Rico and Wales to constrain the mobility and fractionation of REE during chemical weathering processes. In addition, one site on black shale (Marcellus) bedrock was included to compare behaviors of REEs in organic-rich vs. organic-poor shale end members under the same environmental conditions. Our investigation focused on: 1) the concentration of REEs in gray and black shales and the release rates of REE during shale weathering, 2) the biogeochemical and hydrological conditions (such as redox, dissolved organic carbon, and pH) that dictate the mobility and fractionation of REEs in surface and subsurface environments, and 3) the retention of dissolved REEs on soils, especially onto secondary Fe/Al oxyhydroxides and phosphate mineral phases. This systematic study sheds light on the geochemical behaviors and environmental pathways of REEs during shale weathering along a climosequence.
Bradley, W.H.; Pepper, J.F.
1941-01-01
The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits red shale and sandstone and gray mudstone in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pi. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines. tend to fork northeastward. All the folds have a westward or southwestward plunge. Throughout the area the rocks are jointed in two dominant sets one that trends northwest and the other east or northeast. No evident relation .between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their j courses swing to follow the changing strike of the rocks where they cross ( successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure. Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in tbe Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes maybe found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Woodhull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell,, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized. Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands presumably parts of the Dunkirk sandstone.
Geologic structure and occurrence of gas in part of southwestern New York
Bradley, Wilmot H.; Pepper, James F.; Richardson, G.B.
1941-01-01
The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits—red shale and sandstone and gray mudstone—in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pl. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but, where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines tend to fork northeastward. All the folds have a westward or southwestward plunge.Throughout the area the rocks are jointed in two dominant sets—one that trends northwest and the other east or northeast. No evident relation between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults ; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their courses swing to follow the changing strike of the rocks where they cross successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure.Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in the Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes may be found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Wood-hull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized.Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands— presumably parts of the Dunkirk sandstone.
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
NASA Astrophysics Data System (ADS)
Javier Álvaro, J.; Colmenar, Jorge; Monceret, Eric; Pouclet, André; Vizcaïno, Daniel
2016-06-01
Upper Ordovician-Lower Devonian rocks of the Cabrières klippes (southern Montagne Noire) and the Mouthoumet massif in southern France rest paraconformably or with angular discordance on Cambrian-Lower Ordovician strata. Neither Middle-Ordovician volcanism nor associated metamorphism is recorded, and the subsequent Middle-Ordovician stratigraphic gap is related to the Sardic phase. Upper Ordovician sedimentation started in the rifting branches of Cabrières and Mouthoumet with deposition of basaltic lava flows and lahar deposits (Roque de Bandies and Villerouge formations) of continental tholeiite signature (CT), indicative of continental fracturing. The infill of both rifting branches followed with the onset of (1) Katian (Ka1-Ka2) conglomerates and sandstones (Glauzy and Gascagne formations), which have yielded a new brachiopod assemblage representative of the Svobodaina havliceki Community; (2) Katian (Ka2-Ka4) limestones, marlstones, and shales with carbonate nodules, reflecting development of bryozoan-echinoderm meadows with elements of the Nicolella Community (Gabian and Montjoi formations); and (3) the Hirnantian Marmairane Formation in the Mouthoumet massif that has yielded a rich and diverse fossil association representative of the pandemic Hirnantia Fauna. The sealing of the subaerial palaeorelief generated during the Sardic phase is related to Silurian and Early Devonian transgressions leading to onlapping patterns and the record of high-angle discordances.
Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.
2010-01-01
The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.
Multiple fracturing experiments: propellant and borehole considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuderman, J F
1982-01-01
The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less
Radium release mechanisms during hydraulic fracturing of Marcellus Shale
NASA Astrophysics Data System (ADS)
Sharma, M.; Landis, J. D.; Renock, D. J.
2016-12-01
Wastewater co-produced with methane from Devonian Marcellus Shale is hypersaline and enriched in Ra. Recent studies find that water injected during hydraulic fracturing can leach out significant quantities of Na, Ca, Ba and Sr from solid phases in the shale over just hours to days. Here, we show with water-rock leaching experiments that the measured 226Ra/228Ra ratios of Marcellus wastewater could also derive from rapid leaching of mineral and organic phases of the shale. Radium isotopes 226Ra (t1/2 = 1600 a) and 228Ra (t1/2 = 5.8 a) are produced through radioactive decay of 238U (t1/2 = 4.5 Ga) and 232Th (t1/2 = 14 Ga), respectively. In the absence of processes that fractionate U, Th and Ra from one another, the decay rates of each parent-daughter pair become identical over 5 half-lives of the daughter radionuclide reaching a condition of secular equilibrium. Water-rock interaction may induce pronounced deviations from secular equilibrium in the water phase, however. Such is the case during hydraulic fracturing, where Ra is soluble and mobile, and is orphaned from insoluble U and Th parents. Once 226Ra and 228Ra are mobilized no fractionation between these isotopes is expected during their transport to the surface. Thus the 226Ra/228Ra ratio in wastewater provides a fingerprint of Ra source(s). Leaching Marcellus Shale with pure water under anoxic conditions releases mainly 228Ra from clays; extraction of 228Ra from radiation damaged sites is likely the dominant contributing mechanism. Using a novel isotope dilution technique we find that 90% of the Ra released in pure water partitions back onto rock (possibly clays). In comparison, leaching with high ionic strength solutions induces the release of 226Ra from mainly organics; the breakdown of organic matter in these solutions may be the driving mechanism controlling 226Ra release in solution. Radium released by high ionic strength solutions strongly partitions into water and results in the development of leachates with high 226Ra/228Ra ratios that are comparable to those of Marcellus wastewaters. Our results suggest that hydraulic fracturing using dilute HCl solution releases Ca and Na from the shale and effects rapid Ra release from the rock. Hypersaline and radioactive wastewater is thus a consequence of active leaching of shale during hydraulic fracturing.
Geology of parts of the Johnny Gulch quadrangle, Montana
Freeman, Val L.
1954-01-01
An area of about 35 square miles, situated about 30 miles southeast of Helena, Montana, was mapped during the summer of 1952 at a scale of l:24, 000. The area includes a part of the eastern foothills of the Elkhorn Mountains, and is underlain by sedimentary mad volcanic rocks of Cretaceous age that were intruded during late Cretaceous or early Tertiary time by several types of igneous rocks. The oldest rocks in the map area are the nonmarine sandstone, shale, and limestone of the Kootenai formation. These are overlain disconformably by the black shale siltstone, sandstone, and siliceous mudstone of the Colorado group that is subdivided into three map units; a lower black shale unit composed of black shale and silty shale with a basal clean sandstone, all of probable marine origin; a middle siliceous unit composed of sandstone, siltstone, and siliceous mudstone of both marine and nonmarine origin; and an upper black unit composed of black shale of marine origin. Conformably above the Colorado group are crystal lithic turfs of the Slim Sam formation; in places theme grade into and in other places are unconformably overlain by the Elkhorn Mountains volcanics composed of crystal tuff, breccia, flows, and bedded tuff of andesitic composition. The rocks of the Elkhorn Mountains volcanics and older formations have been intruded by diorite porphyry and related rocks and by hornblende quartz monzonite. The diorite porphyry and related rocks include hornblende diorite porphyry, hornblende augite diorite porphyry, augite diorite porphyry, and basalt. Resting with marked unconformity upon older rocks are volcanic sedimentary rocks of early Tertiary age that are locally overlain by thin rhyolite flows. Late Tertiary and Quaternary fans overlie the rhyolite flows. Alluvium, talus, and other mantle are present in small amounts in many parts of the area. The sedimentary rocks of the area mapped form a part of the east flank of a major anticline. A major north-south syncline to the north of map area is believed to have been deflected to the east of the area because of the rigidity of large irregular plutons of diorite porphyry. The location of the plutons may have been controlled by the initiation of the major syncline, by a postulated pre-intrusive fault, or by both. Most of the small-scale structural features are related to the emplacement of the plutons. During emplacement the intruded sediments yielded either by faulting or by folding; the deeper rocks failed by faulting and the shallower rocks failed by folding. The area contains deposits of gold, silver, copper, lead, and zinc, none of which are currently being mined; and a deposit of magnetite which is being mined for use in cement.
Inventory and evaluation of potential oil shale development in Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angino, E.; Berg, J.; Dellwig, L.
The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less
Dumoulin, Julie A.; Slack, John F.; Whalen, Michael T.; Harris, Anita G.
2011-01-01
Phosphatic rocks are distributed widely in the Lisburne Group, a mainly Carboniferous carbonate succession that occurs throughout northern Alaska. New sedimentologic, paleontologic, and geochemical data presented here constrain the geographic and stratigraphic extent of these strata and their depositional and paleogeographic settings. Our findings support models that propose very high oxygen contents of the Permo-Carboniferous atmosphere and oceans, and those that suggest enhanced phosphogenesis in iron-limited sediments; our data also have implications for Carboniferous paleogeography of the Arctic. Lisburne Group phosphorites range from granular to nodular, are interbedded with black shale and lime mudstone rich in radiolarians and sponge spicules, and accumulated primarily in suboxic outer- to middle-ramp environments. Age constraints from conodonts, foraminifers, and goniatite cephalopods indicate that most are middle Late Mississippian (early Chesterian; early late Visean). Phosphorites form 2- to 40-cm-thick beds of sand- to pebble-sized phosphatic peloids, coated grains, and (or) bioclasts cemented by carbonate, silica, or phosphate that occur through an interval =12 m thick. High gamma-ray response through this interval suggests strongly condensed facies related to sediment starvation and development of phosphatic hardgrounds. Phosphorite textures, such as unconformity-bounded coated grains, record multiple episodes of phosphogenesis and sedimentary reworking. Sharp bed bases and local grading indicate considerable redeposition of phosphatic material into deeper water by storms and (or) gravity flows. Lisburne Group phosphorites contain up to 37 weight percent P2O5, 7.6 weight percent F, 1,030 ppm Y, 517 ppm La, and 166 ppm U. Shale-normalized rare earth element (REE) plots show uniformly large negative Ce anomalies Ce/Ce*=0.11 + or - 0.03) that are interpreted to reflect phosphate deposition in seawater that was greatly depleted in Ce due to increased oxygenation of the atmosphere and oceans during the Carboniferous evolution of large vascular land plants. Black shales within the phosphorite sections have up to 20.2 weight percent Corg and are potential petroleum source rocks. Locally, these strata also are metalliferous, with up to 1,690 ppm Cr, 2,831 ppm V, 551 ppm Ni, 4,670 ppm Zn, 312 ppm Cu, 43.5 ppm Ag, and 12.3 ppm Tl; concentrations of these metals covary broadly with Corg, suggesting coupled redox variations. Calculated marine fractions (MF) of Cr, V, and Mo, used to evaluate the paleoredox state of the bottom waters, show generally high CrMF/MoMF and VMF/MoMF ratios that indicate deposition of the black shales under suboxic denitrifying conditions; Re/Mo ratios also plot mainly within the suboxic field and support this interpretation. Predominantly seawater and biogenic sources are indicated for Cr, V, Mo, Zn, Cd, Ni, and Cu in the black shales, with an additional hydrothermal contribution inferred for Zn, Cd, Ag, and Tl in some samples. Lisburne Group phosphorites formed in the Ikpikpuk Basin and along both sides of the mud- and chert-rich Kuna Basin, which hosts giant massive sulfide and barite deposits of the Red Dog district. Lisburne Group phosphatic strata are coeval with these deposits and formed in response to a nutrient-rich upwelling regime. Phosphate deposition occurred mainly in suboxic bottom waters based on data for paleoredox proxies (Cr, V, Mo, Re) within contemporaneous black shales. Recent global reconstructions are consistent with Carboniferous upwelling in northern Alaska, but differ in the type of upwelling expected (zonal versus meridional). Paleoenvironmental data suggest that meridional upwelling may better explain phosphorite deposition in the Lisburne Group.
Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee
Bradley, Michael W.; Worland, Scott; Byl, Tom
2015-01-01
Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown material weathered from shale, and 4 - the deposition of secondary-sulfate minerals can store trace metals and, during rainfall, result in increased acidity and higher concentrations of trace metals in storm runoff. Understanding the factors that control ARD formation and transport are key to addressing the problems associated with the movement of ARD from the road cuts to the environment. The investigation will provide the Tennessee Department of Transportation with a regional characterization of ARD and provide insights into the geochemical and biochemical attributes for the control and remediation of ARD from road cuts.
The Santa Cruz - Tarija Province of Central South America: Los Monos - Machareti(!) Petroleum System
Lindquist, Sandra J.
1999-01-01
The Los Monos - Machareti(!) total petroleum system is in the Santa Cruz - Tarija Province of Bolivia, Argentina and Paraguay. Province history is that of a Paleozoic, intracratonic, siliciclastic rift basin that evolved into a Miocene (Andean) foreland fold and thrust belt. Existing fields are typified by alternating reservoir and seal rocks in post-Ordovician sandstones and shales on anticlines. Thick Devonian and Silurian shale source rocks, depositionally and erosionally confined to this province, at a minimum have generated 4.1 BBOE known ultimate recoverable reserves (as of 1995, 77% gas, 15% condensate, 8% oil) into dominantly Carboniferous reservoirs with average 20% porosity and 156 md permeability. Major detachment surfaces within the source rocks contributed to the thin-skinned and laterally continuous nature of the deformation. Tertiary foreland burial adequate for significant source maturation coincided with the formation of compressional traps. Further hydrocarbon discovery in the fold and thrust belt is expected. In the foreland basin, higher thermal gradients and variable burial history - combined with the presence of unconformity and onlap wedges - create potential there for stratigraphic traps and pre-Andean, block-fault and forced-fold traps.
Ryder, Robert T.; Swezey, Christopher S.; Trippi, Michael H.; Lentz, Erika E.; Avary, K. Lee; Harper, John A.; Kappel, William M.; Rea, Ronald G.
2007-01-01
This report provides an evaluation of the source rock potential of Silurian strata in the U.S. portion of the northern Appalachian Basin, using new TOC and RockEval data. The study area consists of all or parts of New York, Ohio, Pennsylvania, and West Virginia. The stratigraphic intervals that were sampled for this study are as follows: 1) the Lower Silurian Cabot Head Shale, Rochester Shale, and Rose Hill Formation; 2) the Lower and Upper Silurian McKenzie Limestone, Lockport Dolomite, and Eramosa Member of the Lockport Group; and 3) the Upper Silurian Wills Creek Formation, Tonoloway Limestone, Salina Group, and Bass Islands Dolomite. These Silurian stratigraphic intervals were chosen because they are cited in previous publications as potential source rocks, they are easily identified and relatively continuous across the basin, and they contain beds of dark gray to black shale and (or) black argillaceous limestone and dolomite.
Is air pollution causing landslides in China?
NASA Astrophysics Data System (ADS)
Zhang, Ming; McSaveney, Mauri J.
2018-01-01
Air pollution in China often exceeds "unhealthy" levels, but Chinese air is not only a threat from being breathed: the pollutants may also be causing fatal landslides. Very acid rain from severe air pollution falls widely in southwest China, where coal is a major energy source. We discuss where acid rain may provide an unsuspected link between mining and the fatal 2009 Jiweishan landslide in southwest China; it may have reduced the strength of a thin, calcareous, black sapropelic shale in Jiweishan Mountain by removing cementing carbonate minerals and sapropel matrix. Mining beneath the potential slide mass may not have directly triggered the landslide, but collapse of abandoned adits drained a perched aquifer above a regional black-shale aquiclude. Inflow of acid, oxygenated water and nutrients into the aquiclude may have accelerated the reduction of strength of the weakest rocks and consequently led to rapid sliding of a large rock mass on a layer of weathered shale left composed largely of soft, and slippery talc.
Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland
NASA Astrophysics Data System (ADS)
Kucha, H.; Pawlikowski, M.
1986-01-01
These Kupferschiefer deposits were probably formed as a result of a mixing of two brines. The upper cold brine (UCB) is an unmineralized brine rich in Na, Ca, Cl and SO4, with a pH>7 and originating from evaporites overlying the metal-bearing Zechstein rocks. The lower hot brine (LHB) rich in Mg, K, Cl, SO4 and CO3 with a pH<=7 formed in sediments in the central part of the Zechstein basin at a depth of 7,000 m. This brine was subjected to heating and upward convection toward the Fore-Sudetic monocline along the bottom of the Z1 carbonates. During its migration, it caused albitization, serpentinization and leaching of the primary metal deposits in rocks underlying the Zechstein becoming enriched in heavy metals. The mineralization process, being a result of the mixing of the two brines (UCB and LHB), and catalytic oxidation of the organic matter of the black shale were initiated at shallow depths in the area of the Fore-Sudetic monocline. The boundary of the two brines generally overlapped the strike of the black shale. Parts of the deposit with shale-free host rock suggest that the action of two brines alone was capable of producing economic concentrations of Cu, Pb and Zn. Where the boundary of the two brines overlaps the autooxidation zone (the black shale bottom) and also coincides with γ radiation of thucholite, concentrations of noble metals result. The characteristic vertical distribution of the triplet Cu→Pb→Zn from the bottom upward is universal in the Kupferschiefer environment.
Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale
NASA Astrophysics Data System (ADS)
Miao, Xinyang; Zhu, Jing; Zhao, Kun; Yue, Wenzheng
2017-12-01
The anisotropy of shale has significant impact on oil and gas exploration and engineering. In this paper, a-248 nm ultraviolet laser was employed to assess the anisotropic lateral photovoltaic (LPV) response of shale. Anisotropic angle-depending voltage signals were observed with different peak amplitudes ( V p) and decay times. We employed exponential models to explain the charge carrier transport in horizontal and vertical directions. Dependences of the laser-induced LPV on the laser spot position were observed. Owing to the Dember effect and the layered structure of shale, V p shows an approximately linear dependence with the laser-irradiated position for the 0° shale sample but nonlinearity for the 45° and 90° ones. The results demonstrate that the laser-induced voltage method is very sensitive to the structure of materials, and thus has a great potential in oil and gas reservoir characterization.
NASA Astrophysics Data System (ADS)
Rivera, Huber A.; Le Roux, Jacobus P.; Sánchez, L. Katherine; Mariño-Martínez, Jorge E.; Salazar, Christian; Barragán, J. Carolina
2018-10-01
The Cretaceous black shales of Colombia are among the most important successions in the north of South America and have attracted the attention of many geoscientists and exploration companies over the last few decades, because of their high hydrocarbon potential and the presence of emerald deposits. However, many uncertainties still remain with regard to their tectonic setting, sequence stratigraphy, depositional environments, palaeoxygenation conditions, and organic matter preservation. In order to develop a more integrated picture of these different processes and conditions, we conducted a detailed sedimentological, inorganic geochemical (U, V, Ni, Zn, Mn, Fe, Ti, Mo, Cu, Cr, Cd, Ba) and sequence stratigraphic analysis of the Cretaceous black shales in the Magdalena-Tablazo Sub-Basin (Eastern Cordillera Basin) of Colombia. Eleven lithofacies and five lithofacies associations of a storm-dominated, siliciclastic-carbonate ramp were identified, which range from basin to shallow inner ramp environments. These facies were grouped into six third-order stratigraphic sequences showing high-order cycles of marine transgression with constrained regressive pulses during the late Valanginian to early Coniacian. The black shales succession represents deposition under anoxic bottom water with some intervals representing dysoxic-suboxic conditions. The evolution of the sedimentary environments and their palaeoxygenation history reflect tectonic and eustatic sea-level controls that 1) produced a variable orientation and position of the coastline throughout the Cretaceous; 2) conditioned the low-gradient ramp geometry (<0.3°) and 3) modified the oxygenation conditions in the Magdalena-Tablazo Sub-Basin. An improved understanding of the sedimentary setting during deposition of the Cretaceous black shales in the Magdalena-Tablazo Sub-Basin assists in highlighting the interplay between the mechanism of sedimentation and continuum anoxic conditions prevailing in a basin, as well the important role of nutrient input from continental runoff as a trigger of high productivity and extended anoxia conditions.
Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs
NASA Astrophysics Data System (ADS)
Karakitsios, Vasileios; Agiadi, Konstantina
2013-04-01
It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs, through the interpretation of seismic profiles and the surface geological data, will simultaneously provide the subsurface geometry of the unconventional reservoirs. Their exploitation should follow that of conventional hydrocarbons, in order to benefit from the anticipated technological advances, eliminating environmental repercussions. As a realistic approach, the environmental consequences of the oil shale and shale gas exploitation to the natural environment of western Greece, which holds other very significant natural resources, should be delved into as early as possible. References 1Karakitsios V. & Rigakis N. 2007. Evolution and Petroleum Potential of Western Greece. J.Petroleum Geology, v. 30, no. 3, p. 197-218. 2Karakitsios V. 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, in press. 3Bartis J.T., Latourrette T., Dixon L., Peterson D.J., Cecchine G. 2005. Oil Shale Development in the United States: Prospect and Policy Issues. Prepared for the National Energy Tech. Lab. of the U.S. Dept Energy. RAND Corporation, 65 p.
Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin
2016-08-06
The effects of CO₂-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO₂ in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO₂. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO₂. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO₂, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO₂). SC-CO₂ causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO₂. The EDS results show that CO₂-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.
Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.
2015-01-01
It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438
Geology of the Deep Creek area, Washington, and its regional significance
Yates, Robert Giertz
1976-01-01
This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the deposition of clean quartz sand. This was followed by the accumulation of a comparatively thin limestone unit succeeded by a thick shale. The shale grades into a thick carbonate unit which in turn is overlain by black graptolitic slates (Ordovician). This general order of deposition holds for the Cambro-Ordovician throughout the area. Precambrian rocks indigenous to the Deep Creek area, have undergone at least six tectonic events of greatly different intensities. The first three of these events are epeirogentic, the fourth involves intense folding, the fifth, crossfolding, and the sixth, block faulting without folding. These events are dated with varying degrees of precision. The two epeirogentic events of the Precambrian, one gentle folding at the beginning of Windermere time and the other high angle faulting and volcanism in mid-Windermere time, did little to deform or metamorphose the rocks. The third event consists of uplift of northern Idaho and adjacent Montana and westward decollement thrusting of essentially unfolded lower Paleozoic rocks. The decollement faulting is inferred to explain anomalous rock distribution and cannot be accurately dated. It occurred sometime after the Devonian and before the Jurassic. A late Paleozoic age is favored.
Geomorphology and forest ecology of a mountain region in the central Appalachians
Hack, John Tilton; Goodlett, John C.
1960-01-01
The area studied, mostly in the headwaters of the Shenandoah River, Augusta and Rockingham Counties, Va., includes about 55 square miles of densely forested mountain land and has an average relief of about 1,500 feet. It is part of an area that in June 1949 was subjected to a violent cloudburst which damaged large tracts on slopes and bottom lands. Most of the area is underlain by flaggy arkosic sandstone and interbedded reddish shale of the Hampshire formation of Devonian age. The highest ridges are capped by massive sandstone of the Pocono formation of Mississippian age. In most of the area the rocks dip gently to the southeast but in the northwestern and southeastern parts they are folded into synclines that localize northeastward-trending ridges.
McDowell, Robert C.
1983-01-01
Silurian rocks form a narrow arcuate outcrop belt about 100 mi long on the east side of the Cincinnati Arch in Kentucky. They range from as much as 300 ft thick in the north to a pinchout edge in the south. The nomenclature of this sequence is revised to reflect mappability and lithologic uniformity on the basis of detailed mapping at a scale of 1:24,000 by the U.S. Geological Survey in cooperation with the Kentucky Geological Survey. The Silurian rocks are divided into two parts: the Crab Orchard Group, raised in rank from Crab Orchard Formation and redefined, in the lower part of the Silurian section, and Bisher Dolomite in the upper part of the section. The Crab Orchard Group is subdivided into the Drowning Creek Formation (new name) at the base of the Silurian, overlain by the Alger Shale (adopted herein) south of Fleming County and by the Estill Shale (elevated to formational rank) north of Bath County. The Brassfield Member (reduced in rank from Brassfield Dolomite or Formation) and the Plum Creek Shale and Oldham Members of the former Crab Orchard Formation are included as members of the Drowning Creek; the Lulbegrud Shale, Waco, and Estill Shale Members of the former Crab Orchard Formation are now included in the Alger. The Drowning Creek Formation, 20 to 50 ft thick, is composed mainly of gray fine to coarse-grained dolomite with shale interbeds. The dolomite beds average several inches thick, with bedding surfaces that are locally smooth but generally irregular and are fossiliferous in many places; fossils include brachiopods, crinoid columnals, horn corals, colonial corals, trilobites, pelecypods, and bryozoans. The shale interbeds average several inches thick, except for its Plum Creek Shale Member which is entirely shale and as much as 12 ft thick, and are most abundant in the upper half of the formation. The members of the Drowning Creek intergrade and are indistinguishable in the northern part of the area. The Alger Shale, as much as 170 feet thick, is predominantly grayish-green clay shale with a thin (0.5-3 ft) dolomite member (the Waco, or its northern equivalent, the Dayton Dolomite Member, reduced in rank from Dayton Limestone) near the base. North of Bath County, the Lulbegrud Shale and Dayton Dolomite Members are reassigned to the underlying Drowning Creek Formation, the Estill Shale Member is elevated to formational status, and the Alger is dropped. The Bisher Dolomite, which overlies the Estill Shale in the northernmost part of the Silurian belt, ranges from 0 to 300 ft in thickness and is composed of medium-to coarse-grained, gray, fossiliferous dolomite. The Silurian section overlies Upper Ordovician rocks in apparent conformity, although faunal studies suggest a minor hiatus, and is overlain by Middle to Upper Devonian rocks in a regional angular unconformity that truncates the entire Silurian section at the southwest end of the outcrop belt, where it is nearest the axis of the Cincinnati Arch. All of the units recognized in the Silurian appear to thicken eastward, away from the axis of the arch and towards the Appalachian basin. This, with the presence of isolated remnants of the Brassfield near the axis, suggest that formation of the arch was initiated in Early Silurian time by subsidence of its eastern flank.
Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.
2006-01-01
Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.
Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.
2015-01-01
The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.
Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay
NASA Astrophysics Data System (ADS)
Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.
2016-03-01
A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and preserves a transgressive-regressive cycle within a shallow-marine siliciclastic shelf platform, and is characterized by an assemblage of invertebrate fossils of Malvinokaffric affinity especially within the Lower Devonian Cordobés shales. The sedimentary provenance of the Durazno Group was determined using petrography, geochemistry, and morphological studies of detrital zircons as well as their U-Pb ages. Sandstone petrography of Cerrezuelo and La Paloma sequences shows that they have a dominantly quartz-feldspathic composition with a minor contribution of other minerals. Whole-rock geochemical data indicate that alteration was strong in each of the three formations studied; chondritic-normalized REE patterns essentially parallel to PAAS, the presence of a negative Eu-anomaly, and Th/Sc and La/Hf ratios point to an average source composition similar to UCC or slightly more felsic. Within the Cerrezuelo Formation, recycling of older volcano-metasedimentary sources is interpreted from Zr/Sc ratios and high Hf, Zr, and REE concentrations. U-Pb detrital zircon age populations of the Cerrezuelo and La Paloma formations indicate that the principal source terranes are of Neoproterozoic age, but include also minor populations derived from Mesoproterozoic and Archean-Paleoproterozoic rocks. A provenance from the Cuchilla Dionisio-Dom Feliciano, Nico Pérez and Piedra Alta terranes of Uruguay and southern Brazil is likely. This study establishes an intracratonic extensional tectonic setting during Durazno time. Considering provenance age sources, regional paleocurrent distributions and the established orogenic history recorded in SW Gondwana, we suggest that the basin fill was derived from paleohighs located in what is currently SE Uruguay.
NASA Astrophysics Data System (ADS)
Trela, Wiesław; Podhalańska, Teresa; Smolarek, Justyna; Marynowski, Leszek
2016-08-01
The Llandovery mudrock facies in the northern Holy Cross Mountains reveal lithological variability allowing their interpretation in the context of post-Ordovician climate and sea-level changes in the Caledonian foredeep basin developed along the present SW margin of Baltica. They form a succession up to 50 m thick made up of grey and greenish clayey mudstones interrupted by black shales. The sedimentary and geochemical data (total organic carbon, pyrite framboids and trace metals) clearly show that the black shales document periods of the significant sediment starvation and oxygen- deficient conditions. Their occurrence is confined to the persculptus-acuminatus, vesiculosus, cyphus, convolutus-sedgwickii, turriculatus-crispus, crenulata and spiralis graptolite biozones and they can be correlated with post-glacial transgressions. In contrast, the grey and greenish mudstones are interpreted as lithofacies reflecting permanent benthic oxygenation driven by deep-water ventilation during the Aeronian and Telychian regressions supported by sedimentary and geochemical studies, and diameters of pyrite framboids
Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America
Brett, Carlton E.; Baird, G.C.; Bartholomew, A.J.; DeSantis, M.K.; Ver Straeten, C.A.
2011-01-01
The well-exposed Middle Devonian rocks of the Appalachian foreland basin (Onondaga Formation; Hamilton Group, Tully Formation, and the Genesee Group of New York State) preserve one of the most detailed records of high-order sea-level oscillation cycles for this time period in the world. Detailed examination of coeval units in distal areas of the Appalachian Basin, as well as portions of the Michigan and Illinois basins, has revealed that the pattern of high-order sea-level oscillations documented in the New York-Pennsylvania section can be positively identified in all areas of eastern North America where coeval units are preserved. The persistence of the pattern of high-order sea-level cycles across such a wide geographic area suggests that these cycles are allocyclic in nature with primary control on deposition being eustatic sea-level oscillation, as opposed to autocylic controls, such as sediment supply, which would be more local in their manifestation. There is strong evidence from studies of cyclicity and spectral analysis that these cycles are also related to Milankovitch orbital variations, with the short and long-term eccentricity cycles (100. kyr and 405. kyr) being the dominant oscillations in many settings. Relative sea-level oscillations of tens of meters are likely and raise considerable issues about the driving mechanism, given that the Middle Devonian appears to record a greenhouse phase of Phanerozoic history. These new correlations lend strong support to a revised high-resolution sea-level oscillation curve for the Middle Devonian for the eastern portion of North America. Recognized third-order sequences are: Eif-1 lower Onondaga Formation, Eif-2: upper Onondaga and Union Springs formations; Eif-Giv: Oatka Creek Formation; Giv-1: Skaneateles, Giv-2: Ludlowville, Giv-3: lower Moscow, Giv-4: upper Moscow-lower Tully, and Giv-5: middle Tully-Geneseo formations. Thus, in contrast with the widely cited eustatic curve of Johnson et al. (1985), which recognizes just one major transgressive-regressive (T-R) cycle in the early-mid Givetian (If) prior to the major late Givetian Taghanic unconformity (IIa, upper Tully-Geneseo Shale), we recognize four T-R cycles: If (restricted), Ig, Ih, and Ii. We surmise that third-order sequences record eustatic sea-level fluctuations of tens of meters with periodicities of 0.8-2. myr, while their medial-scale (fourth-order) subdivisions record lesser variations primarily of 405. kyr duration (long-term eccentricity). This high-resolution record of sea-level change provides strong evidence for high-order eustatic cycles with probable Milankovitch periodicities, despite the fact that no direct evidence for Middle Devonian glacial sediments has been found to date. ?? 2010.
Chlorophyll Diagenesis in the Water Column and Sediments of the Black Sea
1993-02-01
R., Daley R. J., and McNeely R. N. (1977) Composition and stratigraphy of the fossil phorbin derivatives of Little Round Lake, Ontario. Limnol...and Albrecht P. (1987), Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale, Nature 329, 48-51. Honjo S. and...bacteriopetroporphyrins in oil shale. J. Chem. Soc., Chem. Commun. 1985, 200-201. Ocampo R., Callot H. J., and Albrecht P. (1989) Different isotope compositions of C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, R.D.; Sutherland, P.K.; White, P.B.
1990-09-01
Recurrent uplift of the Ouachita fold belt in Oklahoma coincided with the disruption of the Arkoma basin following the deposition of the Boggy Formation (early Desmoinesian time). The Boggy, composed of sandstone-shale sequences that record southerly progradation of coal-bearing, fluvially dominated deltaic complexes into the Arkoma basin, was folded at the time of uplift of the Ouachita fold belt. The uplift ended the progressive subsidence of the Arkoma basin and shifted the depocenter to the northwest. Subsequently, the Thurman Formation (middle Desmoinesian), which had a source in the southeast, was deposited in the smaller resurgent foreland basin over the foldedmore » and eroded surface of the Boggy. Chert-pebble conglomerates in the Thurman were derived from the erosion of newly elevated Ordovician and Devonian cherts in the core of the Ouachita foldbelt. Sandstone-shale packages are found in both formations. The origin of the coal-bearing cycles in the Boggy are enigmatic, but they probably were controlled by a combination of factors such as glacio-eustatic changes in sea level and delta-lobe abandonment. In contrast, cycles in the Thurman probably were strongly influenced by episodic thrust faulting and uplift in the Ouachitas.« less
NASA Astrophysics Data System (ADS)
Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group
2017-04-01
The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic conditions. The maximum flooding surface is recorded 6 m above the base of the Vikinghøgda Formation, in the middle of the laminated black shale and indicates that the lower ash-layers are tied to igneous activity at a time of relatively high sea level. The remaining succession above the laminated black shale is an overall aggradational interval of interbedded clay- and siltstones of the Vikinghøgda Formation, marking the return of biological activity at its base. The Vikinghøgda Formation includes 18 preserved zircon-bearing ash-layers, providing an opportunity for accurate U/Pb dating. Detailed cyclostratigraphic analyses of the laminated black shale suggest a sedimentation rate of approximately 0.5 cm/kyr, and provides thus, together with the U/Pb zircon ages, a great tool for high-resolution documentation of the PTB interval.
Reconnaissance for uranium in the southeastern states, 1953
Johnson, Henry S.
1953-01-01
During the last quarter of 1952 and most of 1953 the U.S. Geological Survey carried on a program of reconnaissance for radioactive material in the southeastern states on behalf to the Atomic Energy Commission. In the course of the study 111 localities were examined and 43 samples were taken for radioactivity measurements at the Survey's Trace Elements laboratory in Denver, Colo. No economic deposits of uranium were found as a result of this work, but weak radioactivity was noted at the Tungsten Mining Coperation property near Townsville, N. C.; the Comolli granite quarry near Elberton, Ga.; in the Beech and Cranberry granite near Roan Mountain, Tenn.; and in several shales in the Valley and Ridge and Appalachian Plateau provinces. Devonian through Pennsylvanian rocks in these two provinces probably constitute the most favorable ground for new discoveries of uranium in the Southeast.
Piper, D.Z.; Perkins, R.B.
2004-01-01
The sediment currently accumulating in the Cariaco Basin, on the continental shelf of Venezuela, has an elevated organic-carbon content of approximately 5%; is accumulating under O2-depleted bottom-water conditions (SO42- reduction); is composed dominantly of foraminiferal calcite, diatomaceous silica, clay, and silt; and is dark greenish gray in color. Upon lithification, it will become a black shale. Recent studies have established the hydrography of the basin and the level of primary productivity and bottom-water redox conditions. These properties are used to model accumulation rates of Cd, Cr, Cu, Mo, Ni, V, and Zn on the seafloor. The model rates agree closely with measured rates for the uppermost surface sediment.The model is applied to the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, a phosphate deposit of Permian age in the northwest United States. It too has all of the requisite properties of a black shale. Although the deposit is a world-class phosphorite, it is composed mostly of phosphatic mudstone and siltstone, chert, limestone, and dolomite. It has organic-carbon concentrations of up to 15%, is strongly enriched in several trace elements above a terrigenous contribution and is black. The trace-element accumulation defines a mean primary productivity in the photic zone of the Phosphoria Basin as moderate, at 500 g m-2 year-1 organic carbon, comparable to primary productivity in the Cariaco Basin. The source of nutrient-enriched water that was imported into the Phosphoria Basin, upwelled into the photic zone, and supported primary productivity was an O2 minimum zone of the open ocean. The depth range over which the water was imported would have been between approximately 100 and 600 m. The mean residence time of bottom water in the basin was approximately 4 years vs. 100 years in the Cariaco Basin. The bottom water was O2 depleted, but it was denitrifying, or NO3- reducing, rather than SO42- reducing. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, C. H.; Hu, Y. Z.
2018-04-01
Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.
Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.
Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C
2016-11-01
Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction
Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin
2016-01-01
The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation. PMID:28773784
Constraints on Upward Migration of Hydraulic Fracturing Fluid and Brine
Flewelling, Samuel A; Sharma, Manu
2014-01-01
Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >106 years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673
Włodarczyk, Agnieszka; Szymańska, Agata; Skłodowska, Aleksandra; Matlakowska, Renata
2016-04-01
The aim of this study was to investigate the bioweathering of copper minerals present in the alkaline, copper-bearing and organic-rich Kupferschiefer black shale through the action of a consortium of indigenous lithobiontic, heterotrophic, neutrophilic bacteria isolated from this sedimentary rock. The involvement of microorganisms in the direct/enzymatic bioweathering of fossil organic matter of the rock was confirmed. As a result of bacterial activity, a spectrum of various organic compounds such as urea and phosphoric acid tributyl ester were released from the rock. These compounds indirectly act on the copper minerals occurring in the rock and cause them to weather. This process was reflected in the mobilization of copper, iron and sulfur and in changes in the appearance of copper minerals observed under reflected light. The potential role of identified enzymes in biodegradation of fossil organic matter and role of organic compounds released from black shale as a result of this process in copper minerals weathering was discussed. The presented results provide a new insight into the role of chemical compounds released by bacteria during fossil organic matter bioweathering potentially important in the cycling of copper and iron deposited in the sedimentary rock. The originality of the described phenomenon lies in the fact that the bioweathering of fossil organic matter and, consequently, of copper minerals occur simultaneously in the same environment, without any additional sources of energy, electrons and carbon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reconstruction of paleoenvironment recorded in the Ediacaran Lantain black shales
NASA Astrophysics Data System (ADS)
Liu, Y. H.; Lee, D. C.; You, C. F.; Zhou, C.
2016-12-01
The Ediacaran period (635-542 Ma) was a critical time in the history of life and Earth, during which profound changes in complex megascopic life and probably ocean oxygenation occurred. A growing evidence demonstrates that the Early Ediacaran ocean was not simply a largely anoxic basin as previous thought. Pulsed oxidation or a multilayered water column had been proposed to explain the presence of Lantain macrofossils. To verify these models, in-situ isotopic analysis becomes critical in identifying the isotopic signatures of authigenic minerals, and to avoid mixing in the signals from detrital and diagenetic phases. In this study, samples from Lantain Member II, a 40 m thick black shale unit containing macrofossils and overlaying the cap carbonate, were analyzed, including one sample from the lower part of Member II and six samples from upper part of Member II. Abundant xenotimes were overgrown on the detrital zircon grains during early diagenesis in all the samples. This authigenic phosphate mineral provides the best constraint of depositional age. In addition, framboidal pyrites and microbial mats are alternatively present on the top of Member II, where layered barites are found in one sample, supporting the model of frequent changes of redox conditions. Preliminary results show that the depositional age of barite-bearing black shale is > 520 Ma. In this study, we will combine the in-situ U-Pb xenotime dating and sulfur isotopes in barite and pyrite to discuss the evolution of redox conditions in the Ediacaran ocean.
NASA Astrophysics Data System (ADS)
Zhu, J.; Parris, T. M.; Taylor, C. J.; Webb, S. E.; Davidson, B.; Smath, R.; Richardson, S. D.; Molofsky, L.; Kromann, J. S.
2016-12-01
Rapid implementation of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations across the country has increased public concern about possible impact on the environment, especially on shallow drinking-water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Upper Devonian Berea Sandstone in recent years. Although production in the Berea Sandstone is at a relatively small scale, the Rogersville Shale, a deeper, thicker, and more spatially extensive organic-rich shale, is projected to become a major shale play in eastern Kentucky. This has necessitated a better understanding of groundwater quality, especially the occurrence of dissolved methane, in aquifers overlying the Berea and Rogersville plays to help address the public's environmental concerns and protect groundwater resources. To assess baseline groundwater chemistry and evaluate distribution and origin of methane detected in the groundwater, 51 water wells in Greenup, Carter, Boyd, Lawrence, Johnson, and Elliott Counties were sampled and analyzed for major cations and anions, metals, and dissolved light hydrocarbon gases including methane. Twenty-six wells were identified as having methane concentrations greater than 1 mg/L and were further analyzed for carbon and hydrogen isotopes. The results indicate that methane is a relatively common constituent in shallow groundwater in eastern Kentucky. Correlation of methane distribution with water chemistry data shows that elevated methane concentrations were more common in sodium bicarbonate type water and in low-nitrate, low-sulfate redox conditions. Carbon and hydrogen isotope analysis suggests that the methane detected in groundwater is derived primarily from bacterial sources from the CO2 reduction pathway.
Dover, James H.; Berry, William B.N.; Ross, Reuben James
1980-01-01
Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser clastic rocks reported in previously measured sections of the Phi Kappa, as well as the sequence along Phi Kappa Creek from which the name originates, are excluded from the Phi Kappa as revised and are reassigned to two structural plates of Mississippian Copper Basin Formation; other strata now excluded from the formation are reassigned to the Trail Creek Formation and to an unnamed Silurian and Devonian unit. As redefined, the Phi Kappa Formation is only about 240 m thick, compared with the 3,860 m originally estimated, and it occupies only about 25 percent of the outcrop area previously mapped in 1930 by H. G. Westgate and C. P. Ross. Despite this drastic reduction in thickness and the exclusion of the rocks along Phi Kappa Creek, the name Phi Kappa is retained because of widely accepted prior usage to denote the Ordovician graptolitic shale facies of central Idaho, and because the Phi Kappa Formation as revised is present in thrust slices on Phi Kappa Mountain, at the head of Phi Kappa Creek. The lithic and faunal consistency of this unit throughout the area precludes the necessity for major facies telescoping along individual faults within the outcrop belt. However, tens of kilometers of tectonic shortening seems required to juxtapose the imbricated Phi Kappa shale facies with the Middle Ordovician part of the carbonate and quartzite shale sequence of east central Idaho. The shelf rocks are exposed in the Wildhorse structural window of the northeastern Pioneer Mountains, and attain a thickness of at least 1,500 m throughout the region north and east of the Pioneer Mountains. The Phi Kappa is in direct thrust contact on intensely deformed medium- to high-grade metamorphic equivalents of the same shelf sequence in the Pioneer window at the south end of the Phi Kappa-Trail Creek outcrop belt. Along East Pass, Big Lake, and Pine Creeks, north of the Pioneer Mountains, some rocks previously mapped as Ramshorn Slate are lithologically and faunally equivalent to the P
Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence
Helz, G.R.; Miller, C.V.; Charnock, J.M.; Mosselmans, J.F.W.; Pattrick, R.A.D.; Garner, C.D.; Vaughan, D.J.
1996-01-01
Molybdenum K-edge EXAFS (extended X-ray absorption fine structure) spectra yield new structural information about the chemical environment of Mo in high-Mo black shales and sediments. Two spectral types are found. The less common one, associated with Mo ores developed in shale in China, is that of a MoS2 phase, possibly X-ray amorphous jordisite. The other, associated with Cretaceous deep sea sediments and with other black shales, is characterized by short Mo-O distances (1.69-1.71 A??), by Mo-S distances of 2.30-2.38 A??, and in some cases by second shell Mo and Fe interactions, which suggests that some Mo resides in transition metal-rich phases. EXAFS spectra of synthetic amorphous materials, prepared by scavenging Mo from HS solutions with Fe(II), FeOOH, and humic acid, suggest that the second spectral type arises from Mo present chiefly in two forms. One is a compact, Mo-Fe-S "cubane" type compound with Mo-S distances of ???2.36 A?? and Mo-Fe distances of ???2.66 A??, while the other is probably an organic form containing some Mo-O double bonds (???1.69 A??). Laboratory products, that were prepared by scavenging dissolved Mo from sulfidic solutions with humic acid, yield spectra quite similar to the second spectral type observed in shales and sediments, including unexpected indications of Mo-Fe interactions. Molybdenum L-edge spectra indicate that the mean oxidation state in the sediments and shales lies between IV and VI. This work demonstrates the merit of EXAFS for obtaining structural information on natural materials containing X-ray amorphous components which defeat conventional mineralogical characterization. The implications of these findings regarding Mo scavenging from sulfidic natural waters are considered. We introduce the concept of a geochemical switch, in which HS- transforms the marine behavior of Mo from that of a conservative element to that of a particle reactive element. The action point of the HS- switch is calculated to be, aHS- = 10-3.6 - 10-4.3. When aHS- approaches the action point, Mo becomes reactive to particles containing transition metals (e.g., Fe). We conjecture that thiols, including humic-bound thiol groups, also switch Mo behavior. In contrast to previous ideas, our model for Mo scavenging deemphasizes the role of reduction from Mo(VI) to Mo(V) as the initial step in scavenging; instead, we emphasize the ease with which Mo forms covalent bonds to transition metals and organic molecules via S bridges.
Myrow, P.M.; Strauss, J.V.; Creveling, J.R.; Sicard, K.R.; Ripperdan, R.; Sandberg, C.A.; Hartenfels, S.
2011-01-01
New carbon isotopic data from upper Famennian deposits in the western United States reveal two previously unrecognized major positive isotopic excursions. The first is an abrupt ~. 3??? positive excursion, herein referred to as ALFIE (A Late Famennian Isotopic Excursion), recorded in two sections of the Pinyon Peak Limestone of north-central Utah. Integration of detailed chemostratigraphic and biostratigraphic data suggests that ALFIE is the Laurentian record of the Dasberg Event, which has been linked to transgression in Europe and Morocco. Sedimentological data from the Chaffee Group of western Colorado also record transgression at a similar biostratigraphic position, with a shift from restricted to open-marine lithofacies. ALFIE is not evident in chemostratigraphic data from age-equivalent strata in Germany studied herein and in southern Europe, either because it is a uniquely North American phenomenon, or because the German sections are too condensed relative to those in Laurentia. A second positive carbon isotopic excursion from the upper Chaffee Group of Colorado is recorded in transgressive strata deposited directly above a previously unrecognized paleokarst interval. The age of this excursion, and the duration of the associated paleokarst hiatus, are not well constrained, although the events occurred sometime after the Late Famennian Middle expansa Zone. The high positive values recorded in this excursion are consistent with those associated with the youngest Famennian Middle to Late praesulcata Hangenberg Isotopic Excursion in Europe, the isotopic expression of the Hangenberg Event, which included mass extinction, widespread black shale deposition, and a glacio-eustatic fall and rise. If correct, this would considerably revise the age of the Upper Chaffee Group strata of western Colorado. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk
2017-04-01
The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)
Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.
Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study
Bahadur, Jitendra; Ruppert, Leslie F.; Pipich, Vitaliy; Sakurovs, Richard; Melnichenko, Yuri B.
2018-01-01
Neutron scattering techniques were used to determine the effect of mineral matter on the accessibility of water and toluene to pores in the Devonian Marcellus Shale. Three Marcellus Shale samples, representing quartz-rich, clay-rich, and carbonate-rich facies, were examined using contrast matching small-angle neutron scattering (CM-SANS) at ambient pressure and temperature. Contrast matching compositions of H2O, D2O and toluene, deuterated toluene were used to probe open and closed pores of these three shale samples. Results show that although the mean pore radius was approximately the same for all three samples, the fractal dimension of the quartz-rich sample was higher than for the clay-rich and carbonate-rich samples, indicating different pore size distributions among the samples. The number density of pores was highest in the clay-rich sample and lowest in the quartz-rich sample. Contrast matching with water and toluene mixtures shows that the accessibility of pores to water and toluene also varied among the samples. In general, water accessed approximately 70–80% of the larger pores (>80 nm radius) in all three samples. At smaller pore sizes (~5–80 nm radius), the fraction of accessible pores decreases. The lowest accessibility to both fluids is at pore throat size of ~25 nm radii with the quartz-rich sample exhibiting lower accessibility than the clay- and carbonate-rich samples. The mechanism for this behaviour is unclear, but because the mineralogy of the three samples varies, it is likely that the inaccessible pores in this size range are associated with organics and not a specific mineral within the samples. At even smaller pore sizes (~<2.5 nm radius), in all samples, the fraction of accessible pores to water increases again to approximately 70–80%. Accessibility to toluene generally follows that of water; however, in the smallest pores (~<2.5 nm radius), accessibility to toluene decreases, especially in the clay-rich sample which contains about 30% more closed pores than the quartz- and carbonate-rich samples. Results from this study show that mineralogy of producing intervals within a shale reservoir can affect accessibility of pores to water and toluene and these mineralogic differences may affect hydrocarbon storage and production and hydraulic fracturing characteristics
Wrenching and oil migration, Mervine field, Kay County, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, H.G.
1985-02-01
Since 1913, Mervine field (T27N, R3E) has produced oil from 11 Mississippian and Pennsylvanian zones, and gas from 2 Permian zones. The field exhibits an impressive asymmetric surface anticline, with the steeper flank dipping 30/sup 0/E maximum. A nearly vertical, basement-involved fault develops immediately beneath the steeper flank of the surface anticline. Three periods of left-lateral wrench faulting account for 93% of all structural growth: 24% in post-Mississippian-pre-Desmoinesian time, 21% in Virgilian time, and 48% in post-Wolfcampian time. In Mesozoic through early Cenozoic times, the Devonian Woodford Shale (and possibly the Desmoinesian Cherokee shales) locally generated oil, which should havemore » been structurally trapped in the Ordovician Bromide sandstone. This oil may have joined oil already trapped in the Bromide, which had migrated to the Mervine area in the Early Pennsylvanian from a distant source. Intense post-Wolfcampian movement(s) fractured the competent pre-Pennsylvanian rocks, allowing Bromide brine and entrained oil to migrate vertically up the master fault, finally accumulating in younger reservoirs. Pressure, temperature, and salinity anomalies attest to vertical fluid migration continuing at the present time at Mervine field. Consequently, pressure, temperature, and salinity mapping should be considered as valuable supplements to structural and lithologic mapping when prospecting for structural hydrocarbon accumulations in epicratonic provinces.« less
NASA Astrophysics Data System (ADS)
Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael
2013-04-01
We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr/Sc ratios of 5-8 and 0.3-0.5, respectively, both for metapelite and metapsammite. The metavolcanic rocks are associated with ocean-island basalt (OIB) or mid-ocean ridge basalts (MORB) due to the immobile trace element ratios Zr/Nb and Y/Nb in the ranges 4.91-8.06 and 0.74-1 for the IOB and >9.2 and >1.25 for the MORB, respectively. Detrital zircon ages for three metapsammites reveal that the major sources mainly are Grenvillian (1250-920 Ma) rocks. Such rocks can be found in the ca. 1 Ga Oaxaquia Complex in NE Mexico (Novillo Gneiss). Hence, short transport can be assumed. Maximum depositional ages are Neoproterozoic, Silurian and Devonian. They indicate that the volcanosedimentary deposition probably took place during Devonian time. Based on our results we suggest a plate-tectonic frame for Oaxaquia which is a modification of accepted models. Most models suggest that Oaxaquia was situated between Laurentia and Gondwana during collision in Carboniferous time. The zircon data indicate that the Granjeno Schist was deposited before the collision of Laurentia and Gondwana. The presence of ocean basalt floor, lava flows and serpentinite lenses intercalated with tuff and active continental margin sedimentary rocks necessitates a near-continental environment, such as a back-arc basin. Hence, we present the first evidence of a subduction zone predating the collision of Laurentia and Gondwana.
Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance
Dumoulin, Julie A.; Harris, Alta; Repetski, John E.
2014-01-01
Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and associated calcareous metaturbidites of Ordovician age as well as shallow-water Silurian dolostones. Scattered metacarbonate rocks are chiefly Cambrian, Ordovician, Silurian, and Devonian dolostones that formed in shallow, warm-water settings with locally restricted circulation and marbles of less constrained Paleozoic age. Carbonate metaturbidites occur on the northeast and southeast coasts and yield mainly Silurian and lesser Ordovician and Devonian conodonts; the northern succession also includes debris flows with meter-scale clasts and an argillite interval with Late Ordovician graptolites and lenses of radiolarian chert. Mafic igneous rocks at least partly of Early Devonian age are common in the southern succession. Carbonate rocks on Seward Peninsula experienced a range of deformational and thermal histories equivalent to those documented in the Brooks Range. Conodont color alteration indices (CAIs) from Seward Peninsula, like those from the Brooks Range, define distinct thermal provinces that likely reflect structural burial. Penetratively deformed high-pressure metamorphic rocks of the Nome Complex (CAIs ≥5) correspond to rocks of the Schist belt in the southern Brooks Range; both record subduction during early stages of the Jurassic–Cretaceous Brooks Range orogeny. Weakly metamorphosed to unmetamorphosed strata of the York terrane (CAIs mainly 2–5), like Brooks Range rocks in the Central belt and structural allochthons to the north, experienced moderate to shallow burial during the main phase of the Brooks Range orogeny. The nature of the contact between the York terrane and the Nome Complex is uncertain; it may be a thrust fault, an extensional surface, or a thrust fault later reactivated as an extensional fault. Lithofacies and biofacies data indicate that, in spite of their divergent Mesozoic histories, rocks of the York terrane and protoliths of the Nome Complex formed as part of the same lower Paleozoic carbonate platform. Stratigraphies in both
Frasca, B; Savoye, S; Wittebroodt, C; Leupin, O X; Michelot, J-L
2014-01-01
A comparative study of selenium oxyanion sorption was carried out by means of batch sorption experiments on three argillaceous rocks that differ in their mineralogical compositions and textural properties. The results show no selenate (Se(VI)) sorption onto the argillaceous rocks after 60 days, but clear sorption of selenite (Se(IV)), the extent being closely related to the initial Se(IV) concentration. At the lowest concentration ([Se(IV)]eq < 10(-8) mol L(-1)), the ranking of rock affinity for Se(IV) is Black Shales > Opalinus Clay (OPA) > Upper Toarcian, with Rd values of 910 ± 70, 600 ± 65 and 470 ± 70 mL g(-1) respectively. The Se(IV) sorption isotherms acquired for the three argillaceous rocks can be reproduced well by means of Langmuir formalism, particularly with a two-site Langmuir model. The comparison of the Se(IV) sorption isotherms obtained for these three rocks led to identification of pyrite associated with natural organic matter (NOM) as one of the main phases involved in selenium retention. While the desorption results suggested a significant Se(IV) reduction in the Upper Toarcian samples, the reversible sorption shown on the Black Shales and OPA samples was correlated with a sulfate increase, symptomatic of surface oxidation of pyrite which could limit the Se(IV) reduction in favor of sorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO
Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y.
2008-01-01
Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 ??g L-1, with a maximum of 215 ??g L-1. In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers. ?? 2008 American Chemical Society.
Devonian climate and reef evolution: Insights from oxygen isotopes in apatite
NASA Astrophysics Data System (ADS)
Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.
2009-07-01
Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.
Pojeta, John
1986-01-01
A state-of-the-art summary of the Devonian rocks of China, correlation of the Lower and Middle Devonian of the Guangxi Autonomous Region with the European Standards, and detailed lithologic descriptions of the major Lower and Middle Devonian sections in Guangxi from which pelecypods were collected. Systematic descriptions are given for the Lower and Middle Devonian pelecypods of Guangxi. The Chinese pelecypods are principally compared with the previously little studied Givetian pelecypods of Michigan, which are also described.
NASA Astrophysics Data System (ADS)
Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Nyame, F. K.; Tetteh, G. M.
2015-12-01
The Paleoproterozoic Era is thought to have experienced one of the most significant changes in earth's environment during earth history. Early continents started to diverge and collide accompanied by first major oxidation of the atmosphere-oceanic system known as the Great Oxidation Environment (GOE). Due to their well-preserved oceanic sedimentary sequences, Paleoproterozoic belts are usually good targets for studies on the history of earth's past environment. In addition, these belts provide great help to understand the nature of the Paleoproterozoic deeper oceanic environments. Birimian greenstone belt in southwestern Ghana is likely to have made up of subduction of oceanic basin to form a volcanic island arc. Birimian rocks are separated by nonconformity from the Tarkwaian Group which is a younger paleoplacer deposit (Perrouty et al., 2012). The Birimian is made up of island-arc volcanic rocks; foreland basin made up of shale, sandstone, quartzite and turbidities derived from 2.17 Ga granite intrusions during Birimian volcanism. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Ashanti (Axim-Konongo) belt in Ghana. In the eastern part of the area, excellently preserved Paleoprotorozoic deeper oceanic sedimentary sequences extensively outcrop for over 4km stretch. This volcano-sedimentary sequence has been affected by greenschist facies metamorphism. Structurally, this region preserves S1 cleavage and asymmetrical synform with west vergence and S0 younging to the east. Provisional stratigraphy is very continuous up to more than 2000m thick and, in addition, suggests at least four different fining upward sequences in the area to the east and west of Atwepo, west of Kwetakora and Akodda. These sub-sequences are mainly composed of volcaniclasitc, sandstone, black shale and rare volcanics such as pillow basalt or massive volcanic lava. In other words, this continuous sequence suggests distal submarine volcaniclastic rocks in an oceanic island arc around the West African Craton. Preliminary δ13C analysis gave values of -23.7~ -36.5 ‰ for black shale occupying the middle to upper part of the whole section. The very light carbon isotope ratios suggest deposition of the black shale under highly euxinic conditions like today's Black sea.
NASA Astrophysics Data System (ADS)
Beckmann, B.; Hofmann, P.; Schouten, S.; Sinninghe Damsté, J. S.; Wagner, T.
2006-12-01
Oceanic Anoxic Events (OAEs) provide deep insights into rapid climate change and atmosphere-land ocean interactions during an extremely warm mode of the Earth system. We present results from ODP Leg 207 at Demerara Rise deposited in the western tropical Atlantic during transition from the Turonian OAE 2 to the Santonian OAE 3. Molecular markers in organic matter-rich black shale identify the composition of primary producers and provide detailed information on the oxygenation state of surface and deep waters. This information is relevant to infer the dynamics and controls of sedimentation leading to black shale in the tropical Atlantic. Bulk organic geochemical data suggest the dominance of lipid-rich marine organic matter throughout the study section. Biomarkers from the aliphatic fraction instead reveal variable contributions of e.g., archaea, diatoms, and dinoflagellates supporting changes in the community of primary producers that thrived in the oxic part of the photic zone in response to changing environmental conditions similar to modern high productive areas along continental margins. Also comparable to modern high productive areas the sea floor remained generally oxygen-depleted throughout the Turonian to Santonian as supported by elevated lycopane contents along with an enrichment of redox-sensitive elements and documented by persistent high TOC concentrations (1 to 14%). Isorenieratane derivates indicative of photic zone euxinia (PZE) were only detected in low abundances in the lowest part of the study section. This observation contrasts biomarker records from the eastern low latitude Atlantic where PZE was a temporal feature determining black shale formation. The new biomarker data from Leg 207 support progressive weakening of upwelling intensity along with oxygenation of surface and possibly mid waters from the upper Coniacian on. Different from black shale sites in many semi-sheltered sub-basins along the Equatorial Atlantic, Demerara Rise was fully exposed to open marine currents throughout the mid-Cretaceous. Increasing ocean circulation along with the widening of the Equatorial Atlantic probably had a significant effect on shallow ocean oxygenation off tropical S-America. Notably deep ocean oxygenation was decoupled from these processes posing the general question what maintained anoxia at the sea floor over millions of years in the aftermath of OAE 2 at Demerara Rise.
NASA Astrophysics Data System (ADS)
Kendall, B.; Yang, S.; Lu, X.; Zhang, F.; Zheng, W.
2016-12-01
The U isotope system represents a relatively new paleoredox proxy that can help trace the evolution of global ocean redox chemistry, but has rarely been applied to the Mid-Proterozoic. We report U isotope data for marine black shales of the early Mesoproterozoic Velkerri Formation (Roper Group) and late Paleoproterozoic Wollogorang Formation (Tawallah Group) from the McArthur Basin, Northern Australia. An average authigenic δ238U of 0.13 ± 0.04‰ (1SD; relative to standard CRM145) was obtained for six euxinic shales from a 1 m interval that previously yielded a precise Re-Os depositional age of 1361 ± 21 Ma. After correcting for a U isotope fractionation of 0.60-0.85‰ between seawater and open-ocean euxinic sediments, we infer that coeval global seawater had a δ238U of -0.47‰ to -0.72‰, which is 0.1-0.3‰ lighter than modern seawater (-0.40 ± 0.03‰). A U isotope mass-balance model suggests that anoxic marine environments accounted for 25-50% of the global oceanic U sink at 1.36 Ga, which is 3-7 times greater than today. The model suggests that a significant proportion, potentially even a majority, of the seafloor was not covered by anoxic waters. Hence, we infer that a significant extent of the ocean floor was covered by O2-bearing waters at 1.36 Ga. The O2 concentrations of those waters were not necessarily high, and a large expanse of weakly to mildly oxygenated deep waters is consistent with the U isotope data. Uranium isotope data from a 1 m interval in the lower Velkerri Formation, deposited at 1417 ± 29 Ma based on Re-Os geochronology, yield a greater estimate for the extent of ocean anoxia. Hence, the upper Velkerri Formation may capture a transient episode of increased ocean oxygenation. Previous Re-Os isotope data from black shales of the ca. 1.73 Ga Paleoproterozoic Wollogorang Formation yielded an erroneously young date of 1359 ± 150 Ma because hydrothermal fluids percolated through the Tawallah Group rocks at ca. 1640 Ma. Higher δ238U is observed in samples closer to the base of the black shale unit where the greatest extent of open-system Re-Os isotope behavior was observed. Hence, post-depositional hydrothermal fluid flow can overprint the depositional δ238U of black shales and lead to erroneous interpretations of global ocean paleoredox conditions.
The variation of molybdenum isotopes within the weathering system of the black shales
NASA Astrophysics Data System (ADS)
Jianming, Z.
2016-12-01
Jian-Ming Zhu 1,2, De-Can Tan 2, Liang Liang 2, Wang Jing21 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China 2 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China Molybdenum (Mo) stable isotopes have been developed as a tracer to indicate the evolution of the atmospheric and oceanic oxygenation related with continent weathering, and to reveal the extent of ancient oceanic euxinia. Molybdenum isotopic variation within the weathering system of basalts has been studied, and was presented the whole trend with heavier isotopes preferentially removed during weathering processes. However, there are few researches to study the variation of Mo isotopes during black shale weathering, especiall on the behavoir of Mo isotopes within the perfect shales' profiles. Here, the weathering profiles of Mo and selenium(Se)-rich carbonaceous rocks in Enshi southwest Hubei Province were selected. The Mo isotopes was measured on Nu Plasma II's MC-ICP-MS using 97Mo-100Mo double spike, and δ98/95Mo was reported relative to NIST 3134. A comprehensive set of Mo isotopic composition and concentration data from the unweathered, weakly and intensely weathered rocks were collected. The δ98/95Mo in fresh shales (220±248 mg/kg Mo, 1SD, n=41) from Shadi and Yutangba drill cores varies from 0.41‰ to 0.99‰ with an average of 0.67±0.16‰, while the strongly weathered shales (19.9±5.8 mg/kg Mo, 1SD, n=5) from Shadi profiles are isotopically heavier with average δ98/95Mo values of 1.03±0.10‰ (1SD, n=5). The Locally altered shales exposed in a quarry at Yutangba are highly enriched in Mo, varing from 31 to 2377 mg/kg with an average of 428 ±605mg/kg (1SD, n=24), approximately 2 times greater than that in fresh shales samples. These rocks are presented a significant variation in δ98/95Mo values varing from -0.24 ‰ to -3.99 ‰ with average -1.67±1.57‰, showing the extremely negative δ98/95Mo values existed in natural samples. This suggested that Mo isotopes can be fractionated during shales weathering processes, with lighter isotopes preferentially removed. This finding is in contrast to the previous knowledge from basalt weathering, and requires further study.
Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan
Stauffer, Karl W.
1975-01-01
The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined elsewhere in Chitral, the tungstate, scheelite, which occurs in relatively high concentrations in heavy-mineral fractions of stream sands, and an iron-rich lateritic rock.
Palaeomagnetic results from the Palaeozoic of Istanbul: A hypothesis for Remagnetization
NASA Astrophysics Data System (ADS)
Lom, Nalan; Domeier, Mathew; Ülgen, Semih Can; İşseven, Turgay; Celal Şengör, Ali Mehmet
2016-04-01
The Istanbul Zone in northwestern Turkey is a part of a larger continental fragment called the Rhodope-Pontide Fragment. The Istanbul Zone differs from its surroundings by its continuous, well-developed sedimentary sequence extending from the early-medial Ordovician to the early Carboniferous. The İstanbul Zone has a complicated deformation history related to the Hercynide (or Scythide), Cimmeride and Alpide orogenies. Although the region of Istanbul shows essentially no metamorphism and only a weak cleavage development, constraining the entire history of the deformation in the İstanbul Zone marginal fold and thrust belt is a difficult task, primarily due to the multiple deformation phases. But yet it is not impossible. The Palaeozoic sequence is cut by late Cretaceous plutonics together with dacitic and andesitic dykes. This arc magmatism is ascribed to the north-dipping subduction of the Neo-Tethyan ocean along the İzmir-Ankara-Erzincan suture. The Palaeozoic sequence is unconformably overlain by Permian and younger sedimentary strata. In this study a total of 523 samples were obtained from 48 sites around İstanbul and Kocaeli. 465 samples collected from Palaeozoic sedimentary rocks and 58 samples belong to the dykes that cut these sediments. Specimens were demagnetized in the laboratory by using both AF and thermal treatments depending on their effectiveness. After demagnetization treatments, 290 specimens showed stable demagnetization patterns and majority of these samples have a characteristic remanent magnetization component close to the present day geomagnetic field. Demagnetization studies demonstrate variable degrees of overprinting in a large number of samples. After the application of the tilt correction, %70 of the specimens failed the fold test at site level (early Ordovician siltstones; late Silurian-early Devonian limestones; late Devonian limestones; early Carboniferous turbidites). Rest of them clearly got scattered with increasing α95 and decreasing k values (mid Ordovician conglomerates; mid-late Devonian shales; late Ordovician-early Silurian sandstone and siltstones). This secondary magnetization, acquired during or after the folding event, constitutes evidence of pervasive remagnetization that can be caused by regional re-heating related to the Cretaceous arc magmatism. This suggestion contradicts the previous palaeomagnetic studies and requires further and detailed investigation on Palaeozoic sequence.
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert P. Breckenridge; Thomas R. Wood
2010-08-01
The purpose of this document is to evaluate the opportunity for Letterkenny Army Depot (LEAD or the Depot) to utilize biogenic methane, which may be available in shale formations under the Depot, to provide a supplemental source of natural gas that could allow the Depot to increase energy independence. Both the Director and Deputy of Public Works at the Depot are supportive in general of a methane production project, but wanted to better understand the challenges prior to embarking on such a project. This report will cover many of these issues. A similar project has been successfully developed by themore » U. S. Army at Ft. Knox, KY, which will be explained and referred to throughout this report as a backdrop to discussing the challenges and opportunities at LEAD, because the geologic formations and possibilities at both sites are similar. Prior to discussing the opportunity at LEAD, it is important to briefly discuss the successful methane recovery operation at Ft. Knox, because it is applicable to the projected approach for the LEAD methane system. The Ft. Knox project is an excellent example of how the U. S. Army can use an onsite renewable resource to provide a secure energy source that is not dependent on regional energy networks and foreign oil. At Ft. Knox, the U. S. Army contracted (through a utility co-op) with an energy production company to drill wells, establish a distribution infrastructure, and provide the equipment needed to prepare and compress the produced methane gas for use by base operations. The energy production company agreed to conduct the exploratory investigation at Ft. Knox with no cost to the government, as long as they could be granted a long-term contract if a reliable energy resource was established. The Depot is located, in part, over an Ordovician Age shale formation that may have the potential for producing biogenic methane, similar to the Devonian Age shale found beneath Ft. Knox. However, the Ordovician Age Shale beneath the Letterkenny Depot is not known to have any currently producing gas wells.« less
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were deposited on the southern, southwestern, and northern margins of the Russian platform; they are generally absent in the Volga-Ural province, however. The Volga-Ural oil and gas basin is a single artesian system that contains seven aquifers separated by seals. The areas of greatest hydraulic head are in the eastern parts of the basin near areas where the aquifers crop out on the western slopes of the Ural Mountains. The Peri-Caspian basin is the principal drainage area of the artesian system. Approximately 600 oil and gas fields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized as follows: 1) Upper Proterozoic (Bavly beds), which are promising but not yet commercial. 2) Clastic Devonian, which contains the major reserves and includes the main pays of the super-giant Romashkino field. 3) Carbonate Upper Devonian and lowermost Carboniferous, which is one of the main reef-bearing intervals. 4) Visean (Lower Carboniferous) elastics, which are the main pays in the super-giant Arian field. 5) Carbonate Lower and Middle Carboniferous. 6) Clastic Middle Carboniferous Moscovian. 7) Carbonate Middle and Upper Carboniferous. 8) Carbonate-evaporite Lower Permian, which contains the major gas reserves and the lower part of the Melekess tar deposits. 9) Clastic-carbonate Upper Permian, which contains the major part of the Melekess tar deposits. The Volga-Ural province is divided into several productive regions on a basis of differences in structure, distribution of reservoir and source-rock facies, and general composition of the petroleum accumulations. These regions are the Tatar arch, Birsk saddle, Upper Kama depression, Perm-Bashkir arch, Ufa-Orenburg monocline, Melekess-Sernovodsko-Abdulino basin, Zhligulevsko-Orenburg arch, Ural foredeep, and north borders of the Peri-Casplan depression. Exploration activity has declined in recent years; however, interest remains high in several parts of the province, particula
NASA Astrophysics Data System (ADS)
Wendorff, Małgorzata; Marynowski, Leszek; Rospondek, Mariusz
2016-04-01
Studies of recent and ancient sediments revealed that the diameter distribution of pyrite framboids may be reliably used to characterise oxygen-restricted environments and distinguish ancient euxinic conditions (water column hydrogen sulphide bearing thus oxygen-free) from anoxic, non-sulfidic or dysoxic (oxygen-poor) conditions. Such diagnoses are of great importance when reconstructing palaeoenvironments in ancient basins and the processes of source rocks formation. During Oligocene to early Miocene time an extensive accumulation of organic matter (OM)-rich sediments occurred in the entire Paratethys including the Carpathian Foredeep, which was closed forming fold-thrust belt of the Outer Carpathians. These OM-rich black shales are represented by so-called Menilite shales, widely considered as hydrocarbon source rocks, which constitute as well a detailed archive for palaeoenvironmental changes. The purpose of this preliminary study is to characterise the depositional environment of the Lower Oligocene black shales basing on the pyrite framboid diameter distribution. Five samples of finely laminated black shales were selected from the Nechit section outcropping in the Bistrica half-window of the Vrancea Nappe in the Eastern Outer Carpathians, E Romania. At least 100 framboid diameters were measured on polished blocks using scanning electron microscope in a back-scattered electron mode. Framboids from four samples starting from the lowermost part of the section exhibit a narrow range of diameters from 1.0 to 11.5 μm; mean value ranges from 3.65 to 4.85 μm. Small-sized framboids (< 6 μm) account for 70% up to 91% of all framboids, while large framboids (>10 μm) are absent or rare (max. 2%). Within the sample from the uppermost part of the section framboids reveal more variable sizes, 2 - 25 μm, with mean value of 6.63 μm. Small framboids are still numerous (54%), however the amount of framboids >10 μm increases to 15%. The domination of small framboids with narrow size range in analysed samples, as well as lamination of rocks, suggest domination of anoxic / euxinic conditions during sedimentation of the Menilite shales. The transition into dysoxic bottom-water conditions can be evidenced by increased amount of larger framboids (up to 25 μm) in the upper part of the section. It has been concluded that framboids growing at interface of oxic/euxinic water column are in general smaller and less variable in size than framboids from sediments overlained by oxic or dysoxic water column. In the presented case, the prevalence of small framboids indicates that the water column euxinia could have developed, at least temporarily, during the deposition. Although the euxinia did not reached the photic zone as it reconstructed based on the occurrence of isorenieratane and its derivatives, e.g. C19 aryl isoprenoid in equivalent rocks from many locations of the Outer Carpathians. These biomarkers are derived from carotenoids biosynthesised by the photosynthetic green sulphur bacteria (Chlorobiaceae), anaerobic organisms requiring light and hydrogen sulphide for growth.
Effect of thermal maturity on remobilization of molybdenum in black shales
NASA Astrophysics Data System (ADS)
Ardakani, Omid H.; Chappaz, Anthony; Sanei, Hamed; Mayer, Bernhard
2016-09-01
Molybdenum (Mo) concentrations in sedimentary records have been widely used as a method to assess paleo-redox conditions prevailing in the ancient oceans. However, the potential effects of post-depositional processes, such as thermal maturity and burial diagenesis, on Mo concentrations in organic-rich shales have not been addressed, compromising its use as a redox proxy. This study investigates the distribution and speciation of Mo at various thermal maturities in the Upper Ordovician Utica Shale from southern Quebec, Canada. Samples display maturities ranging from the peak oil window (VRo ∼ 1%) to the dry gas zone (VRo ∼ 2%). While our data show a significant correlation between total organic carbon (TOC) and Mo (R2 = 0.40, n = 28, P < 0.0003) at lower thermal maturity, this correlation gradually deteriorates with increasing thermal maturity. Intervals within the thermally overmature section of the Utica Shale that contain elevated Mo levels (20-81 ppm) show petrographic and sulfur isotopic evidence of thermochemical sulfate reduction (TSR) along with formation of recrystallized pyrite. X-ray Absorption Fine Structure spectroscopy (XAFS) was used to determine Mo speciation in samples from intervals with elevated Mo contents (>30 ppm). Our results show the presence of two Mo species: molybdenite Mo(IV)S2 (39 ± 5%) and Mo(VI)-Organic Matter (61 ± 5%). This new evidence suggests that at higher thermal maturities, TSR causes sulfate reduction coupled with oxidation of organic matter (OM). This process is associated with H2S generation and pyrite formation and recrystallization. This in turn leads to the remobilization of Mo and co-precipitation of molybdenite with TSR-derived carbonates in the porous intervals. This could lead to alteration of the initial sedimentary signature of Mo in the affected intervals, hence challenging its use as a paleo-redox proxy in overmature black shales.
Biogeography of late Silurian and devonian rugose corals
Oliver, W.A.
1977-01-01
Three marine benthic faunal realms can be recognized in the Early and Middle Devonian. The Eastern Americas Realm consisted of most of the eastern half of North America and South America north of the Amazon. This realm extended in a southwest direction from the Devonian equator to approximately 35??S and was an isolated epicontinental sea during much of its history. The Eastern Americas Realm was bounded on the west by the Transcontinental Arch, on the north by the Canadian Shield and on the east and southeast by a peninsular extension of the Old Red Continent. These barriers were emergent during much, but not all, of Devonian time. Seaways beyond these barriers belonged to the Old World Realm. The Malvinokaffric Realm that was farther south was apparently temperate to arctic in climate and latitudinal position and contained few corals. Rugose corals in the Eastern Americas Realm show increasing generic-level endemism from the Late Silurian through the Early Devonian; during the late Early Devonian, 92% of the rugosan genera are not known anywhere else in the world. Endemism decreased through the Middle Devonian to zero in the early Late Devonian. The Early Devonian increase in endemism paralleled, and was probably related to, the development of the Old Red Continent as a barrier between America and Africa-Europe. The waning of endemism in the Middle Devonian reflects the breaching of the land barriers. This permitted some migration in and out of the realm in early Middle Devonian time but greatest movements were in late Middle Devonian time. Principal migration directions were from western or Arctic North America into the Michigan-Hudson Bay area and from the southern Appalachian area into Africa. ?? 1977.
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
Petroleum geology and resources of the Volga-Ural province, U.S.S.R.
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of Triassic age and mixed continental and marine clastic beds of Jurassic and Cretaceous age were deposited on the western, southwestern, and northern margins of the Russian Platform; they are generally absent in the Volga-Ural province, however. Approximately 600 oilfields and gasfields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized; these are, in general, the same as the sedimentation cycles, although some subdivisions have been added. The clastic section of Middle and early Late Devonian age contains the major recoverable oil accumulations, including the supergiant Romashkino field. Cumulative production to 1980 is estimated at 30 to 35 billion barrels of oil equivalent, identified reserves at about 10 billion barrels of oil equivalent, and undiscovered resources at about 7 billion barrels of oil equivalent. Identified reserves of natural gas are estimated at 100 trillion cubic feet and undiscovered resources at 63 trillion cubic feet.
Luo, K.; Feng, F.; Li, H.; Chou, C.-L.; Feng, Z.; Yunshe, D.
2008-01-01
Endemic fluorosis in northern China is usually produced by high fluorine (F) content in drinking water. Thirty-one samples of drinking waters, mainly well waters and nearly 200 samples of rocks, loess, and coal were analyzed for F content using the combustion hydrolysis-fluoride-ion selective electrode (ISE) method. The geologic cross sections of two well-known fluorosis basins were studied. The solubility of F in different rock types collected from fluorosis areas was determined. Results showed that areas of endemic fluorosis in northern China are located in coal-bearing basins which are comprised of three stratagraphic portions. The lowest portion is Precambrian granitic rocks or Cambrian-Ordovician carbonates. The middle portion consists of Permo-Carboniferous or Jurassic coal-bearing sequences. The upper portion is 0-400 m Pleistocene loess. Flourine content in the Precambrian granite-gneiss contained (a) 1090-1460 ppm, in the Cambrian-Ordovician limestone and dolomite, (b) 52-133 ppm, in black shales and coal gob of Permo-Carboniferous coal-bearing strata, (c) 200-700 ppm, and (d) Pleistocene loess 454-542 ppm. The solubility of F in black shales of coal-bearing sequences was higher than in Precambrian granitic rocks, and both were more soluble than loess. F solubility from Precambrian granitic rocks was moderate, but Precambrian granitic rocks have high F content and thus contribute an appreciable amount of ion to the shallow groundwater (well water). Varying F content in shallow groundwater is controlled by geological conditions. The sources of F in the shallow groundwater from fluorosis areas in northern China are mainly derived from black shales of coal-bearing sequences and Precambrian granitic basement in the basins of northern China. ?? 2008 Taylor & Francis.
Contourite drifts on early passive margins as an indicator of established lithospheric breakup
NASA Astrophysics Data System (ADS)
Soares, Duarte M.; Alves, Tiago M.; Terrinha, Pedro
2014-09-01
The Albian-Cenomanian breakup sequence (BS) offshore Northwest Iberia is mapped, described and characterised for the first time in terms of its seismic and depositional facies. The interpreted dataset comprises a large grid of regional (2D) seismic-reflection profiles, complemented by Industry and ODP/DSDP borehole data. Within the BS are observed distinct seismic facies that reflect the presence of: (a) black shales and fine-grained turbidites, (b) mass-transport deposits (MTDs) and coarse-grained turbidites, and (c) contourite drifts. Borehole data show that these depositional systems developed as mixed carbonate-siliciclastic sediments proximally, and as organic-carbon-rich mudstones (black shales) distally on the Northwest Iberia margin. MTDs and turbidites tend to occur on the continental slope, frequently in association with large-scale olistostromes. Distally, these change into interbedded fine-grained turbidites and black shales showing widespread evidence of deep-water current activity towards the top of the BS. Current activity is expressed by intra-BS erosional surfaces and sediment drifts. The results in this paper are important as they demonstrate that contourite drifts are ubiquitous features in the study area after Aptian-Albian lithospheric breakup. Therefore, we interpret the recognition of contourite drifts in Northwest Iberia as having significant palaeogeographic implications. Contourite drifts materialise the onset of important deep-water circulation marking the establishment of oceanic gateways between two fully separated continental margins. As a corollary, we postulate the generation of deep-water geostrophic currents to have had significant impact on North Atlantic climate and ocean circulation during the Albian-Cenomanian, with the record of such impacts being preserved in the contourite drifts analysed in this work.
NASA Astrophysics Data System (ADS)
Fan, Haifeng; Wen, Hanjie; Hu, Ruizhong; Zhao, Hui
2011-12-01
To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).
NASA Astrophysics Data System (ADS)
Gaschnig, Richard M.; Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Asael, Dan; Chauvel, Catherine
2017-12-01
Molybdenum isotopes are fractionated by Earth-surface processes and may provide a tracer for the recycling of crustal material into the mantle. Here, we examined the Mo isotope composition of arc lavas from Martinique in the Lesser Antilles arc, along with Cretaceous and Cenozoic Deep Sea Drilling Project sediments representing potential sedimentary inputs into the subduction zone. Mo stable isotope composition (defined as δ98Mo in ‰ deviation from the NIST 3134 standard) in lavas older than ˜7 million years (Ma) exhibits a narrow range similar to and slightly higher than MORB, whereas those younger than ˜7 Ma show a much greater range and extend to unusually low δ98Mo values. Sediments from DSDP Leg 78A, Site 543 have uniformly low δ98Mo values whereas Leg 14, Site 144 contains both sediments with isotopically light Mo and Mo-enriched black shales with isotopically heavy Mo. When coupled with published radiogenic isotope data, Mo isotope systematics of the lavas can be explained through binary mixing between a MORB-like end-member and different sedimentary compositions identified in the DSDP cores. The lavas older than ˜7 Ma were influenced by incorporation of isotopically heavy black shales into the mantle wedge. The younger lavas are the product of mixing isotopically light sedimentary material into the mantle wedge. The change in Mo isotope composition of the lavas at ˜7 Ma is interpreted to reflect the removal of the Cretaceous black shale component due to the arrival of younger ocean crust where the age-equivalent Cretaceous sediments were deposited in shallower oxic waters. Isotopic fractionation of Mo during its removal from the slab is not required to explain the observed systematics in this system.
Water Use by Texas Oil and Gas Industry: A Look towards the Future
NASA Astrophysics Data System (ADS)
Nicot, J.; Ritter, S. M.; Hebel, A. K.
2009-12-01
The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.
NASA Astrophysics Data System (ADS)
Xu, G.; Hannah, J. L.; Bingen, B.; Stein, H. J.; Yang, G.; Zimmerman, A.; Weitschat, W.; Weiss, H. M.
2008-12-01
Absolute age control throughout the Triassic is extraordinarily sparse. Two "golden spikes" have been added recently (http://www.stratigraphy.org/cheu.pdf) within the otherwise unconstrained Triassic, but ages of stage boundaries remain controversial. Here we report two Re-Os isochrons for Anisian (Middle Triassic) black shales from outcrop in western Svalbard and drill core from the Svalis Dome about 600 km to the SE in the Barents Sea. Black shales of the Blanknuten Member, Botneheia Formation, from the type section at Botneheia, western Spitsbergen (Svalbard), have total organic carbon (TOC) contents of 2.6 to 6.0 wt%. Rock-Eval data suggest moderately mature (Tmax = 440-450° C) Type II-III kerogens (Hydrogen Index (HI) = 232-311 mg HC/g TOC). Re-Os data yield a well-constrained Model 3 age of 241 Ma and initial 187Os/188Os (Osi) of 0.83 (MSWD = 16, n = 6). Samples of the possibly correlative Steinkobbe Formation from IKU core hole 7323/07-U-04 into the Svalis Dome in the Barents Sea (at about 73°30'N, 23°15'E) have TOC contents of 1.4 to 2.4%. Rock-Eval data suggest immature (Tmax = 410-430°) Type II-III kerogens (HI = 246-294 mg HC/g TOC). Re-Os data yield a precise Model 1 age of 239 Ma and Osi of 0.776 (MSWD = 0.2, n = 5). The sampled section of Blanknuten shale underlies a distinctive Frechitas (formerly Ptychites) layer, and is therefore assumed to be middle Anisian. The Steinkobbe core was sampled at 99-100 m, just above the Olenekian-Anisian transition. It is therefore assumed to be lower Anisian. The two isochron ages overlap within uncertainty, and fall within constraints provided by biozones and the current ICS-approved stage boundary ages. The Re-Os ages support the correlation of the Botneheia and Steinkobbe formations. The nearly identical Osi ratios suggest regional homogeneity of seawater and provide new information for the Os seawater curve, marking a relatively high 187Os/188Os ratio during profound ocean anoxia in the Middle Triassic.
Properties of Silurian shales from the Barrandian Basin, Czech Republic
NASA Astrophysics Data System (ADS)
Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana
2017-04-01
Although shale gas-bearing deposits have a markedly lower gas content than coal deposits, great attention has recently been paid to shale gas as a new potential source of fossil energy. Shale gas extraction is considered to be quite economical, despite the lower sorption capacity of shales, which is only about 10% of coal sorption capacities The selection of a suitable locality for extracting shale gas requires the sorption capacity of the shale to be determined. The sorption capacity is determined in the laboratory by measuring the amount of methane absorbed in a shale specimen at a pressure and a temperature corresponding to in situ conditions, using high pressure sorption. According to the principles of reversibility of adsorption/desorption, this amount should be roughly related to the amount of gas released by forced degassing. High pressure methane sorption isotherms were measured on seven representative samples of Silurian shales from the Barrandian Basin, Czech Republic. Excess sorption measurements were performed at a temperature of 45oC and at pressures up to 15 MPa on dry samples, using a manometric method. Experimental methane high-pressure isotherms were fitted to a modified Langmuir equation. The maximum measured excess sorption parameter and the Langmuir sorption capacity parameter were used to study the effect of TOC content, organic maturity, inorganic components and porosity on the methane sorption capacity. The studied shale samples with random reflectance of graptolite 0.56 to 1.76% had a very low TOC content and dominant mineral fractions. Illite was the prevailing clay mineral. The sample porosity ranged from 4.6 to 18.8%. In most samples, the micropore volumes were markedly lower than the meso- and macropore volumes. In the Silurian black shales, the occurrence of fractures parallel with the original sedimentary bending was highly significant. A greater proportion of fragments of carbonaceous particles of graptolites and bitumens in the Barrandian Silurian shales had a smooth surface without pores. No relation has been proven between TOC-normalized excess sorption capacities or the TOC-normalized Langmuir sorption capacities and thermal maturation of the shales. The methane sorption capacities of shale samples show a positive correlation with TOC and a positive correlation with the clay content. The highest sorption capacity was observed in shale samples with the highest percentage of micropores, indicating that the micropore volume in the organic matter and clay minerals is a principal factor affecting the sorption capacity of the shale samples.
Evolution of Devonian carbonate-shelf margin, Nevada
Morrow, J.R.; Sandberg, C.A.
2008-01-01
The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.
Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming
NASA Astrophysics Data System (ADS)
Nelson, P. H.
2013-12-01
The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.
Controls on porphyrin concentrations of Pennsylvanian organic-rich shales, Western U.S.A.
Clayton, J.L.; Michael, G.E.
1990-01-01
Organic-rich black shales of Middle Pennsylvanian (Desmoinesian) age occur over much of the central U.S. and as far west as the northern Denver and southeastern Powder River basins. Total organic carbon contents (Corg) are commonly greater than 10 wt %. Porphyrin concentrations (vanadyl + nickel) are as high as 40000 ppm relative to extractable bitumen. In bulk, the organic matter contained in the shales is mostly type II and III (Rock-Eval hydrogen indexes 200-400 mg of hydrocarbons/g of Corg). The finding of high porphyrin concentrations in type III organic matter is unusual but can be explained by a depositional model wherein high preservation of primary organic production (water column photosynthesis) is combined with substantial input of allochthonous organic matter. The allochthonous organic matter (low porphyrin concentration) may come from erosion during advance of the sea across the area or from fluvial transport from shore.
NASA Astrophysics Data System (ADS)
Miller, Christian A.; Peucker-Ehrenbrink, Bernhard; Schauble, Edwin A.
2015-11-01
We present the first data documenting environmental variations in the isotope composition of Re, and the first theoretical models of equilibrium Re isotope fractionation factors. Variations of δ187Re at modern surface temperatures are predicted to be ‰ level for redox (ReVII ⇌ ReIV) and perrhenate thiolation reactions (ReVIIO4- ⇌ReVIIOXS4-X- ⇌ReVII S4-). Nuclear volume fractionations are calculated to be smaller than mass dependent effects. Values of δ187Re from New Albany Shale samples presented in this work and in a previous study show a range of 0.8‰ over a stratigraphic interval of ∼20 m. The magnitude of variation is consistent with theoretical predictions and may provide evidence for changing δ187Re of seawater in the geologic past. A -0.3‰ change in δ187Re across a 14 m horizontal black shale weathering profile is accompanied by a hundred-fold decrease in Re concentration and a 75% decrease in organic carbon associated with the transition from reducing to oxic weathering environment. We attribute decreasing δ187Re to the loss of organically bound Re component (δ187Re = -0.28‰). The Re isotope composition of the complementary detrital silicate fraction varies from -0.59 to -1.5‰, depending on the choice of silicate Re concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.B.; Faure, G.
1997-03-01
We used geochemical data to examine the origin and preservation of organic matter contained in the lower part of the Huron Member of the Ohio Shale formation and the Rhinestreet Shale Member of the West Falls Formation (Devonian) in Kentucky, Ohio, West Virginia, and Virginia. The thermal history of the organic matter was determined by relating relative temperatures experienced by the organic matter to the geologic setting. The organic matter in these formations is predominantly marine in origin and was most probably derived largely from algal organisms. Although the rate of production of marine organic matter may have been uniformmore » within the basin, its preservation apparently was controlled by the existence of a set of fault-bounded anoxic subbasins associated with the Rome trough, a Cambrian structural complex. These subbasins apparently were anoxic because they limited oxygen recharge by circulating waters. Preservation of organic matter was also enhanced by periodic blooms of the alga Tasmanites and similar organisms in the waters above the subbasins during both early Huron and Rhinestreet deposition. A significant negative correlation was identified between the vitrinite reflectance peak temperature, and integrated measure of the thermal history of a rock, and the hydrogen index, a measure of the remaining hydrocarbon-generation potential of kerogen. Although peak temperatures were controlled by burial depth, excess heating occurred locally, perhaps by hot brines rising from depth through fractures associated with major structures in the study area.« less
NASA Astrophysics Data System (ADS)
Ferriday, T.; Montenari, M.
2012-04-01
The Silurian black shale deposits of the peri-Gondwanan region are one of the most important Palaeozoic source rocks for hydrocarbons world-wide. Despite intensive research, questions regarding the genesis and the palaeoenvironmental and palaeogeographic factors controlling the deposition of these shales are a matter of ongoing debate. The area investigated lies within the Cantabria-Asturias Arc of Northern Spain in the autonomous region of Castilla y León. The Cantabrian Arc formed as a result of the collision between Gondwana and Laurussia during the formation of the supercontinent Pangea and has been divided into five major tectonostratigraphic units. The 'Folds and Nappes' unit is of particular interest, especially the contained Somiedo-Corecillas thrust system, as here the best preserved Formigoso-sections and exposures can be found. This study focuses on the deposition of the L-Silurian black shales of the Formigoso Formation (Fm) within the Somiedo-Corecillas thrust system at Aralla, approximately 10km east-southeast of San Emiliano. A high resolution geochemical analysis of major and trace elements has been utilised on a 25cm scale throughout the section. A total of 241 samples were prepared and analysed using a NITON XL3t X-ray fluorescence instrument. The data obtained have provided new insights into the sedimentation patterns and the prevailing environmental conditions during deposition of the Formigoso Fm. Initial results show prominent regular cycles within the concentrations of red/ox-sensitive chemical elements, starting from the very onset of the anoxic black shales; these repetitions become less apparent towards to top of the formation. Eight cyclic pulses are clearly evident in the concentrations of the elements Uranium (U), Thorium (Th), Vanadium (V) and Chromium (Cr) and apparent in Rubidium (Rb), Zinc (Zn), Copper (Cu), Nickel (Ni), Titanium (Ti), Sulphur (S) and Barium (Ba). The cyclic behaviour of U4+ between 'Anoxia'-U enriched (18ppm)- and 'Dysoxia' -U depleted (8ppm)-, is here interpreted as the result of regular perturbations of the overlying oxygen-depleted water column during deposition, leading to rhythmic oxygenation of the bottom-water masses. These regular perturbations are seen here as the result of a complex interplay between orbital-forced sea-level changes and tectonically induced subsidence; the latter, a result of the widening Rheic Ocean. The basal black shales of the Formigoso Fm represent a duration of approx. 4 Myrs, spanning from the Aeronian/Telychian boundary (436Ma) to the mid-Telychian Monoclimacis Graptolite Zone (~ 432Ma). Therefore, each single cycle seem to represent approximately 500 kyr. This consistent cyclic signal is tentatively interpreted to represent the dynamic sedimentological response to the Earth's 413ka eccentricity. The cyclic geochemical patterns observed within the Lower Silurian Formigoso Fm shall be used for future stratigraphic correlations on an intrabasinal and interbasinal scale for the peri-Gondwanan margins.
Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.
2013-01-01
Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the Colorado River well into the future. Other trace elements weathering from MS that are often of environmental concern include U and Mo, which mimic Se in their behavior; As, Co, Cr, Cu, Ni, and Pb, which show little redistribution; and Cd, Sb, V, and Zn, which accumulate in Stage I shale, but are lost to varying degrees from upper soil intervals. None of these trace elements have been reported previously as contaminants in the study area.
NASA Astrophysics Data System (ADS)
Bowden, S.; Wireman, R.
2016-02-01
Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.
Lenticular stretch structures in eastern Nevada - possible trapping mechanism in supposed graben
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, C.T.; Dennis, J.G.; Lumsden, W.W.
Eastern Nevada is widely recognized as a region of tectonic extension. The dominant structures are generally agreed to be low-dipping, younger over older faults and steeper listric faults that are responsible for the basins (grabens) and ranges (horsts). In the Schell Creek-Duck Creek Range, east of Ely, and in the White Pine Range, southwest of Ely, small lenticular structures bounded by tectonic discontinuities can be clearly seen in the field. These lenticular units, or stretch structures, range in length from a few meters to more than 200 m. All lenticular stretch structures that can be clearly seen in the fieldmore » are stratigraphically restricted; the stretched formations are the Eureka Quartzite, the Pilot Shale, the Joana Limestone, and the Chainman Shale. Still larger stretch structures, which may include several formations, are inferred, and the authors suggest that extension has created lenticular structures at all scales. The Duck Creek and Schell Creek Ranges east of Ely consist mostly of Devonian and older rocks. They are separated by a topographically lower area containing mostly Mississippian and Pennsylvanian rocks. This structure, which separates the ranges, has been referred to as a graben, but field evidence suggests that it is a large-scale lenticular stretch structure. Unlike a true graben, the structure does not extend downward. For example, in several places within the supposed graben, Cambrian and Ordovician rocks project through a cover of Carboniferous Chainman Shale and Ely Limestone, suggesting the Chainman-Ely is a thin sheet underlain by Cambrian-Ordovician rocks. Accordingly, they suggest that extension in the Duck Creek-Schell Creek Ranges stretched the formations into lenticular bodies. Between the Duck Creek and Schell Creek Ranges, the Cambrian-Ordovician is attenuated, and the resulting tectonic depression is occupied by a lenticular mass of Carboniferous rocks.« less
Fishman, Neil S.; Ellis, Geoffrey S.; Paxton, Stanley T.; Abbott, Marvin M.; Boehlke, Adam
2010-01-01
Microfractures also contribute to Woodford Shale porosity but they appear to be lithologically controlled. Fractures are relatively well-developed and are typically perpendicular to bedding in cherts, but these fractures typically end abruptly or become much more diffuse in adjacent mudstones. The brittle nature of the cherts, due to their high quartz content, is most likely the reason for their excellent fracture development, particularly relative to the mudstones, which are composed of much more ductile clay and Tasmanites constituents. Interestingly, the overlap of some petrophysical properties of cherts and mudstones (e.g., porosity, pore apertures) in the Woodford Shale for samples from the Arbuckle Mountains indicates that for shallowly-buried (i.e. minimally compacted) parts of the formation, both lithologies may have exhibited similar behavior relative to fluid movement. Where the Woodford has been more deeply buried and subjected to more intense compaction (i.e. in the Anadarko Basin), the petrophysical characteristics of cherts are likely to have changed only minimally due to their rigid fabric, whereas the petrophysical characteristics of the mudstones are likely to have changed significantly due to compaction and the resultant compression and collapse of ductile constituents such as clays and Tasmanites microfossils (those without quartz infilling). Moldic porosity, which could be expected to develop in kerogen as a consequence of maturation (Loucks and others, 2009), is more likely in the high TOC mudstones, but would also occur in Woodford cherts, which contain lower TOC contents. Owing to the potential for Woodford cherts to better retain porosity, coupled with their contained TOC, cherts may indeed provide important overlooked intervals of gas generation and overall gas storage in the formation. Thus, Woodford cherts may contribute a significant portion of the gas that is produced from the formation. As such, chert beds may play a very significant, heretofore overlooked role as source and reservoir intervals within the Woodford in the Anadarko Basin.
Modified Lipid Extraction Methods for Deep Subsurface Shale
Akondi, Rawlings N.; Trexler, Ryan V.; Pfiffner, Susan M.; Mouser, Paula J.; Sharma, Shikha
2017-01-01
Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery. PMID:28790998
NASA Technical Reports Server (NTRS)
1985-01-01
A photogeologic and remote sensing model of porphyry type mineral sytems is considered along with a Landsat application to development of a tectonic model for hydrocarbon exploration of Devonian shales in west-central Virginia, remote sensing and the funnel philosophy, Landsat-based tectonic and metallogenic synthesis of the southwest United States, and an evolving paradigm for computer vision. Attention is given to the neotectonics of the Tibetan plateau deduced from Landsat MSS image interpretation, remote sensing in northern Arizona, the use of an airborne laser system for vegetation inventories and geobotanical prospecting, an evaluation of Thematic Mapper data for hydrocarbon exploration in low-relief basins, and an evaluation of the information content of high spectral resolution imagery. Other topics explored are related to a major source of new radar data for exploration research, the accuracy of geologic maps produced from Landsat data, and an approach for the geometric rectification of radar imagery.
Sedimentology of the Sbaa oil reservoir in the Timimoun basin (S. Algeria)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehadi, Z.
1990-05-01
In 1980 oil was discovered in the Timimoun portion of the Sbaa depression in Southern Algeria. Until that time this basin had produced only dry gas. Since the 1980 oil discovery, several wells have been drilled. Data acquired from these wells were analyzed and are presented in this study. The oil reservoir is located within a sandstone interval of the Sbaa formation which has an average thickness of 75 m. The Sbaa lies between the Tournaisian (Lower Carboniferous) silts and the Strunian (uppermost Devonian) shales and sandstones. The sedimentological study reveals that the Sbaa formation contains bimodal facies consisting ofmore » coarse siltstones and fine sandstones. The sequence has been attributed to a deltaic environment developed in the central part of the Ahnet basin. The sources of the associated fluvial system are from the surrounding In-Semmen, Tinessourine, and Arak-Foum-Belrem paleohighs. Thermoluminescence indicates the provenance for the Sbaa sands was the crystalline basement Cambrian and Ordovician sections.« less
Page, William R.; Harris, Alta C.; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.
2013-01-01
The most complete sections of Ordovician shelf rocks in Sonora are 50 km (31 mi) northwast of Hermosillo. In these sections, the Lower Ordovician is characterized by intraclastic limestone, siltstone, shale, and chert. The Middle Ordovician is mostly silty limestone and quartzite, and the Upper Ordovician is cherty limestone and some argillaceous limestone. A major disconformity separates the Middle Ordovician quartzite from the overlying Upper Ordovician carbonate rocks and is similar to the disconformity between the Middle and Upper Ordovician Eureka Quartzite and Upper Ordovician Ely Springs Dolomite in Nevada and California. In parts of northwestern Sonora, Ordovician rocks are disconformably overlain by Upper Silurain rocks. Northeastward in Sonora and Arizona, toward the craton, Ordovician rocks are progressively truncated by a major onlap unconformity and are overliand by Devonian rocks. Except in local area, Ordovician rocks are generally absent in cratonic platform sequences in northern Sonora and southern Arizona.
NASA Astrophysics Data System (ADS)
Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut
2010-05-01
During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased total organic carbon values in the black shale as well as in the limestone intervals. This shows how a rising pCO2 triggered changes in climate and oceanography and resulted in an increasing oxygen-deficiency of the bottom waters that persisted even during the 'limestone intervals' before oxygen-depletion finally became a global phenomenon. References: Arthur, M.A., 2000, Volcanic contributions to the carbon and sulfur geochemical cycles and global change, in Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., and Stix, J., eds., Encyclopedia of Volcanoes, Academic Press, p. 1045-1056. Channell, J.E.T., Cecca, F., and Erba, E., 1995, Correlations of Hauterivian and Barremian (Early Cretaceous) stage boundaries to polarity chrons: Earth and Planetary Science Letters, v. 134, p. 125-140. Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J., and Amundson, R., 2001, Terrestrial record of methane hydrate dissociation in the Early Cretaceous: Geology, v. 29, p. 159-162. Méhay, S., Keller, C.E., Bernasconi, S.M., Weissert, H., Erba, E., Bottini, C., and Hochuli, P.A., 2009, A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis: Geology, v. 37, p. 819-822. Tejada, M.L.G., Suzuki, K., Junichiro, K., Rodolfo, C., J., M.J., Naohiko, O., Tatsuhiko, S., and Yoshiyuki, T., 2009, Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event: Geology, v. 37, p. 855-858.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCleary, J.; Rogers, T.; Ely, R.
Geophysical well log analysis, literature review, and field work were conducted to develop isopach, structure contour, outcrop, and facies maps and cross sections for the Devonian through Permian strata of a 14,586-km/sup 2/ (5632-square-mile) area in southeastern Utah. The study area includes part of the Paradox Basin, the salt deposits of which are of interest in siting studies for a nuclear waste repository. For this reason hydrologic models of this area are needed. This study, part of which included the development of a three-dimensional stratigraphic computer model utilizing Geographic Information System software, can serve as a base for hydrologic ormore » other models for this area. Within and adjacent to the study area, 730 wells were screened to select the 191 wells analyzed for the study. It was found that the Elbert through Molas formations did not exhibit noticeable facies changes within the study area. The Pinkerton Trail Formation exhibits moderate changes: anhydrite and shale become somewhat more abundant toward the northeast. Facies changes in the Paradox Formation are more dramatic. Thick saline facies deposits are present in the northeast, grading to thinner anhydrite and then to carbonate facies in the south and west. The lithology of the Honaker Trail Formation appears to be fairly uniform throughout the area. Facies changes in the Cutler Group are numerous and sometimes dramatic, and generally correspond to the named formations of the group. Other factors that could affect groundwater flow, such as stratigraphic cover of fine-grained rocks, area of formation outcrops, and fracturing and faulting are discussed and delineated on maps.« less
Early Silurian Foraminifera from Gondwana - an early origin of the multichambered globothalamids?
NASA Astrophysics Data System (ADS)
Kaminski, Michael
2017-04-01
Early Silurian foraminifera until now have been regarded to consist of simple single-chambered monothalamids and two-chambered tubothalamids with an agglutinated wall. Although pseudo-multichambered agglutinated foraminifera first appeared in the mid-Ordovician (Kaminski et al. 2009), the origin of true multichambered forms was not believed to have taken place until the early or middle Devonian at the earliest (Holcová, 2002). New discoveries from the Lower Silurian Qusaiba Shale Member in Saudi Arabia point to an earlier origin of the multichambered globothalamid Foraminifera than the currently accepted estimate of 350 Ma (Pawlowski et al. 2003). The agglutinated foraminiferal genera Ammobaculites and Sculptobaculites have been recovered from dark graptolite-bearing claystones of Telychian age, from the transitional facies between the Qusaiba and Sharawa Members of the Qasim Formation at the type locality near Qusaiba town, Saudi Arabia. The multichambered lituolids occur as rare components in a foraminiferal assemblage consisting mostly of monothalamids. This new finding revises our understanding of the early evolution of the multichambered globothalamid foraminifera. The fossil record now shows that the globothalamids were already present in Gondwana by 435 m.y. Holcová, K. 2002. Silurian and Devonian foraminifers and other acid-resistant microfossils from the Barrandian area. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 58 (3-4), 83-140. Kaminski, M.A., Henderson, A.S., Cetean, C.G. & Waskowska-Oliwa, A. 2009. A new family of agglutinated foraminifera: the Ammolagenidae n.fam., and the evolution of multichambered tests. Micropaleontology, 55 (5), 487-494. Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J.F., Gooday, Aj., Cedhagen, T., Habura, A., & Bowser, SS. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences, 100 (20), 11494-11498
Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock
NASA Astrophysics Data System (ADS)
Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.
2015-12-01
Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.
Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen
2016-04-01
Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high temperature hydrothermal fluids. Calculations performed for such a heating indicate that associated clay dehydration is sufficient to provide the water released during the eruption and that heating-induced overpressure could favor fluid ascent. These results confirm the hydrothermal scenario in which Lusi eruption is fed by high temperature fluid circulation from the neighboring Arjuno-Welirang volcanic complex.
Böhlke, J.K.; Radtke, A.S.; Heropoulos, Chris; Lamothe, P.J.
1981-01-01
Samples of cuttings from three drill holes in the Gibellini claims were analyzed by emission spectroscopic techniques for a large suite of major and trace elements. Unoxidized siliceous "black shale" from drill hole NGA 7 is strongly enriched in Cd, Mo, Sb, Se, V, and Zn, and also contains relatively high concentrations of As, Ba, Cu, Ni, and Tl compared with nonmetalliferous shales. Analyses of 103 samples plotted against depth in drill holes NGA, NG31, and NGA7, and selected XRD data, show the following: 1. Groups of elements with distinct distribution patterns define most of major mineralogic components of the rocks. The "normal shale" component, which includes several detrital and authigenic phases, is indicated by covariations among Ti, Al, Fe, Na, Mg, K, B, Be, Co, Cr, Ga, La, Sc, Sr, and Zr. The shale component is diluted by varying amounts of the following minerals (and associated elements): silica (Si); dolomite (Mg, Ca, Mn, Sr); apatite (Ca, Be, Cr, La, Sr, Y); barite (Ba, Sr); sphalerite (Zn, Cd, Fe?); smithsonite (Cd, Co, Mn, Ni, Zn); bianchite (Cd, Ni, Zn) ; and bokite (V). Pyrite, gypsum, and jarosite were also identified.2. The highly siliceous kerogenous metalliferous Gibellini facies is underlain by argillaceous and (or) dolomitic rocks. The transition zone deduced from the chemical data is not well defined in all instances, but probably represents the bottom of the black shale deposit. 3. Oxidation has reached to variable depths up to at least 150 ft, and has caused profound changes in the distributions of the enriched metals. Molybdenum, Se, and V have been partially removed from the upper parts of the sections and are concentrated near or slightly above the base of the Gibellini facies. Cadmium, Ni, and Zn have been strongly leached and now occur at or below the base of the Gibellini facies. The variable depth of oxidation, the redistribution and separation of the metals, and the complex mineralogy of the deposit may make development of the claim complicated.
Kelley, Karen D.; Scott, Clinton T.; Polyak, Désirée E.; Kimball, Bryn E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Vanadium is used primarily in the production of steel alloys; as a catalyst for the chemical industry; in the making of ceramics, glasses, and pigments; and in vanadium redox-flow batteries (VRBs) for large-scale storage of electricity. World vanadium resources in 2012 were estimated to be 63 million metric tons, which include about 14 million metric tons of reserves. The majority of the vanadium produced in 2012 was from China, Russia, and South Africa.Vanadium is extracted from several different types of mineral deposits and from fossil fuels. These deposits include vanadiferous titanomagnetite (VTM) deposits, sandstone-hosted vanadium (with or without uranium) deposits (SSV deposits), and vanadium-rich black shales. VTM deposits are the principal source of vanadium and consist of magmatic accumulations of ilmenite and magnetite containing 0.2 to 1 weight percent vanadium pentoxide (V2O5). SSV deposits are another important source; these deposits have average ore grades that range from 0.1 to greater than 1 weight percent V2O5. The United States has been and is currently the main producer of vanadium from SSV deposits, particularly those on the Colorado Plateau. Vanadium-rich black shales occur in marine successions that were deposited in epeiric (inland) seas and on continental margins. Concentrations in these shales regularly exceed 0.18 weight percent V2O5 and can be as high as 1.7 weight percent V2O5. Small amounts of vanadium have been produced from the Alum Shale in Sweden and from ferrophosphorus slag generated during the reduction of phosphate to elemental phosphorus in ore from shales of the Phosphoria Formation in Idaho and Wyoming. Because vanadium enrichment occurs in beds that are typically only a few meters thick, most of the vanadiferous black shales are not currently economic, although they may become an important resource in the future. Significant amounts of vanadium are recovered as byproducts of petroleum refining, and processing of coal, tar sands, and oil shales may be important future sources.Vanadium occurs in one of four oxidation states in nature: +2, +3, +4, and +5. The V3+ ion has an octahedral radius that is almost identical to that of (Fe3+) and (Al3+) and, therefore, it substitutes in ferromagnesian minerals. During weathering, much of the vanadium may partition into newly formed clay minerals, and it either remains in the +3 valence state or oxidizes to the +4 valence state, both of which are relatively insoluble. If erosion is insignificant but chemical leaching is intense, the residual material may be enriched in vanadium, as are some bauxites and laterites. During the weathering of igneous, residual, or sedimentary rocks, some vanadium oxidizes to the +5 valence state, especially in the intensive oxidizing conditions that are characteristic of arid climates.The average contents of vanadium in the environment are as follows: soils [10 to 500 parts per million (ppm)]; streams and rivers [0.2 to 2.9 parts per billion (ppb)]; and coastal seawater (0.3 to 2.8 ppb). Concentrations of vanadium in soils (548 to 7,160 ppm) collected near vanadium mines in China, the Czech Republic, and South Africa are many times greater than natural concentrations in soils. Additionally, if deposits contain sulfide minerals such as chalcocite, pyrite, and sphalerite, high levels of acidity may be present if sulfide dissolution is not balanced by the presence of acid-neutralizing carbonate minerals. Some of the vanadium-bearing deposit types, particularly some SSV and black-shale deposits, contain appreciable amounts of carbonate minerals, which lowers the acid-generation potential.Vanadium is a micronutrient with a postulated requirement for humans of less than 10 micrograms per day, which can be met through dietary intake. Primary and secondary drinking water regulations for vanadium are not currently in place in the United States. Vanadium toxicity is thought to result from an intake of more than 10 to 20 milligrams per day. Vanadium is essential for some biological processes and organisms. For example, some nitrogen-fixing bacteria require vanadium for producing enzymes necessary to convert nitrogen from the atmosphere into ammonia, which is a more biologically accessible form of nitrogen.
NASA Astrophysics Data System (ADS)
Hofmann, P.; Leythaeuser, D.; Schwark, L.
2001-07-01
In order to determine thermal effects of the Ries impact, southern Germany, on organic matter in its ejecta blanket, the maturity of organic matter of Posidonia Shale components from the Bunte Breccia at Harburg and Gundelsheim is compared with the maturity of organic matter of a reference section of Posidonia Shale outside the impact site at Hesselberg. Three black shale samples from the Bunte Breccia were identified as corresponding to the organic matter-rich Posidonia Shale based on the molecular composition of extractable organic matter. They show n-alkane patterns with a maximum of n-C 17, a predominance of odd over even n-alkanes in the range from n-C 26 to n-C 35, a dominance of unsaturated sterenes over steranes and monoaromatic over triaromatic steroids, and contain isorenieratene. The maturity of the organic matter from the Bunte Breccia samples corresponds to 0.32-0.35% random vitrinite reflectance ( Rr) and a spectral red/green quotient ( Q) of 0.32-0.34. The organic matter from the Bunte Breccia is more mature than the Posidonia Shale sample from the reference site Hesselberg (0.25% Rr; 0.21 for Q). The thermal overprint is presumed to be too high to be explained by differences in the burial history prior to the impact alone and is, therefore, attributed to processes related to the displacement of the Bunte Breccia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Vivak
The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However.more » the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, however, when the coal was pressurized with CO2 at ambient ≤ P ≤ 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.« less
Investigation of water-soluble organic matter extracted from shales during leaching experiments
NASA Astrophysics Data System (ADS)
Zhu, Yaling; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Horsfield, Brian
2017-04-01
The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the shales themselves during fluid-rock interaction. Knowledge of the composition, size and structure of dissolved organic carbon (DOC) as well as the main controls on the release of DOC are a prerequisite for a better understanding of these interactions and its effects on composition of flowback and produced water. Black shales from four different geological settings and covering a maturity range Ro = 0.3-2.6% were extracted with deionized water. The DOC yields were found to decrease rapidly with increasing diagenesis and remain low throughout catagenesis. Four DOC fractions have been qualitatively and quantitatively characterized using size-exclusion chromatography. The concentrations of individual low molecular weight organic acids (LMWOA) decrease with increasing maturity of the samples except for acetate extracted from the overmature Posidonia shale, which was influenced by hydrothermal brines. The oxygen content of the shale organic matter also shows a significant influence on the release of organic acids, which is indicated by the positive trend between oxygen index (OI) and the concentrations of formate and acetate. Based on our experiments, both the properties of the organic matter source and the thermal maturation progress of the shale organic matter significantly influence the amount and quality of extracted organic compounds during the leaching experiments.
1983-06-01
NUMBER CORE BOXES NASH IS ELEV....ION GROUND WATER 6 DIRECTION OF HOLE 3-.. E VETa DATE OLE 5/30/78 5/31/ 7’ 1,7 UtmATJON o TOP 5 OLE / 7 THICKNESS OF...JUN 83 UNCLASSIFIED F/G 13/13 NL mommmmommm 0 I~lmlIIIImEE mhEgEBhEEBhIEE E Eg //EEE n-EEEElgEl- E .II 1.0 II1 l w20 1111.25 111111’.4 1II1.6 MICROCOPY...Kerr Arkansas River Navigation System. e dam was founded on a thick shale layer of the Atoka Formation. Locally, the shale was gray to black, hard to
Ryder, R.T.; Burruss, R.C.; Hatch, J.R.
1998-01-01
Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network controlled by basement tectonics aided in the distribution of oil from the source to the trap. This fracture network permitted oil to move laterally and stratigraphically downsection through eastward-dipping, impermeable carbonate sequences to carrier zones such as the Middle Ordovician Knox unconformity, and to reservoirs such as porous dolomite in the Middle Ordovician Trenton Limestone in the Lima-Indiana field. Some of the oil and gas from the Utica-Antes source escaped vertically through a partially fractured, leaky Upper Ordovician shale seal into widespread Lower Silurian sandstone reservoirs.Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician black shale (Utica and Antes shales) in the Appalachian basin. Moreover, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in these same source rocks.
Moench, R.H.; Aleinikoff, J.N.
2002-01-01
The Ammonoosuc Volcanics, Partridge Formation, and the Oliverian and Highlandcroft Plutonic Suites of the Bronson Hill anticlinorium (BHA) in axial New England are widely accepted as a single Middle to Late Ordovician magmatic arc that was active during closure of Iapetus. Mapping and U-Pb dating indicate, however, that the BHA contains two volcano-sedimentary-intrusive sequences of probable opposite subduction polarity, here termed the Ammonoosuc and Quimby sequences. The Ammonoosuc sequence is defined by the Middle Ordovician Ammonoosuc Volcanics near Littleton, N.H., the type area, northeast to Milan, N.H., and Oquossoc, Me.; it also includes black slate of the Partidge Formation (C. bicornis zone graptolites, ???457 Ma). Related metamorphosed intrusive are the tonalitic Joslin Turn pluton (469 ?? 2 Ma), the Cambridge Black granitic pluton (468 ?? 3 Ma), and gabbro, tonalite (467 ?? 4 Ma), and sheeted diabase of the Chickwolnepy instructions. These intrusives cut lowermost Ammonoosuc (therefore>469 Ma). Probable uppermost Ammonoosuc is dated at 465 ?? 6 and 461 ?? 8 Ma. Successively below the Ammonoosuc are the Dead River and Hurricane Mountain Formations (flysch and melange), and the Jim Pond Formation (484 ?? 5 Ma) and Boil Mountain Complex (both ophiolite), which are structurally underlain by the Neoproterozoic(?) Chain Lakes massif. The Quimby sequence is defined by the Lower Silurian(?) to Upper Ordovician Quimby Formation, composed of bimodal volcanics (443 ?? 4 Ma) and sulfidic shale and graywacke that lie conformably to unconformably above the Ammonoosuc Volcanics and Partridge Formation. Also in the Quimby sequence are several granitic to sparsely gabbroic plutons of the Highlandcroft (441-452 Ma) and Oliverian (435-456 Ma) Plutonic Suites, which intrude the Dead River, Ammonoosuc and Partridge, but not the Quimby Formation. Based on faunal, paleolatitude, and isotropic data, the Ammonoosuc sequence and its correlative and underlying sequences formed off the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line (RIL). The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ???475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Verte-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ???470 Ma. Ammonoosuc eruptions probably ended at ???460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ???3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (???456-435 Ma) on the the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the "Fredericton Sea". In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspe?? basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time. Published by Elsevier Science Ltd.
Moench, R.H.; Aleinikoff, J.N.
2003-01-01
The Ammonoosuc Volcanics, Partridge Formation, and the Oliverian and Highlandcroft Plutonic Suites of the Bronson Hill anticlinorium (BHA) in axial New England are widely accepted as a single Middle to Late Ordovician magmatic arc that was active during closure of Iapetus. Mapping and U-Pb dating indicate, however, that the BHA contains two volcano-sedimentary-intrusive sequences of probable opposite subduction polarity, here termed the Ammonoosuc and Quimby sequences. The Ammonoosuc sequence is defined by the Middle Ordovician Ammonoosuc Volcanics near Littleton, NH, the type area, northeast to Milan, NH, and Oquossoc, ME; it also includes black slate of the Partridge Formation ( C. bicornis--zone graptolites, ???457 Ma). Related metamorphosed intrusives are the tonalitic Joslin Turn pluton (469 ?? 2 Ma), the Cambridge Black granitic pluton (468 ?? 3 Ma), and gabbro, tonalite (467 ?? 4 Ma), and sheeted diabase of the Chickwolnepy intrusions. These intrusives cut lowermost Ammonoosuc (therefore >469 Ma). Probable uppermost Ammonoosuc is dated at 465 ?? 6 and 461 ?? 8 Ma. Successively below the Ammonoosuc are the Dead River and Hurricane Mountain Formations (flysch and melange), and the Jim Pond Formation (484 ?? 5 Ma) and Boil Mountain Complex (both ophiolite), which are structurally underlain by the Neoproterozoic(?) Chain Lakes massif. The Quimby sequence is defined by the Lower Silurian(?) to Upper Ordovician Quimby Formation, composed of bimodal volcanics (443 ?? 4 Ma) and sulfidic shale and graywacke that lie conformably to unconformably above the Ammmonoosuc Volcanics and Partridge Formation. Also in the Quimby sequence are several granitic to sparsely gabbroic plutons of the Highlandcroft (441-452 Ma) and Oliverian (435-456 Ma) Plutonic Suites, which intrude the Dead River, Ammonoouc and Partridge, but not the Quimby Formation. Based on faunal, paleolatitude, and isotopic data, the Ammonoosuc sequence and its correlatives and underlying sequences formed off the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line. The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ???475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Vert-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ???470 Ma. Ammonoosuc eruptions probably ended at ???460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ???3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (???456-435 Ma) on the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the "Fredericton Sea". In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspe?? basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time. Published by Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Moench, Robert H.; Aleinikoff, John N.
The Ammonoosuc Volcanics, Partridge Formation, and the Oliverian and Highlandcroft Plutonic Suites of the Bronson Hill anticlinorium (BHA) in axial New England are widely accepted as a single Middle to Late Ordovician magmatic arc that was active during closure of Iapetus. Mapping and U-Pb dating indicate, however, that the BHA contains two volcano-sedimentary-intrusive sequences of probable opposite subduction polarity, here termed the Ammonoosuc and Quimby sequences. The Ammonoosuc sequence is defined by the Middle Ordovician Ammonoosuc Volcanics near Littleton, NH, the type area, northeast to Milan, NH, and Oquossoc, ME; it also includes black slate of the Partridge Formation ( C. bicornis--zone graptolites, ∼457 Ma). Related metamorphosed intrusives are the tonalitic Joslin Turn pluton (469 ± 2 Ma), the Cambridge Black granitic pluton (468 ± 3 Ma), and gabbro, tonalite (467 ± 4 Ma), and sheeted diabase of the Chickwolnepy intrusions. These intrusives cut lowermost Ammonoosuc (therefore >469 Ma). Probable uppermost Ammonoosuc is dated at 465 ± 6 and 461 ± 8 Ma. Successively below the Ammonoosuc are the Dead River and Hurricane Mountain Formations (flysch and melange), and the Jim Pond Formation (484 ± 5 Ma) and Boil Mountain Complex (both ophiolite), which are structurally underlain by the Neoproterozoic(?) Chain Lakes massif. The Quimby sequence is defined by the Lower Silurian(?) to Upper Ordovician Quimby Formation, composed of bimodal volcanics (443 ± 4 Ma) and sulfidic shale and graywacke that lie conformably to unconformably above the Ammmonoosuc Volcanics and Partridge Formation. Also in the Quimby sequence are several granitic to sparsely gabbroic plutons of the Highlandcroft (441-452 Ma) and Oliverian (435-456 Ma) Plutonic Suites, which intrude the Dead River, Ammonoouc and Partridge, but not the Quimby Formation. Based on faunal, paleolatitude, and isotopic data, the Ammonoosuc sequence and its correlatives and underlying sequences formed off the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line. The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ∼475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Vert-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ∼470 Ma. Ammonoosuc eruptions probably ended at ∼460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ∼3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (∼456-435 Ma) on the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the “Fredericton Sea”. In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspé basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time.
NASA Astrophysics Data System (ADS)
Moench, Robert H.; Aleinikoff, John N.
2002-01-01
The Ammonoosuc Volcanics, Partridge Formation, and the Oliverian and Highlandcroft Plutonic Suites of the Bronson Hill anticlinorium (BHA) in axial New England are widely accepted as a single Middle to Late Ordovician magmatic arc that was active during closure of Iapetus. Mapping and U-Pb dating indicate, however, that the BHA contains two volcano-sedimentary-intrusive sequences of probable opposite subduction polarity, here termed the Ammonoosuc and Quimby sequences. The Ammonoosuc sequence is defined by the Middle Ordovician Ammonoosuc Volcanics near Littleton, N.H., the type area, northeast to Milan, N.H., and Oquossoc, Me.; it also includes black slate of the Partidge Formation ( C. bicornis zone graptolites, ∼457 Ma). Related metamorphosed intrusive are the tonalitic Joslin Turn pluton (469±2 Ma), the Cambridge Black granitic pluton (468±3 Ma), and gabbro, tonalite (467±4 Ma), and sheeted diabase of the Chickwolnepy instructions. These intrusives cut lowermost Ammonoosuc (therefore >469 Ma). Probable uppermost Ammonoosuc is dated at 465±6 and 461±8 Ma. Successively below the Ammonoosuc are the Dead River and Hurricane Mountain Formations (flysch and melange), and the Jim Pond Formation (484±5 Ma) and Boil Mountain Complex (both ophiolite), which are structurally underlain by the Neoproterozoic(?) Chain Lakes massif. The Quimby sequence is defined by the Lower Silurian(?) to Upper Ordovician Quimby Formation, composed of bimodal volcanics (443±4 Ma) and sulfidic shale and graywacke that lie conformably to unconformably above the Ammonoosuc Volcanics and Partridge Formation. Also in the Quimby sequence are several granitic to sparsely gabbroic plutons of the Highlandcroft (441-452 Ma) and Oliverian (435-456 Ma) Plutonic Suites, which intrude the Dead River, Ammonoosuc and Partridge, but not the Quimby Formation. Based on faunal, paleolatitude, and isotropic data, the Ammonoosuc sequence and its correlative and underlying sequences formed off the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line (RIL). The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ∼475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Verte-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ∼470 Ma. Ammonoosuc eruptions probably ended at ∼460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ∼3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (∼456-435 Ma) on the the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the “Fredericton Sea”. In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspé basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time.
Slack, John F.; Dumoulin, Julie A.; Schmidt, J.M.; Young, L.E.; Rombach, Cameron
2004-01-01
The distribution and composition of Paleozoic strata in the western Brooks Range may have played a fundamental role in Zn-Pb mineralization of the Red Dog district. In our model, deposition and early lithification of biogenic chert and bedded siliceous rocks in the upper part of the Kuna Formation served as a regional hydrologic seal, acting as a cap rock to heat and hydrothermal fluids during Late Mississippian base-metal mineralization. Equally important was the iron-poor composition of black shales of the Kuna Formation (i.e., low Fe/Ti ratios), which limited synsedimentary pyrite formation in precursor sediments, resulting in significant H2S production in pore waters through the interaction of aqueous sulfate with abundant organic matter. This H2S may have been critical to the subsurface deposition of the huge quantities of Zn and Pb in the district. On the basis of this model, we propose that low Fe/Ti and S/C ratios in black shale sequences are potential basin-scale exploration guides for giant sediment-hosted, stratiform Zn-Pb-Ag deposits.
Bishop, M.G.
1999-01-01
The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the Plover Formation (Lower to Upper Jurassic), combined with marine claystones of the Flamingo Group and Darwin Formation (Upper Jurassic to Lower Cretaceous) comprise the source rocks for the remaining area of the system. These claystones and coals source oil, gas, and condensate accumulations in reservoirs of continental to marine sandstones of the Plover Formation and Flamingo Group. Shales of the regionally distributed Lower Cretaceous Bathurst Island Group and intraformational shales act as seals for hydrocarbons trapped in anticlines and fault blocks, which are the major traps of the province. Production in the Bonaparte Gulf Basin Province began in 1986 using floating production facilities, and had been limited to three offshore fields located in the Vulcan graben sub-basin. Cumulative production from these fields totaled more than 124 million barrels of oil before the facilities were removed after production fell substantially in 1995. Production began in 1998 from three offshore wells in the Zone of Cooperation through floating production facilities. After forty years of exploration, a new infrastructure of pipelines and facilities are planned to tap already discovered offshore reserves and to support additional development.
Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana
Reynolds, Mitchell W.; Hays, William H.
2003-01-01
The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a succession of rocks that includes not only strata equivalent to those of the remainder of the quadrangle, but also the Middle Proterozoic Newland, Greyson, and Spokane Formations, Pennsylvanian and Upper Mississippian Amsden Formation and Big Snowy Group undivided, the Permian and Pennsylvanian Phosphoria and Quadrant Formations undivided, the Jurassic Ellis Group and Lower Cretaceous Kootenai Formation. Hornblende diorite sills and irregular bodies of probable Late Cretaceous age intrude Middle Proterozoic, Cambrian and Devonian strata. No equivalent intrusive rocks are present in structurally underlying successions of strata. In this main part of the quadrangle, the Flathead Sandstone cuts unconformably downward from south to north across the Spokane Formation into the upper middle part of the Greyson Formation. Tertiary (Miocene?) strata including sandstone, pebble and cobble conglomerate, and vitric crystal tuff underlie, but are poorly exposed, in the southeastern part of the quadrangle where they are overlain by late Tertiary and Quaternary gravel. The structural complexity of the quadrangle decreases from northeast to southwest across the quadrangle. At the lowest structural level (Avalanche Butte thrust plate) exposed in the canyon of Beaver Creek, lower and middle Paleozoic rocks are folded in northwest-trending east-inclined disharmonic anticlines and synclines that are overlain by recumbently folded and thrust faulted Devonian and Mississippian rocks. The Mississippian strata are imbricated adjacent to the recumbent folds. In the east-central part of the quadrangle, a structurally overlying thrust plate, likely equivalent to the Hogback Mountain thrust plate of the Hogback Mountain quadrangle adjacent to the east (Reynolds, 20xx), juxtaposes recumbently folded Middle Proterozoic and unconformably overlying lower Paleozoic rocks on the complexly folded and faulted rocks of the Avalanche Butte thrust plate. The highest structural plate, bounded below
NASA Astrophysics Data System (ADS)
Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna
2018-06-01
Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from OIB/E-MORB to N-MORB lava geochemistry away from the Tacheng block. Comparisons with published data suggest that these positive isotopic values, stratigraphic, structural and geochemical relationships can be best understood as an analogue of the relationships between the Ontong Java oceanic plateau and the Pacific oceanic crust. Therefore we propose that the basement of the Tacheng block was an Early Paleozoic oceanic plateau. The southern part of the Tacheng block was an accretionary complex and the northern part was an oceanic basin in the Early Paleozoic, the configuration of which is similar to that of the present Ontong Java oceanic plateau situated on the Pacific oceanic crust, and its accretion into the Solomon accretionary complex. The presence of Ordovician SSZ-type ophiolites, early Paleozoic blueschist and Silurian SSZ-type intrusions in the BMTC, and Early-Middle Paleozoic continental arc-related intrusive rocks in the northern margin of the CBY provide further corroboration of a former subduction zone between the southern West Junggar and the northern margin of the CBY. Furthermore, consideration of the fact that the Kokchetav-North Tianshan range was collaged to the southern margin of the CBY in the Ordovician-Devonian indicates that both ranges were amalgamated synchronously with the CBY constructing the Early-Middle Paleozoic architecture of western Altaids.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min
2018-03-01
Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.
The Application of 238U/235U as a Redox-Proxy for Past Ocean Chemistry
NASA Astrophysics Data System (ADS)
Andersen, M. B.; Westermann, S.; Bahniuk, A.; Vasconcelos, C.; McKenzie, J. A.; Föllmi, K. B.; Vance, D.
2014-12-01
The recent discovery of significant variation in 238U/235U caused by redox change at the surface Earth has led to its use to extract information on the oxygenation state of ancient oceans from marine sediments [e.g. 1]. Recent studies have focused on improving the understanding of the 238U/235U signature in modern marine carbonates [2] and black shales [3] to improve the robustness of this tracer. To further advance its use we have focused on improving our understanding of 238U/235U systematics in modern dolomite, another commonly occurring rock-type in the geological record, before turning to 238U/235U signatures in ancient sediments. The measured dolomite samples, precipitated in modern environments of coastal hypersaline lagoons in Brazil, all exhibit 238U/235U values that deviate from the seawater composition [3]. Observed values are both lighter (ca. 130 ppm; as also observed in dolomite from tidal-ponds on Bahamas [2]) and heavier (50-180 ppm). These distinct 238U/235U values for different dolomite-precipitates likely attest to the particular formation style, as well as early diagenetic processes. We use such modern settings to discuss the utility of 238U/235U in ancient sediments, the singularity of any observed 238U/235U signal, its relation to global ocean chemistry and potential diagenetic overprinting. These constraints are then used to evaluate a well-preserved marine carbonate section [4] and published black shale 238U/235U data [1], both deposited during the Oceanic Anoxic Event 2 (93 Ma). We discuss the capabilities of both the carbonate and black shale section for retaining information on the 238U/235U composition in the ocean during OAE 2. [1] Montoya-Pino et al. (2010) Geology, 38, 315-318 [2] Romaniello et al. (2013) 362, 305-316 [3] Andersen et al. (2014) EPSL, 400, 184-194 [4] Westermann et al. (2010) Cret. Res., 31, 500-514
Sources of osmium to the modern oceans: New evidence from the 190Pt-186Os system
McDaniel, D.K.; Walker, R.J.; Hemming, S.R.; Horan, M.F.; Becker, H.; Grauch, R.I.
2004-01-01
High precision Os isotope analysis of young marine manganese nodules indicate that whereas the composition of modern seawater is radiogenic with respect to 187Os/188Os, it has 186Os/188Os that is within uncertainty of the chondritic value. Marine Mn nodule compositions thus indicate that the average continental source of Os to modern seawater had long-term high Re/Os compared to Pt/Os. Analyses of loess and freshwater Mn nodules support existing evidence that average upper continental crust (UCC) has resolvably suprachondritic 186Os/188Os, as well as radiogenic 187Os/188Os. Modeling the composition of seawater as a two-component mixture of oceanic/cosmic Os with chondritic Os compositions and continentally-derived Os demonstrates that, insofar as estimates for the composition of average UCC are accurate, congruently weathered average UCC cannot be the sole continental source of Os to seawater. Our analysis of four Cambrian black shales confirm that organic-rich sediments can have 187Os/188Os ratios that are much higher than average UCC, but 186Os/188Os compositions that are generally between those of chondrites and average-UCC. Preferential weathering of black shales can result in dissolved Os discharged to the ocean basins that has a much lower 186Os/188Os than does average upper crust. Modeling the available data demonstrates that augmentation of estimated average UCC compositions with less than 0.1% additional black shale and 1.4% additional ultramafic rock can produce a continental end-member Os isotopic composition that satisfies the requirements imposed by the marine Mn nodule data. The interplay of these two sources provides a mechanism by which the 187Os/188Os of seawater can change as sources and weathering conditions change, yet seawater 186Os/188Os varies only minimally. ?? 2004 Elsevier Ltd.
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2008-01-01
Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.
NASA Astrophysics Data System (ADS)
Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Mário Castelo-Branco, José; Granado, Isabel; Carvalho, João; João Baptista, Maria; Represas, Patrícia; Pereira, Zélia; Oliveira, Tomás; Araujo, Vitor
2013-04-01
The Iberian Pyrite Belt (IPB) hosts one of the largest concentrations of massive sulfides in the Earth's crust. This highly productive VMS belt contains more than 85 massive sulfide deposits, totalling an estimate of 1600 Mt of massive ore and about 250 Mt of stockwork ore (Leistel et al., 1998; Oliveira et al., 2005; Tornos, 2006). Included in the South Portuguese Zone the IPB is represented by the Phyllite-Quartzite Group (PQG) composed of shales and quartzites of late Devonian age followed by the Volcanic-Sedimentary Complex (VSC) a submarine succession of sediments and felsic and basic volcanic rocks (late Famennian-late Viséan age). Above the IPB a turbidite sedimentary unit occurs being represented by the Baixo Alentejo Flysch Group (BAFG). The ore deposits are hosted by felsic volcanic rocks and sediments that are dominant in the lower part of the VSC succession. The Neves Corvo (ProMine, EU FP7) project area is focused on the Neves Corvo deposit, an active copper mine. The project area is located between the Messejana Fault and the Portuguese/Spanish border which has been selected for the 3D geological and geophysical modelling study, based on high exploration potential of the Neves Corvo area (Oliveira et al. 2006, Relvas et al. 2006, Pereira et al. 2008, Rosa et al. 2008, Matos et al. 2011, Oliveira et al. 2013). In this study existing LNEG and AGC geological, geophysical and geochemistry databases were considered. New surveys were done: i) - A physical volcanology and palynostratigraphic age data study and log of the Cotovio drill-hole core (1,888 m, drilled by AGC). ii) - Interpretation of 280 km of Squid TEM performed by AGC. Based on the TEM data, significant conductors have been identified related with: shallow conductive cover, graphitic shale, black shale and sulphide mineralizations. The most important TEM conductors are related with the Neves Corvo massive sulphides lenses (1-10 Ωm). iii) - Ground and residual gravimetry studies including superficial directional derivatives to obtain the various directions of the late-Variscan faults, the main overthrusts and lithological structures. iv) - Detailed palynological sediment dating; v) - A seismic survey was conducted in the vicinities of the Neves Corvo mine totalling 82 km of profiles with target depth of over 10 km. A 3D regional model has been constructed for the selected IPB area using GoCAD, integrating the most critical information of the follow geological units: the lower unit BAFG Mértola Formation, the VSC, the Neves Corvo ores and the PQG. It incorporated surface regional geological maps, 168 drill-hole geological logs throughout the area, structural and tectonic data, former seismic sections, where available, and a digital terrain model. Chemical data from 42 selected drill-holes in order to outline in 3D the Cu distribution in the area. The results have already indicated new important guidelines for VHMS exploration and new regional correlations with the Neves Corvo mining area. The 3D modelling study was essential to the detail understanding of the complex IPB geological structures observed in the south of Portugal.
NASA Astrophysics Data System (ADS)
Lu, Yangbo; Hao, Fang; Lu, Yongchao
2017-04-01
The discovery of Fuling gas field in the Sichuan basin led China shale gas exploration to an unprecedented boom. The most important shale gas plays are the upper Ordovician Wufeng formation and Lower Silurian Longmaxi formation which demonstrate intriguing characteristics which are comprising of stable regional distribution, high abundance of organic matter, high thermal maturity and high brittle mineral content etc. As the Ordovician-Silurian transition was a critical interval in Earth's history marked by dramatic climatic, oceanic, and biological turnovers; these two advantageous organic rich shale deposited before and after Hirnantian glaciation are showing differences in many aspects. In this study, the stratigraphy and lithofacies within the stratigraphy framework of the upper Ordovician Wufeng formation and Lower Silurian Longmaxi formation in Fuling were quantitatively analyzed based on outcrops, cores, well logs data, and geochemical proxies. A total of three third-order sequences were divided based on the recognition of four third-order boundaries. The Wufeng Formation is equivalent to a third-order sequence and is subdivided into a transgressive system tract (TST) (black shale of lower Wufeng Formation) and a highstand system tract (HST) (Guanyinqiao Member of upper Wufeng Formation). Long-1 Member is equivalent to a third-order sequence and is subdivided into a TST, an early highstand system tract (EHST) and a late highstand system tract (LHST); Long-2 and Long-3 Member are combined to be one third-order sequence and is subdivided into a lowstand system tract (LST), a TST and a HST. Sequence development and sedimentary environment characteristics were analyzed within each system tract unit. TOC% was correlated to V/Cr and EF-Ni respectively within each system tract unit, suggesting paleoproductivity and water redox condition are the main controlling factors of organic enrichment and its preservation. The heterogeneity in shale lithofacies throughout the stratigraphic frame work reflects the vertical evolution of the paleo-climate and paleo-ocean environment across the Ordovician-Silurian transition. We suggest that the high primary productivity of Wufeng formation was due to the boom of diatom triggered by large scale coverage of volcanic ash before Hirnantian glaciation. Marine anoxia may have been a kill mechanism that cause the mass extinction of marine macro-organism during the glacial period. And the up sequence TOC deterioration of Longmaxi formation is likely subjected to influence of ocean bottom flow and slow recovery of marine organism after the glaciation.
The architecture and frictional properties of faults in shale
NASA Astrophysics Data System (ADS)
De Paola, Nicola; Murray, Rosanne; Stillings, Mark; Imber, Jonathan; Holdsworth, Robert
2015-04-01
The geometry of brittle fault zones and associated fracture patterns in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement ≤ 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry, controlled by the reactivation of en-echelon, pre-existing joints in the protolith. Cores typically show a poorly developed damage zone, up to 25 cm wide, and sharp contact with the protolith rocks. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm, composed of angular clasts of reworked fault and protolith rock, dispersed within a sparry calcite cement. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates. Experiments at seismic slip rates (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1). Our field observations show that brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults, where slip localization may lead to the development of a thin slip zone made of very fine-grained gouges. The velocity-strengthening behaviour and negative healing rates observed during our laboratory experiments, suggest that slow, stable sliding faulting should take place within the protolith rocks and slip zone gouges. This behaviour will cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. During slipping events, fluid circulation may be very effective along the fault zone at dilational jogs - where oil and gas production should be facilitated by the creation of large fracture areas - and rather restricted in the adjacent areas of the protolith, due to the lack of a well-developed damage zone and the low permeability of the matrix and slip zone gouge. Finally, our experiments performed at seismic slip rates show that seismic ruptures may still be able to propagate in a very efficient way within the slip zone of fluid-saturated shale faults, due to the attainment of instantaneous weakening.
Egenhoff, Sven; Fishman, Neil; Ahlberg, Per; Maletz, Jorg; Jackson, Allison; Kolte, Ketki; Lowers, Heather; Mackie, James; Newby, Warren; Petrowsky, Matthew
2015-01-01
The Cambrian Alum Shale Formation in the Andrarum-3 core from Scania, southern Sweden, consists of black siliciclastic mudstone with minor carbonate intercalations. Four facies comprise three siliciclastic mudstones and one fine-grained carbonate. The facies reflect deposition along a transect from deep ramp to basin on a Cambrian shelf. The three mudstone facies contain abundant clay clasts and laterally variable siltstone laminae. Bed-load transport processes seem to have dominated deposition on this deep shelf. These sedimentary rocks record mainly event deposition, and only relatively few, thin laminae probably resulted from suspension settling. The Alum Shale Formation deep shelf did not show a bioturbation gradient, but fecal strings are common and Planolites burrows are rare in all mudstone facies. Evidence for biotic colonization indicates that this mudstone environment was not persistently anoxic, but rather was most likely intermittently dysoxic. The Alum Shale Formation in the Andrarum-3 core shows an overall decrease of grain size, preserved energy indicators, and carbonate content upsection interpreted to reflect a deepening upward. The succession can also be divided into four small-scale fining-upward cycles that represent deepening, and four overlying coarsening-upward cycles that represent upward shallowing.
Finn, Thomas M.
2014-01-01
The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.
Devonian and Mississippian rocks of the northern Antelope Range, Eureka County, Nevada
Hose, Richard Kenneth; Armstrong, A.K.; Harris, A.G.; Mamet, B.L.
1982-01-01
Lower through Upper Devonian rocks of the northern Antelope Range, Nev., consist of four formational rank units more than 800 m thick, separated from Mississippian units by an unconformity. The lower three Devonian units, the Beacon Peak Dolomite, McColley Canyon Formation, and Denay Limestone are known in other areas; the top unit, the Fenstermaker Wash Formation, is new. The Mississippian units, more than 280 m thick, are divisible into three units which are unlike coeval units elsewhere, and are herein named the Davis Spring Formation, Kinkead Spring Limestone, and Antelope Range Formation. Systematic sampling of the Devonian sequence has yielded relatively abundant conodonts containing several biostratigraphic ally significant taxa. The Mississippian units contain redeposited conodonts of chiefly Late Devonian and Early Mississippian (Kinderhookian) age together with indigenous Osagean foraminifers and algae in the Kinkead Spring Limestone.
NASA Astrophysics Data System (ADS)
Husson, Jon M.; Schoene, Blair; Bluher, Sarah; Maloof, Adam C.
2016-02-01
The Devonian Period hosts extraordinary changes to Earth's biosphere. Land plants began their rise to prominence, with early vascular vegetation beginning its colonization of near-shore environments in the latest Silurian. Across the Silurian-Devonian (Pridoli-Lochkovian) transition, carbon isotope analyses of bulk marine carbonates (δC13carb) from Laurentian and Baltic successions reveal a positive δC13carb shift. Known as the Klonk Event, values reach + 5.8 ‰, making it one of the largest carbon isotope excursions in the Phanerozoic. Assigning rates and durations to these significant events requires a robust, precise Devonian time scale. Here we present 675 micritic matrix and 357 fossil-specific δC13carb analyses from the lower Devonian Helderberg Group of New York and West Virginia that exhibit the very positive δC13carb values observed in other Silurian-Devonian basins. This chemostratigraphic dataset is coupled with 66 ID-TIMS U-Pb dates on single zircons from six ash falls intercalated within Helderberg sediments, including dates on the stratigraphically lowest Devonian ashes yet developed. In this work, we (a) demonstrate that matrix and fossil-specific δC13carb values track one another closely in the Helderberg Group, (b) estimate the Silurian-Devonian boundary age in New York to be 421.3 ± 1.2 Ma (2σ; including decay constant uncertainties), and (c) calculate the time required to evolve from baseline to peak δC13carb values at the onset of the Klonk event to be 1.00 ± 0.25 Myr. Under these constraints, a steady-state perturbation to the global carbon cycle can explain the observed excursion with modern fluxes, as long as DIC concentration in the Devonian ocean remained below ∼2× the modern value. Therefore, potential drivers, such as enhanced burial of organic carbon, need not rely on anomalously high total fluxes of carbon to explain the Klonk Event.
Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming
Bergendahl, M.H.; Davis, R.E.; Izett, G.A.
1961-01-01
The Carlile quadrangle-is along the northwestern flank of the Black Hills uplift in Crook County, Wyo. The area-is primarily one of canyons and divides that are a result of downcutting by the Belle Fourche River and its tributaries through an alternating succession of sandstone, siltstone, and mudstone or shale beds. The present topography is also influenced by the regional structure, as reflected by the beds that dip gently westward and by the local structural features such as anticlines, domes, synclines, basins, and terraces, which are superimposed upon the regional setting. Rocks exposed include shale and thin limestone and sandstone beds belonging to the Redwater shale member of the Sundance formation and to the Morrison formation, both of Late Jurassic age; sandstone, siltstone, and mudstone of the Lakota and Fall River formations of Early Cretaceous age; and shale and sandstone of the Skull Creek shale, Newcastle sandstone, and Mowry shale, also of Early Cretaceous age. In the southwestern part of the quadrangle rocks of the Upper Cretaceous series are exposed. These include the Belle Fourche shale, Greenhorn formation, and Carlile shale. Gravel terraces, landslide debris, and stream alluvium comprise the surficial deposits. The Lakota and Fall River formations, which make up the Iriyan Kara group, contain uranium deposits locally in the northern Black Hills. These formations were informally subdivided in order to show clearly the vertical and lateral distribution of the sandstone, siltstone, and mudstone facies within them.The Lakota was subdivided into a sandstone unit and an overlying mudstone unit; the Fall River was subdivided, in ascending order, into a siltstone unit, a mudstone unit, a sandstone unit, and an upper unit. The lithologic character of the Lakota changes abruptly locally, and the units are quite inconsistent with respect to composition, thickness, and extent. This is in contrast to a notable consistency in the lithologic character and thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no mining has been attempted. The mineralogy of the Carlile deposits and the lithologic features of the sandstone host rock suggest that uranium and vanadium were transported in the high-valent state by carbonate or sulfate solutions, were extracted from solution by organic material, and were reduced to low-valent states to form an original assemblage of oxides and silicates. These primary minerals were oxidized in place, and the present carnotite-tyuyamunite assemblage was formed. In general, radioactivity analyses correspond fairly closely with chemical analyses of uranium, thus it is believed that only minor solution and migration of uranium has occurred since the present suite of oxidized minerals was formed. The factors responsible for ore localization are not clear, but probably a combination of three lithologic and structural elements contributed to provide a favorable environment for precipitating uranium from aqueous solutions: abundant carbonaceous material or pyrite in a thin, permeable sandstone enclosed within relatively thick impermeable clays; local structural basins; and a regional structural setting involving a broad syncline between two anticlines. The structural features controlled the regional flow of ground water and the lithologic features controlled the local rate of flow and provided the proper chemical environment for uranium deposition. Bentonite has been mined from an opencut in the Mowry shale in the southwest part of the quadrangle. A bentonite bed in the Newcastle sandstone also seems to be of minable thickness and quality. Exploration for petroleum has been unsuccessful within the quadrangle; however, some wells that yielded oil were recently drilled on small anticlines to the west and southeast. It is possible that similar structural features in the Carlile area, that were previously overlooked, may be equally productive.
A Reactive Transport Model for Marcellus Shale Weathering
NASA Astrophysics Data System (ADS)
Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.
2017-12-01
Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important factors affecting chemical weathering of the Marcellus shale in the shallow subsurface. This study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature and pressure.
NASA Astrophysics Data System (ADS)
Zsiborás, Gábor; Görög, Ágnes
2017-04-01
In the last decades, since the Toarcian Oceanic Anoxic Event (T-OAE, ˜182 Ma) recognized, several studies was dealing with the effect of it on the foraminiferal faunas from black shales and marls of the epicontinental region. Only a few work was made from the Tethyan oceanic basin region (Monaco et al., 1994; Nini et al., 1995; Pettinelli et al., 1997) characterized by occurrence of black shales between the "Lower Posidonia Shale" and the Ammonitico Rosso. However, the black shale is absent in some Tehyan sections substituted by red or grey marls. Only Reolid et al. (2015) focused on foraminifera from this kind of successions, from the Betic Cordillera, where the T-OAE was not detected. From the section of Tű zkövesárok of Bakonycsernye, Transdanubian Central Range, Hungary, Monostori in Galácz et al. (2008) based on the Bairdidae dominated ostracod fauna indicated suboxic environment at the Pliensbachian/Toarcian boundary. Thus the aim of our study was to give paleoecological interpretation of the foraminiferal fauna of this 2 m thick Ammonitico Rosso sequence. Foraminifers were extracted from six red nodular, slightly argillaceous limestone (Tű zkövesárok Limestone) samples from the Pliensbachian part (Emaciatum Zone) and one sample from the Toarcian part (Tenuicostatum Zone) which begins with a hardground and following by red marl (Kisgerecse Marl). The washing residues of the lower four samples contains foraminifers, sponge spicules, radiolarians and echinodermata parts (crinoids and holothurians). The upper two Pliensbachian samples include more foraminifers, however, other groups are absent. The Toarcian sample contains crinoids and less foraminifers (30%). Overall 68 taxa were identified, 54 on species, 14 on generic level. The most of the specimens have calcitic tests, in the Pliensbachian, agglutinated forms are 7-24% of the fauna, however, they are absent in the Toarcian. Upwards to the Pliensbachian/Toarcian boundary, the diversity of the fauna rapidly increased. Above the boundary, the number of species decreased to the 40% of the Pliensbachian maximum diversity. Sorting the specimens by morphological features is a tool for the paleoecological evaluation. In the Pliensbachian assemblages, the biconvex groups (Lenticulina) are dominant, however, elongated (Nodosaria and Eoguttulina) and flattened (Planularia) groups are dominant in the Toarcian. This morphological changing indicates the decreasing of seawater oxygen level and current energy in the lowermost Toarcian. It does not show anoxia but can be suboxia caused by abrupt deepening. The previous results of the ostracod studies indicated the same events. The Pliensbachian/Toarcian boundary section of Tű zkövesárok include a similar foraminiferal fauna to other Tethyan successions Spoleto and Umbria-Marche Apennines (Central Italy), Ionian Basin (Greece); and epicontinental sequences e. g., Lusitanian Basin (Portugal) which all have black shale layers in the Early Toarcian. In contrast, the Betic section with very similar lithology to Bakonycsernye provided a totally different fauna with dominance of agglutinated forms and without significant diversity changes at the boundary. The studied boundary section is the first Ammonitico Rosso sequence which foraminiferal fauna indicated the environmental changes caused by the T-OAE in the deep basin of the Tethyan Realm. The Research was supported by the Hantken Foundation.
Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky
Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.
2002-01-01
Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.
The impact of precession and obliquity on the Late-Devonian greenhouse climate
NASA Astrophysics Data System (ADS)
De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.
2012-12-01
To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter solstice), precipitation is up to 300 mm/month higher compared to precession minima during the wet season (September - May). During the dry season (June-July-August), the climate is up to 7°C colder during a precession maxima compared to a precession minima. Obliquity doesn't show a significant influence on the climate of the tropical Euramerican continent. However, the imprint of obliquity on the polar climates is extensive with up to 6°C temperature-differences between obliquity maxima and minima at both poles.
Pawlewicz, Mark
2006-01-01
Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been extensively explored for oil and gas. The lateral and vertical variability of the structure, the distribution and complex geologic nature of source rocks, and the depths of potential exploration targets, as well as the high degree of exploration, all indicate that future discoveries in this province are likely to be numerous but in small fields.
Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.
2006-01-01
Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as elemental exchanges, transfers and volatilisation, in potential source-rock shales during natural diagenetic hydrocarbon maturation.
Invasive species and biodiversity crises: testing the link in the late devonian.
Stigall, Alycia L
2010-12-29
During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.
Bacterial Paleontology and Studies of Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Gerasimenko, L. M.; Hoover, Richard B.; Rozanov, Alexei Y.; Zhegallo, E. A.; Zhmur, S. I.
1999-01-01
The study of the fossilization processes of modern cyanobacteria provides insights needed to recognize bacterial microfossils. The fossilization of cyanobacteria is discussed and images of recent and fossil bacteria and cyanobacteria from the Early Proterozoic to Neogene carbonaceous rocks (kerites, shungites, and black shales) and phosphorites are provided. These are compared with biomorphic microstructures and possible microfossils encountered in-situ in carbonaceous meteorites.
The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.
El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey
2014-01-01
The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Early Forest Soils and Their Role in Devonian Global Change
Retallack
1997-04-25
A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.
Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System
Ryder, Robert T.
2008-01-01
The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio to the Indiana border extends along an arbitrary boundary between the Utica Shale of the Appalachian basin and the Utica Shale of the Sebree trough (Kolata and others, 2001); and (6) the northwestern boundary (from east-central Indiana, through northwesternmost Ohio and southeasternmost Michigan, to central Ontario) extends along the approximate southeastern boundary of the Michigan Basin. Although the Utica-Lower Paleozoic TPS extends into northwestern Ohio, southeastern Michigan, and northeastern Indiana, these areas have been assigned to the Michigan Basin (Swezey and others, 2005) and are outside the scope of this report. Furthermore, although the northern part of the Utica-Lower Paleozoic TPS extends across the Great Lakes (Lake Erie and Lake Ontario) into southern Ontario, Canada, only the undiscovered oil and gas resources in the U.S. waters of the Great Lakes have been included in the USGS assessment of the Utica-Lower Paleozoic TPS. This TPS is similar to the Point Pleasant-Brassfield petroleum system previously identified by Drozd and Cole (1994) in the Ohio part of the Appalachian basin.
Neutralisation of an acidic pit lake by alkaline waste products.
Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja
2014-01-01
A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.
Stage boundary recognition in the Eastern Americas realm based on rugose corals
Oliver, W.A.
2000-01-01
Most Devonian stages contain characteristic coral assemblages but these tend to be geographically and facies limited and may or may not be useful for recognising stage boundaries. Within eastern North America, corals contribute to the recognition of two boundaries: the base of the Lochkovian (Silurian-Devonian boundary) and the base of the Eifelian (Lower-Middle Devonian Series boundary).
NASA Astrophysics Data System (ADS)
Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.
2015-12-01
The last decade has seen a dramatic increase in domestic energy production from unconventional reservoirs. This energy boom has generated marked economic benefits, but simultaneously evoked significant concerns regarding the potential for drinking-water contamination in shallow aquifers. Presently, efforts to evaluate the environmental impacts of shale gas development in the northern Appalachian Basin (NAB), located in the northeastern US, are limited by: (1) a lack of comprehensive ;pre-drill; data for groundwater composition (water and gas); (2) uncertainty in the hydrogeological factors that control the occurrence of naturally present CH4 and brines in shallow Upper Devonian (UD) aquifers; and (3) limited geochemical techniques to quantify the sources and migration of crustal fluids (specifically methane) at various time scales. To address these questions, we analyzed the noble gas, dissolved ion, and hydrocarbon gas geochemistry of 72 drinking-water wells and one natural methane seep all located ≫1 km from shale gas drill sites in the NAB. In the present study, we consciously avoided groundwater wells from areas near active or recent drilling to ensure shale gas development would not bias the results. We also intentionally targeted areas with naturally occurring CH4 to characterize the geochemical signature and geological context of gas-phase hydrocarbons in shallow aquifers of the NAB. Our data display a positive relationship between elevated [CH4], [C2H6], [Cl], and [Ba] that co-occur with high [4He]. Although four groundwater samples show mantle contributions ranging from 1.2% to 11.6%, the majority of samples have [He] ranging from solubility levels (∼45 × 10-6 cm3 STP/L) with below-detectable [CH4] and minor amounts of tritiogenic 3He in low [Cl] and [Ba] waters, up to high [4He] = 0.4 cm3 STP/L with a purely crustal helium isotopic end-member (3He/4He = ∼0.02 times the atmospheric ratio (R/Ra)) in samples with CH4 near saturation for shallow groundwater (P(CH4) = ∼1 atmosphere) and elevated [Cl] and [Ba]. These data suggest that 4He is dominated by an exogenous (i.e., migrated) crustal source for these hydrocarbon gas- and salt-rich fluids. In combination with published inorganic geochemistry (e.g., 87Sr/86Sr, Sr/Ba, Br-/Cl-), new noble gas and hydrocarbon isotopic data (e.g., 20Ne/36Ar, C2+/C1, δ13C-CH4) suggest that a hydrocarbon-rich brine likely migrated from the Marcellus Formation (via primary hydrocarbon migration) as a dual-phase fluid (gas + liquid) and was fractionated by solubility partitioning during fluid migration and emplacement into conventional UD traps (via secondary hydrocarbon migration). Based on the highly fractionated 4He/CH4 data relative to Marcellus and UD production gases, we propose an additional phase of hydrocarbon gas migration where natural gas previously emplaced in UD hydrocarbon traps actively diffuses out into and equilibrates with modern shallow groundwater (via tertiary hydrocarbon migration) following uplift, denudation, and neotectonic fracturing. These data suggest that by integrating noble gas geochemistry with hydrocarbon and dissolved ion chemistry, one can better determine the source and migration processes of natural gas in the Earth's crust, which are two critical factors for understanding the presence of hydrocarbon gases in shallow aquifers.
NASA Astrophysics Data System (ADS)
Brookfield, Michael E.; Hashmat, Ajruddin
2001-10-01
The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.
NASA Astrophysics Data System (ADS)
Morozov, Vladimir P.; Plotnikova, Irina N.; Pronin, Nikita V.; Nosova, Fidania F.; Pronina, Nailya R.
2014-05-01
The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material of Domanicoid facies from the sediments of Mendymski and Domanik horizons of middle substage of Frasnian stage of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. Shale strata are mainly represented by carbonate-chert rocks. They consist mainly of calcite and quartz. The ratio of these rock-forming minerals varies widely - from 25 to 75 percent. Pyrite, muscovite, albite, and microcline are the most common inclusions. Calcareous and ferruginous dolomite (ankerite), as well as magnesian calcite are tracked down as secondary minerals. While performing the tests we found out that the walls of open fractures filled with oil are stacked by secondary dolomite, which should be considered as an indication moveable oil presence in the open-cut. Electron microscopy data indicate that all the studied samples have porosity - both carbonates and carbonate-siliceous rocks. Idiomorphism of the rock-forming grains and pores that are visible under a microscope bring us to that conclusion. The analysis of the images indicates that the type of reservoir is either porous or granular. The pores are distributed evenly in the volume of rock. Their size is very unstable and varies from 0.5 microns to 100 microns. The lowest value are observed in long carbonate-siliceous rocks, the highest values are found in carbonate rocks. The latter is caused by the fact that there is a very strong recrystallization of calcite and its dolomite substitution in carbonates. Open porosity ranges from 0.65 to 7.98 percent, average value is 4.1percent . Effective porosity has an average value of 0.44 percent, ranging from 0.22 to 1.97. Permeability varies from 0.043 to 1.49 mD, average value is 0,191 mD. Organic matter was found in all samples. Its content varies within the section. The fluctuation range of from 1.0 to 20 percent. The lowest content of carbonates is found in carbonates, while the highest is observed in carbonate-siliceous rocks with a high content of chalcedony. Average organic matter content is 5-7 percent. According to Rock-Eval studies of the core, the catagenetic maturity of organic matter corresponds to MK1 - MK2 degree. We found a connection between the type of organic matter and the composition of adsorbed gas. We also could see that the samples with humic organics present in their organic matter and can be characterized by a fair dominance of methane over other gases. There is a clear relationship between organic matter content and the intensity of the gas saturation of the rock. Organic matter is characteristic mainly of the most siliceous formations. In "pure" carbonates, which are represented by micro-layers with different capacities, OM is not observed at all or its content is quite low.
Geology and hydrology of the Fort Belknap Indian Reservation, Montana
Alverson, Douglas C.
1965-01-01
The Fort Belknap Indian Reservation includes an area of 970 square miles in north-central Montana. At its north edge is the Milk River valley, which is underlain by Recent alluvium of the Milk River, glacial deposits, and alluvial deposits of the preglacial Missouri River, which carved and occupied this valley before the Pleistocene Epoch. Rising gently to the south is an undulating glaciated plain broken only by three small syenite porphyry intrusions. Underlying the glacial till of the plain are Upper Cretaceous shale and sandstone of the Bearpaw and Judith River Formations. At the south end of the reservation, 40 miles from the Milk River, an intrusion of syenite porphyry in Tertiary time uplifted, tilted, and exposed the succession of sedimentary rocks overlying the Precambrian metamorphic basement. The sedimentary rocks include 1,000 feet of sandstone and shale of Cambrian age; 2,000 feet of limestone and dolomite of Ordovician, Devonian, and Mississippian age; 400 feet of shale and limestone of Jurassic age; and 3,500 feet of sandstone, siltstone, and shale of Cretaceous age. Extensive gravel terraces of Tertiary and Quaternary age bevel the upturned bedrock formations exposed around the Little Rocky Mountains. Ground water under water-table conditions is obtained at present from alluvium, glaciofluvial deposits, and the Judith River Formation. The water table ranges in depth from a few feet beneath the surface in the Milk River valley alluvium to more than 100 feet deep in the Judith River Formation. Yields to wells are generally low but adequate for domestic and stock-watering use. Quality of the water ranges from highly mineralized and unusable to excellent; many wells in the Milk River valley have been abandoned because of the alkalinity of their water. Potential sources of additional ground-water supplies are the alluvial gravel of creeks issuing from the Little Rocky Mountains and some extensive areas of terrace gravel. The uplift and tilting of the sedimentary sequence around the Little Rocky Mountains and the minor intrusions in the central plain have created artesian conditions within aquifers. Wells obtain artesian water from sandstone aquifers in the Judith River, Eagle, and Kootenai Formations. Other potential aquifers, near their outcrop areas, are the Ellis Group and the Mission Canyon Limestone. Most wells that flow at the surface have small yields, but discharges of as much as 150 gallons per minute have been noted. Quality of artesian water ranges from poor to good. Well depths range from less than 50 to more than 300 feet.
Zero Discharge Water Management for Horizontal Shale Gas Well Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett
Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First,more » water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.« less
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2007-01-01
Sustained increases in energy prices have focused attention on gas resources in low permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are large. Planning and development decisions for extraction of such resources must be area-wide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm the decision to enter such plays depends on reconnaissance level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional scale cost functions. The context of the worked example is the Devonian Antrim shale gas play, Michigan Basin. One finding relates to selection of the resource prediction model to be used with economic models. Models which can best predict aggregate volume over larger areas (many hundreds of sites) may lose granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined by extraneous factors. The paper also shows that when these simple prediction models are used to strategically order drilling prospects, the gain in gas volume over volumes associated with simple random site selection amounts to 15 to 20 percent. It also discusses why the observed benefit of updating predictions from results of new drilling, as opposed to following static predictions, is somewhat smaller. Copyright 2007, Society of Petroleum Engineers.
Palaeozoic gas charging in the Ahnet-Timimoun basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawley, S.J.; Wilson, N.P.; Primmer, T.
1995-08-01
The Ahnet-Timimoun Basin, Southern Algeria, contains significant gas reserves expelled from originally oil prone Silurian and Frasnian shales. The gas is reservoired in Devonian and Carboniferous clastics in inversion anticlines formed, primarily, during the Hercynian orogeny. Integration of organic and inorganic geochemical techniques, such as AFTA, ZFTA, fluid inclusion analysis, vitrinite and chitinizoan reflectance, is entirely consistent with gas generation 300 +/- 30MY, immediately prior to or synchronous with the Hercynian orogeny. Data from gas fields has shown the remobilisation of gas during post Hercynian tectonics. A {open_quotes}two-event{close_quotes} heating/cooling history is proposed: (1) Maximum burial and palaeotemperature at ca. 300more » +/- 30MY prior to or synchronous with Hercynian uplift and cooling. (2) Cooling from a secondary peak (lower than maximum) palaeotemperature at ca. 30-60My following Creataceous burial. Calibrated thermal modelling indicates that Palaeozoic source rocks were heated above 200{degrees}C in the Late Carboniferous. Such high temperatures are consistent with the widespread occurrence of pyrophyllite in Silurian shales. Two end-member thermal models can account for the observed maturities. The first is a constant high Pre-Hercynian heat flow which rapidly decreases during Hercynian uplift to remain at Present day values of 50-75mW/m{sup 2}. Gas expulsion in this case commences much earlier than trap formation. The second is {open_quotes}normal{close_quotes} heat flow of ca. 50mW/m{sup 2} until ca. 310My with a rapid increase at ca. 290My followed by an equally rapid drop to constant present day values - in this model, petroleum generation and expulsion is late in relation to structuring.« less
Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.
1997-01-01
Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.
Current perspectives on unconventional shale gas extraction in the Appalachian Basin.
Lampe, David J; Stolz, John F
2015-01-01
The Appalachian Basin is home to three major shales, the Upper Devonian, Marcellus, and Utica. Together, they contain significant quantities of tight oil, gas, and mixed hydrocarbons. The Marcellus alone is estimated to contain upwards of 500 trillion cubic feet of natural gas. The extraction of these deposits is facilitated by a combination of horizontal drilling and slick water stimulation (e.g., hydraulic fracturing) or "fracking." The process of fracking requires large volumes of water, proppant, and chemicals as well as a large well pad (3-7 acres) and an extensive network of gathering and transmission pipelines. Drilling can generate about 1,000 tons of drill cuttings depending on the depth of the formation and the length of the horizontal bore. The flowback and produced waters that return to the surface during production are high in total dissolved solids (TDS, 60,000-350,000 mg L(-1)) and contain halides (e.g., chloride, bromide, fluoride), strontium, barium, and often naturally occurring radioactive materials (NORMs) as well as organics. The condensate tanks used to store these fluids can off gas a plethora of volatile organic compounds. The waste water, with its high TDS may be recycled, treated, or disposed of through deep well injection. Where allowed, open impoundments used for recycling are a source of air borne contamination as they are often aerated. The gas may be "dry" (mostly methane) or "wet," the latter containing a mixture of light hydrocarbons and liquids that need to be separated from the methane. Although the wells can produce significant quantities of natural gas, from 2-7 bcf, their initial decline rates are significant (50-75%) and may cease to be economic within a few years. This review presents an overview of unconventional gas extraction highlighting the environmental impacts and challenges.
New geological data of New Siberian Archipelago
NASA Astrophysics Data System (ADS)
Sobolev, Nikolay; Petrov, Evgeniy
2014-05-01
The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.
"Belgian black and red marbles" as potential candidates for Global Heritage Stone Resource
NASA Astrophysics Data System (ADS)
Tourneur, Francis; Pereira, Dolores
2016-04-01
The Paleozoic substrate of South Belgium is rich in compact limestones, able to take a good polished finishing and to be used as "marbles". Among them, the black and red varieties were and still are of special importance, intensively exploited and largely exported, almost worldwide. The pure black marbles were extracted mostly from Frasnian (Upper Devonian) and Viséan (Lower Carboniferous) strata, in many localities like Namur, Dinant, Theux and Basècles. Today only the Frasnian variety is still exploited in a spectacular underground quarry in Golzinne, close to the town of Gembloux. These black marbles, already known in Antiquity, were exported since the Middle Age, first in Western Europe, then, from the 19th c., at a larger scale, almost worldwide. Among their most frequent uses figured of course funeral objects, like the epitaph of the Pope Adrian the 1st, offered by Charlemagne and preserved in the St-Pieter basilica in Rom. Another famous reference is the tombs of the Dukes of Burgundy in Dijon, with white crystalline marble and alabaster. The red marbles are limestones from reefal origin, forming mudmounds more or less rich in fossils of Late Frasnian (Late Devonian) age. They show a strong variability in colors, from dark red to light pinkish grey, and in texture, with many sedimentary structures and/or tectonic veins. The outcrops are non-stratified, which allows extraction of large blocks, for example for high columns. Known in the Roman time, they were intensively exploited since at least the 16th c. During the 19th and beginning of 20th c., more than hundred quarries were active in South Belgium, from Rance at West to Chaudfontaine at East, around Philippeville and Rochefort. They were largely used both in civil and religious buildings, mostly for inside decoration, for examples as altars or fireplaces. Among the most symbolic places, the Belgian red marbles were massively employed in Versailles, like in the famous "Galerie des Glaces". But many examples of historical buildings are known around the world, for examples the decoration of the harem of Topkapi in Istanbul in the 19th c. or in the floors of the St-Pieter basilica in Rom. Today, only one quarry is active, in Vodelée, a village close to Philippeville but all the varieties of colors and textures can be obtained from this unique source. Both referred materials present the characteristics needed to be candidates to the Global Heritage Stone Resource designation.
NASA Astrophysics Data System (ADS)
Hickey, A. N.; Junium, C. K.; Uveges, B. T.; Ivany, L. C.; Martindale, R. C.
2017-12-01
The Middle Devonian Appalachian Basin of Central New York hosts an extraordinary diversity of well-studied fossil invertebrates within the shallow marine sequences of the Givetian Age, Hamilton Group. Of particular interest are a series of aerially expansive coral beds with diverse assemblages of rugose corals. These well-preserved specimens provide an excellent opportunity to test the feasibility of δ15N and δ13C analyses in rugose corals in an effort to resolve outstanding issues regarding their paleoecology and ontogeny as well environmental dynamics within the Devonian Appalachian Basin. Here we present carbon and nitrogen isotope analyses of the rugose corals Heliophyllum and Siphonophrentis from the Joshua Coral Bed. Corals were cleaned of the host calcareous shale and sonicated sequentially in deionized water and methanol, and then oxidatively cleaned. Cleaned corals were sectioned into 0.5cm billets to obtain enough residual organic material for analysis. The organic content of the corals is low, but nanoEA allows for serial sampling of 5-10 samples per coral. Coral sections were decarbonated and the residual organic material is filtered and dried prior to analysis. Coral organic matter is analyzed in triplicate using nanoEA, which is a cryo-trapping, capillary focusing technique for δ15N and δ13C. The δ15N of organic matter extracted from rugose corals is, on average, enriched by 2-4‰ relative to the bulk nitrogen in the host rock. As well, the δ13C of organic carbon from the corals is 13C-enriched relative to the bulk rock, but to a lesser degree (no more than 1.5‰). Assuming that the bulk rock carbon and nitrogen are largely representative of the long-term primary production background, the modest enrichment is consistent with a trophic effect, and that rugose corals are likely planktivores. In an individual coral, δ15N ranges by 3-4‰ over its length, and when adjusted for trophic enrichment varies around the average δ15N of bulk sedimentary organic matter (+2.0‰). There is no apparent trajectory in the isotopic composition of organic matter, which suggests that over the sampled life history of the corals we cannot resolve any ontogenetic trends. Therefore, the variability in the δ15N of the coral organic matter likely reflects short-term variability in basinal conditions or changes in coral food supply.
NASA Astrophysics Data System (ADS)
Hickman, A.
2004-12-01
The Archean Biosphere Drilling Project (ABDP) is a collaborative international research project conducting systematic (bio)geochemical investigations to improve our understanding of the biosphere of the early Earth. The Pilbara Craton of Western Australia, which includes exceptionally well preserved 3.52 to 2.70 Ga sedimentary sequences, was selected for an innovative sampling program commencing in 2003. To avoid near-surface alteration and contamination effects, sampling was by diamond drilling to depths of between 150 and 300 m, and was located at sites where the target lithologies were least deformed and had lowest metamorphic grade (below 300°C). The first of five successful drilling sites (Jasper Deposit) targeted red, white and black chert in the 3.46 Ga Marble Bar Chert Member. This chert marks the top of a thick mafic-felsic volcanic cycle, the third of four such cycles formed by mantle plumes between 3.52 and 3.43 Ga. The geological setting was a volcanic plateau founded on 3.72 to 3.60 Ga sialic crust (isotopic evidence). The second hole (Salgash) was sited on the basal section of the fourth cycle, and sampled sulfidic (Cu-Zn-Fe), carbon-rich shale and sandstone units separated by flows of peridotite. The third hole (Eastern Creek) was sited on the margin of a moderately deep-water rift basin, the 2.95 to 2.91 Ga Mosquito Creek Basin. This is dominated by turbidites, but the sandstones and carbon-rich shales intersected at the drilling site were deposited in shallower water. The fourth and fifth holes, located 300 km apart, sampled 2.77 to 2.76 Ga continental formations of the Fortescue Group; both holes included black shales.
NASA Astrophysics Data System (ADS)
Lowery, Christopher M.; Cunningham, Robert; Barrie, Craig D.; Bralower, Timothy; Snedden, John W.
2017-12-01
Despite their name, Oceanic Anoxic Events (OAEs) are not periods of uniform anoxia and black shale deposition in ancient oceans. Shelf environments account for the majority of productivity and organic carbon burial in the modern ocean, and this was likely true in the Cretaceous as well. However, it is unlikely that the mechanisms for such an increase were uniform across all shelf environments. Some, like the northwest margin of Africa, were characterized by strong upwelling, but what might drive enhanced productivity on shelves not geographically suited for upwelling? To address this, we use micropaleontology, carbon isotopes, and sedimentology to present the first record of Oceanic Anoxic Event 2 (OAE2) from the northern Gulf of Mexico shelf. Here OAE2 occurred during the deposition of the well-oxygenated, inner neritic/lower estuarine Lower Tuscaloosa Sandstone. The overlying organic-rich oxygen-poor Marine Tuscaloosa Shale is entirely Turonian in age. We trace organic matter enrichment from the Spinks Core into the deepwater Gulf of Mexico, where wireline log calculations and public geochemical data indicate organic enrichment and anoxia throughout the Cenomanian-Turonian boundary interval. Redox change and organic matter preservation across the Gulf of Mexico shelf were driven by sea level rise prior to the early Turonian highstand, which caused the advection of nutrient-rich, oxygen-poor waters onto the shelf. This results in organic matter mass accumulation rates 1-2 orders of magnitude lower than upwelling sites like the NW African margin, but it likely occurred over a much larger geographic area, suggesting that sea level rise was an important component of the overall increase in carbon burial during OAE2.
NASA Astrophysics Data System (ADS)
Roszkowska-Remin, Joanna; Janas, Marcin
2017-04-01
We present the litho-sedimentological, organic geochemical results and organic porosity estimation of the Ordovician and Silurian shales in the SeqWell (shale gas exploration well located in the Pomerania region, Poland). The most perspective black and bituminous shales of the Upper Ordovician and the Lower Silurian may seem to be homogeneous. However, our results reveal that these shales show heterogeneity at different scales (m to mm). For example, in most cases the decrease of TOC content in the m scale is related to pyroclastic rock intercalations and "dark bioturbations" with no color difference when compared with surrounding sediments. While in cm scale heterogeneity is related to bioturbations, density of organic-rich laminas, or abundance of carbonates and pyrite. Without a detailed sedimentological study of polished core surfaces and Rock-Eval analyses those observations are rather invisible. The correct interpretation of results requires the understanding of rock's heterogeneity in different scales. It has a critical importance for laboratory tests applied on few cm long samples, especially if the results are to be extrapolated to wider intervals. Therefore in ShaleSeq project, a detailed sedimentological core logging and analysis of geochemical parameters of perspective formations in m to mm scale was performed for the first time. The results show good correlation between bioturbation index (BI) and organic geochemical indicators like organic carbon content (TOC) or oxic deposition conditions indicator (oxygen index - OI) leading to the assumption that environmental conditions may have played a crucial role in organic carbon preservation. The geochemical analyses of 12 samples showed that even within the few cm long sections shale can be really diversified. Eight out of twelve analyzed samples were considered geochemically mostly homogeneous, whilst four of them showed evident heterogeneity. Concluding, the sampling should be preceded by detailed sedimentological study, as it allows to control if the chosen samples are representative for wider intervals and give opportunity to place the laboratory results in the wider context. An attempt to estimate organic porosity using Rock-Eval data was based on Marathon Oil company study of the Polish Lower Paleozoic shales. The results of this study and suggested equations were used to calculate hypothetical organic porosity of the most perspective shales in the SeqWell. Calculated organic porosities in % bulk volume of rock suggested that organic porosity for Upper Ordovician and Lower Silurian shales in SeqWell may be at the level of 0,1-2,9% in bulk volume of rock. These results would suggest that organic porosity doesn't play a major role in total porosity system in these shales at the certain thermal maturity level. The hypothetical organic porosity values were not validated by the microscopic study though. Our study are part of the ShaleSeq Project co-funded by Norway Grants of the Polish-Norwegian Research Programme operated by the National Centre for Research and Development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Torres, M.; Verba, C.
The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less
NASA Astrophysics Data System (ADS)
Wang, Z.; Liu, H.; Dong, L.
2017-12-01
The early Cambrian Yurtus Formation in the Aksu area (Tarim block, northwestern China) consists of two lithostratigraphic units, lower black shale with interbedded chert unit and upper siltstone/carbonate unit. This time period represents the most important Proterozoic- Phanerozoic transition in earth's history. In recent years, the black shale has been confirmed to have high hydrocarbon generation potential. However, the depositional environment of the Yurtus Formation remains controversial and the biostratigraphic constrains are rather poor. The chert that is interbedded with black shale in the Yurtus Formation provides an exceptional taphonomic window to capture the diversity of the early Cambrian microfossils. Meanwhile, the origin of the bedded chert would give us some insight into the environmental background when the source rock was deposited. Therefore, in this research, we focus on the chert in the lower Yurtus formation and our purpose is to establish high resolution biostratigraphic framework and to better understand the depositional environment of the source rock. We investigated 4 sections in the Tarim basin: Kungaikuotan, Sugaite, Kule, and Yurtus VI. Abundant acritarch fossils have been identified, including Heliosphaeridium ampliatum, Yurtusia uniformis, and Comasphaeridium annulare. The tubular fossil Megathrix longus is also very common in this formation. In addition, two new types of specimens have been discovered, sheet-like encrolled fossils ( 0.5 mm in size) and regular spindle-like double layered microfossils ( 10μm in diameter). All of these fossils have constant occurrences in the studied sections, and can be well correlated with those yielded from the equivalent interval in South China. The biostratigraphic work suggests the source rock in the lower unit of the Yurtus Formation could be correlated with the Meishucunian small shelly fossil assemblage I and II. The Gemenium/Silicon ratio of the Yurtus chert is less than 1μmol/mol, suggesting the primary Si source is from normal sea water instead of hydrothermal fluids. The sea water origin and petrological evidence also indicate that the chert is unlikely mainly from the replacement of carbonate. This recognition fundamentally challenges the previous interpretation of the depositional environment.
A marine biogeochemical perspective on black shale deposition
NASA Astrophysics Data System (ADS)
Piper, D. Z.; Calvert, S. E.
2009-06-01
Deposition of marine black shales has commonly been interpreted as having involved a high level of marine phytoplankton production that promoted high settling rates of organic matter through the water column and high burial fluxes on the seafloor or anoxic (sulfidic) water-column conditions that led to high levels of preservation of deposited organic matter, or a combination of the two processes. Here we review the hydrography and the budgets of trace metals and phytoplankton nutrients in two modern marine basins that have permanently anoxic bottom waters. This information is then used to hindcast the hydrography and biogeochemical conditions of deposition of a black shale of Late Jurassic age (the Kimmeridge Clay Formation, Yorkshire, England) from its trace metal and organic carbon content. Comparison of the modern and Jurassic sediment compositions reveals that the rate of photic zone primary productivity in the Kimmeridge Sea, based on the accumulation rate of the marine fraction of Ni, was as high as 840 g organic carbon m - 2 yr -1. This high level was possibly tied to the maximum rise of sea level during the Late Jurassic that flooded this and other continents sufficiently to allow major open-ocean boundary currents to penetrate into epeiric seas. Sites of intense upwelling of nutrient-enriched seawater would have been transferred from the continental margins, their present location, onto the continents. This global flooding event was likely responsible for deposition of organic matter-enriched sediments in other marine basins of this age, several of which today host major petroleum source rocks. Bottom-water redox conditions in the Kimmeridge Sea, deduced from the V:Mo ratio in the marine fraction of the Kimmeridge Clay Formation, varied from oxic to anoxic, but were predominantly suboxic, or denitrifying. A high settling flux of organic matter, a result of the high primary productivity, supported a high rate of bacterial respiration that led to the depletion of O 2 in the bottom water. A high rate of burial of labile organic matter, albeit a low percentage of primary productivity, in turn promoted anoxic conditions in the sediment pore waters that enhanced retention of trace metals deposited from the water column.
NASA Astrophysics Data System (ADS)
Kendall, Brian S.; Creaser, Robert A.; Ross, Gerald M.; Selby, David
2004-06-01
New Re-Os isotopic data were obtained from chlorite-grade black shales from the upper Old Fort Point Formation (Windermere Supergroup), a post-glacial Neoproterozoic marker horizon in western Canada. A Re-Os isochron date of 634±57 Ma (MSWD=65, n=5) was determined using the conventional inverse aqua regia digestion medium. However, dissolution of the same samples with a new CrO 3-H 2SO 4 dissolution technique [Chem. Geol. 200 (2003) 225] yielded a much more precise date of 607.8±4.7 Ma (MSWD=1.2). Both dates are in agreement with existing U-Pb age constraints that bracket the Old Fort Point Formation between ˜685 and ˜570 Ma. The distinctive Re-Os systematics recorded by the two analytical protocols is explained by dissolution of a variably radiogenic, detrital Os component by the aqua regia method. In contrast, the CrO 3-H 2SO 4 technique minimizes this detrital component by selectively dissolving organic matter that is dominated by hydrogenous (seawater) Re and Os. The date of 607.8±4.7 Ma is thus interpreted as the depositional age for the upper Old Fort Point Formation providing a minimum age constraint for the timing of the second Windermere glaciation in western Canada. This ice age is correlative with the Marinoan (˜620-600 Ma) ice age and older than the ˜580-Ma Gaskiers glaciation of northeastern North America. The new Re-Os age determined from the CrO 3-H 2SO 4 digestion technique thus provides further support to a growing body of evidence for a global Marinoan glacial episode. Such an interpretation would not be discernable from the imprecise Re-Os date obtained with the aqua regia protocol. These results also indicate the potential for Re-Os radiometric dating of black shales that was not previously recognized. Importantly, neither chlorite-grade metamorphism nor the low organic content (TOC <1%) of the Old Fort Point Formation precluded the determination of a precise Re-Os depositional age using the CrO 3-H 2SO 4 analytical protocol.
De Vleeschouwer, David; Da Silva, Anne-Christine; Sinnesael, Matthias; Chen, Daizhao; Day, James E; Whalen, Michael T; Guo, Zenghui; Claeys, Philippe
2017-12-22
The Late Devonian envelops one of Earth's big five mass extinction events at the Frasnian-Famennian boundary (374 Ma). Environmental change across the extinction severely affected Devonian reef-builders, besides many other forms of marine life. Yet, cause-and-effect chains leading to the extinction remain poorly constrained as Late Devonian stratigraphy is poorly resolved, compared to younger cataclysmic intervals. In this study we present a global orbitally calibrated chronology across this momentous interval, applying cyclostratigraphic techniques. Our timescale stipulates that 600 kyr separate the lower and upper Kellwasser positive δ 13 C excursions. The latter excursion is paced by obliquity and is therein similar to Mesozoic intervals of environmental upheaval, like the Cretaceous Ocean-Anoxic-Event-2 (OAE-2). This obliquity signature implies coincidence with a minimum of the 2.4 Myr eccentricity cycle, during which obliquity prevails over precession, and highlights the decisive role of astronomically forced "Milankovitch" climate change in timing and pacing the Late Devonian mass extinction.
Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian
NASA Astrophysics Data System (ADS)
Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.
2009-12-01
The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.
Placoderms (Armored Fish): Dominant Vertebrates of the Devonian Period
NASA Astrophysics Data System (ADS)
Young, Gavin C.
2010-05-01
Placoderms, the most diverse group of Devonian fishes, were globally distributed in all habitable freshwater and marine environments, like teleost fishes in the modern fauna. Their known evolutionary history (Early Silurian-Late Devonian) spanned at least 70 million years. Known diversity (335 genera) will increase when diverse assemblages from new areas are described. Placoderms first occur in the Early Silurian of China, but their diversity remained low until their main evolutionary radiation in the Early Devonian, after which they became the dominant vertebrates of Devonian seas. Most current placoderm data are derived from the second half of the group's evolutionary history, and recent claims that they form a paraphyletic group are based on highly derived Late Devonian forms; 16 shared derived characters are proposed here to support placoderm monophyly. Interrelationships of seven placoderm orders are unresolved because Silurian forms from China are still poorly known. The relationship of placoderms to the two major extant groups of jawed fishes—osteichthyans (bony fishes) and chondrichthyans (cartilaginous sharks, rays, and chimaeras)—remains uncertain, but the detailed preservation of placoderm internal braincase structures provides insights into the ancestral gnathostome (jawed vertebrate) condition. Placoderms provide the most complex morphological and biogeographic data set for the Middle Paleozoic; marked discrepancies in stratigraphic occurrence between different continental regions indicate strongly endemic faunas that were probably constrained by marine barriers until changes in paleogeography permitted range enlargement into new areas. Placoderm distributions in time and space indicate major faunal interchange between Gondwana and Laurussia near the Frasnian-Famennian boundary; closure of the Devonian equatorial ocean is a possible explanation.
Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming
NASA Astrophysics Data System (ADS)
Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.
2001-12-01
The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results. Spectral peaks at 6, 13, 31 and 122 m appear mainly in the Tipton and the Wilkins Peak members. The correlation between oil shale yield, lithology and relative water depth was examined in the upper part of the Wilkins Peak Member and the Lower part of the Laney Member. The succession from microlaminated black oil shale to laminated micrite corresponds with documented lateral changes in facies from deep to shallow environments, thus confirming the use of these facies as relative water-depth proxies. Furthermore, the upsection record of oil shale yields correlates with these facies, with higher yields corresponding to deeper water facies. This correlation supports the use of the oil shale yield record as a proxy for short-term lake-level changes, and therefore a proxy for climate. The spectral analysis results from both basins show the importance of the obliquity cycle in these continental records. This cycle cannot be identified by cycle-counting, and therefore was not previously recognized. Earlier published attempts at spectral analysis of short records from the Piceance Creek and Uinta basins misinterpreted the observed cycles. This is the first time both the obliquity cycle and the long-term eccentricity cycle have been identified in the Green River and Piceance Creek basins.
Faunal and erosional events in the Eastern Tethyan Sea across the K/T boundary
NASA Technical Reports Server (NTRS)
Keller, G.; Benjamini, C.
1988-01-01
A regional pattern of three closely spaced erosional events at and above the K/T boundary was determined from six Cretaceous/Tertiary boundary sections in the Negev of Israel. The sections were collected from locations throughout the central and northern Negev. All sections are lithologically similar. The Maastrichtian consists of a sequence of limestone beds intercalated with thin marly beds. In some sections, the last limestone bed is followed by 1 to 2 m of calcareous marls grading upwards into several meters of grey shale. In other sections the limestone bed is followed directly by grey shale with the contact containing particles of limestone and marl. A 5 to 20 cm thick dark grey organic-rich clay layer is present about 1.5 to 2.5 m above the base of the grey shale. The grey shale grades upwards into increasingly carbonate rich marls. No unconformities are apparent in field outcrops. During field collection the dark grey clay layer was believed to represent the K/T boundary clay. Microfossil analysis however identified the boundary at the base of the grey shale. The black shale represents a low productivity anoxic event similar to, but younger than, the K/T boundary clay in other K/T boundary sections. High resolution planktic foraminiferal and carbonate analysis of these sections (at 5 to 10 cm intervals) yield surprising results. The K/T boundary is marked by an erosional event which removed part or all of the uppermost Maastrichtian marls above the last limestone bed. Percent carbonate data for four Negev sections are illustrated and show the regional similarities in carbonate sedimentation. Faunal and carbonate data from the Negev sections thus show three closely spaced short erosional events at the K/T boundary and within the first 50,000 to 100,000 years of the Danian. These K/T boundary erosional events may represent global climatic or paleoceanographic events.
Potential Repercussions Associated with Halanaerobium Colonization of Hydraulically Fractured Shales
NASA Astrophysics Data System (ADS)
Booker, A. E.; Borton, M.; Daly, R. A.; Nicora, C.; Welch, S.; Dusane, D.; Johnston, M.; Sharma, S.; Mouser, P. J.; Cole, D. R.; Lipton, M. S.; Wrighton, K. C.; Wilkins, M.
2017-12-01
Hydraulic fracturing of black shale formations has greatly increased U.S. oil and natural gas recovery. Bacterial Halanaerobium strains become the dominant microbial community member in produced fluids from many fractured shales, regardless of their geographic location. Halanaerobium is not native to the subsurface, but is inadvertently introduced during the drilling and fracturing process. The accumulation of biomass in pipelines and reservoirs is detrimental due to possible well souring, microbially-induced corrosion, and pore clogging. Here, we used Halanaerobium strains isolated from a hydraulically fractured well in the Utica Shale, proteogenomics, isotopic and geochemical field observations, and laboratory growth experiments to identify detrimental effects associated with Halanaerobium growth. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic datasets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes that can convert thiosulfate to sulfide. Furthermore, laboratory growth curves confirmed the capability of Halanaerobium to grow across a wide range of pressures (14-7000 PSI). Shotgun proteomic measurements were used to track the higher abundance of rhodanese and anaerobic sulfite reductase enzymes present when thiosulfate was available in the growth media. This technique also identified a higher abundance of proteins associated with the production of extracellular polymeric substances when Halanaerobium was grown under increasing pressures. Halanaerobium culture based assays identified thiosulfate-dependent sulfide production, while pressure incubations revealed higher cellular attachment to quartz surfaces. Increased production of sulfide and organic acids during stationary growth phase suggests that fermentative Halanaerobium use thiosulfate to remove excess reductant, aiding in NAD+ recovery. Additionally, the increased cellular attachment to surfaces under pressure indicates Halanaerobium has the capability of forming cellular clusters that could clog the shale fracture network and limit natural gas recovery. These findings bring awareness to the detrimental effects that could arise from Halanaerobium growth in hydraulically fractured shales throughout the U.S.
Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P
2003-07-01
A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling at fixed sites. This study also suggests that particle-associated 1-NP much better reflects the ambient exposure to diesel exhaust particles than dust concentrations. Therefore, measurement of particle-associated 1-NP is preferred over measurement of dust concentrations by gravimetry, when linking ambient exposure to biomonitoring outcomes such as protein and DNA adducts and excretion of urinary metabolites of genotoxic substances.
Long-term oceanic changes prior the end-Triassic mass extinction
NASA Astrophysics Data System (ADS)
Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph
2014-05-01
A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic-rich, laminated black shales. This interval of black shales is associated with a 2 per mil negative carbon isotopic excursion and a strong warming as suggested by fluctuations in oxygen isotopes. Forthcoming geochemical and paleontological analysis on these two Formations should help us : (1) better constrain the stratigraphy of the Rhaetian in the NCA by correlating geochemical and climatic events that took place both in the intraplaform (Eiberg) and oceanic (Hallstatt) Basin, (2) decipher localized vs large Tethyan anoxic events and associated carbon-cycle perturbations and (3) constrain the possible influence of Rhaetian climatic perturbations on the biota before the end-Triassic mass extinction.
Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.
1983-01-01
The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th
NASA Astrophysics Data System (ADS)
Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong
2018-02-01
Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.
Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm
2017-05-02
Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.
Smith, Steven M.; Neilson, Ryan T.; Giles, Stuart A.
2015-01-01
Government-sponsored, national-scale, soil and sediment geochemical databases are used to estimate regional and local background concentrations for environmental issues, identify possible anthropogenic contamination, estimate mineral endowment, explore for new mineral deposits, evaluate nutrient levels for agriculture, and establish concentration relationships with human or animal health. Because of these different uses, it is difficult for any single database to accommodate all the needs of each client. Smith et al. (2013, p. 168) reviewed six national-scale soil and sediment geochemical databases for the United States (U.S.) and, for each, evaluated “its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.” Each of the evaluated databases has strengths and weaknesses that were listed in that review.Two of these U.S. national-scale geochemical databases are similar in their sample media and collection protocols but have different strengths—primarily sampling density and analytical consistency. This project was implemented to determine whether those databases could be merged to produce a combined dataset that could be used for mineral resource assessments. The utility of the merged database was tested to see whether mapped distributions could identify metalliferous black shales at a national scale.
NASA Astrophysics Data System (ADS)
Silkoset, Petter; Svensen, Henrik; Planke, Sverre
2014-05-01
The Toarcian (Early Jurassic) event was manifested by globally elevated temperatures and anoxic ocean conditions that particularly affected shallow marine taxa. The event coincided with the emplacement of the vast Karoo-Ferrar Large Igneous Province. Among the suggestions for trigger mechanisms for the climatic perturbation is metamorphic methane generation from black shale around the sills in the Karoo Basin, South Africa. The sill emplacement provides a mechanism for voluminous in-situ production and emission of greenhouse gases, and establishes a distinct link between basin-trapped and atmospheric carbon. In the lower stratigraphic levels of the Karoo Basin, black shales are metamorphosed around sills and the sediments are cut by a large number of pipe structures with metamorphic haloes. The pipes are vertical, cylindrical structures that contain brecciated and baked sediments with variable input of magmatic material. Here, we present borehole, petrographic, geochemical and field data from breccia pipes and contact aureoles based on field campaigns over a number of years (2004-2014). The metamorphism around the pipes show equivalent metamorphic grade as the sediments around nearby sills, suggesting a more prominent phreatomagmatic component than previously thought. The stratigraphic position of pipes and the breccia characteristics strengthens the hypothesis of a key role in the Toarcian carbon isotope excursion.
Lamsdell, James C; Selden, Paul A
2017-01-01
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Pardo, Jason D.; Huttenlocker, Adam K.; Small, Bryan J.
2014-01-01
Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian ‘phaneropleurids’ and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in ‘Rhinodipterus’ kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively. PMID:25265394
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Yamaguchi, K. E.; Sakamoto, R.; Naraoka, H.; Kiyokawa, S.; Ikehara, M.; Ito, T.
2012-12-01
Co-evolution of early life and surface environment has been one of the most important events on Earth. Rise of atmospheric oxygen, or as known as GOE (Great Oxidation Event: e.g., Holland, 1994), has been widely believed to have occurred at around 2.4 billion years ago. But geological and geochemical evidence suggest possibility of much earlier (by hundreds of millions of years) existence of oxic atmosphere and oceans. In order to further investigate the mystery of biological and environmental evolution, we conducted continental drilling in northwestern Pilbara, Western. Australia, to obtain 3.2 billion-years-old least-metamorphosed drillcore black shale samples (DXCL-DP:Dixon Island - Cleaverville Drilling Project; Yamaguchi et al., 2009). Preliminary stable isotope analyses using these samples suggested that photosynthetic organisms produced organic matter (Hosoi et al., 2011), nitrogen fixing bacteria were intermittently active (Yamada et al., 2011), and sulfate-reducing bacteria were active in environment with a limited supply of sulfate (Sakamoto et al., 2011) in the 3.2 Ga ocean. Bulk S isotope compositions could only provide limited information on the biogeochemical cycling of sedimentary S, because it is normally present as different facies (acid-volatile sulfur: AVS, pyrite: FeS2, sulfate, organic sulfur: Sorg, and elemental sulfur: S0) that depend on physicochemical and biological conditions. Therefore, abundance and isotope ratios of these species possess very useful information on oceanic and diagenetic conditions such as redox state and microbiological activity. In order to constrain biogeochemical cycling of S in the 3.2 Ga ocean, we conducted sequential extraction analysis using the DXCL-DP black shales to obtain different S-bearing species and S isotopic analysis. Average S contents for each form of S-bearing species were: ΣS = 2.56 wt.%, AVS = 0.02 wt.%, pyrite = 1.61 wt.%, and sulfate = 0.57 wt%. Relationship between amounts of pyrite-S and organic C suggest presence of syngenetic pyrite (formed in water column) as well as diagenetic pyrite. Average S isotope compositions are: pyrite = 12.3±6.3 ‰, sulfate = 17.3 ± 7.1 ‰, and difference between them are up to as high as 16.8 ‰. These results show that depositional environment was probably close to the modern Black Sea, where sulfate-reducing bacteria are active in anaerobic water mass in semi-closed deep basin, with a limited supply of sulfate from the oxic surface ocean.
The use of hydroxyacids as geochemical indicators
NASA Technical Reports Server (NTRS)
Cardoso, J. N.; Eglinton, G.
1983-01-01
The distributions of hydroxyacids in a variety of recent and ancient sediments have been determined by gas chromatography-mass spectrometry. A lacustrine sediment (Rostherne Mere, U.K.) and two marine situations (Cariaco Trench, Black Sea) were analyzed as examples of recent depositional environments. Beta-hydroxyacids occurred in all of the recent sediments, consistent with their presumed microbial origin, whereas di- and trihydroxyacids were present in the sediments with a significant higher plant input (Black Sea and Rostherne Mere sediments). The two ancient (Eocene) sediments examined, viz, the Greene River (U.S.) and Messel (Germany) oil shales, contained only trace amounts of hydroxyacids. These results provide evidence that hydroxyacids are in general not well preserved over geological time.
NASA Astrophysics Data System (ADS)
Liang, Chao; Cao, Yingchang; Liu, Keyu; Jiang, Zaixing; Wu, Jing; Hao, Fang
2018-05-01
Lacustrine carbonate-rich shales are well developed within the Mesozoic-Cenozoic strata of the Bohai Bay Basin (BBB) of eastern China and across southeast Asia. Developing an understanding of the diagenesis of these shales is essential to research on mass balance, diagenetic fluid transport and exchange, and organic-inorganic interactions in black shales. This study investigates the origin and distribution of authigenic minerals and their diagenetic characteristics, processes, and pathways at the scale of lacustrine laminae within the Es4s-Es3x shale sequence of the BBB. The research presented in this study is based on thin sections, field emission scanning electron microscope (FESEM) and SEM-catholuminescence (CL) observations of well core samples combined with the use of X-ray diffraction (XRD), energy dispersive spectroscopy, electron microprobe analysis, and carbon and oxygen isotope analyses performed using a laser microprobe mass spectrometer. The dominant lithofacies within the Es4s-Es3x sequence are a laminated calcareous shale (LCS-1) and a laminated clay shale (LCS-2). The results of this study show that calcite recrystallization1 is the overarching diagenetic process affecting the LCS-1, related to acid generation from organic matter (OM) thermal evolution. This evolutionary transition is the key factor driving the diagenesis of this lithofacies, while the transformation of clay minerals is the main diagenetic attribute of the LCS-2. Diagenetic differences occur within different laminae and at variable locations within the same lamina level, controlled by variations in mineral composition and the properties of laminae interfaces. The diagenetic fluid migration scale is vertical and responses (dissolution and replacement) are limited to individual laminae, between zero and 100 μm in width. In contrast, the dominant migration pathway for diagenetic fluid is lateral, along the abrupt interfaces between laminae boundaries, which leads to the vertical transmission of diagenetic responses. The recrystallization boundaries between calcite laminae act as the main migration pathways for the expulsion of hydrocarbons from these carbonate-rich lacustrine shales. However, because the interaction between diagenetic fluids and the shales themselves is limited to the scale of individual lamina, this system is normally closed. The occurrence of abnormal pressure fractures can open the diagenetic system, however, and cause interactions to occur throughout laminae; in particular, the closed-open (C-O) diagenetic process at this scale is critical to this shale interval. Multi-scale C-O systems are ubiquitous and episodic ranging from the scale of laminae to the whole basin. Observations show that such small-scale systems are often superimposed onto larger ones to constitute the complex diagenetic system seen within the BBB combining fluid transport, material and energy exchange, and solid-liquid and organic-inorganic interactions.
A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea
NASA Technical Reports Server (NTRS)
Sinninghe Damste, J. S.; Wakeham, S. G.; Kohnen, M. E.; Hayes, J. M.; de Leeuw, J. W.
1993-01-01
The Black Sea is the world's largest anoxic basin; it is also a contemporary analogue of the environment in which carbonaceous shales and petroleum source beds formed. Recently, Repeta et al. reported that anoxygenic photosynthesis may be an important component of carbon cycling in the present Black Sea, owing to a shoaling of the chemocline and consequent penetration of the photic zone by anaerobic waters in the past few decades. It has been suggested that this was due to an anthropogenic decrease in freshwater input to the Black Sea, although natural causes were not ruled out. Here we report the distributions of sequestered photosynthetic pigments in eight core samples of sediments from the Black Sea ranging in age from zero to 6,200 years before the present. Our results show that photosynthetic green sulphur bacteria (Chlorobiaceae [correction of Clorobiaceae]) have been active in the Black Sea for substantial periods of time in the past. This finding indicates that the penetration of the photic zone by anaerobic waters is not a recent phenomenon, and suggests that natural causes for shoaling of the chemocline are more likely than anthropogenic ones.
NASA Astrophysics Data System (ADS)
Duque-Botero, F.; Maurrasse, F. J.
2002-12-01
Rock sequences of Cenomanian-Turonian age commonly assigned to the Indidura Formation in northeastern Mexico, Coahuila State, are shown to include distinct facies indicative of significant spatial variability over the carbonate platform of that region. The type section at Las Delicias is characterized by very-pale orange (10YR8/2) bedded biocalcirudites (10-30 cm thick), without internal structures, and comprises fossil assemblages rich in epifaunal groups, as well as nektonic and planktic taxa. Total inorganic carbon (TIC) varies between 48 % and 94 %, with fluctuation in total organic carbon (TOC) between 0.73 % and 1.58 %. The section at la Casita Canyon, farther southeast, consists of pale yellowish brown (10YR6/2) interbedded biocalcilutites and olive gray (5Y3/2) shales between 3 and 30 cm thick. They also show no apparent original internal structures, and allochems consist essentially of sparse fragments of planktonic foraminifera and radiolarian. TIC content varies between 0.84 % and 59.3 %, whereas TOC changes between 0.17 % and 5.85 %. In contrast, in the Parras Mountains, located south of La Delicias and northwest of la Casita, the succession occurs under a characteristic sequence showing interbeds of light olive gray (5Y6/1) and brownish black to olive black (5YR2/1 - 5Y2/1) shales and marly biocalcilutites 30 to 100 cm thick. They display distinct internal structures arranged in nearly even parallel varve-like dual lamina (<3 mm thick). Few planktonic foraminifera are present, but epifaunal remains are absent, except for occasional rare pelecypods (Inoceramus) that occur intermittently. Laminae from either the shales or limestone facies show that they are formed by differences associated with varying abundance of micro spheres and "micro-ooids", interpreted to be of cyanobacterial origin. TIC content varies from 43 % to 78.3 %, while TOC content remains relatively high with values between 7.35 % and 24.39 %, but more consistently higher than 20 %. Assuming that these facies are coeval, microfacies studies of these rocks as well as acid etched polished rocks, and scanning electron microscope examination (secondary and backscatter imaging) further substantiate these spatial differences. TOC-rich black shales in the Parras region further document unique paleoceanographic conditions, which was also characterized by oxygenation of oceanic waters less effective than usual. These unique paleoceanographic conditions imply that oxygenation of oceanic waters remained apparently less effective than usual throughout the sequence. Temporal distribution of the epifauna and carbon/carbonate variations in the Parras region suggest the effects of strong dysoxic/anoxic bottom conditions on the biota with rhythmical production and disappearance of cyanobacterial mats which remained dominant throughout.
NASA Astrophysics Data System (ADS)
Anfinson, Owen Anthony
More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages are partially reset since deposition and experienced varying burial histories depending on stratigraphic and geographic location within the basin. AHe ages from Middle Devonian strata from the western margin of the basin indicate episodes of exhumation associated with clastic influxes of sediment into the Sverdrup Basin during the Late Jurassic-Early Cretaceous and Late Cretaceous.
Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.
2011-01-01
Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu-Au deposits from younger magmatic suites in the district. ?? 2010 Elsevier B.V.
Clark, S.H.B.; Poole, F.G.; Wang, Z.
2004-01-01
Shifts in world barite production since the 1980s have resulted in China becoming the world's largest barite-producing country followed by the US and India. Most barite produced for use in drilling fluids is derived from black shale- and chert-hosted, stratiform marine deposits. In China, Late Proterozoic to Early Cambrian marine barite deposits occur on the oceanic margins of the Yangtze platform, in the Qinling region in the north and the Jiangnan region in the south. Most US ore-grade deposits are in the Nevada barite belt; most commercial deposits occur in Ordovician and Devonian marine rocks along the western margin of the early Paleozoic North American continent. Production in India is predominantly from a single Middle Proterozoic deposit in a sedimentary basin located on Archean basement in Andrah Pradesh.The geologic and geochemical characteristics of the deposits are consistent with origins from a variety of sedimentary-exhalative processes, with biogenic processes contributing to the concentration of some seafloor barite. Linear distributions of clusters of lenticular deposits suggest a geographic relationship to syndepositional seafloor fault zones. Sulfur isotope data of the barite deposits range from values that are similar to coeval seawater sulfate to significantly higher ??34S values. Strontium isotope values of continental-margin-type deposits in Nevada and China are less radiogenic than those of cratonic-rift deposits (e.g. Meggen and Rammelsberg). Comparison of Lan/ Cen ratios of barite in the Qinling region of China with marine chert ratios suggests a relationship to hydrothermal fluids, whereas ratios from the Jiangnan region and Nevada can be interpreted as reflecting a biogenic influence.The California Borderland provides a potential modern analog where hydrothermal barium is being deposited on the seafloor in fault-block-bounded basins. Anoxic to dysaerobic conditions on some marine basin floors result from upwelling, nutrient-rich currents and high productivity in surface waters. In this setting, biogenic processes could contribute to the concentration of barium from hydrothermal sources. ?? 2003 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Naglik, Beata; Toboła, Tomasz; Natkaniec-Nowak, Lucyna; Luptáková, Jarmila; Milovská, Stanislava
2017-02-01
Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917 cm- 1) or water vapor (broad band 2500-3000 cm- 1) occur within two-phased primary inclusion assemblages, while nitrogen (2329 cm- 1) associated with methane and trace amount of carbon dioxide (1285, 1388 cm- 1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266 °C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths.
Silurian pinnacle reefs of the Canadian Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Freitas, T.A.; Dixon, O.A.; Mayr, U.
1993-04-01
Pinnacle reefs are commonly an attractive target for oil exploration because they are usually porous carbonate bodies entombed in impervious, deep-water shales that provide both the source and the seal for hydrocarbons. Silurian pinnacle reefs, the first described in the Canadian Arctic Archipelago, are exposed on Ellesmere and Devon Islands. Two main reef trends occur, one of early middle Llandovery to middle Ludlow age and a second of middle Ludlow to Late Silurian or Early Devonian age. Reefs of both phases contain lime mudstone cores: some are stromatactoid-rich and others consist predominantly of microbialite-rich lime mudstone or microbial boundstone. Faciesmore » sequences of both reef phases show evidence of upward-shallowing overall, but, in the older reefs, isochronous capping facies are dominated either by coral-mirian or by stromatoporoid boundstone and floatstone. This difference perhaps reflects variation in wave stress and apparent ability of a few corals,thickly encrusted by or associated with microbial boundstone and skeletal algae, to withstand greater wave energy than a stromatoporoid-coral-rich reef community. These reefs constitute one of the bright prospects of hydrocarbon exploration in rocks of the Franklinian succession. 43 refs., 9 figs.« less
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2004
Schrader, T.P.
2005-01-01
The Ozark aquifer in northern Arkansas comprises dolomites, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 59 well and 5 spring water-level measurements collected in 2004 in Arkansas and Missouri, indicates maximum water-level altitudes of about 1,188 feet in Benton County and minimum water-level altitudes of about 116 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Comparing the 2004 potentiometric- surface map with a predevelopment potentiometricsurface map indicates general agreement between the two surfaces. Potentiometric-surface differences could be attributed to differences in pumping related to changing population from 1990 to 2000, change in source for public supplies, processes or water use outside the study area, or differences in data-collection or map-construction methods.
Water resources of the Clarion River and Redbank Creek basins, northwestern Pennsylvania
Buckwalter, Theodore F.; Dodge, C.H.; Schiner, G.R.; Koester, H.F.
1981-01-01
The Clarion River and Redbank Creek basin occupy 1,280 and 545 square miles, respectively, in northwatern Pennsylvania. The area is mostly in Clerion, Elk, and Jefferson Counties and is approximately 70 miles long and 30 miles wide. All drainage is to the Allegheny River. Sedimentary rocks of Late Devionian Early Mississippian, and Pennsylvanian age underlie the area. Rocks of Late Devonian age underlie the entire area and crop out in the deep stream valleys in the north. Lower Mississippian rocks generally crop out in strips along major stream valleys; the strips are narrow in the south and broaden northward. Pennsylvanian rocks cover most of the interfluvial areas between major streams. The Upper Devonian and Lower Mississippian rocks are composed mostly of alternating sandstone and shale. Sandstone may intertongue laterally with shale. The Pennsylvanian rocks are most heterogeneous and contain many commercial coal beds. The major mineral resources are bituminous coal, petroleum, and natural gas. Narly all coal production is from strip mining in Clarion, Elk, and Jefferson Counties. Total coal production exceeded 8 million short tons in 1976. The basins are south and east of the major oil-producing regions in Pennsylvania, but more than 50,000 barrels of crude oil were produced here in 1975. Commercial quantities of natural gas are also obtained. Thirty-three public water-supply systems furnish about two-thirds of the water for domestic use. Surface water is the source of about 90 percent of public-supply water. The remainder is from wells and springs. In an average year, 64 percent of the precipitation in the Clarion River basin and 60 percent in the Redbank Creek basin leave the area as streamflow. The percentage of annuual discharge from each basin that is base runoff averaged 53 and 51 percent, respectively, during 1972-75. Only 4 of 10 stream-gaging stations recorded an average 10-year, 7-consecutive day low flow of at least 0.15 cubic feet per second per square mile. Most wells are completed on bedrock. Yields of bedrock wells are affected mostly by rock type, type of overburden, topography, depth of water-bearing zones, and by the rate and duration of pumping. Water in the bedrock occurs chiefly along fractures and bedding planes. Most wells get water from several zones. Yielding zones occur less frequently as depth increases, but are reported as much as 400 feet below land surface. Optimum well depth is about 350 feet. Well yields range from less than 1 to more than 550 gallons per minute. The best bedrock aquifers are the Lower Mississippian rocks, which have a median specific capacity of 4.3 gallons per minute per foot of drawdown compared to median between 0.38 and 0.67 in the Conemaugh, Allegheny, and Pottsville Groups. The major water-qualitty problems are due to high concentrations of iron, manganese, hardness, and acidity. Some of these problems are related to coal mining that has degraded water quality in parts of Clarion, Clearfield, Elk, and Jefferson Counties. Water-quality problems result from the rock composition. Many streams have low alkalinity concentrations and, consequently, have little capacity to neutralize the acid water from coal mines. Large forested areas, with little development, in Elk, Forest, and Jefferson Counties, have good quality water. The water from over three-quarters of the bedrock wells sampled has dissolved-solids concentratins less than 250 milligrams per liter. Water from aqufers of Pennsylvanian age is generally lower in dissolved solids than that from Lower Mississippian aquifers. Salt water is not a problem, except locally in Devonian rocks. Water from wells on hilltops is generally of better quality than that from wells in valleys (median dissolved solids 140 versus 340 millgrams per liter). In many valleys in Clarion and Jefferson Counties, old abandoned flowing oil and gas wells contribute high
The stratigraphy of the southern Pab Range, Pakistan
NASA Astrophysics Data System (ADS)
White, H. J.
The Cretaceous strata exposed in the southern Pab Range, southeast Baluchistan, Pakistan is investigated. It records the precollision deposition history of the Indo-Pakistani continental shelf. The strata comprise two depositional successions, namely, The Early to Late Cretaceous Sembar-Goru-Parh sequence and the Maestrichtian Mughal Kot-Pab sequence. The former began with deposition of black shales on the continental slope (Sembar Formation), succeeded by calcareous shale, marl and micstone of outer shelf origin (Goru Formation), and ended with inner shelf platform carbonates (Parh Limestone). These deep to shallow water lithofacies prograted westward over the continental shelf of the north-advancing Subcontinent. The Mughal Kot-Pab propagation contains the first significant influx of terrigenous sand reaching the western portion of the continental shelf. Deposition environments in the Mughal Kot Formation include inner shelf, prodelta, delta front and distributary channel. A thick succession of shoreface cycles comprises the Pab sandstone.
NASA Astrophysics Data System (ADS)
Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.
2016-11-01
Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.
Devonian of the Northern Rocky Mountains and plains
Sandberg, Charles A.; Mapel, William J.
1967-01-01
5. Undivided uppermost Devonian (Famennian, to V-VI) and lowermost Mississippian (Tournaisian, cuI-lower cuIIα) carbonaceous and clastic rocks deposited in six shallow basins interspersed among areas uplifted during the penecontemporaneous Antler orogeny.
Kreitinger, Elizabeth A.; Kappel, William M.
2014-01-01
The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal water-quality standards for common ion and nutrient concentrations with the exception of manganese, which is common in central New York where water sourced from shale rock or glacial sediments derived from shale bedrock naturally develops higher manganese concentrations. One shallow dug well also had elevated sodium and chloride concentrations that are likely sourced from road salt runoff from two nearby roads.
Forster, A.; Merriam, D.F.; Hoth, P.
1998-01-01
The Cherokee basin in southeastern Kansas contains a stratigraphic section consisting mostly of Permian-Pennsylvanian alternating clastics and thin carbonates overlying carbonates of Mississippian and Cambrian-Ordovician age on a Precambrian crytalline basement. Based on a conceptual model of events of deposition, nondeposition, and erosion, a burial history model for (1) noncompaction, and a series of models for (2) compaction are computed for a borehole location in the south-central part of the basin. The models are copled with the calculation of nonsteady-state geothermal conditions. Maximum temperatures during basin evolution of about 70??C at the base of the organic-rich Pennsylvanian are predicted by our models, assuming pure heat conduction and a heat flow from the basement of 60 m W/m2. The maturation of organic matter as indicated by three different vitrinite reflectance (Ro) models is on the order og 0.3-0.5% Ro for Pennsylvanian rocks and 0.6% Ro for the Devonian-Mississippian Cattanooga Shale. Vitrinite reflectance was measured on subsurface smaples from three wells. The measured values correlate in the upper part of the sequence with modeled data, but diverge slightly in the Lower Pennsylvanian and Cattanooga Shale. The differences in maturation may be a result of differing local geological conditions within the basin. The relatively high Ro-depth gradients observed in one borehole may be explained by conditions in the Teeter oil field, which is a typical plains-type anticline that has been affected by fluid flow through vertical faults. Higher Ro values correlate positively with the grade of sulfidfe mineralization in the sediment, which may be a hint of fluid impact. The high Ro values relative to the shallow depth of the Mississippian and the Chattanooga Shale in the Brown well are on the order of Ro values modeled for the same stratigraphic units at present-day greater depths and may reflect uplift of the Ozark dome, located further east, affecting the eastern side of the Cherokee Basin.Based on a concept model of deposition, nondeposition and erosion, a burial history model for noncompaction, and a series of models for compaction are developed for a borehole location in a south-central part of the Cherokee basin in southeastern Kansas. Coupled with the calculation of nonsteady state-state geothermal conditions, the models predict maximum temperatures during evolution of about 70 ??C at the base of the organic-rich Pennsylvanian. A difference in organic matter maturation in the Pennsylvanian and the Chattanooga shale exhibited by vitrinite reflectance models indicate probably differing local geological conditions within the basin.
The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites
NASA Astrophysics Data System (ADS)
von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.
2017-10-01
Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending.
NASA Astrophysics Data System (ADS)
Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong
2018-05-01
The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.
No geochemical evidence for an asteroidal impact at late Devonian mass extinction horizon
NASA Astrophysics Data System (ADS)
McGhee, G. R., Jr.; Gilmore, J. S.; Orth, C. J.; Olsen, E.
1984-04-01
Three sedimentary sequences in New York State (Dunkirk Beach, Walnut Creek Gorge, and Mills Mills) and one sedimentary sequence in Belgium (Sinsin), that cross the Devonian Frasnian-Famennian boundary, were examined for an iridium (Ir) anomaly to determine whether the biotic extinctions at the end of the Cretaceous could have been caused by an asteroidal impact. The sampling at three of the four areas was on 2-cm center points, and 15 to 20 g of sample were collected. The instrumental neutron activation method required 5 g samples, and consequently the distance between samples was less than 1 cm. Though the Devonian samples studied had a high probability of locating an Ir anomaly, none was found. The highest Ir values were between 0.2 and 2 percent of those reported for the marine and terrestrial Ir analyses at the Cretaceous-Tertiary boundary, and Devonian pyrite-rich sediments did not exhibit high Ir concentrations.
NASA Astrophysics Data System (ADS)
Je, H.-K.; Chon, H.-T.
2012-04-01
The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other base rocks. Finally, the maps of radon risk grade from detailed survey areas were developed by the application of field data and statistical simulation.
A reactive transport model for Marcellus shale weathering
NASA Astrophysics Data System (ADS)
Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.
2017-11-01
Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.
Geology of the Cupsuptic quadrangle, Maine
Harwood, David S.
1966-01-01
The Cupsuptic quadrangle, in west-central Maine, lies in a relatively narrow belt of pre-Silurian rocks extending from the Connecticut River valley across northern New Hampshire to north-central Maine. The Albee Formation, composed of green, purple, and black phyllite with interbedded-quartzite, is exposed in the core of a regional anticlinorium overlain to the southeast by greenstone of the Oquossoc Formation which in turn is overlain by black slate of the Kamankeag Formation. In the northern part of the quadrangle the Albee Formation is overlain by black slate, feldspathic graywacke, and minor greenstone of the Dixville Formation. The Kamankeag Formation is dated as 1-ate Middle Ordovician by graptolites (zone 12) found near the base of the unit. The Dixville Formation is correlated with the Kamankeag Formation and Oquossoc Formation and is considered to be Middle Ordovician. The Albee Formation is considered to be Middle to Lower Ordovician from correlations with similar rocks in northeastern and southwestern Vermont. The Oquossoc and Kamankeag Formations are correlated with the Amonoosuc and Partridge Formations of northern New Hampshire. The pre-Silurian rocks are unconformably overlain by unnamed rocks of Silurian age in the southeast, west-central, and northwest ninths of the quadrangle. The basal Silurian units are boulder to cobble polymict conglomerate and quartz-pebble conglomerate of late Lower Silurian (Upper Llandovery) age. The overlying rocks are either well-bedded slate and quartzite, silty limestone, or arenaceous limestone. Thearenaceous limestone contains Upper Silurian (Lower Ludlow) brachiopods. The stratified rocks have been intruded by three stocks of biotite-muscovite quartz monzonite, a large body of metadiorite and associated serpentinite, smaller bodies of gabbro, granodiorite, and intrusive felsite, as well as numerous diabase and quartz monzonite dikes. The metadiorite and serpentinite, and possibly the gabbro and granodiorite are Late Ordovician in age. The quartz monzonite is considered to be Late Devonian. Five tectonic events are inferred from the structural features in the area. The earliest was a period of folding producing tightly-appressed, northeast-trending folds in the rocks of pre-Silurian age. In the second stage the folded pre-Silurian rocks were uplifted, eroded, and truncated to produce a major unconformity between the Middle Ordovician and Lower Silurian rocks. These events constitute the Taconic orogeny. The third tectonic event was a period of folding, probably of Middle Devonian age, that warped the unconformity and overlying rocks into open, gently-plunging, east-trending folds. This period of folding undoubtedly changed the attitude of the early folds in the pre-Silurian units but it did not produce any recognizable, cross-cutting planar features in the older rocks. The fourth tectonic event was a period of igneous intrusion that locally deformed the northeast-trending folds in the pre-Silurian rocks into a macroscopic drag fold plunging at 80 degrees in a direction S.10?w. A north-trending, subvertical slip cleavage was produced locally during this period of Late Devonian (?) deformation. A period of faulting, possibly of Triassic age, dislocated some of the earlier features. The rocks are in the chlorite zone of regional metamorphism, but have been contact metamorphosed to sillimanite-bearing hornfels adjacent to the quartz monzonite stocks. The chemical changes in chlorite, biotite, garnet, cordierite, and muscovite in the chlorite, biotite, andalusite, and sillimanite zones have been-studied by optical and x-ray methods and by partial chemical analyses. The progressive changes in mineral assemblages have been graphically portrayed on quaternary diagrams and ternary projections.
NASA Astrophysics Data System (ADS)
Li, J.; Ding, W.; Dong, L.
2017-12-01
The black shale in the early Cambrian Yurtus Formation (>521 Ma) in the Tarim basin, northwestern China, is characterized by its high TOC value (up to 16%) andgreat lateral continuity. It has been proven to be high-quality hydrocarbon source rocks. Abundant phytoplanktons and small shelly fossils have been reported from the lower Yurtus chert. However, recent biomarker discovery of aryl isoprenoid hydrocarbons suggests the existence of green sulfur bacteria, which indicates that the water column was stratified and the photic zone was prevailingly euxinic. These seemingly contradictory observations hamper our further understanding of the paleoenvironment in which the Yurtus shale was deposited and its control on the accumulation of organic matter. In this study, we systematically collected samples from the Yurtus Formation at the Kungaikuotan Section, and measured the organic carbon and nitrogen isotopic compositions and the content of trace element Barium (Ba). The strong negative excursions of nitrogen isotope ( -13‰) in the lower and upper parts of the Yurtus Formation are likely attributed to the biological activity of green and purple sulfur bacteria, which is consistent with our organic carbon isotope data as well as previous biomarker discovery. As green sulfur bacteria can only live in euxinic photic zone, it may indicate that the water column above this euxinic zone contains prolific organic matters which consume all the dissolved oxidants in surface ocean. It is well accepted that Ba flux can be used as an indicator for surface ocean primary productivity. Significant increase of barium content (from <100 to 2000 ppm) is observed at the same horizon as where the negative excursion of δ15Norg occurs, suggesting the substantive organic matter in the early Cambrian surface ocean mainly result from extremely high primary productivity. The abundant phytoplankton fossil record from this time period also supports this interpretation. In summary, high TOC in the Yurtus shale may derive from the extremely high primary productivity of phytoplanktons. Organic matter consumes all the dissolved oxidants in the water and generates the euxinic zone, which facilitates the accumulation and preservation of the surplus organic matter. This study also shed light on the ecology of the surface ocean before Cambrian Explosion.
Belkin, H.E.; Luo, K.
2008-01-01
The Ni-Mo Huangjiawan mine, Guizhou Province, People's Republic of China, occurs in Lower Cambrian black shale (stone coal) in an area where other mines have recently extracted ore from the same horizon. Detailed electron microprobe (EMPA) and scanning electron microscope (SEM) analyses of representative thin sections have revealed a complex assemblage of sulfides and sulfarsenides. Early sulfidic and phosphatic nodules and host matrix have been lithified, somewhat fractured, and then mineralized with later-stage sulfides and sulfarsenides. Gersdorffite, millerite, polydymite, pyrite, sphalerite, chalcopyrite, galena, and clausthalite have been recognized. EMPA data are given for the major phases. Pyrite trace-element distributions and coeval Ni-, As-sulfides indicate that in the main ore layer, the last sulfide deposition was Ni-As-Co-rich. Mo and V deposition were early in the petrogenesis of these rocks. The assemblages gersdorffite-millerite-polydymite (pyrite) and millerite-gersdorffite (pyrite) and the composition of gersdorffite indicate a formation temperature of between 200?? and 300??C suggesting that the last solutions to infiltrate and mineralize the samples were related to hydrothermal processes. Environmentally sensitive elements such as As, Cd, and Se are hosted by sulfides and sulfarsenides and are the main source of these elements to residual soil. Crops grown on them are enriched in these elements, and they may be hazardous for animal and human consumption. ?? Springer-Verlag 2007.
NASA Astrophysics Data System (ADS)
Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.
2017-12-01
The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early diagenetic pyrite contained in Early Paleozoic shale units.
Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine
Gates, Olcott; Moench, R.H.
1981-01-01
Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material
Geochemical Analysis for Sedimentary Emerald Mineralization in Western Emerald belt, Colombia
NASA Astrophysics Data System (ADS)
Nino Vasquez, Gabriel Felipe; Song, Sheng-Rong
2017-04-01
1Gabriel Felipe Nino Vasquez and 1Sheng-Rong Song 1Department of Geosciences, National Taiwan University Colombia hosts a large quantity of mineral resources due to its complex tectonic arrangement, and emerald deposits are one of the most representatives for the country. Emeralds in Colombia occur mainly in black shale, and are located in eastern Andes Cordillera with two parallel belts separated by approximately 130 Km: the Western belt (WB) and the Eastern belt (EB). The geological, mineralogical and tectonic features from these belts are quite similar (Buenaventura 2002). Previous researchers concluded that emeralds in Colombia came from hydrothermal sedimentary processes without any magmatic influence, and suggested that the source of Cr, V and Be (which are important components of the beryl) was the host rock. According to their results, the process which allowed the shale to release these cations was the metasomatism (albitization and carbonization), which was resulted from the interaction between the rocks and the alkaline brines. Fractures and fault planes originated by these tectonic movements were fulfilled by enriched fluids, which they allowed emeralds and the other minerals precipitation with decreasing alkalinity and pressure (Giuliani et al. 1994). However, there were several pitfalls of conclusions drawn from previous researches. Firstly, Cr and V were widely distributed and come from mafic and ultramafic rocks, and Be was mostly found in pegmatites, finding these elements in sedimentary rocks suggest that probably the ultramafic rocks occurred not far from the deposits. Secondly, there was an inconsistency in the estimated temperatures of emeralds formation, i.e. temperature of hydrothermal sedimentary deposits was only 200° C, while laboratory analysis showed that the formation of emeralds was higher than 300° C. Therefore, there might still be an allocthonus influence on emerald formation that significantly increases the temperature. This research is going to contribute information in order to clarify these inconsistencies, We have done the O and C isotopes in calcite and S isotope in pyrite and shale from different mines along the (WB) in order to determine the main fluid source of the mineralization. Selected samples will also be analyzed with EDS, RAMAN and ICP-MS methods to obtain the exact compositions of elements with extremely low concentrations in host rock, metazomatized host rock and mineralization (productive and not productive veins); the main purpose is to measure how strong were the fluid-rock interaction to leach elements out from the black shale. Thin sections from the altered shale and vein have been analyzed with the purpose of identify paragenesis and microstructures in the mineralization. Finally, we would like to gather the results from different sectors and compare it with the previous studies.
NASA Astrophysics Data System (ADS)
Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.
2017-04-01
Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.
A reconnaissance for uranium in carbonaceous rocks in southwestern Colorado and parts of New Mexico
Baltz, Elmer H.
1955-01-01
Coal and carbonaceous shale of the Dakota formation of Cretaceous age were examined for radioactivity in the Colorado Plateau of southwestern Colorado and northwestern New l1exico during the summer of 1953. Older and younger sedimentary rocks and some igneous rocks also were examined, but in less detail, Weak radioactivity was detected at many places but no new deposits of apparent economic importance were discovered. The highest radioactivity of carbonaceous rocks was detected in black shale, siltstone, and sandstone of the Paradox member of the Hermosa formation of Pennsylvanian age. A sample collected from this member at the Bald Eagle prospect in Gypsum Valley, San Higuel County, Colo. contains 0.10. percent uranium. Carbonaceous rocks were investigated at several localities on the Las Vegas Plateau and the Canadian Escarpment in Harding and San Miguel Counties, northeastern New Mexico. Carbonaceous sandstone and siltstone in the middle sandstone member of the Chinle formation of Triassic age contain uranium at a prospect of the Hunt Oil Company southwest of Sabinoso in northeastern San Miguel County, N. Mex. A channel sample across 3.2 feet of mineralized rocks at this locality contains 0.22 percent uranium. Weak radioactivity was detected at two localities in carbonaceous shale of the Dakota and Purgatoire formations of Cretaceous age.
Sandberg, C.A.; Gutschick, R.C.; Johnson, J.G.; Poole, F.G.; Sando, W.J.
1986-01-01
Twenty eustatic and epeirogenic events mainly dated by conodonts are distinguished between the Middle Devonian and the lower Upper Mississippian in Great Basin, in Rocky Mountains and in the Overthrust belt regions.-Journal Editors
Geometry of an outcrop-scale duplex in Devonian flysch, Maine
Bradley, D.C.; Bradley, L.M.
1994-01-01
We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.
Ettensohn, F.R.; Pashin, J.C.
1997-01-01
The Devonian-Carboniferous transition on Laurussia was a time of diverse geologic activity associated with the assembly of Pangea, including episodes of Late Devonian glacial-eustatic lowstand and active orogeny on four margins. Six widespread unconformities are present in the Devonian-Carboniferous (Mississippian) interval on southern parts of Laurussia. We suggest that attention to the timing and plan of the unconformities may provide ways of discerning tectonic and climatic controls on their respective origins. Indeed, unconformities generated by pure eustasy are ideally of interregional extent, whereas unconformities generated by tectonism reflect more local factors associated with the evolution of sedimentary basins. Each of the six unconformities analyzed provides evidence for concurrent eustasy and tectonism. Glaciation was apparently the dominant factor driving the development of unconformities during the latest Devonian. During the Early Carboniferous, however, the volume of glacial ice available to drive eustasy was limited and, at times, tectonism may have been the source of a subordinate eustatic signal. Development of unconformities in southern Laurussia appear to be local manifestations of tectonic and climatic processes associated with supercontinent assembly. Thus, the time may be at hand for construction of a new global stratigraphic paradigm that is based on the plate tectonic supercycle affecting continentality and climate.
Air-breathing adaptation in a marine Devonian lungfish.
Clement, Alice M; Long, John A
2010-08-23
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.
Air-breathing adaptation in a marine Devonian lungfish
Clement, Alice M.; Long, John A.
2010-01-01
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310
Boucot, A.J.; Poole, F.G.; Amaya-Martinez, R.; Harris, A.G.; Sandberg, C.A.; Page, W.R.
2008-01-01
Three brachiopod faunas discussed herein record different depositional and tectonic settings along the southwestern margin of Laurentia (North America) during Devonian time. Depositional settings include inner continental shelf (Cerros de Los Murcielagos), medial continental shelf (Rancho Placeritos), and offshelf continental rise (Rancho Los Chinos). Ages of Devonian brachiopod faunas include middle Early (Pragian) at Rancho Placeritos in west-central Sonora, late Middle (Givetian) at Cerros de Los Murcielagos in northwestern Sonora, and late Late (Famennian) at Rancho Los Chinos in central Sonora. The brachiopods of these three faunas, as well as the gastropod Orecopia, are easily recognized in outcrop and thus are useful for local and regional correlations. Pragian brachiopods dominated by Acrospirifer and Meristella in the "San Miguel Formation" at Rancho Placeritos represent the widespread Appohimchi Subprovince of eastern and southern Laurentia. Conodonts of the early to middle Pragian sulcatus to kindlei Zones associated with the brachiopods confirm the ages indicated by the brachiopod fauna and provide additional information on the depositional setting of the Devonian strata. Biostratigraphic distribution of the Appohimchi brachiopod fauna indicates continuous Early Devonian shelf deposition along the entire southern margin of Laurentia. The largely emergent southwest-trending Transcontinental arch apparently formed a barrier preventing migration and mixing of many genera and species of brachiopods from the southern shelf of Laurentia in northern Mexico to the western shelf (Cordilleran mio-geocline) in the western United States. Middle Devonian Stringocephalus brachiopods and Late Devonian Orecopia gastropods in the "Los Murcielagos Formation" in northwest Sonora represent the southwest-ernmost occurrence of these genera in North America and date the host rocks as Givetian and Frasnian, respectively. Rhynchonelloid brachiopods (Dzieduszyckia sonora) and associated worm tubes in the Los Pozos Formation of the Sonora allochthon in central Sonora are also found in strati-form-barite facies in the upper Upper Devonian (Famennian) part of the Slaven Chert in the Roberts Mountains allochthon (upper plate) of central and western Nevada. Although these brachiopods and worm tubes occur in similar depositional settings along the margin of Laurentia in Mexico, they occur in allochthons that exhibit different tectonic styles and times of emplacement. Thus, the allochthons containing the brachiopods and worm tubes in Sonora and Nevada are parts of separate orogenic belts and have different geographic settings and tectonic histories. Devonian facies belts and faunas in northern Mexico indicate a continuous continental shelf along the entire southern margin of Laurentia. These data, in addition to the continuity of the late Paleozoic Ouachita-Marathon-Sonora orogen across northern Mexico, contradict the early Late Jurassic Mojave-Sonora megashear as a viable hypothesis for large-magnitude offset (600-1100 km) of Proterozoic through Middle Jurassic rocks from California to Sonora. ?? 2008 The Geological Society of America.
Eastern Madre de Dios Devonian generated large volumes of oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.E.; Wagner, J.B.; Carpenter, D.G.
This is the second part of an article giving details of a Mobil Corp. regional geological, geophysical, and geochemical study of the Madre de Dios basin. The assessment covered the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks.
NASA Astrophysics Data System (ADS)
Akondi, R.; Trexler, R.; Sharma, S.; Mouser, P. J.; Pfiffner, S. M.
2016-12-01
The deep subsurface is known to harbor diverse communities of living microbes, and can therefore be expected to also harbor an equally diverse and likely different set of non-viable microbial populations. In this study, diglyceride fatty acids, (DGFA, biomarkers for non-viable microbes) as well as their compound specific isotopes (CSIA) were used to study the yield and variety of DGFAs in deep subsurface mid-Devonian sediments of different lithologies. Pristine sidewall cores were obtained from intervals in the Marcellus, Mahantango, and the Marcellus/Mahantango formation interface. The biomarkers were extracted and DGFAs were methylated to fatty acid methyl esters (FAMEs) and analyzed using GC-MS, while the CSIAs were performed using GC-irMS. Sediments were also analyzed for total organic carbon (TOC), stable carbon isotopic composition of organic carbon (δ13Corg), inorganic carbon (δ13Ccarb), and nitrogen (δ15Norg). TOC concentration was highest in the Marcellus and there was a general trend of increasing TOC from Mahantango to the Marcellus. The δ13Corg and δ13Ccarb increased and decreased respectively from Mahantango to the Marcellus while δ15Norg did not show any trend. The FAME profiles consisted of normal saturated, monounsaturated, polyunsaturated, branched, epoxy, terminally branched, hydroxyl, and dimethyl esters. The total biomass yield and variety of DGFA-FAME profiles were higher in the Mahantango compared to the samples from the Marcellus formation and Marcellus/Mahantango interface, suggesting the presence of more paleo-microbial activity in the less consolidated Mahantango formation. We attribute this to the smaller pore throat sizes within the Marcellus formation compared to the Mahantango formation. Since organic matter in the sediments is also one of the key sources of energy for microbial metabolism, bulk 13C and CSIA of the lipids will be used to understand the source(s) and pathways of the carbon cycling within the microbial communities.
The Carboniferous of the Western Karakoram (Pakistan)
NASA Astrophysics Data System (ADS)
Gaetani, M.; Zanchi, A.; Angiolini, L.; Olivini, G.; Sciunnach, D.; Brunton, H.; Nicora, A.; Mawson, R.
2004-05-01
The results of the study of the Carboniferous successions in the western part of the Northern Karakoram during three geological expeditions are summarized here. Rocks of that period are not uniformly preserved in the several thrust sheets forming the Northern Karakoram. In most of them only the basal part of the Carboniferous, up to the Visean, is preserved, whilst in the Karambar thrust sheet a more complete section—previously almost unknown—is preserved. Four new lithostratigraphic units, time-constrained by brachiopod and conodont biostratigraphy, are described, from bottom to top: (1) the Margach Formation: prevailing dark shales with subordinate fine subarkoses and quartzarenites, up to 300 m thick (mid-Famennian to middle Tournaisian); (2) the Ribat Formation: grey crinoidal limestones passing upwards to dark marly limestones and marls, at least 300 m thick (middle Tournaisian to Serpukhovian); (3) the Lupsuk Formation: subarkoses to feldspathic quartzarenites in thick beds, alternating with dark shales and siltstones, up to 400 m thick (Serpukhovian to uppermost Carboniferous); (4) within the Lupsuk Formation a local member, the Twin Valleys Member, up to 100 m thick, a bioclastic limestone intercalation of post-Moscovian age, is distinguished. The Carboniferous successions are invariably sealed by the arkoses to quartzarenites of the Gircha Formation, 133 m above the base of which, in the Karambar area, an Asselian brachiopod fauna was recovered. The Carboniferous succession is interpreted as recording the evolution of the passive margin of the Northern Karakoram Terrane, from early rifting stage in the Late Devonian to syn-rift events during the Late Carboniferous. The basal part of the Gircha Formation, of latest Carboniferous-earliest Permian age, is considered to have been deposited above a break-up unconformity, linked to the early drifting in the seaway bordering the Karakoram. In the palaeontological appendix the most significant brachiopod taxa (19 species, one new) are described.
Pratt, L.M.; Claypool, G.E.; King, J.D.
1986-01-01
Laminated organic-rich shales are interbedded at a scale of centimeters to a few meters with bioturbated organic-poor mudstones or limestones in some fine-grained marine sequences. We have analyzed the organic matter in pairs of laminated/bioturbated interbeds from Cretaceous and Devonian rocks deposited in epicontinental and oceanic settings for the purpose of studying the influence of depositional and early diagenetic environment on the organic geochemical properties of marine shales. Results of these analyses indicate that for rocks that are still in a diagenetic stage of thermal alteration, the relative abundance of biomarker compounds and specific biomarker indices can be useful indicators of depositional and early diagenetic conditions. Pristane/phytane ratios are generally highest for laminated rocks from epicontinental basins and appear to reflect the input of isoprenoid precursors more than oxygenated versus anoxic depositional conditions. The thermally immature laminated rocks are characterized by relatively high contents of 17??(H), 21??(H)-hopanes, hopenes, sterenes and diasterenes, and by strong predominance of the 22R over 22S homohopane isomers. Thermally immature bioturbated samples are characterized by absence of the ??,??-hopanes, by low contents of both saturated and unsaturated polycyclic hydrocarbons, and by slight or no predominance of the 22R over 22S homohopane isomers. There are less obvious compositional differences between the saturated hydrocarbons in the laminated and bioturbated units from the thermally mature sequences. For both the thermally mature and immature laminated samples, the degree of isomerization at the 22C position for hopanes and at the 20C position for steranes is generally consistent with the degree of thermal maturity interpreted from other properties of the organic matter. The bioturbated samples, however, exhibit inconsistent and anomalously high degrees of isomerization for the homohopanes, resulting either from reworking and oxidation of the primary organic matter or from the presence of older recycled organic matter. ?? 1986.
Geophysical Investigation of the Raton Basin.
1982-05-01
17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, If different from Report) LYNN E . WOLAVER J Dean for Research and IS. SUPPLEMENTARY...NOTES i Professional Development APPROVED FOR PUBLIC RELEASE: IAW AFR 7 .,# R . - E 0. TECHNOLOGY (ATC) 2 2 JUN 1982 WRiGHT-PATTRSON AFB, OH 45433 19...which are dominated by thick grey I to black strata, predominate to the north. In fact, this shale which 4 ’d E N w ERa NEW MEXICO 0 SANTA FE 0
Late Devonian Anoxia Events in the Central Asian Orogenic Belt: a Global Phenomenon
NASA Astrophysics Data System (ADS)
Carmichael, S. K.; Waters, J. A.; Suttner, T. J.; Kido, E.; DeReuil, A. A.; Moore, L. M.; Batchelor, C. J.
2013-12-01
Atmospheric CO2 values decreased dramatically during the Middle Devonian due to the rapid rise of land plants. These changing environmental conditions resulted in widespread anoxia and extinction events throughout the Late Devonian, including the critical Kellwasser and Hangenberg anoxia events, which are associated with major mass extinctions at both the beginning and end of the Famennian Stage of the Late Devonian. Fammenian sediments in northwestern Xinjiang Province, China, represent a highly fossiliferous shallow marine setting associated with a Devonian oceanic island arc complex. Analysis of multiple geochemical proxies (such as U/Th, Ba, normalized P2O5, V/Cr, Zr), magnetic susceptibility, and mineralogical data (biogenic apatite and pyrite framboids) indicates that these Famennian sequences record not only the Upper Kellwasser Anoxic Event at the Frasnian/Famennian (F/F) boundary but also the rebound from the F/F extinction event. Preliminary evidence suggests that the Hangenberg Anoxic Event can also be recognized in the same sequence, although our biostratigraphic control is less precise. Previous studies of the Kellwasser and Hangenberg Events have been performed on continental shelf environments of Laurussia, Gondwana, Siberia, and South China. The Devonian formations of northwest Xinjiang in this study, however, are part of the Central Asian Orogenic Belt (CAOB), which is thought to have formed as part of a complex amalgamation of intra-oceanic island arcs and continental fragments prior to the end of the latest Carboniferous. These results allow us to confirm the presence of the Kellwasser and Hangenberg Events in the open oceanic part of Paleotethys, indicating that both events were global in scope. The presence of an abundant diverse Famennian fauna between these anoxia/extinction events suggests that the shallow marine ecosystems in the CAOB were somewhat protected due to their tectonic location and relative isolation within an open ocean system. Our new data puts the Late Devonian anoxic events recognized in the CAOB into a global rather than regional context, and helps constrain the nature of ocean anoxia during this period by analysis of locations outside subequatorial North America and Europe.
Prediction of resource volumes at untested locations using simple local prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2006-01-01
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.
Caron, Jean-Bernard; Conway Morris, Simon; Shu, Degan
2010-03-08
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles.
NASA Astrophysics Data System (ADS)
Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.
2017-11-01
The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.
Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Both conventional oil and gas resources and continuous (unconventional) gas resources are present in the UticaLower Paleozoic TPS. Conventional oil and gas resources in the Utica-Lower Paleozoic TPS were assessed by the U.S. Geological Survey (USGS) in 2002 in the following assessment units (AU): (1) the Lower Paleozoic Carbonates in Thrust Belt AU, (2) the Knox Unconformity AU, (3) the Black River-Trenton Hydrothermal Dolomite AU, and (4) the Lockport Dolomite AU. The total estimated undiscovered oil and gas resources for these four AUs, at a mean value, was about 46 million barrels of oil (MMBO) and about 3 trillion cubic feet of gas (TCFG), respectively. In contrast, continuous (unconventional) gas resources in the TPS were assessed by the USGS in 2002 in four AUs associated with the “Clinton” sandstone, Medina sandstone, Medina Group sandstones, Tuscarora Sandstone, and sandstones in the Queenston Shale. The total estimated undiscovered gas for these four AUs, at a mean value, was about 26.8 TCFG. A hypothetical Utica Shale AU for oil(?) and continuous gas is identified in this report. In 2012, the Utica Shale was recognized by the USGS as a continuous AU and was assessed by Kirschbaum and others (2012).
NASA Astrophysics Data System (ADS)
Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel
2016-04-01
Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector-inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS) at Goethe University, Frankfurt. A total of 399 U-Pb spot analyses were carried out on zircons from the sandstones of the Orhanlar Unit. 84% of the data yielded Precambrian ages, which is in marked contrast with the typical arkosic sandstones of the Karakaya Complex in which Precambrian zircons form only 10% of the population. Three zircon grains of Ladinian age suggest a maximum depositional age for the Orhanlar Unit. The most prominent zircon population is of Ediacaran-Cryogenian age (31%). The second largest population is Tonian-Stenian (22%), the third largest Cryogenian-Tonian (9%) and the fourth Devonian-Carboniferous (7%). There are also minor zircon populations of Palaeoproterozoic and Neo-Archean ages. The Precambrian zircon populations in the Orhanlar Unit sandstones are identical to those in the schists of the Sakarya continental crust (P.A. Ustaömer et al. 2012; this study). Their Hf isotope compositions also overlap, suggesting that the Sakarya continental crust could be a source for the sandstones of the Orhanlar Unit. On the other hand, the Hf(t) values of most of the Devonian and Carboniferous detrital zircons differ from those of the Devonian and Carboniferous granites that intrude the Sakarya continental crust. The Karakaya Complex as a whole appears to have been derived from two different source terranes, of which the Orhanlar Unit sandstones represent a minor, but significant component. Possible explanations are that two different source terranes already existed in the same region but that these were not exposed to erosion at the same time or, if exposed simultaneously, experienced different depositional pathways (without mixing); alternatively, the Orhanar Unit represents part of a different tectono-stratigraphic terrane from the other Karakaya Complex units, with which it was tectonically amalgamated prior to Early Jurassic deposition of a common sedimentary cover. Ustaömer PA, Ustaömer T, Robertson AHF (2012), Turkish Journal of Earth Sciences, doi:10.3906/yer-1103-1 Ustaömer T, Ustaömer PA, Robertson AHF, Gerdes A (2015), International Journal of Earth Sciences, DOI 10.1007/s00531-015-1225-8. This work was supported by TUBITAK, Project no 111R015
Kimmeridgian Shales Total Petroleum System of the North Sea Graben Province
Gautier, Donald L.
2005-01-01
The North Sea Graben of northwestern Europe, World Energy Project Province 4025, is entirely offshore within the territorial waters of Denmark, Germany, the Netherlands, Norway, and the United Kingdom. Extensional tectonics and failed rifting are fundamental to the distribution of oil and gas in the province. Accordingly, the geologic history and reser-voir rocks of the province are considered in the context of their temporal relationship to the principal extension and rifting events. The oil and gas accumulations of the province are considered part of a single petroleum system: the Kimmeridg-ian Shales Total Petroleum System (TPS). Source rocks of the Kimmeridgian Shales TPS were deposited in Late Jurassic to earliest Cretaceous time during the period of intensive exten-sion and rifting. The Kimmeridgian Shales contain typical 'type II' mixed kerogen. Oil and gas generation began locally in the North Sea Graben Province by Cretaceous time and has continued in various places ever since. Reservoirs are found in strata with ages ranging from Devonian to Eocene. Pre-rift reservoirs are found in fault-block structures activated during rifting and can be of any age prior to the Late Jurassic. Syn-rift reservoirs are restricted to strata actually deposited during maximum extension and include rocks of Late Jurassic to earliest Cretaceous age. Post-rift reservoirs formed after rifting and range in age from Early Cretaceous to Eocene. Seals are diverse, depending upon the structural setting and reservoir age. Pre-rift reservoirs com-monly have seals formed by fine-grained, post-rift sedimentary sequences that drape the Late Jurassic to earliest Cretaceous structures. Contemporaneous shales such as the Kimmeridge Clay seal many syn-rift reservoirs. Fields with post-rift res-ervoirs generally require seals in fine-grained Tertiary rocks. In most of the North Sea Graben, source rocks have been continuously buried since deposition. Structural trap forma-tion has also taken place continuously since Mesozoic time. As a result, oil and gas are present in a wide variety of settings within Province 4025. Assessment units for the World Energy Project were defined geographically in order to capture regional differ-ences in exploration history, geography, and geological evolution. Three geographic areas were assessed. The Viking Graben, in the northern part of the province, includes both United Kingdom and Norwegian territorial areas. The Moray Firth/Witch Ground in the west-central part of the province is entirely in United Kingdom. waters. The Central Graben in the southern part of the province includes territorial areas of Denmark, Germany, the Netherlands, Norway, and the United Kingdom. The North Sea Graben is estimated to contain between 4.3 and 25.6 billion barrels (BBO) of undiscovered, conventionally recoverable oil. Of that total, the Viking Graben is believed to contain 2.2 to 14.8 BBO of undiscov-ered oil, the Moray Firth/Witch Ground may contain between 0.3 and 1.9 BBO, and the Central Graben was estimated to contain undiscovered oil resources of 1.7 to 8.8 BBO. Prov-ince 4025 was also estimated to hold between 11.8 and 75 trillion cubic feet (TCF) of undiscovered natural gas. Of this total, 6.8 to 44.5 TCF is thought to exist in the Viking Graben, 0.6 to 3.4 TCF is estimated to be in the Moray Firth/Witch Ground, and 4.5 to 27.1 TCF of undiscovered gas is estimated to be in the Central Graben.
Euryhaline ecology of early tetrapods revealed by stable isotopes.
Goedert, Jean; Lécuyer, Christophe; Amiot, Romain; Arnaud-Godet, Florent; Wang, Xu; Cui, Linlin; Cuny, Gilles; Douay, Guillaume; Fourel, François; Panczer, Gérard; Simon, Laurent; Steyer, J-Sébastien; Zhu, Min
2018-06-01
The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ 13 C, δ 18 O and δ 34 S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.
Merschat, Arthur J.; Hatcher, Robert D.; Byars, Heather E.; Gilliam, William G.; Eppes, Martha Cary; Bartholomew, Mervin J.
2012-01-01
The Inner Piedmont extends from North Carolina to Alabama and comprises the Neoacadian (360–345 Ma) orogenic core of the southern Appalachian orogen. Bordered to west by the Blue Ridge and the exotic Carolina superterrane to the east, the Inner Piedmont is cored by an extensive region of migmatitic, sillimanite-grade rocks. It is a composite of the peri-Laurentian Tugaloo terrane and mixed Laurentian and peri-Gondwanan affinity Cat Square terrane, which are exposed in several gentle-dipping thrust sheets (nappes). The Cat Square terrane consists of Late Silurian to Early Devonian pelitic schist and metagraywacke intruded by several Devonian to Mississippian peraluminous granitoids, and juxtaposed against the Tugaloo terrane by the Brindle Creek fault. This field trip through the North Carolina Inner Piedmont will examine the lithostratigraphies of the Tugaloo and Cat Square terranes, deformation associated with Brindle Creek fault, Devonian-Mississippian granitoids and charnockite of the Cat Square terrane, pervasive amphibolite-grade Devonian-Mississippian (Neoacadian) deformation and metamorphism throughout the Inner Piedmont, and existence of large crystalline thrust sheets in the Inner Piedmont. Consistent with field observations, geochronology and other data, we have hypothesized that the Carolina superterrane collided obliquely with Laurentia near the Pennsylvania embayment during the Devonian, overrode the Cat Square terrane and Laurentian margin, and squeezed the Inner Piedmont out to the west and southwest as an orogenic channel buttressed against the footwall of the Brevard fault zone.
Giles, Sam; Darras, Laurent; Clément, Gaël; Blieck, Alain; Friedman, Matt
2015-01-01
Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) ‘Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae. PMID:26423841
NASA Astrophysics Data System (ADS)
Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario
2018-04-01
We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.
NASA Astrophysics Data System (ADS)
Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.
2016-11-01
At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry. Reduced sulphur generation via thermochemical reduction of Late Devonian seawater sulphate produced positive δ34S values in sulphide minerals (+7.5‰ to +19.5‰), coupled with a suite of volatile components (CO2, CH4, C1-C4 hydrocarbons, N2) trapped in Stage 2 quartz. Many of these geochemical features developed during the final stages of fluid ascent, in a system where the fluid cooled close to the site of mineralisation. Using this information, we have modelled the metal transporting capacity of the deep hydrothermal fluid, which even at modest salinities (6 wt.% NaCl) was high (≫100 ppm Pb, Zn), owing to the combined effects of high temperature and low pH (⩽4.5). Therefore in SHMS systems, enhanced geothermal gradients and rapid fluid ascent (with minimal fluid cooling) are considered to be the most important factors for transporting high concentrations of base metals to the site of mineralisation.
Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacson, P.E.
1987-08-01
Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less
Torricelli
2000-02-01
A pelagic sedimentary succession, virtually complete from the Upper Hauterivian to the Upper Aptian and unconformably overlain by the Middle-Upper Albian p.p., was continuously cored in the Belluno Basin (southern Alps, NE Italy) as part of the APTICORE Program. APTICORE at Cismon Valley penetrated 131.8m of limestones, marls and black shales, with 100% recovery of good quality cored material.One hundred and forty-six samples recovered from the marl and shale beds of the Cismon core were processed and analyzed for palynomorphs. Most of them yielded relatively rich and fairly well preserved assemblages of marine and terrestrially-derived palynomorphs.The results of a qualitative study of dinoflagellate cysts and acritarchs are presented and discussed. The distributions of 150 taxa are tabulated against the chronostratigraphy independently established on the basis of original litho-, bio-, chemo-, magnetostratigraphic investigations and of correlations with extensively studied sections outcropping in the vicinity of the Cismon drill site.The acritarch Pinocchiodinium erbae gen. et sp. nov. is described. Due to its distinctive morphology and extremely constant occurrence also in the black shales of the Selli Level, it is proposed as a marker species for the Aptian sediments of the Tethys.The dinoflagellate cysts Kallosphaeridium dolomiticum sp. nov. and Nexosispinum hesperus brevispinosum subsp. nov. are described from the Upper Hauterivian. Additional taxonomic remarks are made about other dinoflagellate cyst species, including the emendations of Tanyosphaeridium magneticum Davies 1983 and Bourkidinium granulatum Morgan 1975.The biostratigraphic value of selected taxa is discussed and compared with data known both from the Tethyan and Boreal realms. In particular, the extinction of Bourkidinium granulatum emend. is proposed as the best dinoflagellate cyst event for the delimitation of the Hauterivian-Barremian boundary in the Northern Hemisphere. The first appearance datums of Prolixosphaeridium parvispinum and Odontochitina operculata, and the slightly younger last appearance datum of Nexosispinum vetusculum are confirmed as useful biohorizons for recognition of the lower part of the Upper Barremian and hence for the approximation of the Lower-Upper Barremian boundary. The last occurrences of Rhynchodiniopsis aptiana and Phoberocysta neocomica are calibrated in the basal Aptian.
Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process
NASA Astrophysics Data System (ADS)
Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang
2016-12-01
Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only relative brittleness under certain conditions. In field operations, both the relative brittleness and the brittleness obtained from seismic data or mineral composition should be considered to gain a more comprehensive knowledge of the brittleness of rock material.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Frank, N. K.; George, T. M.
2014-12-01
The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons.
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.
2017-01-01
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary. PMID:28685163
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary.« less
Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite
NASA Astrophysics Data System (ADS)
Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.
2015-12-01
The Marcellus Shale is currently the largest shale gas formation in play across the world. The low-permeability formation requires hydraulic fracturing to be produced. In this process, millions of gallons of water are blended with chemical additives and pumped into each well to fracture the reservoir rock. Although additives account for less than 2% of the fracking fluid mixture, they amount to hundreds of tons per frack job. The environmental properties of some of these additives have been studied, but their behavior under downhole conditions is not widely reported in the peer-reviewed literature. These compounds and their reaction products may return to the surface as produced or waste water. In the event of a spill or release, this water has the potential to contaminate surface soil and water. Of these additives, biocides may present a formidable challenge to water quality. Biocides are toxic compounds (by design), typically added to the Marcellus Shale to control bacteria in the well. An assessment of the most frequently used biocides indicated a need to study the chemical dazomet under reservoir conditions. The Marcellus Shale contains significant deposits of pyrite. This is a ubiquitous mineral within black shales that is known to react with organic compounds in both oxic and anoxic settings. Thus, the objective of our study was to determine the effect of pyrite on the hydrolysis of dazomet. Liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) was used to calculate the loss rate of aqueous dazomet. Gas chromatography-mass spectrometry (GC-MS) was used to identify the reaction products. Our experiments show that in water, dazomet rapidly hydrolyses in water to form organic and inorganic transformation products. This reaction rate was unaffected when performed under anoxic conditions. However, with pyrite we found an appreciable increase in the removal rate of dazomet. This was accompanied by a corresponding change in the distribution of observed reaction products. Our results indicate the need to determine specific mineral-additive interactions to evaluate the potential risks of chemical use in hydraulic fracturing.
Donnell, John R.
1961-01-01
The area of the Piceance Creek basin between the Colorado and White Rivers includes approximately 1,600 square miles and is characterized by an extensive plateau that rises 1,000 to more than 4,000 feet above the surrounding lowlands. Relief is greatest in Naval Oil-Shale Reserves Nos. 1 and 3 near the south margin of the area, where the spectacular Roan Cliffs tower above the valley of the Colorado River. The oldest rocks exposed in the mapped area are sandstone, shale, and coal beds of the Mesaverde group of Late Cretaceous age, which crop out along the east margin of the area. Overlying the Mesaverde is an unnamed sequence of dark-colored sandstone and shale, Paleocene in age. The Ohio Creek conglomerate, composed of black and red chert and quartzite pebbles in a white sandstone matrix, is probably the basal unit in the Paleocene sequence. The Wasatch formation of early Eocene age overlies the Paleocene sedimentary rocks. It is composed of brightly colored shale, lenticular beds of sandstone, and a few thin beds of fresh-water limestone. The Kasatch formation interfingers with and is overlain by the Green River formation of middle Eocene age. The Green River formation has been divided into the Douglas Creek, Garden Gulch, Anvil Points, Parachute Creek, and Evacuation Creek members. The basal and uppermost members, the Douglas Creek and Evacuation Creek, respectively, are predominantly sandy units. The two middle members, the Garden Gulch and Parachute Creek, are composed principally of finer clastic rocks. The Anvil Points member is present only on the southeast, east, and northeast margins of the area. It is a nearshore facies composed principally of sandstone and is the equivalent of the Douglas Creek, Garden Gulch, and the lower part of the Parachute Creek members. All of the richer exposed oil-shale beds are found in the Parachute Creek member, which is divided into two oil-shale zones by a series of low-grade oilshale beds. The upper oil-shale zone has several key beds and zones which can be traced throughout most of the mapped area. One of these, the Mahogany ledge or zone, is a group of very rich oil-shale beds at the base of the upper oil-shale zone. Drilling for oil and gas in the northeastern part of the area has revealed rich oil-shale zones in the Garden Gulch member also.Local unconformities within and at the base of the Evacuation Creek member are exposed at several places along Piceance Creek and at one place near the mouth of Yellow Creek; otherwise, the rock sequence is conformable. The mapped area is the major part of a large syncline, modified by numerous smaller structural features. Fractures, probably associated genetically with the minor structural features, are present in the central part of the area. These fractures are high-angle normal faults with small displacement. They occur in pairs with the intervening block downdropped. Two sets of joints are prominent, one trending northwest and the other northeast. The joint systems control the drainage pattern in the south-central part of the area. More than 20,000 feet of sedimentary rocks underlies the area. Many of the formations yield oil or gas in northwestern Colorado, northeastern Utah, and southwestern Wyoming. The Piceance Creek gas field, in which gas occurs in the Douglas Creek member of the Green River formation, is the largest oil or gas field discovered thus far within the area. About 7,000 million barrels of oil is contained in oil shale that yields an average of 45 gallons per ton from a continuous sequence 5 or more feet thick in the Mahogany zone. Oil shale in the Mahogany zone and adjacent beds that yields an average of 30 gallons of oil per ton from a continuous sequence 15 or more feet thick contains about 91,000 million barrels of oil. Similar shale in deeper zones in the northern part of the area, for which detailed estimates have not been prepared, are now known to contain at least an additional 72,000 million barrels of oil. Oil shale in a sequence 15 or more feet thick that yields an average of 25 gallons of oil per ton contains about 154,000 million barrels of oil in the Mahogany zone and adjacent beds; such shale in deeper zones in the northern part of the area probably contains at least an additional 157,000 million barrels of oil, although detailed estimates were not made. Oil shale in a sequence greater than 15 feet thick that yields an average of 15 gallons of oil per ton contains more than 900,000 million barrels of oil. These estimates of the oil content of the deposit do not take into account any loss in mining or processing of the shale.