18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...
East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.
2012-01-01
Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).
Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.
2016-04-11
Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.
This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationshipsmore » of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.« less
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...
18 CFR 270.303 - Natural gas produced from Devonian shale.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...
Sedimentology of gas-bearing Devonian shales of the Appalachian Basin
NASA Astrophysics Data System (ADS)
Potter, P. E.; Maynard, J. B.; Pryor, W. A.
1981-01-01
Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.
Eastern Devonian shales: Organic geochemical studies, past and present
Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.
1983-01-01
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.
Eastern Devonian shales: Organic geochemical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, I.A.; Hatchner, P.G.; Miknis, F.P.
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less
Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids
The Devonian Marcellus Shale and Millboro Shale
Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.
2014-01-01
The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.
Geology of the Devonian black shales of the Appalachian basin
Roen, J.B.
1983-01-01
Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.
Enomoto, Catherine B.; Coleman, James L.; Haynes, John T.; Whitmeyer, Steven J.; McDowell, Ronald R.; Lewis, J. Eric; Spear, Tyler P.; Swezey, Christopher S.
2012-01-01
Detailed and reconnaissance field mapping and the results of geochemical and mineralogical analyses of outcrop samples indicate that the Devonian shales of the Broadtop Synclinorium from central Virginia to southern Pennsylvania have an organic content sufficiently high and a thermal maturity sufficiently moderate to be considered for a shale gas play. The organically rich Middle Devonian Marcellus Shale is present throughout most of the synclinorium, being absent only where it has been eroded from the crests of anticlines. Geochemical analyses of outcrop and well samples indicate that hydrocarbons have been generated and expelled from the kerogen originally in place in the shale. The mineralogical characteristics of the Marcellus Shale samples from the Broadtop Synclinorium are slightly different from the averages of samples from New York, Pennsylvania, northeast Ohio, and northern West Virginia. The Middle Devonian shale interval is moderately to heavily fractured in all areas, but in some areas substantial fault shearing has removed a regular "cleat" system of fractures. Conventional anticlinal gas fields in the study area that are productive from the Lower Devonian Oriskany Sandstone suggest that a continuous shale gas system may be in place within the Marcellus Shale interval at least in a portion of the synclinorium. Third-order intraformational deformation is evident within the Marcellus shale exposures. Correlations between outcrops and geophysical logs from exploration wells nearby will be examined by field trip attendees.
Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they closely approximate the thermal maturity patterns in the Marcellus Shale, Upper Devonian Rhinestreet Shale Member, and Upper Devonian Huron Member of the Ohio Shale, which are the most important source rocks for oil and gas in the Appalachian basin (de Witt and Milici, 1989; Klemme and Ulmishek, 1991). The Marcellus, Rhinestreet, and Huron units are black-shale source rocks for oil and (or) gas in the Lower Devonian Oriskany Sandstone, the Upper Devonian sandstones, the Middle and Upper Devonian black shales, and the Upper Devonian-Lower Mississippian(?) Berea Sandstone (Patchen and others, 1992; Roen and Kepferle, 1993; Laughrey and Baldassare, 1998).
Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.
2011-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).
Subsurface stratigraphy of upper Devonian clastics in southern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, D.W.; Patchen, D.G.
Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less
Barnett, S.F.; Ettensohn, F.R.; Norby, R.D.
1996-01-01
Black shales previously interpreted to be Late Devonian cave-fill or slide deposits are shown to be much older Middle Devonian black shales only preserved locally in Middle Devonian grabens and structural lows in central Kentucky. This newly recognized - and older -black-shale unit occurs at the base of the New Albany Shale and is named the Carpenter Fork Bed of the Portwood Member of the New Albany Shale after its only known exposure on Carpenter Fork in Boyle County, central Kentucky; two other occurrences are known from core holes in east-central Kentucky. Based on stratigraphic position and conodont biostratigraphy, the unit is Middle Devonian (Givetian: probably Middle to Upper P. varcus Zone) in age and occurs at a position represented by an unconformity atop the Middle Devonian Boyle Dolostone and its equivalents elsewhere on the outcrop belt. Based on its presence as isolated clasts in the overlying Duffin Bed of the Portwood Member, the former distribution of the unit was probably much more widespread - perhaps occurring throughout western parts of the Rome trough. Carpenter Fork black shales apparently represent an episode of subsidence or sea-level rise coincident with inception of the third tectophase of the Acadian orogeny. Deposition, however, was soon interrupted by reactivation of several fault zones in central Kentucky, perhaps in response to bulge migration accompanying start of the tectophase. As a result, much of central Kentucky was uplifted and tilted, and the Carpenter Fork Bed was largely eroded from the top of the Boyle, except in a few structural lows like the Carpenter Fork graben where a nearly complete record of Middle to early Late Devonian deposition is preserved.
Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, I.M.; Frankie, W.T.; Moody, J.R.
The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less
Geology of the Devonian black shales of the Appalachian Basin
Roen, J.B.
1984-01-01
Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankie, W.T.
The Kentucky Geological Survey (KGS) at the University of Kentucky is conducting a 2-year research project funded by the Gas Research Institute (GRI) to study hydrocarbon production from the Devonian shale in eastern Kentucky. Objectives are to develop an understanding of relationships between stratigraphy and hydrocarbon production, create a data base, and prepare geologic reports for each county in the study area. Data were compiled from the KGS, GRI Eastern Gas Data System (EGDS), U. S. Department of Energy (DOE), and industry. Research for Letcher County was completed and 270 Devonian wells were entered into the KGS computer data base.more » Devonian black-shale units were correlated using gamma-ray logs. Structure and isopach maps, and stratigraphic cross sections have been constructed. An isopotential map defining areas of equal initial gas production has been prepared. Statistics for Letcher County have been run on the data base using Datatrieve software package. Statistical analyses focused on different types of formation treatments and the resulting production. Temperature logs were used to detect gas-producing intervals within the Mississippian-Devonian black-shale sequence. The results of the research provide the petroleum industry with a valuable tool for gas exploration in the Devonian shales.« less
Hackley, Paul C.; Ryder, Robert T.; Trippi, Michael H.; Alimi, Hossein
2013-01-01
To better estimate thermal maturity of Devonian shales in the northern Appalachian Basin, eleven samples of Marcellus and Huron Shale were characterized via multiple analytical techniques. Vitrinite reflectance, Rock–Eval pyrolysis, gas chromatography (GC) of whole rock extracts, and GC–mass spectrometry (GCMS) of extract saturate fractions were evaluated on three transects that lie across previously documented regional thermal maturity isolines. Results from vitrinite reflectance suggest that most samples are immature with respect to hydrocarbon generation. However, bulk geochemical data and sterane and terpane biomarker ratios from GCMS suggest that almost all samples are in the oil window. This observation is consistent with the presence of thermogenic gas in the study area and higher vitrinite reflectance values recorded from overlying Pennsylvanian coals. These results suggest that vitrinite reflectance is a poor predictor of thermal maturity in early mature areas of Devonian shale, perhaps because reported measurements often include determinations of solid bitumen reflectance. Vitrinite reflectance interpretations in areas of early mature Devonian shale should be supplanted by evaluation of thermal maturity information from biomarker ratios and bulk geochemical data.
Rowan, E.L.; Kraemer, T.F.
2012-01-01
Samples of natural gas were collected as part of a study of formation water chemistry in oil and gas reservoirs in the Appalachian Basin. Nineteen samples (plus two duplicates) were collected from 11 wells producing gas from Upper Devonian sandstones and the Middle Devonian Marcellus Shale in Pennsylvania. The samples were collected from valves located between the wellhead and the gas-water separator. Analyses of the radon content of the gas indicated 222Rn (radon-222) activities ranging from 1 to 79 picocuries per liter (pCi/L) with an overall median of 37 pCi/L. The radon activities of the Upper Devonian sandstone samples overlap to a large degree with the activities of the Marcellus Shale samples.
Enomoto, Catherine B.; Trippi, Michael H.; Higley, Debra K.; Rouse, William A.; Dulong, Frank T.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Marra, Kristen R.; Le, Phuong A.; Woodall, Cheryl A.; Schenk, Christopher J.
2018-04-19
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 10.7 trillion cubic feet of natural gas in Upper Devonian shales of the Appalachian Basin Province.
Devonian-Carboniferous boundary succession in Eastern Taurides, Turkey
NASA Astrophysics Data System (ADS)
Atakul-Özdemir, Ayşe; Altıner, Demir; Özkan-Altıner, Sevinç
2015-04-01
The succession covering the Devonian-Carboniferous boundary in Eastern Taurides comprises mainly limestones, shales and siltstones. The studied section starts at the base with bioturbated limestones alternating with shales and is followed upwards by platy limestones, and continues with the alternations of bioturbated and platy limestones. Towards the upper part of the succession the alternations of limestone, shales and siltstones reappear again and the top of the section is capped by quartz arenitic sandstone. The studied section spanning the Uppermost Devonian-Lower Carboniferous interval yields a not very abundant, but quite important assemblage of conodont taxa including species of Bispathodus, Polygnathus, Palmatolepis, Spathognathodus and Vogelgnathus. The uppermost Devonian part of the succession is characterized by the presence of Bispathodus costatus, Bispathodus aculeatus aculeatus, Polygnathus communis communis, Palmatolepis gracilis gracilis and Spathognathodus sp.. The Lower Carboniferous in the studied section is represented by the appearance of Polygnathus inornatus and Polygnathus communis communis. Based on the recovered conodont assemblages, Devonian-Carboniferous boundary in Eastern Turides has been determined by the appearance and disappearance of major conodont species.
18 CFR 270.306 - Devonian shale wells in Michigan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Devonian shale wells in Michigan. 270.306 Section 270.306 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) Attesting the applicant has no knowledge of any information not described in the application which is...
NASA Astrophysics Data System (ADS)
Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao
2018-05-01
Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, P.E.; Maynard, J.B.; Pryor, W.A.
Studies of shales in the Appalachian area are reported (mainly in the form of abstracts of reports or manuscripts). They discuss the geology, lithology, stratigraphy, radioactivity, organic matter, the isotopic abundance of carbon and sulfur isotopes, etc. of shales in this area with maps. One report discusses Devonian paliocurrents in the central and northern Appalachian basin. Another discusses sedimentology of the Brallier Formation. The stratigraphy of upper Devonian shales along the southern shore of Lake Erie was also studied. (LTN)
NASA Astrophysics Data System (ADS)
Hamilton, Stewart M.; Grasby, Stephen E.; McIntosh, Jennifer C.; Osborn, Stephen G.
2015-02-01
Baseline groundwater geochemical mapping of inorganic and isotopic parameters across 44,000 km2 of southwestern Ontario (Canada) has delineated a discreet zone of natural gas in the bedrock aquifer coincident with an 8,000-km2 exposure of Middle Devonian shale. This study describes the ambient geochemical conditions in these shales in the context of other strata, including Ordovician shales, and discusses shale-related natural and anthropogenic processes contributing to hydrogeochemical conditions in the aquifer. The three Devonian shales—the Kettle Point Formation (Antrim equivalent), Hamilton Group and Marcellus Formation—have higher DOC, DIC, HCO3, CO2(aq), pH and iodide, and much higher CH4(aq). The two Ordovician shales—the Queenston and Georgian-Bay/Blue Mountain Formations—are higher in Ca, Mg, SO4 and H2S. In the Devonian shale region, isotopic zones of Pleistocene-aged groundwater have halved in size since first identified in the 1980s; potentiometric data implicate regional groundwater extraction in the shrinkage. Isotopically younger waters invading the aquifer show rapid increases in CH4(aq), pH and iodide with depth and rapid decrease in oxidized carbon species including CO2, HCO3 and DIC, suggesting contemporary methanogenesis. Pumping in the Devonian shale contact aquifer may stimulate methanogenesis by lowering TDS, removing products and replacing reactants, including bicarbonate, derived from overlying glacial sedimentary aquifers.
Late Devonian shale deposition based on known and predicted occurrence of Foerstia in Michigan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, R.D.
The fossil Foerstia (Protosalvinia) marks a time zone within Late Devonian shale sequences in the eastern US. Its recent discovery in Michigan has led to more accurate correlations among the three large eastern basins. Subdivisions of the Devonian-Mississippi shale sequence in Michigan based on gamma-ray correlations reveal an idealized black shale geometry common to other eastern black shales, such as the Sunbury of Michigan and Ohio, the Clegg Creek of Indiana, the Dunkirk of Pennsylvania and New York, and the lower Huron of Ohio and West Virginia. In Michigan, Foerstia occurs at a stratigraphic position postulated to mark a majormore » change in depositional conditions and source areas. This position strengthens the physical and paleontologic evidence for a formal division of the Antrim. Isopach maps of the shale sequence above and below Foerstia show a relatively uniform and continuous black shale deposit (units 1A, 1B, and 1C) below Foerstia. This deposit is unlike the wedge of sediment found above Foerstia, which is composed of a western facies (Ellsworth) and an eastern facies (upper Antrim) that should be combined in a single stratigraphic unit conforming to Forgotson's concept of a format.« less
West, Mareta N.
1978-01-01
The U.S. Geological Survey (USGS), in a cooperative agreement with the U.S. Department of Energy (DOE), is participating in the Eastern Gas Shales Project. The purpose of the DOE project is to increase the production of natural gas from eastern United States shales in petroliferous basins through improved exploration and extraction techniques. The USGS participation includes stratigraphic studies which will contribute to the characterization and appraisal of the natural gas resources of Devonian shale in the Appalachian basin.This cross section differs from others in this series partly because many of the shales in the eastern part of the basin are less radioactive than those farther west and because in this area shales that may be gas-productive are not necessarily highly radioactive and black.
Enomoto, Catherine B.; Coleman, James L.; Swezey, Christopher S.; Niemeyer, Patrick W.; Dulong, Frank T.
2015-01-01
The presence of conventional anticlinal gas fields in the study area that are productive from the underlying Lower Devonian Oriskany Sandstone suggests that an unconventional (or continuous) shale gas system may be in place within the Marcellus Shale in the study area. Results of this study indicate that the Marcellus Shale in the Broadtop synclinorium generally is similar in organic geochemical nature throughout its extent, and based on the sample analyses, there are no clearly identifiable high potential areas (or “sweet spots”) in the study area. This report contains analyses of 132 outcrop and well drill-cuttings samples.
Drilling of a deviated well: E. C. Newell 10056-D Meigs County, Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, J.A.
1982-09-30
The Department of Energy's (DOE) Eastern Gas Shales Program (EGSP) has focused primarily on the resource characterization of the Devonian shales in the Appalachian, Michigan and Illinois Basins, where the collective volume of gas in place is estimated to be on the order of 280 Tcf. From an early assessment of the petrophysical properties of these shales, attention now has turned to an understanding of the mechanisms controlling production of this unconventional-gas source. However, present knowledge of the production history of the Devonian shales is inadequate for an accurate estimation of the gas reserves, the optimum well spacing for gasmore » extraction, and the preferred stimulation techniques to be used. As part of this program, a Deviated Well Test was designed to evaluate the spacing of natural fractures in the Devonian shale in Meigs County, Ohio as a follow-on test to further define shale production characteristics and to assess the benefit of additional section gained by drilling through the producing interval at the approximate angle for dip of 60/sup 0/ from vertical. The Columbia Gas Transmission Company, E.C. Newell 10056-D well, on the same site as a previous Off-Set Well Test, was selected for this investigation. This report summarizes drilling operations on this Deviated Well Test.« less
Indirect and direct tensile behavior of Devonian oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.P.; Chen, J.L.; Dana, G.F.
1984-03-01
Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less
Benefits of applying technology to Devonian shale wells. Topical report, July-December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voneiff, G.W.; Gatens, J.M.
1993-01-01
The report summarizes the benefits of applying technology to Devonian Shales wells in the Appalachian Basin. The results of the work suggest that an intermediate level of technology application, with an incremental cost of $6,700/well, is best for routine application in the Devonian Shales. The technology level uses conventional well tests, rock mechanical properties logs, a borehole camera, and a moderate logging suite. Most of these tools and technologies should be used on only a portion of the wells in multi-well projects, reducing the per well cost of the technology. Determining the correct reservoir description is critical to optimizing themore » stimulation treatment. The most critical reservoir properties are bulk and matrix permeabilities, net pay, stress profile, and natural fracture spacing in the direction perpendicular to induced hydraulic fractures. Applying technology to improve the accuracy of the reservoir description can significantly increase well profitability.« less
Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.
2015-01-01
Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.
Epstein, J.B.
1986-01-01
The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author
NASA Astrophysics Data System (ADS)
Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray
2018-05-01
SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.
Alligator ridge district, East-Central Nevada: Carlin-type gold mineralization at shallow depths
Nutt, C.J.; Hofstra, A.H.
2003-01-01
Carlin-type deposits in the Alligator Ridge mining district are present sporadically for 40 km along the north-striking Mooney Basin fault system but are restricted to a 250-m interval of Devonian to Mississippian strata. Their age is bracketed between silicified ca. 45 Ma sedimentary rocks and unaltered 36.5 to 34 Ma volcanic rocks. The silicification is linked to the deposits by its continuity with ore-grade silicification in Devonian-Mississippian strata and by its similar ??18O values (_e1???17???) and trace element signature (As, Sb, Tl, Hg). Eocene reconstruction indicates that the deposits formed at depths of ???300 to 800 m. In comparison to most Carlin-type gold deposits, they have lower Au/Ag, Au grades, and contained Au, more abundant jasperoid, and textural evidence from deposition of an amorphous silica precursor in jasperoid. These differences most likely result from their shallow depth of formation. The peak fluid temperature (_e1???230??C) and large ??18OH2O value shift from the meteroric water line (_e1???20???) suggest that ore fluids were derived from depths of 8 km or more. A magnetotelluric survey indicates that the Mooney Basin fault system penetrates to mid-crustal depths. Deep circulation of meteoric water along the Mooney Basin fault system may have been in response to initial uplift of the East Humboldt-Ruby Mountains metamorphic core complex; convection also may have been promoted by increased heat flow associated with large magnitude extension in the core complex and regional magmatism. Ore fluids ascended along the fault system until they encountered impermeable Devonian and Mississippian shales, at which point they moved laterally through permeable strata in the Devonian Guilmette Formation, Devonian-Mississippian Pilot Shale, Mississippian Joana Limestone, and Mississippian Chainman Shale toward erosional windows where they ascended into Eocene fluvial conglomerates and lake sediments. Most gold precipitated by sulfidation of host-rock Fe and mixing with local ground water in zones of lateral fluid flow in reactive strata, such as the Lower Devonian-Mississippian Pilot Shale.
Organic metamorphism in the Lower Mississippian-Upper Devonian Bakken shales-II: Soxhlet extraction.
Price, L.C.; Ging, T.; Love, A.; Anders, D.
1986-01-01
We report on Soxhlet extraction (and subsequent related analyses) of 39 Lower Mississippian-Upper Devonian Bakken shales from the North Dakota portion of the Williston Basin, and analyses of 28 oils from the Basin. Because of the influence of primary petroleum migration, no increase in the relative or absolute concentrations of hydrocarbons or bitumen was observed at the threshold of intense hydrocarbon generation (TIHG), or during mainstage hydrocarbon generation in the Bakken shales. Thus, the maturation indices that have been so useful in delineating the TIHG and mainstage hydrocarbon generation in other studies were of no use in this study, where these events could clearly be identified only by Rock-Eval pyrolysis data. The data of this study demonstrate that primary petroleum migration is a very efficient process. Four distinctive classes of saturated hydrocarbon gas chromatograms from the Bakken shales arose from facies, maturation, and primary migration controls. As a consequence of maturation, the % of saturated hydrocarbons increased in the shale extract at the expense of decreases in the resins and asphaltenes. Measurements involving resins and asphaltenes appear to be excellent maturation indices in the Bakken shales. Two different and distinct organic facies were present in immature Bakken shales. -from Authors
Upper Devonian outcrop stratigraphy, southwestern Virginia and southeastern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennison, J.M.; Filer, J.K.; Rossbach, T.J.
Ongoing outcrop studies are resulting in the extension of existing formal lithostratigraphic units and revision of previously less refined subdivisions of Upper Devonian strata in southwestern Virginia and southeastern West Virginia. A 425 km (263 mi) long stratigraphic cross-section has been constructed primarily from the outcrop belt along the Allegheny Structural Front, supplemented by sections from nearby outcrop belts. This NE-SW striking cross-section is oblique to the nearly due N-S depositional strike of the Upper Devonian Acadian orogenic wedge. To the southwest, the Upper Devonian section thins from 2,100 meters (6,900 feet) to 230 meters (756 feet) as progressively moremore » distal deposits are encountered. An integrated approach has been taken to establish chronostratigraphic control within the cross-section. The best time markers include particularly regressive parasequences which can be identified across facies boundaries (especially the Pound and Briery Gap Sandstones and their equivalents), volcanic ashes, and an organic-rich shale zone marking the base of a major transgression (equivalent to the base of the Huron Shale in Ohio and the Dunkirk Shale of New York). These tools provide chronostratigraphic correlation through the undivided Brallier Formation. Supplemental control includes biostratigraphic markers as well as marine dull redbeds within the Foreknobs which parallel other time lines and may represent partially reduced influxes of oxidized coastal plain sediments during minor parasequence scale regressions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, R.E.; Nance, S.W.
On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
18 CFR 270.101 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fractures, pores and bedding planes of coal seams. (7) Natural gas produced from Devonian shale means natural gas produced from fractures, micropores and bedding planes of shales deposited during the... General Definitions § 270.101 General definitions. (a) NGPA definitions. Terms defined in the Natural Gas...
Organic content of Devonian shale in western Appalachian basin.
Schmoker, J.W.
1980-01-01
In the organic-rich facies of the Devonian shale in the western part of the Appalachian basin, the distribution of organic matter provides an indirect measure of both gas in place and the capacity of the shale to supply gas to permeable pathways.The boundary between organic-rich ('black') and organic-poor ('gray') facies is defined here as 2% organic content by volume. The thickness of organic-rich facies ranges from 200ft in central Kentucky to 1000ft along the Kentucky-West Virginia border. The average content of the organic-rich facies increases from 5% by volume on the edge to 16% in central Kentucky. The net thickness of organic matter in the organic-rich facies shows the amount of organic material in the shale, and is the most fundamental of the organic-content characterizations. Net thickness of organic matter ranges between 20 and 80ft (6.1 and 24.4m) within the mapped area.-from Author
Hosterman, John W.; Loferski, Patricia J.
1978-01-01
The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertainmore » to the Devonian gas shales of the Appalachian basin in Pennsylvania. Geologic data and interpretations are summarized and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented.« less
Scott, Clinton T.; Slack, John F.; Kelley, Karen Duttweiler
2017-01-01
Black shales of the Late Devonian to Early Mississippian Bakken Formation are characterized by high concentrations of organic carbon and the hyper-enrichment (> 500 to 1000s of mg/kg) of V and Zn. Deposition of black shales resulted from shallow seafloor depths that promoted rapid development of euxinic conditions. Vanadium hyper-enrichments, which are unknown in modern environments, are likely the result of very high levels of dissolved H2S (~ 10 mM) in bottom waters or sediments. Because modern hyper-enrichments of Zn are documented only in Framvaren Fjord (Norway), it is likely that the biogeochemical trigger responsible for Zn hyper-enrichment in Framvaren Fjord was also present in the Bakken basin. With Framvaren Fjord as an analogue, we propose a causal link between the activity of phototrophic sulfide oxidizing bacteria, related to the development of photic-zone euxinia, and the hyper-enrichment of Zn in black shales of the Bakken Formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochen, J.E.; Hopkins, C.W.
1993-12-31
;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence ofmore » benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.« less
Dyman, T.S.; Wilcox, L.A.
1983-01-01
The U.S. Geological Survey and Petroleum Information Corporation in Denver, Colorado, developed the Eastern Gas Shale Project (EGSP)Data System for the U.S. Department of Energy, Morgantown, West Virginia. Geological, geochemical, geophysical, and engineering data from Devonian shale samples from more than 5800 wells and outcrops in the Appalachian basin were edited and converted to a Petroleum Information Corporation data base. Well and sample data may be retrieved from this data system to produce (1)production-test summaries by formation and well location; (2)contoured isopach, structure, and trendsurface maps of Devonian shale units; (3)sample summary reports for samples by location, well, contractor, and sample number; (4)cross sections displaying digitized log traces, geochemical, and lithologic data by depth for wells; and (5)frequency distributions and bivariate plots. Although part of the EGSP Data System is proprietary, and distribution of complete well histories is prohibited by contract, maps and aggregated well-data listings are being made available to the public through published reports. ?? 1983 Plenum Publishing Corporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
A review of the organic geochemistry of shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.; Meyer, R.E.
1987-06-01
Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less
Barbot, Elise; Vidic, Natasa S; Gregory, Kelvin B; Vidic, Radisav D
2013-03-19
The exponential increase in fossil energy production from Devonian-age shale in the Northeastern United States has highlighted the management challenges for produced waters from hydraulically fractured wells. Confounding these challenges is a scant availability of critical water quality parameters for this wastewater. Chemical analyses of 160 flowback and produced water samples collected from hydraulically fractured Marcellus Shale gas wells in Pennsylvania were correlated with spatial and temporal information to reveal underlying trends. Chloride was used as a reference for the comparison as its concentration varies with time of contact with the shale. Most major cations (i.e., Ca, Mg, Sr) were well-correlated with chloride concentration while barium exhibited strong influence of geographic location (i.e., higher levels in the northeast than in southwest). Comparisons against brines from adjacent formations provide insight into the origin of salinity in produced waters from Marcellus Shale. Major cations exhibited variations that cannot be explained by simple dilution of existing formation brine with the fracturing fluid, especially during the early flowback water production when the composition of the fracturing fluid and solid-liquid interactions influence the quality of the produced water. Water quality analysis in this study may help guide water management strategies for development of unconventional gas resources.
NASA Astrophysics Data System (ADS)
Loevezijn, Gerard B. S. van; Raven, J. G. M.
2017-12-01
The Santa Lucía Formation represents the major phase in Devonian reef development of the Cantabrian Zone (Cantabrian Mountains, northwest Spain). In the present study the transition from the carbonate platform deposits of the Santa Lucía Formation to the overlying euxinic basinal deposits of the Huergas Formation is described. These transitional strata are connected to the Basal Choteč Event and represent a condensed sedimentation of micritic dark-grey and black limestones with an upward increase of dark shale intercalations with iron mineralisation surfaces and storm-induced brachiopod coquinas. The transitional beds are grouped into a new unit, the Cabornera Bed, which consists of limestone, limestone-shale and shale facies associations, representing a sediment-starved euxinic offshore area just below the storm wave base. Four stages in reef decline can be recognised: a reef stage, an oxygen-depleted, nutrient-rich stage, a siliciclastic-influx stage and a pelagic-siliciclastic stage. Additional geochemical and geophysical investigations are needed to verify the results presented herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrinak, V.M.
The Eastern Devonian Gas Shales Technology Review is a technology transfer vehicle designed to keep industry and research organizations aware of major happenings in the shales. Four issues were published, and the majority of the readership was found to be operators. Under the other major task in this project, areal and analytic analyses of the basin resulted in reducing the study area by 30% while defining a rectangular coordinate system for the basin. Shale-well cost and economic models were developed and validated, and a simplified flow model was prepared.
NASA Astrophysics Data System (ADS)
Li, Yifan; Schieber, Juergen
2015-11-01
The Devonian Chattanooga Shale contains an uppermost black shale interval with dispersed phosphate nodules. This interval extends from Tennessee to correlative strata in Kentucky, Indiana, and Ohio and represents a significant period of marine phosphate fixation during the Late Devonian of North America. It overlies black shales that lack phosphate nodules but otherwise look very similar in outcrop. The purpose of this study is to examine what sets these two shales apart and what this difference tells us about the sedimentary history of the uppermost Chattanooga Shale. In thin section, the lower black shales (PBS) show pyrite enriched laminae and compositional banding. The overlying phosphatic black shales (PhBS) are characterized by phosbioclasts, have a general banded to homogenized texture with reworked layers, and show well defined horizons of phosphate nodules that are reworked and transported. In the PhBS, up to 8000 particles of P-debris per cm2 occur in reworked beds, whereas the background black shale shows between 37-88 particles per cm2. In the PBS, the shale matrix contains between 8-16 phosphatic particles per cm2. The shale matrix in the PhBS contains 5.6% inertinite, whereas just 1% inertinite occurs in the PBS. The shale matrix in both units is characterized by flat REE patterns (shale-normalized), whereas Phosbioclast-rich layers in the PhBS show high concentrations of REEs and enrichment of MREEs. Negative Ce-anomalies are common to all samples, but are best developed in association with Phosbioclasts. Redox-sensitive elements (Co, U, Mo) are more strongly enriched in the PBS when compared to the PhBS. Trace elements associated with organic matter (Cu, Zn, Cd, Ni) show an inverse trend of enrichment. Deposited atop a sequence boundary that separates the two shale units, the PhBS unit represents a transgressive systems tract and probably was deposited in shallower water than the underlying PBS interval. The higher phosphate content in the PhBS is interpreted as the result of a combination of lower sedimentation rates with reworking/winnowing episodes. Three types of phosphatic beds that reflect different degrees of reworking intensity are observed. Strong negative Ce anomalies and abundant secondary marcasite formation in the PhBS suggests improved aeration of the water column, and improved downward diffusion of oxygen into the sediment. The associated oxidation of previously formed pyrite resulted in a lowering of pore water pH and forced dissolution of biogenic phosphate. Phosphate dissolution was followed by formation of secondary marcasite and phosphate. Repeated, episodic reworking caused repetitive cycles of phosphatic dissolution and reprecipitation, enriching MREEs in reprecipitated apatite. A generally "deeper" seated redox boundary favored P-remineralization within the sediment matrix, and multiple repeats of this process in combination with wave and current reworking at the seabed led to the formation of larger phosphatic aggregates and concentration of phosphate nodules in discrete horizons.
The geology of Burnsville Cove, Bath and Highland Counties, Virginia
Swezey, Christopher; Haynes, John T.; Lambert, Richard A.; White, William B.; Lucas, Philip C.; Garrity, Christopher P.
2015-01-01
Burnsville Cove is a karst region in Bath and Highland Counties of Virginia. A new geologic map of the area reveals various units of limestone, sandstone, and siliciclastic mudstone (shale) of Silurian through Devonian age, as well as structural features such as northeast-trending anticlines and synclines, minor thrust faults, and prominent joints. Quaternary features include erosional (strath) terraces and accumulations of mud, sand, and gravel. The caves of Burnsville Cove are located within predominantly carbonate strata above the Silurian Williamsport Sandstone and below the Devonian Oriskany Sandstone. Most of the caves are located within the Silurian Tonoloway Limestone, rather than the Silurian-Devonian Keyser Limestone as reported previously.
Nilsen, T.H.; Moore, T.E.
1982-01-01
The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak Creek are typically organized into fining-upward fluvial cycles. The maximum clast size is about 3 cm in this area. The Kanayut in this region is 200-500 m thick and can be divided into the Ear Peak, Shainin Lake, and Stuver Members. The upper contact of the Kanayut with the Kayak Shale is very gradational at Kakivilak Creek and very abrupt at Siavlat Mountain. Paleocurrents from fluvial strata of the Kanayut indicate sediment transport toward the west and south in both the western and central Brooks Range. The maximum clast size distribution generally indicates westward fining from the Shainin Lake region.
Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.
1994-01-01
Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.
Perkins, R.B.; Piper, D.Z.; Mason, C.E.
2008-01-01
The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Beverly; Harris, David; Keith, Brian
2008-06-30
This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons,more » and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering allmore » the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.« less
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.
2010-01-01
Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.
Cramer, Bradley D.; Saltzman, Matthew R.; Day, J.E.; Witzke, B.J.
2008-01-01
Latest Famennian marine carbonates from the mid-continent of North America were examined to investigate the Late Devonian (very late Famennian) Hangenberg positive carbon-isotope (??13 Ccarb) excursion. This global shift in the ?? 13C of marine waters began during the late Famennian Hangenberg Extinction Event that occurred during the Middle Siphonodella praesulcata conodont zone. The post-extinction recovery interval spans the Upper S. praesulcata Zone immediately below the Devonian-Carboniferous boundary. Positive excursions in ?? 13 Ccarb are often attributed to the widespread deposition of organic-rich black shales in epeiric sea settings. The Hangenberg ??13 Ccarb excursion documented in the Louisiana Limestone in this study shows the opposite trend, with peak ??13 Ccarb values corresponding to carbonate production in the U.S. mid-continent during the highstand phase of the very late Famennian post-glacial sea level rise. Our data indicate that the interval of widespread black shale deposition (Hangenberg Black Shale) predates the peak isotope values of the Hangenberg ??13 Ccarb excursion and that peak values of the Hangenberg excursion in Missouri are not coincident with and cannot be accounted for by high Corg burial in epeiric seas. We suggest instead that sequestration and burial of Corg in the deep oceans drove the peak interval of the ??13Ccarb excursion, as a result of a change in the site of deep water formation to low-latitude epeiric seas as the global climate shifted between cold and warm states.
NASA Astrophysics Data System (ADS)
Wegerer, Eva; Sachsenhofer, Reinhard; Misch, David; Aust, Nicolai
2016-04-01
Mineralogical data of 112 core samples from 12 wells are used to investigate lateral and vertical variations in the lithofacies of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets-Basin. Sulphur and carbonate contents as well as organic geochemical parameters, including TOC and Hydrogen Index have been determined on the same sample set within the frame of an earlier study (Sachsenhofer et al. 2010). This allows the correlation of inorganic and organic composition of the black shales. Aims of the study are to distinguish between detrital and authigenic minerals, to relate the lithofacies of the black shales with the tectono-stratigraphic sequences of the Dniepr-Donets Basin, to contribute to the reconstruction of the depositional environment and to relate diagenetic processes with the thermal history of the basin. Mineral compositions were determined primarily using XRD-measurements applying several measurement procedures, e.g. chemical and temperature treatment, and specific standards. Major differences exist in the mineralogical composition of the black shales. For example, clay mineral contents range from less than 20 to more than 80 Vol%. Kaolinite contents are significantly higher in rocks with a Tournaisian or Early Visean age than in any other stratigraphic unit. This is also true for two Lower Visean coal samples from the shallow north-westernmost part of the basin. Chlorite contents reach maxima in uppermost Visean and overlying rocks. Quartz contents are often high in Upper Visean rocks and reach maxima in Bashkirian units. Feldspar-rich rocks are observed in Devonian sediments from the north-western part of the study area and may reflect the proximity to a sediment source. Carbonate contents are typically low, but reach very high values in some Tournaisian, Lower Visean and Serpukhovian samples. Pyrite contents reach maxima along the basin axis in Tournaisian and Visean rocks reflecting anoxic conditions. Mixed layer minerals are dominated by illite. Their presence in samples from depth exceeding 5 km reflects the low thermal overprint of Paleozoic rocks in the north-western Dniepr-Donets-Basin.
Dissolved methane in New York groundwater, 1999-2011
Kappel, William M.; Nystrom, Elizabeth A.
2012-01-01
New York State is underlain by numerous bedrock formations of Cambrian to Devonian age that produce natural gas and to a lesser extent oil. The first commercial gas well in the United States was dug in the early 1820s in Fredonia, south of Buffalo, New York, and produced methane from Devonian-age black shale. Methane naturally discharges to the land surface at some locations in New York. At Chestnut Ridge County Park in Erie County, just south of Buffalo, N.Y., several surface seeps of natural gas occur from Devonian black shale, including one behind a waterfall. Methane occurs locally in the groundwater of New York; as a result, it may be present in drinking-water wells, in the water produced from those wells, and in the associated water-supply systems (Eltschlager and others, 2001). The natural gas in low-permeability bedrock formations has not been accessible by traditional extraction techniques, which have been used to tap more permeable sandstone and carbonate bedrock reservoirs. However, newly developed techniques involving horizontal drilling and high-volume hydraulic fracturing have made it possible to extract previously inaccessible natural gas from low-permeability bedrock such as the Marcellus and Utica Shales. The use of hydraulic fracturing to release natural gas from these shale formations has raised concerns with water-well owners and water-resource managers across the Marcellus and Utica Shale region (West Virginia, Pennsylvania, New York and parts of several other adjoining States). Molofsky and others (2011) documented the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus gas-development activities, although pre-development samples were not available for comparison. In order to manage water resources in areas of gas-well drilling and hydraulic fracturing in New York, the natural occurrence of methane in the State's aquifers needs to be documented. This brief report presents a compilation of data on dissolved methane concentrations in the groundwater of New York available from the U.S. Geological Survey (USGS) National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis).
Ryder, Robert T.
1996-01-01
INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the Michigan basin, and 4) improve estimates of the recoverable gas in the Antrim Shale gas plays (Dolton, 1995). This review of published literature on the characteristics of Antrim Shale fractures, their origin, and their controls on gas production will help to define objectives and goals in future U.S. Geological Survey studies of Antrim Shale gas resources.
Araujo, Carla Viviane; Borrego, Angeles G.; Cardott, Brian; das Chagas, Renata Brenand A.; Flores, Deolinda; Goncalves, Paula; Hackley, Paul C.; Hower, James C.; Kern, Marcio Luciano; Kus, Jolanta; Mastalerz, Maria; Filho, João Graciano Mendonça; de Oliveira Mendonça, Joalice; Rego Menezes, Taissa; Newman, Jane; Suarez-Ruiz, Isabel; Sobrinho da Silva, Frederico; Viegas de Souza, Igor
2014-01-01
This paper presents results of an interlaboratory exercise on organic matter optical maturity parameters using a natural maturation series comprised by three Devonian shale samples (Huron Member, Ohio Shale) from the Appalachian Basin, USA. This work was conducted by the Thermal Indices Working Group of the International Committee for Coal and Organic Petrology (ICCP) Commission II (Geological Applications of Organic Petrology). This study aimed to compare: 1. maturation predicted by different types of petrographic parameters (vitrinite reflectance and spectral fluorescence of telalginite), 2. reproducibility of the results for these maturation parameters obtained by different laboratories, and 3. improvements in the spectral fluorescence measurement obtained using modern detection systems in comparison with the results from historical round robin exercises.Mean random vitrinite reflectance measurements presented the highest level of reproducibility (group standard deviation 0.05) for low maturity and reproducibility diminished with increasing maturation (group standard deviation 0.12).Corrected fluorescence spectra, provided by 14 participants, showed a fair to good correspondence. Standard deviation of the mean values for spectral parameters was lowest for the low maturity sample but was also fairly low for higher maturity samples.A significant improvement in the reproducibility of corrected spectral fluorescence curves was obtained in the current exercise compared to a previous investigation of Toarcian organic matter spectra in a maturation series from the Paris Basin. This improvement is demonstrated by lower values of standard deviation and is interpreted to reflect better performance of newer photo-optical measuring systems.Fluorescence parameters measured here are in good agreement with vitrinite reflectance values for the least mature shale but indicate higher maturity than shown by vitrinite reflectance for the two more mature shales. This red shift in λmax beyond 0.65% vitrinite reflectance was also observed in studies of Devonian shale in other basins, suggesting that the accepted correlation for these two petrographic thermal maturity parameters needs to be re-evaluated.A good linear correlation between λmax and Tmax for this maturation series was observed and λmax 600 nm corresponds to Tmax of 440 °C. Nevertheless if a larger set of Devonian samples is included, the correlation is polynomial with a jump in λmax ranging from 540 to 570 nm. Up to 440 °C of Tmax, the λmax, mostly, reaches up to 500 nm; beyond a Tmax of 440 °C, λmax is in the range of 580–600 nm. This relationship places the “red shift” when the onset of the oil window is reached at Tmax of 440 °C. Moreover, the correlation between HI and λmax (r2 = 0.70) shows a striking inflection and decrease in HI above a λmax of 600 nm, coincident with the approximate onset of hydrocarbon generation in these rocks.
Strapoc, D.; Mastalerz, Maria; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R.
2010-01-01
This study involved analyses of kerogen petrography, gas desorption, geochemistry, microporosity, and mesoporosity of the New Albany Shale (Devonian-Mississippian) in the eastern part of the Illinois Basin. Specifically, detailed core analysis from two locations, one in Owen County, Indiana, and one in Pike County, Indiana, has been conducted. The gas content in the locations studied was primarily dependent on total organic carbon content and the micropore volume of the shales. Gas origin was assessed using stable isotope geochemistry. Measured and modeled vitrinite reflectance values were compared. Depth of burial and formation water salinity dictated different dominant origins of the gas in place in the two locations studied in detail. The shallower Owen County location (415-433 m [1362-1421 ft] deep) contained significant additions of microbial methane, whereas the Pike County location (832-860 m [2730-2822 ft] deep) was characterized exclusively by thermogenic gas. Despite differences in the gas origin, the total gas in both locations was similar, reaching up to 2.1 cm3/g (66 scf/ton). Lower thermogenic gas content in the shallower location (lower maturity and higher loss of gas related to uplift and leakage via relaxed fractures) was compensated for by the additional generation of microbial methane, which was stimulated by an influx of glacial melt water, inducing brine dilution and microbial inoculation. The characteristics of the shale of the Maquoketa Group (Ordovician) in the Pike County location are briefly discussed to provide a comparison to the New Albany Shale. Copyright ??2010. The American Association of Petroleum Geologists. All rights reserved.
Discovering Fossils--A Hands-on Lab.
ERIC Educational Resources Information Center
Goldstein, Alan
2002-01-01
Describes fossil investigations developed and provided by the Falls of the Ohio State Park near Louisville, Kentucky. The Devonian shale beds contain representatives of over 600 species including corals, sponges, brachiopods, mollusks, and echinoderms. Rather than focusing on identification, the activities emphasize the past ecological…
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Causes of the great mass extinction of marine organisms in the Late Devonian
NASA Astrophysics Data System (ADS)
Barash, M. S.
2016-11-01
The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70-82%. Major crises occurred at the Frasnian-Famennian and Devonian-Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.
1978-10-01
This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered.more » It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)« less
McCartan, Lucy; Bradshaw, Margaret A.
1987-01-01
The Horlick Formation of Early Devonian age is as thick as 50 m and consists of subhorizontal, interbedded subarkosic sandstone and chloritic shale and mudstone. The Horlick overlies an erosion surface cut into Ordovician granitic rocks and is, in turn, overlain by Carboniferous and Permian glacial and periglacial deposits. Textures, sedimentary structures, and ubiquitous marine body fossils and animal traces suggest that the Horlick was deposited on a shallow shelf having moderate wave energy and a moderate tidal range. The source terrane probably lay to the north, and longshore transport was toward the west.
Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M
2012-03-20
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
Regional stratigraphy and petroleum potential, Ghadames basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emme, J.J.; Sunderland, B.L.
1991-03-01
The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less
Kelley, Karen D.; Leach, David L.; Johnson, Craig A.
2000-01-01
Stratiform shale-hosted massive sulfide deposits, sulfidebearing concretions and vein breccias, and barite deposits are widespread in sedimentary rocks of Late Devonian to Permian age in the northern Brooks Range. All of the sulfide-bearing concretions and vein breccias are hosted in mixed continental-marine clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. The clastic rocks and associated sulfide occurrences underlie chert and shale of Mississippian-Pennsylvanian(?) age that contain large stratiform massive sulfide deposits like that at Red Dog. The relative stratigraphic position of the vein breccias, as well as previously published mineralogical, geochemical, and lead-isotope data, suggest that the vein breccias formed coevally with overlying shale-hosted massive sulfide deposits and that they may represent pathways of oreforming hydrothermal fluids. Barite deposits are hosted either in Mississippian chert and limestone (at essentially the same stratigraphic position as the shale-hosted massive sulfide deposits) or Permian chert and shale. Although most barite deposits have no associated base-metal mineralization, barite occurs with massive sulfide deposits at the Red Dog deposit.Galena and sphalerite from most vein breccias have δ34S values from –7.3 to –0.7‰ (per mil) and –5.1 to 3.6‰, respectively; sphalerite from sulfide-bearing concretions have δ34S values of 0.7 and 4.7‰. This overall range in δ34S values largely overlaps with the range previously determined for galena and sphalerite from shale-hosted massive sulfide deposits at Red Dog and Drenchwater. The Kady vein-breccia occurrence is unusual in having higher δ34S values for sphalerite (12.1 to 12.9‰) and pyrite (11.3‰), consistent with previously published values for the shale-hosted Lik deposit. The correspondence in sulfur isotopic compositions between the stratiform and vein-breccia deposits suggests that they share a common source of reduced sulfur, or derived reduced sulfur by similar geochemical processes. Most likely, the reduced sulfur was derived by biogenic sulfate reduction (BSR) or thermochemical sulfate reduction (TSR) of seawater sulfate during Devonian-Mississippian time.The δ18O values of quartz from the vein breccias are between 16.6 and 19.9‰. Using the sphalerite-galena sulfur isotopic temperature of 188°±25°C, the calulated hydrothermal fluids had δ18O values of 4.2 to 7.5‰. The calculated range of δ18O values of the fluids is similar to that of pore fluids in equilibrium with sedimentary rocks during diagenesis at 100°– 190°C.
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
18 CFR 270.201 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-04-01
... jurisdictional agencies for tight formation gas, occluded natural gas produced from coal seams, and natural gas produced from Devonian shale that is produced through: (1) A well the surface drilling of which began after... recompletion commenced after December 31, 1979, but before January 1, 1993, where such gas could not have been...
This report describes the retrospective case study for northeastern Pennsylvania, which was conducted in Bradford and Susquehanna Counties where some of the most intensive unconventional gas production from the Devonian-age Marcellus Shale has occurred. Gas production from the M...
Leventhal, J.S.
1991-01-01
In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.
Leventhal, Joel S.
1979-01-01
Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.
Munsell color value as related to organic carbon in Devonian shale of Appalachian basin
Hosterman, J.W.; Whitlow, S.I.
1981-01-01
Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors
NASA Astrophysics Data System (ADS)
Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.
2017-12-01
Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale accumulation anywhere in the CAOB would be unlikely due to the paleoenvironment and arc topography, so additional multiproxy techniques are required for recognition of the Kellwasser Event in regions such as the HSG, which are outside of the basins where they have historically been studied. Carmichael et al. (2014) Paleo3 399, 394-403.
Germanium and uranium in coalified wood bom upper Devonian black shale
Breger, I.A.; Schopf, J.M.
1955-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Rakociński, Michał; Racki, Grzegorz; Bond, David P. G.; Sobień, Katarzyna; Claeys, Philippe
2013-03-01
Rhythmical alternations between limestone and shales or marls characterize the famous Kowala section, Holy Cross Mountains, Poland. Two intervals of this section were studied for evidence of orbital cyclostratigraphy. The oldest interval spans the Frasnian-Famennian boundary, deposited under one of the hottest greenhouse climates of the Phanerozoic. The youngest interval encompasses the Devonian-Carboniferous (D-C) boundary, a pivotal moment in Earth's climatic history that saw a transition from greenhouse to icehouse. For the Frasnian-Famennian sequence, lithological variations are consistent with 405-kyr and 100-kyr eccentricity forcing and a cyclostratigraphic floating time-scale is presented. The interpretation of observed lithological rhythms as eccentricity cycles is confirmed by amplitude modulation patterns in agreement with astronomical theory and by the recognition of precession cycles in high-resolution stable isotope records. The resulting relative time-scale suggests that ˜800 kyr separate the Lower and Upper Kellwasser Events (LKE and UKE, respectively), two periods of anoxia that culminated in massive biodiversity loss at the end of the Frasnian. Th/U and pyrite framboid analyses indicate that during the UKE, oxygen levels remained low for 400 kyr and δ13Corg measurements demonstrate that more than 600 kyr elapsed before the carbon cycle reached a steady state after a +3‰ UKE excursion. The Famennian-Tournaisian (D-C) interval also reveals eccentricity and precession-related lithological variations. Precession-related alternations clearly demonstrate grouping into 100-kyr bundles. The Famennian part of this interval is characterized by several distinctive anoxic black shales, including the Annulata, Dasberg and Hangenberg shales. Our high-resolution cyclostratigraphic framework indicates that those shales were deposited at 2.2 and 2.4 Myr intervals respectively. These durations strongly suggest a link between the long-period (˜2.4 Myr) eccentricity cycle and the development of the Annulata, Dasberg and Hangenberg anoxic shales. It is assumed that these black shales form under transgressive conditions, when extremely high eccentricity promoted the collapse of small continental ice-sheets at the most austral latitudes of western Gondwana.
Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirmani, K.U.; Elhaj, F.
1988-08-01
The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less
Pashin, J.C.; Ettensohn, F.R.
1992-01-01
Oxygen-deficient biofacies models rely on lithologic and paleontologic attributes to identify distinctive biofacies interpreted to reflect levels of oxygenation in anaerobic, dysaerobic, and aerobic parts of a stratified water column. This study of the Bedford fauna from the Bedford Shale of Ohio and Kentucky and from adjacent black-shale units reports faunal distributions different from those predicted by the accepted models. This study suggests that, although oxygenation was an important factor that determined the taxonomic makeup of the fauna, bacterially mediated nutrient recycling and substrate characteristics were more important than oxygenation in determining faunal distribution in the dysaerobic zone. ?? 1992.
Formation resistivity as an indicator of oil generation in black shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hester, T.C.; Schmoker, J.W.
1987-08-01
Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less
Late Devonian conodonts and event stratigraphy in northwestern Algerian Sahara
NASA Astrophysics Data System (ADS)
Mahboubi, Abdessamed; Gatovsky, Yury
2015-01-01
Conodonts recovered from the Late Devonian South Marhouma section comprise 5 genera with 31 species (3 undetermined). The fauna establishes the presence of MN Zones 5, undifferentiated 6/7, 8/10 for the Middle Frasnian, the MN Zones 11, 12, 13 for the Upper Frasnian as well as the Early through Late triangularis Zones in the basal Famennian. The outcropping lithological succession is one of mostly nodular calcilutites alternating with numerous marly and shaly deposits, which, in the lower and upper part, comprise several dysoxic dark shale intervals. Among these the Upper Kellwasser horizon can be precisely dated and as such the presence of the terminal Frasnian Kellwasser Event is recognized for the first time in Algeria. Both the Middlesex and Rhinestreet Events cannot yet be precisely located, but supposedly occur among the dark shale horizons in the lower part of the section. However, their assignment to a precise level has so far not been established. Though poor in conodont abundance the South Marhouma section provides first evidence of the presence of several Montagne Noire conodont zones within the so far widely unstudied Frasnian of the Ougarta Chain. As such it is considered representative for the northwestern Algerian Saoura region.
History of gas production from Devonian shale in eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemper, J.R.; Frankie, W.T.; Smath, R.A.
More than 10,500 wells that penetrate the Devonian shale have been compiled into a data base covering a 25-county area of eastern Kentucky. This area includes the Big Sandy gas field, the largest in the Appalachian basin, and marginal areas to the southwest, west, and northwest. The development of the Big Sandy gas field began in the 1920s in western Floyd County, Kentucky, and moved concentrically outward through 1970. Since 1971, the trend has been for infill and marginal drilling, and fewer companies have been involved. The resulting outline of the Big Sandy gas field covers most of Letcher, Knott,more » Floyd, Martin, and Pike Counties in Kentucky; it also extends into West Virginia. Outside the Big Sandy gas field, exploration for gas has been inconsistent, with a much higher ratio of dry holes. The results of this study, which was partially supported by the Gas Research Institute (GRI), indicate that certain geologic factors, such as fracture size and spacing, probably determine the distribution of commercial gas reserves as well as the outline of the Big Sandy gas field. Future Big Sandy infill and extension drilling will need to be based on an understanding of these factors.« less
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors
Germanium and uranium in coalified wood from Upper Devonian black shale
Breger, Irving A.; Schopf, James M.
1954-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.
187Re - 187Os nuclear geochronometry: age dating with permil precision
NASA Astrophysics Data System (ADS)
Roller, Goetz
2016-04-01
Recently, 187Re - 187Os nuclear geochronometry, a new dating method combining ideas of nuclear astrophysics with geochronology, has successfully been used to calculate two-point-isochron (TPI) ages for Devonian black gas shales using the isotopic signature of an r-process geochronometer as one data point in a TPI diagram [1]. Based upon a nuclear production ratio 187Re/188Os = 5.873, TPI ages were calculated for 12 SDO-1 (Devonian Ohio Shale, Appalachian Basin) aliquants, for which repeated Re-Os measurements are reported in the literature [2]. TPI ages range from 384.5 ± 2.7 Ma (187Os/188Osi = 0.29413 ± 0.00023) to 387.7 ± 2.1 Ma (187Os/188Osi = 0.29407 ± 0.00019) with a mean of 386.67 ± 1.79 Ma). The result is consistent with the isochronous age from the 12 aliquants alone (386 ± 16 Ma, 187Os/188Osi = 0.31±0.31), which is bracketed by U-Pb ages for the Belpre Ash (381.1 ± 3.3 Ma) and the Tioga Ash bed (390.0 ± 2.5 Ma) [3] from the Appalachian Basin. Hence, SDO-1 can be assigned to the Givetian stage (varcus-zone) of the Middle Devonian, close to the Eifelian/Givetian boundary (using the time-scale of [3] or [4]). If an age is calculated from an isochron diagram for the 12 aliquants including the nuclear geochronometer, a permil precision can be achieved, an interesting feature with respect to any effort towards calibrating the Geologic Timescale. Additionally, a Th/U evolution (or: Th/U-time) diagram can be plotted using U-Pb zircon age data and Th/U ratios from volcanic rocks and ashes reported in the literature [3] for specific Devonian samples from the Appalachian Basin. Since the Re-Os age obtained for SDO-1 can also be connected to its Th/U ratio, it turns out, that Th/U ratios might be helpful age indicators, as demonstrated for the Devonian using the U-Pb and Re-Os datasets. [1] Roller (2015), GSA Abstr. with Programs 47, #248-14. [2] Du Vivier et al. (2014), Earth Planet. Sci. Lett. 389, 23 - 33. [3] Tucker et al. (1998), Earth Planet. Sci. Lett. 158, 175 - 186. [4] Kaufmann (2006), Earth-Sci. Revs. 76, 175 - 190.
Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs
NASA Astrophysics Data System (ADS)
Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.
2008-12-01
CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.
Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania
Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K
2013-01-01
Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters—indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. PMID:23560830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, V.S.
1980-06-01
This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author indexmore » following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.« less
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Harir, Mourad; Carrizo, Daniel; Schmitt-Kopplin, Philippe; Amils, Ricardo
2018-03-01
The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community, which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The cooccurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.
NASA Astrophysics Data System (ADS)
Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.
2018-04-01
Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; ...
2017-10-25
Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.
Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less
Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.
2016-01-01
Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (<70 g/L) of meteoric origin in the middle and upper Permian hydrocarbon reservoirs (1.2–2.5 km depth; Guadalupian and Leonardian age) likely represent meteoric waters that infiltrated through and dissolved halite and anhydrite in the overlying evaporite layer. Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (<100 g/L) in Devonian and deeper reservoirs (>3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.
Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona
Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.
2014-01-01
The most studied source intervals are the Pennsylvanian black shales that were deposited during relative high stands in an otherwise evaporitic basin. These black shales are the source for most of the discovered hydrocarbons in the Paradox Basin. A second oil type can be traced to either a Mississippian or Permian source rock to the west, and therefore requires long-distance migration to explain its presence in the basin. Upper Cretaceous continental to nearshore-marine sandstones are interbedded with coal beds that have recognized coalbed methane potential. Precambrian and Devonian TPSs are considered hypothetical, as both are known to have organic-rich intervals, but no discovered hydrocarbons have been definitively typed back to either of these units.
Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR
Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.
2005-01-01
Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkin, J.E.; Conkin, B.M.
1994-04-01
Internal units within the Columbus Limestone (Early Devonian Emsian [Schoharie] to Middle Devonian Eifelian [late Onesquethawan]) and the Delaware Formation (Middle Devonian early Givetian [Cazenovian]) of central Ohio are separated by disconformities of the magnitude of paracontinuities. Stauffer (1909) divided the Columbus Limestone into zones A--H and the Delaware Formation into zones I--M. Within the Columbus, the A Zone (conglomerate at the base of Bellepoint Member) disconformably overlies Late Silurian beds. The D zone at top of the Bellepoint Member (bearing the Kawkawlin Metabentonite horizon) is overlain paracontinuously by the Marblehead Member (Lower Paraspirifer acuminatus-Spirifer macrothyris to Brevispirifer gregarius-Moellerina greeneimore » zones [= E--G zones]), with the Onondagan Indian Nation Metabentonite in the top of the G Zone. The Marblehead Member is overlain paracontinuously by a bone bed at base of the Venice Member (H zone = Upper Paraspirifer acuminatus- Spirifer duodenarius'' Zone). I Zone (Dublin Shale=Marcellus) of the Delaware Formation overlies the Columbus and has two bone beds at its base; Tioga Metabentonite (restricted) overlies the I Zone bone beds and is a few tenths to 1.85 feet above the base of the I Zone. Paracontinuities and bone beds occur at the bases of J, K, and L zones. Conkin and Conkin (1975) have shown Stauffer's (1909) M Zone is an extension of his L Zone. The Olentangy paracontinuously overlies the L Zone.« less
Heterogeneity of shale documented by micro-FTIR and image analysis.
Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt
2014-12-01
In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Breen, Kevin J.; Revesz, Kinga; Baldassare, Fred J.; McAuley, Steven D.
2007-01-01
In January 2001, State oil and gas inspectors noted bubbles of natural gas in well water during a complaint investigation near Tioga Junction, Tioga County, north-central Pa. By 2004, the gas occurrence in ground water and accumulation in homes was a safety concern; inspectors were taking action to plug abandoned gas wells and collect gas samples. The origins of the natural-gas problems in ground water were investigated by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, in wells throughout an area of about 50 mi2, using compositional and isotopic characteristics of methane and ethane in gas and water wells. This report presents the results for gas-well and water-well samples collected from October 2004 to September 2005. Ground water for rural-domestic supply and other uses near Tioga Junction is from two aquifer systems in and adjacent to the Tioga River valley. An unconsolidated aquifer of outwash sand and gravel of Quaternary age underlies the main river valley and extends into the valleys of tributaries. Fine-grained lacustrine sediments separate shallow and deep water-bearing zones of the outwash. Outwash-aquifer wells are seldom deeper than 100 ft. The river-valley sediments and uplands adjacent to the valley are underlain by a fractured-bedrock aquifer in siliciclastic rocks of Paleozoic age. Most bedrock-aquifer wells produce water from the Lock Haven Formation at depths of 250 ft or less. A review of previous geologic investigations was used to establish the structural framework and identify four plausible origins for natural gas. The Sabinsville Anticline, trending southwest to northeast, is the major structural feature in the Devonian bedrock. The anticline, a structural trap for a reservoir of deep native gas in the Oriskany Sandstone (Devonian) (origin 1) at depths of about 3,900 ft, was explored and tapped by numerous wells from 1930-60. The gas reservoir in the vicinity of Tioga Junction, depleted of native gas, was converted to the Tioga gas-storage field for injection and withdrawal of non-native gases (origin 2). Devonian shale gas (shallow native gas) also has been reported in the area (origin 3). Gas might also originate from microbial degradation of buried organic material in the outwash deposits (origin 4). An inventory of combustible-gas concentrations in headspaces of water samples from 91 wells showed 49 wells had water containing combustible gases at volume fractions of 0.1 percent or more. Well depth was a factor in the observed occurrence of combustible gas for the 62 bedrock wells inventoried. As well-depth range increased from less than 50 ft to 51-150 ft to greater than 151 ft, the percentage of bedrock-aquifer wells with combustible gas increased. Wells with high concentrations of combustible gas occurred in clusters; the largest cluster was near the eastern boundary of the gas-storage field. A subsequent detailed gas-sampling effort focused on 39 water wells with the highest concentrations of combustible gas (12 representing the outwash aquifer and 27 from the bedrock aquifer) and 8 selected gas wells. Three wells producing native gas from the Oriskany Sandstone and five wells (two observation wells and three injection/withdrawal wells) with non-native gas from the gas-storage field were sampled twice. Chemical composition, stable carbon and hydrogen isotopes of methane (13CCH4 and DCH4), and stable carbon isotopes of ethane (13CC2H6) were analyzed. No samples could be collected to document the composition of microbial gas originating in the outwash deposits (outwash or 'drift' gas) or of native natural gas originating solely in Devonian shale at depths shallower than the Oriskany Sandstone, although two of the storage-field observation wells sampled reportedly yielded some Devonian shale gas. Literature values for outwash or 'drift' gas and Devonian shale gases were used to supplement the data collection. Non-native gases fr
Evaluation of methane sources in groundwater in northeastern Pennsylvania.
Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K
2013-01-01
Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters--indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. © 2013, Cabot Oil and Gas Corporation. Groundwater © 2013, National GroundWater Association.
Hydrocarbon potential of Morocco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achnin, H.; Nairn, A.E.M.
1988-08-01
Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less
Milici, Robert C.; Swezey, Christopher S.
2006-01-01
The U.S. Geological Survey (USGS) recently completed an assessment of the technically recoverable undiscovered hydrocarbon resources of the Appalachian Basin Province. The assessment province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia and Alabama. The assessment was based on six major petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) extends generally from New York to Tennessee. This petroleum system has produced a large proportion of the oil and natural gas that has been discovered in the Appalachian basin since the drilling of the Drake well in Pennsylvania in 1859. For assessment purposes, the TPS was divided into 10 assessment units (plays), 4 of which were classified as conventional and 6 as continuous. The results were reported as fully risked fractiles (F95, F50, F5 and the Mean), with the fractiles indicating the probability of recovery of the assessment amount. Products reported were oil (millions of barrels of oil, MMBO), gas (billions of cubic feet of gas, BCFG), and natural gas liquids (millions of barrels of natural gas liquids, MMBNGL). The mean estimates for technically recoverable undiscovered hydrocarbons in the TPS are: 7.53 MMBO, 31,418.88 BCFG (31.42 trillion cubic feet) of gas, and 562.07 MMBNGL.
Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio
NASA Technical Reports Server (NTRS)
Johnson, G. O.
1981-01-01
In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.
Leventhal, J.S.
1981-01-01
Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.
Higley, Debra K.; Henry, M.E.; Lewan, M.D.; Pitman, Janet K.
2003-01-01
The data files and explanations presented in this report were used to generate published material-balance approach estimates of amounts of petroleum 1) expelled from a source rock, and the sum of 2) petroleum discovered in-place plus that lost due to 3) secondary migration within, or leakage or erosion from a petroleum system. This study includes assessment of cumulative production, known petroleum volume, and original oil in place for hydrocarbons that were generated from the New Albany Shale source rocks.More than 4.00 billion barrels of oil (BBO) have been produced from Pennsylvanian-, Mississippian-, Devonian-, and Silurian-age reservoirs in the New Albany Shale petroleum system. Known petroleum volume is 4.16 BBO; the average recovery factor is 103.9% of the current cumulative production. Known petroleum volume of oil is 36.22% of the total original oil in place of 11.45 BBO. More than 140.4 BBO have been generated from the Upper Devonian and Lower Mississippian New Albany Shale in the Illinois Basin. Approximately 86.29 billion barrels of oil that was trapped south of the Cottage Grove fault system were lost by erosion of reservoir intervals. The remaining 54.15 BBO are 21% of the hydrocarbons that were generated in the basin and are accounted for using production data. Included in this publication are 2D maps that show the distribution of production for different formations versus the Rock-Eval pyrolysis hydrogen-indices (HI) contours, and 3D images that show the close association between burial depth and HI values.The primary vertical migration pathway of oil and gas was through faults and fractures into overlying reservoir strata. About 66% of the produced oil is located within the generative basin, which is outlined by an HI contour of 400. The remaining production is concentrated within 30 miles (50 km) outside the 400 HI contour. The generative basin is subdivided by contours of progressively lower hydrogen indices that represent increased levels of thermal maturity and generative capacity of New Albany Shale source rocks. The generative basin was also divided into seven oil-migration catchments. The catchments were determined using a surface-flow hydrologic model with contoured HI values as input to the model.
NASA Astrophysics Data System (ADS)
Botor, Dariusz
2018-03-01
The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and 3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian - Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.
Geology and hydrocarbon potential of the Oued Mya Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1992-01-01
The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less
NASA Astrophysics Data System (ADS)
Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa
2014-02-01
The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin settings, their mineralogy and attendant preservative potential is primarily a function of continental climate and provenance making these deposits a sensitive recorder of land as well as oceanographic change.
Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis
Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.
1982-01-01
The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.
Tuttle, M.L.W.; Breit, G.N.
2009-01-01
Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.
Higley, Debra K.
2011-01-01
In 2010 the U.S. Geological Survey assessed undiscovered oil and gas resources for the Anadarko Basin Province of Colorado, Kansas, Oklahoma, and Texas. The assessment included three continuous (unconventional) assessment units (AU). Mean undiscovered resources for the (1) Devonian Woodford Shale Gas AU are about 16 trillion cubic feet of gas (TCFG) and 192 million barrels of natural gas liquids (MMBNGL), (2) Woodford Shale Oil AU are 393 million barrels of oil (MMBO), 2 TCFG, and 59 MMBNGL, and (3) Pennsylvanian Thirteen Finger Limestone-Atoka Shale Gas AU are 6.8 TCFG and 82 MMBNGL. The continuous gas AUs are mature for gas generation within the deep basin of Oklahoma and Texas. Gas generation from the Woodford Shale source rock started about 335 Ma, and from the Thirteen Finger Limestone-Atoka Shale AU about 300 Ma. Maturation results are based on vitrinite reflectance data, and on 1D and 4D petroleum system models that calculated vitrinite reflectance (Ro), and Rock-Eval and hydrous pyrolysis transformation (HP) ratios through time for petroleum source rocks. The Woodford Shale Gas AU boundary and sweet spot were defined mainly on (1) isopach thickness from well-log analysis and published sources; (2) estimated ultimate recoverable production from existing, mainly horizontal, wells; and (3) levels of thermal maturation. Measured and modeled Ro ranges from about 1.2% to 5% in the AU, which represents marginally mature to overmature for gas generation. The sweet spot included most of the Woodford that was deposited within eroded channels in the unconformably underlying Hunton Group. The Thirteen Finger Limestone-Atoka Shale Gas AU has no known production in the deep basin. This AU boundary is based primarily on the gas generation window, and on thickness and distribution of organic-rich facies from these mainly thin shale and limestone beds. Estimates of organic richness were based on well-log signatures and published data.
Dumoulin, Julie A.; White, Tim
2005-01-01
Micromorphologic evidence indicates the presence of paleosols in drill-core samples from four sedimentary units in the Red Dog area, western Brooks Range. Well-developed sepic-plasmic fabrics and siderite spherules occur in claystones of the Upper Devonian through Lower Mississippian(?) Kanayut Conglomerate (Endicott Group), the Pennsylvanian through Permian Siksikpuk Formation (Etivluk Group), the Jurassic through Lower Cretaceous Kingak(?) Shale, and the Lower Cretaceous Ipewik Formation. Although exposure surfaces have been previously recognized in the Endicott Group and Kingak Shale on the basis of outcrop features, our study is the first microscopic analysis of paleosols from these units, and it provides the first evidence of subaerial exposure in the Siksikpuk and Ipewik Formations. Regional stratigraphic relations and geochemical data support our interpretations. Paleosols in the Siksikpuk, Kingak, and Ipewik Formations likely formed in nearshore coastal-plain environments, with pore waters subjected to inundation by the updip migration of slightly brackish ground water, whereas paleosols in the Kanayut Conglomerate probably formed in a more distal setting relative to a marine basin.
NASA Astrophysics Data System (ADS)
Jirásek, Jakub; Otava, Jiří; Matýsek, Dalibor; Sivek, Martin; Schmitz, Mark D.
2018-03-01
The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U-Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.
NASA Astrophysics Data System (ADS)
Sahoo, S. K.; Jin, H.
2017-12-01
The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.
NASA Astrophysics Data System (ADS)
Choi, Jiyoung; Hong, Sung Kyung; Lee, Hyun Suk
2017-04-01
In this study, we investigate organic matter characteristics from the analysis of Rock-Eval6 and biomarker, and estimate methane concentration from headspace method in the Devonian Horn River Formation, which is one of the largest shale reservoir in western Canada. The Horn River Formation consists of the Evie, Otterpark and Muskwa members in ascending stratigraphic order. Total Organic Carbon (TOC) ranges from 0.34 to 7.57 wt%, with an average of 2.78 wt%. The Evie, middle Otterpark and Muskwa members have an average TOC of more than 3%, whereas those of the lower and upper Otterpark Member are less than 2%. Based on Pristane/n-C17 (0.2 0.6) and Phytane/n-C18 (0.3 0.9) ratios, the organic matter in the Evie, middle Otterpark and Muskwa members mainly consists of type II kerogen which are formed in reducing marine environment. Thermal maturity were examined through the use of the distributions of Phenanthrene (P) and Methylphenantrenes (MP) based on m/z 178 and 192 mass chromatograms, respectively (Radke et al., 1982). The methylphenanthrene index (MPI-1) are calculated as follows : MPI-1 = 1.5 × (2MP+3MP)/(P+1MP+9MP), and Ro are calculated as follows : Ro = -0.6 × MPI-1 + 2.3. Estimated Ro ranges between 1.88 and 1.93%, which indicates the last stage of wet gas generation. The methane concentrations in headspace range from 15 to 914 ppmv, with an average of 73.5 ppmv. The methane concentrations in the Evie, middle Otterpark and Muskwa members (up to 914 ppmv) are higher than those of the lower and upper Otterpark Member (up to 75 ppmv). Considering the organic geochemical characteristics and gas concentrations, the shale gas potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members.
Enomoto, Catherine B.; Olea, Ricardo A.; Coleman, James L.
2014-01-01
The Middle Devonian Marcellus Shale in the Appalachian basin extends from central Ohio on the west to eastern New York on the east, and from north-central New York on the north to northern Tennessee on the south. Its thickness ranges from 0 feet (ft) where it pinches out to the west to as much as 700 ft in its eastern extent. Within the Broadtop synclinorium, the thickness of the Marcellus Shale ranges from 250 to 565 ft. Although stratigraphic complexities have been documented, a significant range in thickness most likely is because of tectonic thickening from folds and thrust faults. Outcrop studies in the Valley and Ridge and Appalachian Plateaus provinces illustrate the challenges of interpreting the relation of third-order faults, folds, and “disturbed” zones to the regional tectonic framework. Recent field work within the Valley and Ridge province determined that significant faulting and intraformational deformation are present within the Marcellus Shale at the outcrop scale. In an attempt to determine if this scale of deformation is detectable with conventional wireline logs, petrophysical properties (primarily mineralogy and porosity) were measured by interpretation of gamma-ray and bulk-density logs. The results of performing a statistical correlation of wireline logs from nine wells indicated that there are discontinuities within the Millboro Shale (undifferentiated Marcellus Shale and Mahantango Formation) where there are significant thickness differences between wells. Also, some intervals likely contain mineralogy that makes these zones more prone to layer-shortening cleavage duplexes. The Correlator program proved to be a useful tool in a region of contractional deformation.
Lindquist, Sandra J.
1999-01-01
The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.
Bunner, Danny W.
1993-01-01
The Midwestern Basins and Arches Regional Aquifer-Systems Analysis (RASA) is one of 28 projects that were identified by Congress in 1978, after a period of severe drought, to be studied by the U.S. Geological Survey (Sun, 1984). The Midwestern Basins and Arches RASA study area in parts of Indiana, Ohio, Michigan, and Illinois is defined by either the limestone-shale contact of rocks of Devonian age or by the contact of the land with surface-water bodies (fig. 1).
The New Albany shale in Illinois: Emerging play or prolific source
Crockett, Joan; Morse, David E.
2010-01-01
The New Albany shale (Upper Devonian) in the Illinois basin is the primary hydrocarbon source rock for the basins nearly 4 billion bbl of oil production to date. The gas play is well-established in Indiana and Western Kentucky. One in-situ oil producing well was reported in a multiply competed well in the New Albany at Johnsonville field in Wayne County, Illinois. The Illinois gas and oil wells at Russellville, in Lawrence County are closely associated with the 0.6% reflectance contour, which suggests a higher level of thermal maturity in this area. Today, only one field, Russellville in eastern Lawrence County has established commercial production in the Ness Albany in Illinois. Two wildcat wells with gas shows were drilled in recent years in southern Saline County, where the New Albany is relatively deeply buried and close to faults associated with the Fluorspar District.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Over, D.J.
In western New York State interbedded pyritic silty green and dark grey shales and siltstone of the Hanover Member, Java Formation, West Falls Group, are overlain by thick pyritic dark grey-black shale of the Dunkirk Member of the Canadaway formation. The dark shales in the upper Hanover and Dunkirk contain a diverse and well preserved conodont fauna which allows precise placement of the Frasnian-Famennian boundary at several described sections. At Pt. Gratiot, in far western New York State, the contact between the Hanover and Dunkirk is disconformable. The Frasnian-Famennian boundary is marked by a pyritic lag deposit at the basemore » of the Dunkirk which contains Palmatolepis triangularis and Pa. subperlobata. The underlying upper Hanover is characterized by Pa. bogartensis , Pa. cf. Pa. rhenana, Pa. winchelli, and Ancyrognathus (asymmetricus/calvini) Eastward, in the direction of the paleo-source area, the Frasnian-Famennian boundary is within the upper Hanover Member. At Irish Gulf the boundary is recognized within a 10 cm thick laminated pyritic dark grey shale bed 3.0 m below the base of the Dunkirk. Palmatolepis triangularis and Pa. subperlobata occur below a conodont-rich lag layer in the upper 2 cm of the bed. Palmatolepis bogartensis , Pa. cf. Pa. rhenana, Ancyrodella curvata, and Icriodus alternatus occur in the underlying 8 cm. Palmatolepis triangularis and Pa. winchelli occur in an underlying dark shale bed separated from the boundary bed by a hummocky cross-bedded siltstone layer.« less
Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.
2003-01-01
The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next younger Famennian Stage. The Northern Antelope Range section is located near the top of the west side of the proto-Antler forebulge. Because of its unusual, tectonically active location, unmatched at any other Nevada localities, this section records only four regional and global events during a timespan slightly longer than that of the Devils Gate section. The global semichatovae rise and late Frasnian mass extinction event are largely masked because of the depositional complexities resulting from this location.
Paleozoic Hydrocarbon-Seep Limestones
NASA Astrophysics Data System (ADS)
Peckmann, J.
2007-12-01
To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods, which suggest a maximal age of 126 million years for this group. 1. Peckmann et al. (1999) Facies 40, 281. 2. Peckmann et al. (2007) Palaios 22, 114. 3. Peckmann et al. (2001) Geology 29, 271. 4. Buggisch and Krumm (2005) Facies 51, 566. 5. Himmler et al. (submitted) Palaeogeogr., Palaeoclimatol., Palaeoecol.
NASA Astrophysics Data System (ADS)
Suttner, Thomas J.; Kido, Erika; Chen, Xiuqin; Mawson, Ruth; Waters, Johnny A.; Frýda, Jiří; Mathieson, David; Molloy, Peter D.; Pickett, John; Webster, Gary D.; Frýdová, Barbora
2014-02-01
Late Devonian to Early Carboniferous stratigraphic units within the 'Zhulumute' Formation, Hongguleleng Formation (stratotype), 'Hebukehe' Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and 'Hebukehe' formations are biostratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argillaceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding 'Hebukehe' Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. 'Blastoid Hill') and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepening of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.
NASA Astrophysics Data System (ADS)
Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; Stewart, Brian W.
2018-02-01
We investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from -7.8 to -6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns. Limestone units thought to have formed under open ocean (oxic) conditions have δ238U values and REE patterns consistent with modern seawater. The δ238U values in whole rock shale and authigenic phases are greater than those of modern seawater and the upper crust. The δ238U values of reduced phases (the oxidizable fraction consisting of organics and sulfide minerals) are ∼0.6‰ greater than that of modern seawater. Bulk shale and carbonate cement extracted from the shale have similar δ238U values, and are greater than δ238U values of adjacent limestone units. We suggest these trends are due to the accumulation of chemically and, more likely, biologically reduced U from anoxic to euxinic bottom water as well as the influence of diagenetic reactions between pore fluids and surrounding sediment and organic matter during diagenesis and catagenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelder, T.; Whitaker, A.
2006-07-15
Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and Devonian black shale of the Central and Southern Appalachians reflect an approximately rectilinear stress field with a dimension > 1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were buried to the oil window during the 10-15 m.y. period straddling the Pennsylvanian-Permian boundary. The AWSF was generated during the final assembly of Pangea as a consequence of plate-boundary tractions arising from late-stage oblique convergence, where maximum horizontal stress, S-H, of the AWSF was parallel to the direction of closuremore » between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans-current faults at around 30{sup o}. Following > 10 m.y. of dextral slip during tightening of Gondwana against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting on master basement decollements to produce the local orocline-shaped Alleghanian map pattern seen today.« less
Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.
2015-01-01
In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.
Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W
2015-04-07
The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.
Silurian and Devonian in Vietnam—Stratigraphy and facies
NASA Astrophysics Data System (ADS)
Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy
2013-09-01
Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Osborn, S.; Down, A.; Vengosh, A.
2012-12-01
The acceleration in production of natural gas from shale formations through horizontal drilling and hydraulic fracturing has altered the landscape of domestic energy production in the USA. Yet shale gas exploration has generated an increased awareness of risks to drinking water quality amid concerns for the possible migration of stray gas or hydraulic fracturing fluid and/or flowback brine to shallow drinking water aquifers. The degree to which shallow drinking water is at risk from hydraulic fracturing could depend upon the hydraulic connectivity between the shale gas formations and the surface. In this study, we analyzed the geochemistry of over 400 water samples located across six counties of northeastern Pennsylvania in the three principle aquifers, two Upper Devonian Age bedrock aquifers (Catskill and Lock Haven) and one Quaternary Age (Alluvium) that overlie the Marcellus Formation. Based on a detailed analysis of major (Br, Cl, Na, Mg, Ba, and Sr) and trace (Li) element geochemistry, coupled with utilization of a specific spectrum of isotopic tracers (87Sr/86Sr, 228Ra/ 226Ra, 2H/H, 18O/16O), we identify a salinized (Cl> 20 mg/L) shallow groundwater type which suggests conservative mixing relationships between fresh shallow groundwater and an underlying brine. Identification of the brine source is complicated as many of the brines in the northern Appalachian Basin likely share a common origin as the expelled remnants of the formation of the Silurian Salina evaporate deposits. To determine the ultimate source of the diluted brine we compared the observed geochemistry to over 80 brines produced from northern Appalachian Basin formations. The shallow salinized groundwater most closely resembles diluted produced water from the Middle Devonian Marcellus Formation. The 18O/16O and 2H/H of the salinized groundwater indicate that the brine is likely diluted with post-glacial (<10,000 ybp) meteoric water. Combined, these data indicate that hydraulic connections allowed cross formational migration of brine from deeper formations (1-2 kilometers below ground surface) and subsequent dilution. The occurrence of the saline water does not appear to be correlated with the location of shale-gas wells. Also, salinized groundwater with similar major element chemistry was reported prior to the most recent shale-gas development in the region. The source of the salinized water is likely not the recent drilling and hydraulic fracturing; instead brine migrated into the shallow aquifers and was recently diluted through natural pathways and processes. However, the presence of natural hydraulic connections to deeper formations suggests specific structural and hydrodynamic regimes in northeastern Pennsylvania where shallow drinking water resources are at greater risk of contamination, particularly with fugitive gases, during drilling and hydraulic fracturing of shale gas. The severity of the risk could depend upon the presence of pathways that allow the migration of fluids into the shallow aquifers on human time scales.
Higley, Debra K.
2013-01-01
The Upper Devonian and Lower Mississippian Woodford Shale is an important petroleum source rock for Mississippian reservoirs in the Anadarko Basin Province of Oklahoma, Kansas, Texas, and Colorado, based on results from a 4D petroleum system model of the basin. The Woodford Shale underlies Mississippian strata over most of the Anadarko Basin portions of Oklahoma and northeastern Texas. The Kansas and Colorado portions of the province are almost entirely thermally immature for oil generation from the Woodford Shale or potential Mississippian source rocks, based mainly on measured vitrinite reflectance and modeled thermal maturation. Thermal maturities of the Woodford Shale range from mature for oil to overmature for gas generation at present-day depths of about 5,000 to 20,000 ft. Oil generation began at burial depths of about 6,000 to 6,500 ft. Modeled onset of Woodford Shale oil generation was about 330 million years ago (Ma); peak oil generation was from 300 to 220 Ma.Mississippian production, including horizontal wells of the informal Mississippi limestone, is concentrated within and north of the Sooner Trend area in the northeast Oklahoma portion of the basin. This large pod of oil and gas production is within the area modeled as thermally mature for oil generation from the Woodford Shale. The southern boundary of the trend approximates the 99% transformation ratio of the Woodford Shale, which marks the end of oil generation. Because most of the Sooner Trend area is thermally mature for oil generation from the Woodford Shale, the trend probably includes short- and longer-distance vertical and lateral migration. The Woodford Shale is absent in the Mocane-Laverne Field area of the eastern Oklahoma panhandle; because of this, associated oil migrated from the south into the field. If the Springer Formation or deeper Mississippian strata generated oil, then the southern field area is within the oil window for associated petroleum source rocks. Mississippian fields along the western boundary of the study area were supplied by oil that flowed northward from the Panhandle Field area and westward from the deep basin.
NASA Astrophysics Data System (ADS)
Urbancic, T.; Viegas, G. F.; Baig, A.
2017-12-01
We observe conflicting stress drop estimates of M0 to M4 injection-induced earthquakes in two regions of the Western Canadian Sedimentary Basin. Induced earthquakes in the Horn River Basin show lower stress drops than induced earthquakes in the Duvernay Basin by a factor of 10 to 20. Higher stress drop earthquakes have a significant role in seismic hazard as they generate higher frequency strong ground motions which can potentially cause more damages, making it important to understand its causes. Both earthquake datasets occur below shale reservoirs under hydraulic-fracture stimulation programs. Both treatment programs target the same shale formation (Muskwa in Horn River Basin and Duvernay in Duvernay Basin) at approximately the same depth (3 km). Both reservoirs are located to the edge of the Western Canadian Sedimentary Basin bordering the Rocky Mountains and are under the same tectonic setting, both currently and during the Devonian depositional phase. The major observable difference is the local geology. While the Horn River Basin in northeast British Columbia shows mostly continuous horizontal stratification the Duvernay shale in the Fox Creek region in Alberta drapes over Leduc Formation reefs which cross-cut it as chains of reefs, isolated atolls and isolated pinnacles. Schultz et al. (2017) showed that induced seismicity in the Duvernay Basin region occurs primarily in the margins of the Devonian carbonate reefs (10 to 20 km away) where optimally oriented basement faults exist. The fault system is in part associated with basement tectonism and isostatic compensation mechanisms involved in the reefs diagenesis. We propose that the observed stress drop differences are caused by different regional stress characteristics, with events occurring in more stressed regions having higher stress drops. These areas of higher stress are found at the margins of the denser Leduc reefs formation and may be caused either by load transfer, isostatic compensation mechanisms, and accumulation of strain energy in the underlying fault system. The geological setting in which earthquakes occur may be a more important factor than previously considered in seismic hazard studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.R.; Dean, S.L.; Barton, C.C.
1977-01-01
Methods results, and conclusions formulated during a prototype fractographic logging study of seventy-five feet of oriented Devonian shale core are summarized. The core analyzed is from the Nicholas Combs No. 7239 well located twelve miles due north of Hazard, Kentucky. The seventy-five foot core length was taken from a cored section lying between 2369.0 feet (subsea) and 2708.0 feet (subsea). Total core length is 339.0 feet. The core was extracted from the upper Devonian Ohio and Olentangy shale formations. Results indicate that there are few tectonic (pre-core) fractures within the studied core section. The region may nevertheless be cut atmore » core sample depth by well-defined vertical or inclined tectonic fractures that the vertically drilled test core didn't intersect. This is likely since surface Plateau systematic fractures in other Plateau areas are vertical to sub-vertical and seldom have a frequency of less than one major fracture per foot. The remarkable directional preference of set three fractures about strikes of N 40/sup 0/ E, N 10/sup 0/ W, N 45/sup 0/ W, suggests some incipient pre-core rock anisotropy or stored directional strain energy. If this situation exists, the anisotropy strike change or stored strain variance from N 40/sup 0/ E to N 45/sup 0/ W downcore remains an unanswered question. Tectonic features, indicating local and/or regional movement plans, are present on and within the tectonichorizontal fracture set one. Slickensides had a preferred orientation within several core levels, and fibrous-nonfibrous calcite serves as fracture fillings.« less
Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.
2012-01-01
The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).
NASA Astrophysics Data System (ADS)
Wang, Guochang; Cheng, Guojian; Carr, Timothy R.
2013-04-01
The organic-rich Marcellus Shale was deposited in a foreland basin during Middle Devonian. In terms of mineral composition and organic matter richness, we define seven mudrock lithofacies: three organic-rich lithofacies and four organic-poor lithofacies. The 3D lithofacies model is very helpful to determine geologic and engineering sweet spots, and consequently useful for designing horizontal well trajectories and stimulation strategies. The NeuroEvolution of Augmenting Topologies (NEAT) is relatively new idea in the design of neural networks, and shed light on classification (i.e., Marcellus Shale lithofacies prediction). We have successfully enhanced the capability and efficiency of NEAT in three aspects. First, we introduced two new attributes of node gene, the node location and recurrent connection (RCC), to increase the calculation efficiency. Second, we evolved the population size from an initial small value to big, instead of using the constant value, which saves time and computer memory, especially for complex learning tasks. Third, in multiclass pattern recognition problems, we combined feature selection of input variables and modular neural network to automatically select input variables and optimize network topology for each binary classifier. These improvements were tested and verified by true if an odd number of its arguments are true and false otherwise (XOR) experiments, and were powerful for classification.
Poppe, Lawrence J.; Popenoe, Peter; Poag, C. Wylie; Swift, B. Ann
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. These marine strata, which are equivalent to the Tippecanoe sequence in Florida, underlie the post-rift unconformity and represent part of a disjunct fragment of Gondwana that was sutured to the North American craton during the late Palaeozoic Alleghanian orogeny. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic (Bajocian and younger) sandstones and shales and marginal marine Lower Cretaceous sandstones, calcareous shales and carbonates, which contain scattered beds of coal and evaporite. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The abundance of carbonates and evaporites in this interval, which reflects marine influences within the embayment, increases upwards, eastwards and southwards. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are primarily semiconsolidated marine carbonates. Palaeocene to middle Eocene strata are commonly cherty; middle Miocene to Pliocene strata are massive and locally phosphatic and glauconitic; Quaternary sediments are dominated by unconsolidated carbonate sands. The effects of eustatic changes and shifts in the palaeocirculation are recorded in the Upper Cretaceous and Tertiary strata.
Tucker, R.D.; Osberg, P.H.; Berry, H.N.
2001-01-01
The zone of Acadian collision between the Medial New England and Composite Avalon terranes is well preserved in Maine. A transect from northwest (Rome) to southeast (Camden) crosses the eastern part of Medial New England comprising the Central Maine basin, Liberty-Orrington thrust sheet, and Fredericton trough, and the western part of Composite Avalon, including the Graham Lake, Clarry Hill, and Clam Cove thrust sheets. U-Pb geochronology of events before, during, and after the Acadian orogeny helps elucidate the nature and distribution of tectonostrati& graphic belts in this zone and the timing of some Acadian events in the Northern Appalachians. The Central Maine basin consists of sedimentary and volcanic rocks of Middle Ordovician (???470 to ???460 Ma) age overlain with probable conformity by latest Ordovician(?) through earliest Devonian marine rift and flysch sedimentary rocks; these are intruded by weakly to undeformed plutonic rocks of Early and Middle Devonian age (???399??378 Ma). The Fredericton trough consists of Early Silurian gray pelite and sandstone to earliest Late Silurian calcareous turbidite, deformed and variably metamorphosed prior to the emplacement of Late Silurian (???422 Ma) and Early to Late Devonian (???418 to ???368 Ma) plutons. The Liberty-Orrington thrust sheet consists of Cambrian(?)-Ordovician (>???474 to ???469 Ma and younger) clastic sedimentary and volcanic rocks intruded by highly deformed Late Silurian (???424 to ???422 Ma) and Devonian (???418 to ???389 Ma) plutons, possibly metamorphosed in Late Silurian time (prior to ???417 Ma), and metamorphosed to amphibolite facies in Early to Middle Devonian time (???400 to ???381 Ma). The Graham Lake thrust sheet contains possible Precambrian rocks, Cambrian sedimentary rocks with a volcanic unit dated at ???503 Ma, and Ordovician rocks with possible Caradocian Old World fossils, metamor& phosed and deformed in Silurian time and intruded by mildly to undeformed Late Silurian (???421 Ma) and Late Devonian (???371 to ???368 Ma) plutons. The Clarry Hill thrust sheet consists of poorly studied, highly metamorphosed Cambrian(?) rocks. The Clam Cove thrust sheet contains highly deformed Precambrian limestone, shale, sandstone, and conglomerate, metamorphosed to epidote amphibolite facies and intruded by a mildly deformed pluton dated at ???421 Ma. Metamorphism, deformation, and voluminous intrusive igneous activity of Silu& rian age are common to both the most southeastern parts of Medial New England and the thrust sheets of Composite Avalon. In contrast to Medial New England, the thrust sheets of Composite Avalon show only modest effects of Devonian deformation and metamorphism. Regional stratigraphic relations, paleontologic findings, and U-Pb geochronology suggest that the Graham Lake, Clarry Hill, and Clam Cove thrust sheets are far-traveled allochthons that were widely separated from Medial New England in the Silurian.
NASA Astrophysics Data System (ADS)
Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.
2017-12-01
The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.
Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview
NASA Astrophysics Data System (ADS)
Soua, Mohamed
2014-12-01
During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete geochemical review has been undertaken from published papers and unpublished internal reports to better assess these important source intervals.
Rowan, E.L.; Engle, M.A.; Kirby, C.S.; Kraemer, T.F.
2011-01-01
Radium activity data for waters co-produced with oil and gas in New York and Pennsylvania have been compiled from publicly available sources and are presented together with new data for six wells, including one time series. When available, total dissolved solids (TDS), and gross alpha and gross beta particle activities also were compiled. Data from the 1990s and earlier are from sandstone and limestone oil/gas reservoirs of Cambrian-Mississippian age; however, the recent data are almost exclusively from the Middle Devonian Marcellus Shale. The Marcellus Shale represents a vast resource of natural gas the size and significance of which have only recently been recognized. Exploitation of the Marcellus involves hydraulic fracturing of the shale to release tightly held gas. Analyses of the water produced with the gas commonly show elevated levels of salinity and radium. Similarities and differences in radium data from reservoirs of different ages and lithologies are discussed. The range of radium activities for samples from the Marcellus Shale (less than detection to 18,000 picocuries per liter (pCi/L)) overlaps the range for non-Marcellus reservoirs (less than detection to 6,700 pCi/L), and the median values are 2,460 pCi/L and 734 pCi/L, respectively. A positive correlation between the logs of TDS and radium activity can be demonstrated for the entire dataset, and controlling for this TDS dependence, Marcellus shale produced water samples contain statistically more radium than non-Marcellus samples. The radium isotopic ratio, Ra-228/Ra-226, in samples from the Marcellus Shale is generally less than 0.3, distinctly lower than the median values from other reservoirs. This ratio may serve as an indicator of the provenance or reservoir source of radium in samples of uncertain origin.
Evaporite karst of northern lower Michigan
Black, T.J.
1997-01-01
Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian depos its are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum, and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the "solution front" Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing-seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group.
NASA Astrophysics Data System (ADS)
Niedźwiedzki, G.
2012-04-01
Numerous trackways and isolated prints with digit impressions, which are similar to the foot anatomy of early tetrapods such as Ichthyostega, were found on the three dolomite bed-surfaces in the lower part of the Wojciechowice Formation exposed in the Zachełmie Quarry in the Holy Cross Mountains (south-central Poland), (Niedźwiedzki et al., 2010). The age of the tetrapod track-bearing strata is well-constrained, but the detailed sedimentology of the lower section with tetrapod ichnites is still under study. The Wojciechowice Formation represent one of the first carbonate stages of a transgressive succession that begins with Early Devonian continental to marginal marine clastics and culminates in the development of a Givetian coral-stromatoporoid carbonate platform. The tetrapod track-bearing complex is composed of grey to reddish, thin- to medium-bedded dolomitic shales and marly dolomite mudstones. These deposits from the tetrapod track-bearing horizon lack definitive marine body fossils, and may have formed in a marginal marine environment, e.g. around a coastal lagoon. Mudcracks, columnar peds, root traces, and microbially induced sedimentary structures were found in three distinct pedotypes of very weakly to weakly developed paleosols (Retallack, 2011). Conodonts of the costatus zone (mid-Eifelian) were found 20 m above the uppermost surface with tetrapod tracks in limestones of the upper Wojciechowice Formation, which contain also brachiopod and crinoidal debris. The overlying Kowala Formation is a marine coral limestone and dolostone. The parts of profile with tetrapod ichnites and invertebrate and conodont fossils contain also records of invertebrate traces. Seven ichnotaxa are distributed among four recognized ichnoassemblages. The recognized ichnocoenoses are typical for the shallow-marine (Cruziana ichnofacies) and land-water transitional (Skolithos/Psilonichnus ichnofacies) carbonate depositional environments. The ichnocoenoses are dominated by trace fossils produced by arthropods (probably crustaceans), a group that can create large and distinctive burrows. The palaeoecological information from the Zachełmie section has direct bearing on the interpretation of environmental aspects of tetrapod emergence and terrestrialization. It should be fully integrated with data from other Devonian tetrapod tracksites. Niedźwiedzki, G., Szrek P., Narkiewicz K., Narkiewicz M. and Ahlberg P.E. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature, 463: 43-48. Retallack, G.J. 2011. Woodland Hypothesis for Devonian Tetrapod Evolution. The Journal of Geology, 119, 3: 235-258
Strontium isotopic study of subsurface brines from Illinois basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
hetherington, E.A.; Stueber, A.M.; Pushkar, P.
1986-05-01
The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /supmore » 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.« less
Petroleum potential of the Reggane Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudjema, A.; Hamel, M.; Mohamedi, A.
1990-05-01
The intracratonic Reggane basin is located on the Saharan platform, southwest of Algeria. The basin covers an area of approximately 140,000 km{sup 2}, extending between the Eglab shield in the south and the Ougarta ranges in the north. Although exploration started in the early 1950s, only a few wells were drilled in this basin. Gas was discovered with a number of oil shows. The sedimentary fill, mainly Paleozoic shales and sandstones, has a thickness exceeding 5,000 m in the central part of the basin. The reservoirs are Cambrian-Ordovician, Siegenian, Emsian, Tournaisian, and Visean sandstones with prospective petrophysical characteristics. Silurian Uppermore » Devonian and, to a lesser extent Carboniferous shales are the main source rocks. An integrated study was done to assess the hydrocarbon potential of this basin. Tectonic evolution source rocks and reservoirs distribution maturation analyses followed by kinetic modeling, and hydrogeological conditions were studied. Results indicate that gas accumulations could be expected in the central and deeper part of the basin, and oil reservoirs could be discovered on the basin edge.« less
Reconnaissance of ground-water resources in the Eastern Coal Field Region, Kentucky
Price, William E.; Mull, D.S.; Kilburn, Chabot
1962-01-01
In the Eastern Coal Field region of Kentucky, water is obtained from consolidated sedimentary rocks ranging in age from Devonian to Pennsylvanian and from unconsolidated sediments of Quaternary age. About 95 percent of the area is underlain by shale, sandstone, and coal of Pennsylvanian age. Principal factors governing the availability of water in the region are depth, topographic location, and the lithology of the aquifer penetrated. In general, the yield of the well increases as the depth increases. Wells drilled in topographic lows, such as valleys, are likely to yield more water than wells drilled on topographic highs, such as hills. Sand and gravel, present in thick beds in the alluvium along the Ohio River, form the most productive aquifer in the Eastern Coal Field. Of the consolidated rocks in the region sandstone strata are the best aquifers chiefly because joints, openings along bedding planes, and intergranular pore spaces are best developed in them. Shale also supplies water to many wells in the region, chiefly from joints and openings along bedding planes. Coal constitutes a very small part of the sedimentary section, but it yields water from fractures to many wells. Limestone yields water readily from solution cavities developed along joint and bedding-plane openings. The availability of water in different parts of the region was determined chiefly by analyzing well data collected during the reconnaissance. The resulting water-availability maps, published as hydrologic investigations atlases (Price and others, 1961 a, b; Kilburn and others, 1961) were designed to be used in conjunction with this report. The maps were constructed by dividing the region into 5 physiographic areas, into 10 subareas based chiefly on lithologic facies, and, in the case of the Kanawha section, into 2 quality-of-water areas. The 5 physiographic areas are the Knobs, Mississippian Plateau, Cumberland Plateau section, Kanawha section, and Cumberland Mountain section. The 10 subareas are as follows: 1. The Chattanooga shale. This black shale yields only enough water for a minimum domestic supply-100 to 500 gpd (gallons per day). 2. Mississippian-Devonian rocks exposed along Pine Mountain. These rocks consist of shale, limestone, and sandstone. The limestone yields water to springs, and faulted limestone and sandstone lying below drainage may yield several hundred gallons per minute to wells. 3. Mississippian rocks exposed along the western margin of the region. These rocks consist of thick limestone underlain by shale. The limestone yields enough water for a modern domestic supply (more than 500 gpd) , and discharges as much as 100 gpm (gallons per minute) to springs. The shale yields only enough water for a minimum domestic supply. 4. Subarea 1 of the Lee formation of Pennsylvanian age. The thin shaly rocks of this subarea generally yield only enough water for a minimum domestic supply. 5. Subarea 2 of the Lee formation of Pennsylvanian age. This subarea is predominantly underlain by massive sandstones; it generally yields enough water for a modern domestic supply, and in some places, enough water for small public and industrial supplies. 6. Subarea 1 of the Breathitt and Conemaugh formations of Pennsylvanian age. Rocks in this subarea contain more shale than sandstone. Wells in this subarea range from adequate for a minimum domestic supply to adequate for a modern domestic supply. 7. Subarea 2 of the Breathitt formation of Pennsylvanian age and undifferentiated post-Lee Pennsylvanian rocks. Wells in this subarea yield enough water for a modern domestic supply, and in many places, enough water for small public and industrial supplies. 8. Alluvium along the Ohio River. Mostly composed of glacial outwash sand and gravel, the alluvium is reported to yield as much as 360 gpm to wells. 9. Alluvium along the Big Sandy River and lower reaches of its Tug and Levisa Forks. Where consisting mostly of sand,
NASA Astrophysics Data System (ADS)
Carmichael, S. K.; Wang, Z.; Waters, J. A.; Dombrowski, A. D.; Batchelor, C. J.; Coleman, D. S.; Suttner, T.; Kido, E.
2017-12-01
The Late Devonian Frasnian-Famennian (F-F) boundary at 372 Ma is associated with the Kellwasser Event, an ocean anoxia event that is often associated with positive δ13C excursions and commonly represented by black shales. However, approximately 88% of the studies of the Kellwasser Event are based on sites from deep epicontinental basins and epeiric seas, and most of these sites are located on the Euramerican paleocontinent. In contrast to the positive δ13C excursions found in most basinal study sites, the δ13C signatures in three separate shallow water, island-arc F-F sections in the Junggar Basin in northwestern China (Wulankeshun, Boulongour Reservoir, and Genare) all show negative excursions in the stratigraphic location of the Kellwasser Event [1-3]. The δ18O values in both carbonates and/or conodont apatite likewise show negative excursions within the shallow water facies at each site, but have relatively constant signatures within the deeper water facies. 87Sr/86Sr values range from 0.70636-0.70906 at the base of the Boulongour Reservoir section and 0.70746-0.71383 at the base of the Wulankeshun section but both Sr signaures stabilize with relatively constant values closer to modeled Late Devonian seawater in deeper water and/or offshore facies. The fossil assemblages at the base of the Boulongour and Wulankeshun sections each correspond to euryhaline/brackish conditions, while microtextures in Ti-bearing phases within clastic sediments as well as isotope mixing models suggest submarine groundwater discharge signatures rather than diagenetic alteration. Preliminary framboidal pyrite distributions in these sections also show evidence for sub/dysoxic (rather than euxinic or anoxic) conditions that correspond to the stratigraphic Kellwasser interval. Positive δ13C excursions and the presence of black shales are thus not prerequisites for recognition of the Kellwasser Event, particularly in shallow water paleoenvironments that are not topographically favorable to shale accumulation and may have significant coastal groundwater or surface water inputs. [1] Suttner et al. (2014) J. of Asian Earth Sci. 80, 101-118. [2] Carmichael et al. (2014) Paleo3 399, 394-403. [3] Wang et al. (2016) Paleo3 448, 279-297.
Geological fieldwork in the Libyan Sahara: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Meinhold, Guido; Whitham, Andrew; Howard, James P.; Morton, Andrew; Abutarruma, Yousef; Bergig, Khaled; Elgadry, Mohamed; Le Heron, Daniel P.; Paris, Florentin; Thusu, Bindra
2010-05-01
Libya is one of the most hydrocarbon-rich countries in the world. Its large oil and gas reserves make it attractive to international oil and gas companies, which provide the impetus for field-based research in the Libyan Sahara. North Africa is made up of several enormous intracratonic basins, two of which are found in southern Libya: the Murzuq Basin, in the southwest, and the Kufra Basin, in the southeast, separated by the Tibesti Massif. Both basins are filled with Palaeozoic and Mesozoic clastic sedimentary rocks reaching up to 5 km in thickness. These basins developed from the Cambrian onwards following an earlier period of orogenesis (the Panafrican Orogeny) in the Neoproterozoic. Precambrian metasediments and granitoids are unconformably overlain by Cambrian and Ordovician conglomerates and sandstones. They show a transitional environment from continental to shallow marine. Skolithos-bearing sandstone is common in Ordovician strata. By the Late Ordovician, ice masses had developed across West Gondwana. Upon melting of the ice sheets in the latest Hirnantian, large volumes of melt water and sediment were released that were transported to the periphery of Gondwana. In Libya, these sediments are predominantly highly mature sandstones, which, in many places, are excellent hydrocarbon reservoirs. Polished and striated surfaces in these sandstones clearly point to their glaciogenic origin. Following Late Ordovician deglaciation, black shale deposition occurred in the Silurian. Some of the shales are characterised by high values of total organic carbon (TOC). These shales are commonly referred to as ‘hot shales' due to their associated high uranium content, and are the major source rock for Early Palaeozoic-sourced hydrocarbons in North Africa. Late Ordovician glaciogenic sediments and the Early Silurian ‘hot shales' are therefore the main focus of geological research in the Libyan Sahara. Fluvial conglomerates and sandstones of Devonian age unconformably overlie these strata. Marine intervals occur in the Late Devonian, and the Carboniferous is characterised by shallow marine clastic sediments with carbonate horizons. Permian rocks are only known from subsurface drill cores and comprise continental and deltaic facies. The centre of the Murzuq Basin has been relatively well investigated by drilling and seismic profiles. The basin margins, however, lack detailed geological investigation. In comparison, the Kufra Basin is underexplored with few boreholes drilled. Our studies have focused on the eastern and northern margins of the Murzuq Basin and the northern, eastern and western margins of the Kufra Basin. The main objective of fieldwork has been to characterise the Infracambrian-Lower Palaeozoic stratigraphy, deduce the structural evolution of each study area, and to collect samples for follow-up analyses including provenance studies and biostratigraphy. In addition to outcrop-based fieldwork shallow boreholes up to 70 m depth were successfully drilled in the Early Silurian shales. The unweathered samples retrieved from two of the boreholes have been used for biostratigraphical and whole-rock geochemical investigations. The provenance study of the sandstone succession with conventional heavy mineral analysis together with U-Pb zircon dating provides, for the first time, an understanding of the ancient source areas. Because most of the Early Palaeozoic succession in southern Libya is barren of fossils, heavy mineral chemostratigraphy is moreover used as a correlation test on surface outcrops in the Kufra and Murzuq basins.
Leventhal, J.S.; Hosterman, J.W.
1982-01-01
Core samples of Devonian shales from five localities in the Appalachian basin have been analyzed chemically and mineralogically. The amounts of major elements are similar; however, the minor constituents, organic C, S, phosphate and carbonate show ten-fold variations in amounts. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As and Mn show variations in amounts that can be related to the minor constituents. All samples contain major amounts of quartz, illite, two types of mixed-layer clays, and chlorite in differing quantities. Pyrite, calcite, feldspar and kaolinite are also present in many samples in minor amounts. Dolomite, apatite, gypsum, barite, biotite and marcasite are present in a few samples in trace amounts. Trace elements listed above are strongly controlled by organic C with the exception of Mn which is associated with carbonate minerals. Amounts of organic C generally range from 3 to 6%, and S is in the range of 2-5%. Amounts of trace elements show the following general ranges in ppm (parts per million): Co, 20-40; Cu, 40-70; U, 10-40; As, 20-40; V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, and the organic C and sulfide S together created an environment that immobilized and preserved these trace elements. Closely spaced samples showing an abrupt transition in color also show changes in organic C, S and trace-element contents. Several associations exist between mineral and chemical content. Pyrite and marcasite are the only minerals found to contain sulfide-S. In general, the illite-chlorite mixed-layer clay mineral shows covariation with organic C if calcite is not present. The enriched trace elements are not related to the clay types, although the clay and organic matter are intimately associated as the bulk fabric of the rock. ?? 1982.
Geology and hydrocarbon potential of the Oued Mya basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1993-09-01
The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less
NASA Astrophysics Data System (ADS)
Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa
2015-04-01
Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible suboxic to anoxic conditions of the bottom and pore waters during the formation of Vesiku bone bed. In Ohesaare (Pridoli), the REE compositions were nearly identical across all the morphotypes and histologies of acanthodian microremains showing flat REE patterns with slight depletion in HREE. There were no visible enrichment in MREE, indicating relatively good preservation of original bioapatite and likely absence of any pronounced fractionated REE incorporation during later stages of diagenesis. The shale normalised (La/Yb)SN and (La/Sm)SN REE ratio compilations showed addsorption as dominating REE uptake mechanism across all the studied microfossils. The absence of well-defined Ce anomaly suggest oxic palaeoseawater conditions, which agrees with existing interpretations of Ohesaare sequence as high-energy shoal and regressive open ocean sedimentary environment.
NASA Astrophysics Data System (ADS)
Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk
2017-04-01
The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.
NASA Technical Reports Server (NTRS)
Beier, J. A.; Hayes, J. M.
1989-01-01
The upper part of the New Albany Shale is divided into three members. In ascending order, these are (1) the Morgan Trail Member, a laminated brownish-black shale; (2) the Camp Run Member, an interbedded brownish-black and greenish-gray shale; and (3) the Clegg Creek Member, also a laminated brownish-black shale. The Morgan Trail and Camp Run Members contain 5% to 6% total organic carbon (TOC) and 2% sulfide sulfur. Isotopic composition of sulfide in these members ranges from -5.0% to -20.0%. C/S plots indicate linear relationships between abundances of these elements, with a zero intercept characteristic of sediments deposited in a non-euxinic marine environment. Formation of diagenetic pyrite was carbon limited in these members. The Clegg Creek Member contains 10% to 15% TOC and 2% to 6% sulfide sulfur. Isotopic compositions of sulfide range from -5.0% to -40%. The most negative values occur in the uppermost Clegg Creek Member and are characteristic of syngenetic pyrite, formed within an anoxic water column. Abundances of carbon and sulfur are greater and uncorrelated in this member, consistent with deposition in as euxinic environment. In addition, DOP (degree of pyritization) values suggest that formation of pyrite was generally iron limited throughout Clegg Creek deposition, but sulfur isotopes indicate that syngenetic (water-column) pyrite becomes an important component in the sediment only in the upper part of the member. At the top of the Clegg Creek Member, a zone of phosphate nodules and trace-metal enrichment coincides with maximal TOC values. During euxinic deposition, phosphate and trace metals accumulated below the chemocline because of limited vertical circulation in the water column. Increased productivity would have resulted in an increased flux of particulate organic matter to the sediment, providing an effective sink for trace metals in the water column. Phosphate and trace metals released from organic matter during early diagenesis resulted in precipitation of metal-rich phosphate nodules.
Bradley, W.H.; Pepper, J.F.
1941-01-01
The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits red shale and sandstone and gray mudstone in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pi. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines. tend to fork northeastward. All the folds have a westward or southwestward plunge. Throughout the area the rocks are jointed in two dominant sets one that trends northwest and the other east or northeast. No evident relation .between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their j courses swing to follow the changing strike of the rocks where they cross ( successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure. Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in tbe Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes maybe found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Woodhull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell,, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized. Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands presumably parts of the Dunkirk sandstone.
Geologic structure and occurrence of gas in part of southwestern New York
Bradley, Wilmot H.; Pepper, James F.; Richardson, G.B.
1941-01-01
The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits—red shale and sandstone and gray mudstone—in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pl. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but, where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines tend to fork northeastward. All the folds have a westward or southwestward plunge.Throughout the area the rocks are jointed in two dominant sets—one that trends northwest and the other east or northeast. No evident relation between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults ; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their courses swing to follow the changing strike of the rocks where they cross successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure.Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in the Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes may be found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Wood-hull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized.Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands— presumably parts of the Dunkirk sandstone.
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
NASA Astrophysics Data System (ADS)
Javier Álvaro, J.; Colmenar, Jorge; Monceret, Eric; Pouclet, André; Vizcaïno, Daniel
2016-06-01
Upper Ordovician-Lower Devonian rocks of the Cabrières klippes (southern Montagne Noire) and the Mouthoumet massif in southern France rest paraconformably or with angular discordance on Cambrian-Lower Ordovician strata. Neither Middle-Ordovician volcanism nor associated metamorphism is recorded, and the subsequent Middle-Ordovician stratigraphic gap is related to the Sardic phase. Upper Ordovician sedimentation started in the rifting branches of Cabrières and Mouthoumet with deposition of basaltic lava flows and lahar deposits (Roque de Bandies and Villerouge formations) of continental tholeiite signature (CT), indicative of continental fracturing. The infill of both rifting branches followed with the onset of (1) Katian (Ka1-Ka2) conglomerates and sandstones (Glauzy and Gascagne formations), which have yielded a new brachiopod assemblage representative of the Svobodaina havliceki Community; (2) Katian (Ka2-Ka4) limestones, marlstones, and shales with carbonate nodules, reflecting development of bryozoan-echinoderm meadows with elements of the Nicolella Community (Gabian and Montjoi formations); and (3) the Hirnantian Marmairane Formation in the Mouthoumet massif that has yielded a rich and diverse fossil association representative of the pandemic Hirnantia Fauna. The sealing of the subaerial palaeorelief generated during the Sardic phase is related to Silurian and Early Devonian transgressions leading to onlapping patterns and the record of high-angle discordances.
Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.
2010-01-01
The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.
Multiple fracturing experiments: propellant and borehole considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuderman, J F
1982-01-01
The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less
Radium release mechanisms during hydraulic fracturing of Marcellus Shale
NASA Astrophysics Data System (ADS)
Sharma, M.; Landis, J. D.; Renock, D. J.
2016-12-01
Wastewater co-produced with methane from Devonian Marcellus Shale is hypersaline and enriched in Ra. Recent studies find that water injected during hydraulic fracturing can leach out significant quantities of Na, Ca, Ba and Sr from solid phases in the shale over just hours to days. Here, we show with water-rock leaching experiments that the measured 226Ra/228Ra ratios of Marcellus wastewater could also derive from rapid leaching of mineral and organic phases of the shale. Radium isotopes 226Ra (t1/2 = 1600 a) and 228Ra (t1/2 = 5.8 a) are produced through radioactive decay of 238U (t1/2 = 4.5 Ga) and 232Th (t1/2 = 14 Ga), respectively. In the absence of processes that fractionate U, Th and Ra from one another, the decay rates of each parent-daughter pair become identical over 5 half-lives of the daughter radionuclide reaching a condition of secular equilibrium. Water-rock interaction may induce pronounced deviations from secular equilibrium in the water phase, however. Such is the case during hydraulic fracturing, where Ra is soluble and mobile, and is orphaned from insoluble U and Th parents. Once 226Ra and 228Ra are mobilized no fractionation between these isotopes is expected during their transport to the surface. Thus the 226Ra/228Ra ratio in wastewater provides a fingerprint of Ra source(s). Leaching Marcellus Shale with pure water under anoxic conditions releases mainly 228Ra from clays; extraction of 228Ra from radiation damaged sites is likely the dominant contributing mechanism. Using a novel isotope dilution technique we find that 90% of the Ra released in pure water partitions back onto rock (possibly clays). In comparison, leaching with high ionic strength solutions induces the release of 226Ra from mainly organics; the breakdown of organic matter in these solutions may be the driving mechanism controlling 226Ra release in solution. Radium released by high ionic strength solutions strongly partitions into water and results in the development of leachates with high 226Ra/228Ra ratios that are comparable to those of Marcellus wastewaters. Our results suggest that hydraulic fracturing using dilute HCl solution releases Ca and Na from the shale and effects rapid Ra release from the rock. Hypersaline and radioactive wastewater is thus a consequence of active leaching of shale during hydraulic fracturing.
The Santa Cruz - Tarija Province of Central South America: Los Monos - Machareti(!) Petroleum System
Lindquist, Sandra J.
1999-01-01
The Los Monos - Machareti(!) total petroleum system is in the Santa Cruz - Tarija Province of Bolivia, Argentina and Paraguay. Province history is that of a Paleozoic, intracratonic, siliciclastic rift basin that evolved into a Miocene (Andean) foreland fold and thrust belt. Existing fields are typified by alternating reservoir and seal rocks in post-Ordovician sandstones and shales on anticlines. Thick Devonian and Silurian shale source rocks, depositionally and erosionally confined to this province, at a minimum have generated 4.1 BBOE known ultimate recoverable reserves (as of 1995, 77% gas, 15% condensate, 8% oil) into dominantly Carboniferous reservoirs with average 20% porosity and 156 md permeability. Major detachment surfaces within the source rocks contributed to the thin-skinned and laterally continuous nature of the deformation. Tertiary foreland burial adequate for significant source maturation coincided with the formation of compressional traps. Further hydrocarbon discovery in the fold and thrust belt is expected. In the foreland basin, higher thermal gradients and variable burial history - combined with the presence of unconformity and onlap wedges - create potential there for stratigraphic traps and pre-Andean, block-fault and forced-fold traps.
NASA Astrophysics Data System (ADS)
Yang, J.; Torres, M. E.; Haley, B. A.; McKay, J. L.; Algeo, T. J.; Hakala, A.; Joseph, C.; Edenborn, H. M.
2013-12-01
Black shales commonly targeted for shale gas development were deposited under low oxygen concentrations, and typically contain high As levels. The depositional environment governs its solid-phase association in the sediment, which in turn will influence degree of remobilization during hydraulic fracturing. Organic carbon (OC), trace element (TE) and REE distributions have been used as tracers for assessing deep water redox conditions at the time of deposition in the Midcontinent Sea of North America (Algeo and Heckel, 2008), during large-scale oceanic anoxic events (e.g., Bunte, 2009) and in modern OC-rich sediments underlying coastal upwelling areas (e.g., Brumsack, 2006). We will present REE and As data from a collection of six different locations in the continental US (Kansas, Iowa, Oklahoma, Kentucky, North Dakota and Pennsylvania), ranging in age from Devonian to Upper Pennsylvanian, and from a Cretaceous black shale drilled on the Demerara Rise during ODP Leg 207. We interpret our data in light of the depositional framework previously developed for these locations based on OC and TE patterns, to document the mechanisms leading to REE and As accumulation, and explore their potential use as environmental proxies and their diagenetic remobilization during burial, as part of our future goal to develop a predictive evaluation of arsenic release from shales and transport with flowback waters. Total REE abundance (ΣREE) ranged from 35 to 420 ppm in an organic rich sample from Stark shale, KS. PAAS-normalized REE concentrations ranged from 0.5 to 7, with the highest enrichments observed in the MREE (Sm to Ho). Neither the ΣREE nor the MREE enrichments correlated with OC concentrations or postulated depositional redox conditions, suggesting a principal association with aluminosilicates and selective REE fractionation during diagenesis. In the anoxic reducing environments in which black shales were deposited, sulfide minerals such as FeS2 trap aqueous arsenic in the crystal lattice, but As is also known to bind to the charged surfaces of clay minerals. Our arsenic concentration data show that the highest abundances (up to 70 ppm) are found in sediments with the highest total sulfur concentration (to 2.6 ppm), but there was no clear correlation with organic carbon or aluminosilicate content. We compare our results with preliminary data from a series of flowback waters sampled from ten producing wells in Pennsylvania and from high-pressure high-temperature experimental leaching of Marcellus shale samples.
Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements
Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.
2009-01-01
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.
Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia
Ulmishek, Gregory F.
2001-01-01
The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.
Geomorphology and forest ecology of a mountain region in the central Appalachians
Hack, John Tilton; Goodlett, John C.
1960-01-01
The area studied, mostly in the headwaters of the Shenandoah River, Augusta and Rockingham Counties, Va., includes about 55 square miles of densely forested mountain land and has an average relief of about 1,500 feet. It is part of an area that in June 1949 was subjected to a violent cloudburst which damaged large tracts on slopes and bottom lands. Most of the area is underlain by flaggy arkosic sandstone and interbedded reddish shale of the Hampshire formation of Devonian age. The highest ridges are capped by massive sandstone of the Pocono formation of Mississippian age. In most of the area the rocks dip gently to the southeast but in the northwestern and southeastern parts they are folded into synclines that localize northeastward-trending ridges.
McDowell, Robert C.
1983-01-01
Silurian rocks form a narrow arcuate outcrop belt about 100 mi long on the east side of the Cincinnati Arch in Kentucky. They range from as much as 300 ft thick in the north to a pinchout edge in the south. The nomenclature of this sequence is revised to reflect mappability and lithologic uniformity on the basis of detailed mapping at a scale of 1:24,000 by the U.S. Geological Survey in cooperation with the Kentucky Geological Survey. The Silurian rocks are divided into two parts: the Crab Orchard Group, raised in rank from Crab Orchard Formation and redefined, in the lower part of the Silurian section, and Bisher Dolomite in the upper part of the section. The Crab Orchard Group is subdivided into the Drowning Creek Formation (new name) at the base of the Silurian, overlain by the Alger Shale (adopted herein) south of Fleming County and by the Estill Shale (elevated to formational rank) north of Bath County. The Brassfield Member (reduced in rank from Brassfield Dolomite or Formation) and the Plum Creek Shale and Oldham Members of the former Crab Orchard Formation are included as members of the Drowning Creek; the Lulbegrud Shale, Waco, and Estill Shale Members of the former Crab Orchard Formation are now included in the Alger. The Drowning Creek Formation, 20 to 50 ft thick, is composed mainly of gray fine to coarse-grained dolomite with shale interbeds. The dolomite beds average several inches thick, with bedding surfaces that are locally smooth but generally irregular and are fossiliferous in many places; fossils include brachiopods, crinoid columnals, horn corals, colonial corals, trilobites, pelecypods, and bryozoans. The shale interbeds average several inches thick, except for its Plum Creek Shale Member which is entirely shale and as much as 12 ft thick, and are most abundant in the upper half of the formation. The members of the Drowning Creek intergrade and are indistinguishable in the northern part of the area. The Alger Shale, as much as 170 feet thick, is predominantly grayish-green clay shale with a thin (0.5-3 ft) dolomite member (the Waco, or its northern equivalent, the Dayton Dolomite Member, reduced in rank from Dayton Limestone) near the base. North of Bath County, the Lulbegrud Shale and Dayton Dolomite Members are reassigned to the underlying Drowning Creek Formation, the Estill Shale Member is elevated to formational status, and the Alger is dropped. The Bisher Dolomite, which overlies the Estill Shale in the northernmost part of the Silurian belt, ranges from 0 to 300 ft in thickness and is composed of medium-to coarse-grained, gray, fossiliferous dolomite. The Silurian section overlies Upper Ordovician rocks in apparent conformity, although faunal studies suggest a minor hiatus, and is overlain by Middle to Upper Devonian rocks in a regional angular unconformity that truncates the entire Silurian section at the southwest end of the outcrop belt, where it is nearest the axis of the Cincinnati Arch. All of the units recognized in the Silurian appear to thicken eastward, away from the axis of the arch and towards the Appalachian basin. This, with the presence of isolated remnants of the Brassfield near the axis, suggest that formation of the arch was initiated in Early Silurian time by subsidence of its eastern flank.
Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.
2006-01-01
Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.
Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.
2015-01-01
The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.
NASA Astrophysics Data System (ADS)
Johnson, Sean C.; Large, Ross R.; Coveney, Raymond M.; Kelley, Karen D.; Slack, John F.; Steadman, Jeffrey A.; Gregory, Daniel D.; Sack, Patrick J.; Meffre, Sebastien
2017-08-01
Highly metalliferous black shales (HMBS) are enriched in organic carbon and a suite of metals, including Ni, Se, Mo, Ag, Au, Zn, Cu, Pb, V, As, Sb, Se, P, Cr, and U ± PGE, compared to common black shales, and are distributed at particular times through Earth history. They constitute an important future source of metals. HMBS are relatively thin units within thicker packages of regionally extensive, continental margin or intra-continental marine shales that are rich in organic matter and bio-essential trace elements. Accumulation and preservation of black shales, and the metals contained within them, usually require low-oxygen or euxinic bottom waters. However, whole-rock redox proxies, particularly Mo, suggest that HMBS may have formed during periods of elevated atmosphere pO2. This interpretation is supported by high levels of nutrient trace elements within these rocks and secular patterns of Se and Se/Co ratios in sedimentary pyrite through Earth history, with peaks occurring in the middle Paleoproterozoic, Early Cambrian to Early Ordovician, Middle Devonian, Middle to late Carboniferous, Middle Permian, and Middle to Late Cretaceous, all corresponding with time periods of HMBS deposition. This counter-intuitive relationship of strongly anoxic to euxinic, localized seafloor conditions forming under an atmosphere of peak oxygen concentrations is proposed as key to the genesis of HMBS. The secular peaks and shoulders of enriched Se in sedimentary pyrite through time correlate with periods of tectonic plate collision, which resulted in high nutrient supply to the oceans and consequently maximum productivity accompanying severe drawdown into seafloor muds of C, S, P, and nutrient trace metals. The focused burial of C and S over extensive areas of the seafloor, during these anoxic to euxinic periods, likely resulted in an O2 increase in the atmosphere, causing short-lived peaks in pO2 that coincide with the deposition of HMBS. As metals become scarce, particularly Mo, Ni, Se, Ag, and U, the geological times of these narrow HMBS horizons will become a future focus for exploration.
NASA Astrophysics Data System (ADS)
Uveges, B. T.; Junium, C. K.; Boyer, D.; Cohen, P.; Day, J. E.
2017-12-01
The Frasnian-Famennian Biotic Crisis (FFBC) is among the `Big Five' mass extinctions in ecological severity, and was particularly devastating to shallow water tropical faunas and reefs. The FFBC is associated with two organic rich black shale beds collectively known as the Lower and Upper Kellwasser Events(KWEs). Sedimentary N and C isotopes offer insight into the biogeochemical processing of nutrients, and therefore the oceanographic conditions in a basin. In particular, biological production within and around the chemocline can impart a distinct signature to the particulate organic matter (POM) preserved in sediments. Here we present bulk δ15N and δ13Corg isotope data from the Late Devonian Appalachian, and Illinois Basins (AB and IB), with a focus on intervals encompassing the KWEs. Broadly, δ15N values were depleted (-1.0 to +4.0‰), and are consistent with other intervals of black shale deposition, such as OAEs, with the IB being generally more enriched. In both the IB and AB, black shales were 15N depleted compared to the interbedded grey shales on average by 2.3 and 1.0‰ respectively. Organic carbon isotopes exhibit the broad, positive excursions that are typical of the KWEs globally ( 3.5‰ from background). Superimposed over the increase in δ13Corg are sharp decreases in δ13Corg, to as low as -30‰, found at the base of the black shale beds in the both basins. In the context of the pattern of δ15N, this suggests that the mobility of the chemocline and the degree of stratification exert a primary control on both δ15N and δ13Corg. Chemocline movement, or alternatively chemocline collapse, would lead to greater areal extent/upwelling of low oxygen deep waters, rich in isotopically depleted remineralized nutrients (DIN and DIC), leading to the production and eventual preservation of depleted POM in the black shales. Applying this model to the KWEs, which saw more expansive deposits of anoxic facies, we propose that the black shales associated with the KWEs, and thus the FFBC, were the result of exacerbated chemocline fluctuations already inherent to the basin system. The resultant influx of low oxygen, high nutrient water would have not only placed stress on shallow water organisms, but may have also induced eutrophication through spurred primary productivity of organic matter, compounding the the severity of the event.
Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay
NASA Astrophysics Data System (ADS)
Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.
2016-03-01
A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and preserves a transgressive-regressive cycle within a shallow-marine siliciclastic shelf platform, and is characterized by an assemblage of invertebrate fossils of Malvinokaffric affinity especially within the Lower Devonian Cordobés shales. The sedimentary provenance of the Durazno Group was determined using petrography, geochemistry, and morphological studies of detrital zircons as well as their U-Pb ages. Sandstone petrography of Cerrezuelo and La Paloma sequences shows that they have a dominantly quartz-feldspathic composition with a minor contribution of other minerals. Whole-rock geochemical data indicate that alteration was strong in each of the three formations studied; chondritic-normalized REE patterns essentially parallel to PAAS, the presence of a negative Eu-anomaly, and Th/Sc and La/Hf ratios point to an average source composition similar to UCC or slightly more felsic. Within the Cerrezuelo Formation, recycling of older volcano-metasedimentary sources is interpreted from Zr/Sc ratios and high Hf, Zr, and REE concentrations. U-Pb detrital zircon age populations of the Cerrezuelo and La Paloma formations indicate that the principal source terranes are of Neoproterozoic age, but include also minor populations derived from Mesoproterozoic and Archean-Paleoproterozoic rocks. A provenance from the Cuchilla Dionisio-Dom Feliciano, Nico Pérez and Piedra Alta terranes of Uruguay and southern Brazil is likely. This study establishes an intracratonic extensional tectonic setting during Durazno time. Considering provenance age sources, regional paleocurrent distributions and the established orogenic history recorded in SW Gondwana, we suggest that the basin fill was derived from paleohighs located in what is currently SE Uruguay.
NASA Astrophysics Data System (ADS)
Bábek, Ondřej; Faměra, Martin; Hladil, Jindřich; Kapusta, Jaroslav; Weinerová, Hedvika; Šimíček, Daniel; Slavík, Ladislav; Ďurišová, Jana
2018-02-01
Red pelagic sediments are relatively common in the Phanerozoic. They are often interpreted as products of sea-bottom oxidation during greenhouse climate showing a conspicuous alternation with black shales and thus carrying important palaeoceanographic information. The Lower Devonian (Pragian) carbonate strata of the Prague Basin, Czech Republic (Praha Formation) contain a marked band of red pelagic carbonate, up to 15 m thick, which can be correlated for several tens of km. We investigated seven sections (17 to 255 m thick) of the Prague Basin using the methods of facies analysis, outcrop gamma-ray logging, diffuse reflectance spectroscopy, optical microscopy, element geochemistry, magneto-mineralogy and electron microprobe analysis. The aim was to find the mineral carriers of the red colour, investigate the stratigraphic context of the red carbonates and evaluate the local and global prerequisites for their formation. The red pigmentation represents enrichment by hematite with respect to goethite. Approximately 31% of the total reflectance falling in the red colour band represents a threshold for red coloration. The red pigmentation is carried by submicronic hematite dispersed in argillaceous pelagic calcilutite and/or inside skeletal allochems. Gamma-ray log correlation indicates that the red carbonate band developed in stratigraphic levels with low sedimentation rates, typically from 1 to 7.1 mm/kyr, which are comparable to the Mesozoic Rosso Ammonitico facies. The red beds and the whole Praha Formation (Pragian to early Emsian) are characterized by low TOC values (< 0.05%) and low U/Th, Mo/Al, V/Al, Zn/Al, Cu/Al and P/Al ratios indicating oligotrophic, highly oxic sea-bottom conditions. This period was characterized by global cooling, a drop in silicate weathering rates and in atmospheric pCO2 levels. The lower Devonian successions of the Prague Basin indicate that switching between two greenhouse climatic modes, colder oligotropic and warmer mesotrophic, may have been responsible for the alternation of red and grey carbonate strata, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ver Straeten, C.A.
1992-01-01
The K-bentonite-rich interval of the Esopus Formation (eastern New York and northeastern Pennsylvania) overlies the coeval Oriskany/Glenerie/Ridgely Formations and ranges from 1 to 6.3 m in thickness. Six to seventeen soapy-feeling, yellow, tan, green, or gray clay to claystone beds (0.001 to 0.5 m-thick) interbedded with thin siltstone and chert beds (0.02--1 m-thick) characterize outcrops in eastern New York. Heavy mineral separates from these layers yield abundant uncorraded euhedral zircons and apatites, indicating that these are K-bentonites. In eastern Pennsylvania, the westernmost outcrop of the Esopus Formation displays a 2.3 m-thick massive, soapy-feeling clay to claystone-dominated interval. The presence ofmore » both coarse, highly abraded and small, fragile, pristine-appearing zircons and apatites from a 20 cm sampled interval may indicate a complex amalgamation/reworking history to the relatively thick, clay-dominated strata. Similar clay/claystone-rich strata have been found in the lower 0.15 to 1 m of the Beaverdam Member (Needmore Formation) in central Pennsylvania. Interbedded clays and claystones with or without minor siltstone beds characterize some outcrops. Other localities are clay-dominated, with minor amounts of quartz sand present in strata immediately overlying the Ridgely Sandstone. These newly discovered K-bentonite-rich strata mark a transition from shelfal orthoquartzites and carbonates to basinal black/dark gray shales similar to the overlying Middle Devonian Tioga ash interval. Deposition of ash-rich strata, associated with increased volcanic activity, coincided with subsidence of the foreland basin/relative sea level rise. These events were concurrent with a flush of siliciclastic sediments into the basin and are indicative of the onset of an early tectophase of the Devonian Acadian Orogeny.« less
Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America
Brett, Carlton E.; Baird, G.C.; Bartholomew, A.J.; DeSantis, M.K.; Ver Straeten, C.A.
2011-01-01
The well-exposed Middle Devonian rocks of the Appalachian foreland basin (Onondaga Formation; Hamilton Group, Tully Formation, and the Genesee Group of New York State) preserve one of the most detailed records of high-order sea-level oscillation cycles for this time period in the world. Detailed examination of coeval units in distal areas of the Appalachian Basin, as well as portions of the Michigan and Illinois basins, has revealed that the pattern of high-order sea-level oscillations documented in the New York-Pennsylvania section can be positively identified in all areas of eastern North America where coeval units are preserved. The persistence of the pattern of high-order sea-level cycles across such a wide geographic area suggests that these cycles are allocyclic in nature with primary control on deposition being eustatic sea-level oscillation, as opposed to autocylic controls, such as sediment supply, which would be more local in their manifestation. There is strong evidence from studies of cyclicity and spectral analysis that these cycles are also related to Milankovitch orbital variations, with the short and long-term eccentricity cycles (100. kyr and 405. kyr) being the dominant oscillations in many settings. Relative sea-level oscillations of tens of meters are likely and raise considerable issues about the driving mechanism, given that the Middle Devonian appears to record a greenhouse phase of Phanerozoic history. These new correlations lend strong support to a revised high-resolution sea-level oscillation curve for the Middle Devonian for the eastern portion of North America. Recognized third-order sequences are: Eif-1 lower Onondaga Formation, Eif-2: upper Onondaga and Union Springs formations; Eif-Giv: Oatka Creek Formation; Giv-1: Skaneateles, Giv-2: Ludlowville, Giv-3: lower Moscow, Giv-4: upper Moscow-lower Tully, and Giv-5: middle Tully-Geneseo formations. Thus, in contrast with the widely cited eustatic curve of Johnson et al. (1985), which recognizes just one major transgressive-regressive (T-R) cycle in the early-mid Givetian (If) prior to the major late Givetian Taghanic unconformity (IIa, upper Tully-Geneseo Shale), we recognize four T-R cycles: If (restricted), Ig, Ih, and Ii. We surmise that third-order sequences record eustatic sea-level fluctuations of tens of meters with periodicities of 0.8-2. myr, while their medial-scale (fourth-order) subdivisions record lesser variations primarily of 405. kyr duration (long-term eccentricity). This high-resolution record of sea-level change provides strong evidence for high-order eustatic cycles with probable Milankovitch periodicities, despite the fact that no direct evidence for Middle Devonian glacial sediments has been found to date. ?? 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, R.D.; Sutherland, P.K.; White, P.B.
1990-09-01
Recurrent uplift of the Ouachita fold belt in Oklahoma coincided with the disruption of the Arkoma basin following the deposition of the Boggy Formation (early Desmoinesian time). The Boggy, composed of sandstone-shale sequences that record southerly progradation of coal-bearing, fluvially dominated deltaic complexes into the Arkoma basin, was folded at the time of uplift of the Ouachita fold belt. The uplift ended the progressive subsidence of the Arkoma basin and shifted the depocenter to the northwest. Subsequently, the Thurman Formation (middle Desmoinesian), which had a source in the southeast, was deposited in the smaller resurgent foreland basin over the foldedmore » and eroded surface of the Boggy. Chert-pebble conglomerates in the Thurman were derived from the erosion of newly elevated Ordovician and Devonian cherts in the core of the Ouachita foldbelt. Sandstone-shale packages are found in both formations. The origin of the coal-bearing cycles in the Boggy are enigmatic, but they probably were controlled by a combination of factors such as glacio-eustatic changes in sea level and delta-lobe abandonment. In contrast, cycles in the Thurman probably were strongly influenced by episodic thrust faulting and uplift in the Ouachitas.« less
Reconnaissance for uranium in the southeastern states, 1953
Johnson, Henry S.
1953-01-01
During the last quarter of 1952 and most of 1953 the U.S. Geological Survey carried on a program of reconnaissance for radioactive material in the southeastern states on behalf to the Atomic Energy Commission. In the course of the study 111 localities were examined and 43 samples were taken for radioactivity measurements at the Survey's Trace Elements laboratory in Denver, Colo. No economic deposits of uranium were found as a result of this work, but weak radioactivity was noted at the Tungsten Mining Coperation property near Townsville, N. C.; the Comolli granite quarry near Elberton, Ga.; in the Beech and Cranberry granite near Roan Mountain, Tenn.; and in several shales in the Valley and Ridge and Appalachian Plateau provinces. Devonian through Pennsylvanian rocks in these two provinces probably constitute the most favorable ground for new discoveries of uranium in the Southeast.
Graphite Black shale of Vendas de Ceira, Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina
2017-04-01
The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is quite abundant at the site. The main difference to the graphite shale is the high porosity of the brown shale with 14.7% and the low volume weight of 23 kN/m3, evidencing the distinct characteristics of the graphite schists. The maximum strength was evaluated by the Schmidt hammer, as the point load test could not be performed as the rock was very soft. The maximum estimated values on dry samples were 32 MPa for sample A and 85 MPa for sample C. The results show a singular material characterized by significant heterogeneity. It can be concluded that for the graphite schists the smaller particle size and higher porosity make the soft rock extremely weatherable when decompressed and exposed to water, as a result of high capillary tension and reduced cohesion. They also exhibit high expansion and an enormous degradation of the rock presenting a behaviour close to a soil. The graphite black schist is a highly weatherable soft rock, without expansive minerals, with small pores, in which the porosity, low strength and low cohesion allow their rapid degradation when decompressed and exposed to the action of Water.
NASA Astrophysics Data System (ADS)
Zhu, J.; Parris, T. M.; Taylor, C. J.; Webb, S. E.; Davidson, B.; Smath, R.; Richardson, S. D.; Molofsky, L.; Kromann, J. S.
2016-12-01
Rapid implementation of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations across the country has increased public concern about possible impact on the environment, especially on shallow drinking-water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Upper Devonian Berea Sandstone in recent years. Although production in the Berea Sandstone is at a relatively small scale, the Rogersville Shale, a deeper, thicker, and more spatially extensive organic-rich shale, is projected to become a major shale play in eastern Kentucky. This has necessitated a better understanding of groundwater quality, especially the occurrence of dissolved methane, in aquifers overlying the Berea and Rogersville plays to help address the public's environmental concerns and protect groundwater resources. To assess baseline groundwater chemistry and evaluate distribution and origin of methane detected in the groundwater, 51 water wells in Greenup, Carter, Boyd, Lawrence, Johnson, and Elliott Counties were sampled and analyzed for major cations and anions, metals, and dissolved light hydrocarbon gases including methane. Twenty-six wells were identified as having methane concentrations greater than 1 mg/L and were further analyzed for carbon and hydrogen isotopes. The results indicate that methane is a relatively common constituent in shallow groundwater in eastern Kentucky. Correlation of methane distribution with water chemistry data shows that elevated methane concentrations were more common in sodium bicarbonate type water and in low-nitrate, low-sulfate redox conditions. Carbon and hydrogen isotope analysis suggests that the methane detected in groundwater is derived primarily from bacterial sources from the CO2 reduction pathway.
Active Microbial Methane Production and Organic Matter Degradation in a Devonian Black Shale
NASA Astrophysics Data System (ADS)
Martini, A. M.; Petsch, S. T.; Nuesslein, K.; McIntosh, J. C.
2003-12-01
Microorganisms employ many novel strategies to derive energy and obtain nutrients, and in doing so alter the chemistry of their environments in ways that are significant for formation and transformation of geologic materials. One such strategy is natural gas generation in sedimentary basins. Previous research has shown that stable isotopic signatures of CH4, CO2 and H2O in formation waters of gas-producing black shales indicate a microbial origin for several economically viable natural gas reserves. However, these signatures leave several intriguing issues unaddressed, including the identity of the organisms and their metabolic roles and impacts on mineral, isotopic and biomarker signatures. We hypothesize that the extreme reducing conditions required for sedimentary basin methanogenesis are simply the end product of a cascade of microbial processes, initiated by anaerobic respiration of shale organic matter through NO3, SO4 and/or Fe(III) reduction, secondary processing of anaerobe biomass by fermentative organisms yielding volatile fatty acids and H2, and ultimately CO2 reduction and/or acetate fermentation to produce CH4. This research holds importance for the several aspects of the geochemical carbon cycle. It describes anaerobic hydrocarbon degradation leading to methanogenesis in a sedimentary basin; in many instances this activity has generated economically viable reserves of natural gas. It also provides a benchmark detailing how post-depositional microbial activity in rocks may confound and overprint ancient biosignatures. Interpretation of past environmental conditions depends on molecular and isotopic signatures contained in ancient sedimentary rocks, separated from signatures of metabolically similar modern microbiota living in sedimentary basins. In addition, this research sheds light on an unrecognized and thus unconstrained source of reduced gases to Earth's atmosphere, important for understanding the rates and controls on carbon cycling through geologic time.
Lis, G.P.; Mastalerz, Maria; Schimmelmann, A.; Lewan, M.D.; Stankiewicz, B.A.
2005-01-01
FTIR absorbance signals in kerogens and macerals were evaluated as indices for thermal maturity. Two sets of naturally matured type-II kerogens from the New Albany Shale (Illinois Basin) and the Exshaw Formation (Western Canada Sedimentary Basin) and kerogens from hydrous pyrolysis artificial maturation of the New Albany Shale were characterized by FTIR. Good correlation was observed between the aromatic/aliphatic absorption ratio and vitrinite reflectance R 0. FTIR parameters are especially valuable for determining the degree of maturity of marine source rocks lacking vitrinite. With increasing maturity, FTIR spectra express four trends: (i) an increase in the absorption of aromatic bands, (ii) a decrease in the absorption of aliphatic bands, (iii) a loss of oxygenated groups (carbonyl and carboxyl), and (iv) an initial decrease in the CH2/CH3 ratio that is not apparent at higher maturity in naturally matured samples, but is observed throughout increasing R0 in artificially matured samples. The difference in the CH2/CH 3 ratio in samples from natural and artificial maturation at higher maturity indicates that short-term artificial maturation at high temperatures is not fully equivalent to slow geologic maturation at lower temperatures. With increasing R0, the (carboxyl + carbonyl)/aromatic carbon ratio generally decreases, except that kerogens from the Exshaw Formation and from hydrous pyrolysis experiments express an intermittent slight increase at medium maturity. FTIR-derived aromaticities correlate well with R0, although some uncertainty is due to the dependence of FTIR parameters on the maceral composition of kerogen whereas R0 is solely dependent on vitrinite. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pašava, Jan; Kříbek, Bohdan; Dobeš, Petr; Vavřín, Ivan; Žák, Karel; Delian, Fan; Tao, Zhang; Boiron, Marie-Christine
2003-01-01
The Dafulou and Huile vein and stratabound cassiterite-sulfide deposits and sheeted ore veins at the Kangma cassiterite-sulfide deposit are located in the eastern part of the Dachang tin field. These deposits are hosted in a sedimentary sequence containing significant concentrations of organic matter in the form of Lower Devonian calcareous black shales and hornfels. These rocks together with the younger intrusion of Longxianggai granite (91±2 Ma) actively participated in the formation of Sn-polymetallic deposits. The following three major stages have been distinguished in stratiform and vein-type orebodies at Dafulou, Huile and Kangma: stage I (cassiterite, pyrrhotite, arsenopyrite, tourmaline, carbonate), stage II - main sulfide stage (quartz, cassiterite, arsenopyrite, pyrrhotite, sphalerite, stannite, pyrite, carbonates) and stage III (native Bi, galena, electrum, sulfosalts). Stage IV (post-ore), recognized at Huile is represented by barren carbonates and zeolites. Whole rock geochemistry has revealed that at Dafulou, Bi and Cu correlate strongly with S, whereas V and Pb correlate well with Corg (organic carbon). The similar distribution patterns of selected elements in average slightly mineralized low-Ca black shales indicate a fluid composition similar for all deposits studied. Studies of graphitization of the organic matter in black shales adjacent to orebodies indicate that d(002) and FWHM (full width in half maximum)/peak height values gradually decrease in the following sequence: Dafulou deposit → Kangma deposit → Huile deposit. The pyrolysate of wall rocks at the Dafulou deposit is relatively enriched in asphaltenes and maltenes (55.6-72.0% of the pyrolysate) comparable with pyrolysate obtained from more distal black shales (19.2-28.5%). Typical GC-MS spectra of pyrolysate from distal black shales are dominated by alkanes in the n-C15 to n-C25 range, aromatic molecules being represented mostly by alkyl-naphthalenes. In contrast, only traces of aliphatic hydrocarbons in the n-C14 to n-C18 range and elemental sulfur were identified in pyrolysates from pyrrhotitized wall rocks. The earliest fluid inclusions of the studied system occur in the quartz-tourmaline-cassiterite assemblage of stage I at Dafulou. These inclusions are H2O-CO2-CH4-rich, with 10 to 20 vol% of aqueous phase. P-T conditions of the trapping of inclusions are estimated to be up to 400 °C and 1.3 to 2.0 kbar (between 5.0 and 7.5 km under lithostatic pressure). In contrast, the presence of a low density gaseous CO2-CH4 phase indicates relatively low pressures during the formation of the breccia-type quartz-calcite-cassiterite-sulfide mineralization (stage II), when P-T conditions probably reached approx. 380 to 400 °C and 0.6 kbar (up to 6 km under hydrostatic pressure). Fluid inclusion data and oxygen isotope thermometry indicate that cassiterite-sulfide ores of the main sulfide stage (stage II) formed from aqueous-carbonic fluid (CO2/CH4 =≈10) at temperatures of up to 390 °C at Dafulou and in a temperature range of 250 to 360 °C at Huile and 260 to 370 °C at Kangma. The δ34S values of sulfides from Dafulou range mostly between -1 and -6‰, whereas sulfides from the Kangma and Huile deposits are characterized by more negative δ34S values (between -8 and -11‰, and between -9 and -12‰, respectively). These data suggest that bacteriogenic sulfides of black shales were a dominant source of reduced sulfur for epigenetic (vein and replacement) mineralization. Oxygen isotopic compositions of five quartz-cassiterite pairs from Dafulou and Huile show a relatively narrow range of calculated oxygen isotope temperatures (250-320 °C, using the equation of Alderton 1989) and high δ18Ofluid values between +8 and +10‰ (SMOW), which are in agreement with fluid derivation from and/or high temperature equilibration with the Longxianggai granite. The carbon and oxygen isotope composition of carbonates reflects variable carbon sources. Stage I calcite is characterized by narrow ranges of δ13C (-7.0 to -9.5‰ PDB) and δ18O (+15.0 to +17.5‰ SMOW). This calcite shows ubiquitous deformation, evidenced by intense development of twins. Fluid compositions calculated at 330 °C for the Dafulou and Huile deposits and at 270-300 °C for the Kangma deposit (δ18Ofluid between +10.0 and +11.5‰ SMOW, δ13Cfluid between -5.5 and -7.5‰ PDB), agree with fluid derivation from and/or equilibration with the peraluminous, high-δ18O Longxianggai granite and suggest a significant influence of contact metasedimentary sequences (carbon derived from decomposition and/or alteration of organic matter of calcareous black shales). The δ13 C values of organic matter from the Lower to Upper Devonian host rocks at the Dafulou deposit (-24.0 and -28.0‰) fit with a marine origin from algae. However, organic matter adjacent to the host rock-ore contact displays a slight enrichment in 13C. The organic carbon from the Huile and Kangma deposits is even more 13C enriched (-24.6 to -23.5‰). The most heavy δ13 C values (-16.5‰) were detected in hornfels sampled at the contact of the Upper Devonian sediments with the Longxianggai granite. The δ13C data broadly correlate with the degree of structural ordering (degree of graphitization) of organic matter, which indicates that both variables are related to thermal overprint.
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk
2017-04-01
The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)
Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.
Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study
Bahadur, Jitendra; Ruppert, Leslie F.; Pipich, Vitaliy; Sakurovs, Richard; Melnichenko, Yuri B.
2018-01-01
Neutron scattering techniques were used to determine the effect of mineral matter on the accessibility of water and toluene to pores in the Devonian Marcellus Shale. Three Marcellus Shale samples, representing quartz-rich, clay-rich, and carbonate-rich facies, were examined using contrast matching small-angle neutron scattering (CM-SANS) at ambient pressure and temperature. Contrast matching compositions of H2O, D2O and toluene, deuterated toluene were used to probe open and closed pores of these three shale samples. Results show that although the mean pore radius was approximately the same for all three samples, the fractal dimension of the quartz-rich sample was higher than for the clay-rich and carbonate-rich samples, indicating different pore size distributions among the samples. The number density of pores was highest in the clay-rich sample and lowest in the quartz-rich sample. Contrast matching with water and toluene mixtures shows that the accessibility of pores to water and toluene also varied among the samples. In general, water accessed approximately 70–80% of the larger pores (>80 nm radius) in all three samples. At smaller pore sizes (~5–80 nm radius), the fraction of accessible pores decreases. The lowest accessibility to both fluids is at pore throat size of ~25 nm radii with the quartz-rich sample exhibiting lower accessibility than the clay- and carbonate-rich samples. The mechanism for this behaviour is unclear, but because the mineralogy of the three samples varies, it is likely that the inaccessible pores in this size range are associated with organics and not a specific mineral within the samples. At even smaller pore sizes (~<2.5 nm radius), in all samples, the fraction of accessible pores to water increases again to approximately 70–80%. Accessibility to toluene generally follows that of water; however, in the smallest pores (~<2.5 nm radius), accessibility to toluene decreases, especially in the clay-rich sample which contains about 30% more closed pores than the quartz- and carbonate-rich samples. Results from this study show that mineralogy of producing intervals within a shale reservoir can affect accessibility of pores to water and toluene and these mineralogic differences may affect hydrocarbon storage and production and hydraulic fracturing characteristics
D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity
Lis, G.P.; Schimmelmann, A.; Mastalerz, Maria
2006-01-01
Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.
Price, L.C.; Daws, T.; Pawlewicz, M.
1986-01-01
The Williston basin is an intracratonic basin extending across parts of several states, principally North Dakota, on the US/Canadian frontier. A sequence of up to 16 000 ft of Phanerozoic rocks exists in the basin; the Bakken formation is a relatively thin clastic unit composed of three members, of which the middle one is a black shale. Both core chip and cutting chip samples from a series of widely-distributed well locations were taken for laboratory analysis. Pyrolysis data showed 'wide variations' in maturity indices in samples from equivalent depths at different well locations. This suggests that a number of different palaeoheat-flow regimes have existed in the basin, resulting in the optimization of hydrocarbon formation processes at varying depths at different localities. The vitrinite reflectance profiles presented illustrate the expected trend of linearly-increasing maturity with depth to around 6500 ft. Between 6700 and 10 000 ft, however, this trend is interrupted by two 'reversals'. It is suggested that these reversals are due to suppression of the vitrinite reflectance values in samples with high concentrations of H-rich organic matter, and that they may therefore be associated with transitions from 'terrestrial-derived' to marine-depositional conditions. Consequently, the precise identification of the thresholds of intense hydrocarbon generation within the basin is problematic.-J.M.H.
Wrenching and oil migration, Mervine field, Kay County, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, H.G.
1985-02-01
Since 1913, Mervine field (T27N, R3E) has produced oil from 11 Mississippian and Pennsylvanian zones, and gas from 2 Permian zones. The field exhibits an impressive asymmetric surface anticline, with the steeper flank dipping 30/sup 0/E maximum. A nearly vertical, basement-involved fault develops immediately beneath the steeper flank of the surface anticline. Three periods of left-lateral wrench faulting account for 93% of all structural growth: 24% in post-Mississippian-pre-Desmoinesian time, 21% in Virgilian time, and 48% in post-Wolfcampian time. In Mesozoic through early Cenozoic times, the Devonian Woodford Shale (and possibly the Desmoinesian Cherokee shales) locally generated oil, which should havemore » been structurally trapped in the Ordovician Bromide sandstone. This oil may have joined oil already trapped in the Bromide, which had migrated to the Mervine area in the Early Pennsylvanian from a distant source. Intense post-Wolfcampian movement(s) fractured the competent pre-Pennsylvanian rocks, allowing Bromide brine and entrained oil to migrate vertically up the master fault, finally accumulating in younger reservoirs. Pressure, temperature, and salinity anomalies attest to vertical fluid migration continuing at the present time at Mervine field. Consequently, pressure, temperature, and salinity mapping should be considered as valuable supplements to structural and lithologic mapping when prospecting for structural hydrocarbon accumulations in epicratonic provinces.« less
Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance
Dumoulin, Julie A.; Harris, Alta; Repetski, John E.
2014-01-01
Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and associated calcareous metaturbidites of Ordovician age as well as shallow-water Silurian dolostones. Scattered metacarbonate rocks are chiefly Cambrian, Ordovician, Silurian, and Devonian dolostones that formed in shallow, warm-water settings with locally restricted circulation and marbles of less constrained Paleozoic age. Carbonate metaturbidites occur on the northeast and southeast coasts and yield mainly Silurian and lesser Ordovician and Devonian conodonts; the northern succession also includes debris flows with meter-scale clasts and an argillite interval with Late Ordovician graptolites and lenses of radiolarian chert. Mafic igneous rocks at least partly of Early Devonian age are common in the southern succession. Carbonate rocks on Seward Peninsula experienced a range of deformational and thermal histories equivalent to those documented in the Brooks Range. Conodont color alteration indices (CAIs) from Seward Peninsula, like those from the Brooks Range, define distinct thermal provinces that likely reflect structural burial. Penetratively deformed high-pressure metamorphic rocks of the Nome Complex (CAIs ≥5) correspond to rocks of the Schist belt in the southern Brooks Range; both record subduction during early stages of the Jurassic–Cretaceous Brooks Range orogeny. Weakly metamorphosed to unmetamorphosed strata of the York terrane (CAIs mainly 2–5), like Brooks Range rocks in the Central belt and structural allochthons to the north, experienced moderate to shallow burial during the main phase of the Brooks Range orogeny. The nature of the contact between the York terrane and the Nome Complex is uncertain; it may be a thrust fault, an extensional surface, or a thrust fault later reactivated as an extensional fault. Lithofacies and biofacies data indicate that, in spite of their divergent Mesozoic histories, rocks of the York terrane and protoliths of the Nome Complex formed as part of the same lower Paleozoic carbonate platform. Stratigraphies in both
Devonian climate and reef evolution: Insights from oxygen isotopes in apatite
NASA Astrophysics Data System (ADS)
Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.
2009-07-01
Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.
Pojeta, John
1986-01-01
A state-of-the-art summary of the Devonian rocks of China, correlation of the Lower and Middle Devonian of the Guangxi Autonomous Region with the European Standards, and detailed lithologic descriptions of the major Lower and Middle Devonian sections in Guangxi from which pelecypods were collected. Systematic descriptions are given for the Lower and Middle Devonian pelecypods of Guangxi. The Chinese pelecypods are principally compared with the previously little studied Givetian pelecypods of Michigan, which are also described.
Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan
Stauffer, Karl W.
1975-01-01
The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined elsewhere in Chitral, the tungstate, scheelite, which occurs in relatively high concentrations in heavy-mineral fractions of stream sands, and an iron-rich lateritic rock.
Palaeomagnetic results from the Palaeozoic of Istanbul: A hypothesis for Remagnetization
NASA Astrophysics Data System (ADS)
Lom, Nalan; Domeier, Mathew; Ülgen, Semih Can; İşseven, Turgay; Celal Şengör, Ali Mehmet
2016-04-01
The Istanbul Zone in northwestern Turkey is a part of a larger continental fragment called the Rhodope-Pontide Fragment. The Istanbul Zone differs from its surroundings by its continuous, well-developed sedimentary sequence extending from the early-medial Ordovician to the early Carboniferous. The İstanbul Zone has a complicated deformation history related to the Hercynide (or Scythide), Cimmeride and Alpide orogenies. Although the region of Istanbul shows essentially no metamorphism and only a weak cleavage development, constraining the entire history of the deformation in the İstanbul Zone marginal fold and thrust belt is a difficult task, primarily due to the multiple deformation phases. But yet it is not impossible. The Palaeozoic sequence is cut by late Cretaceous plutonics together with dacitic and andesitic dykes. This arc magmatism is ascribed to the north-dipping subduction of the Neo-Tethyan ocean along the İzmir-Ankara-Erzincan suture. The Palaeozoic sequence is unconformably overlain by Permian and younger sedimentary strata. In this study a total of 523 samples were obtained from 48 sites around İstanbul and Kocaeli. 465 samples collected from Palaeozoic sedimentary rocks and 58 samples belong to the dykes that cut these sediments. Specimens were demagnetized in the laboratory by using both AF and thermal treatments depending on their effectiveness. After demagnetization treatments, 290 specimens showed stable demagnetization patterns and majority of these samples have a characteristic remanent magnetization component close to the present day geomagnetic field. Demagnetization studies demonstrate variable degrees of overprinting in a large number of samples. After the application of the tilt correction, %70 of the specimens failed the fold test at site level (early Ordovician siltstones; late Silurian-early Devonian limestones; late Devonian limestones; early Carboniferous turbidites). Rest of them clearly got scattered with increasing α95 and decreasing k values (mid Ordovician conglomerates; mid-late Devonian shales; late Ordovician-early Silurian sandstone and siltstones). This secondary magnetization, acquired during or after the folding event, constitutes evidence of pervasive remagnetization that can be caused by regional re-heating related to the Cretaceous arc magmatism. This suggestion contradicts the previous palaeomagnetic studies and requires further and detailed investigation on Palaeozoic sequence.
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert P. Breckenridge; Thomas R. Wood
2010-08-01
The purpose of this document is to evaluate the opportunity for Letterkenny Army Depot (LEAD or the Depot) to utilize biogenic methane, which may be available in shale formations under the Depot, to provide a supplemental source of natural gas that could allow the Depot to increase energy independence. Both the Director and Deputy of Public Works at the Depot are supportive in general of a methane production project, but wanted to better understand the challenges prior to embarking on such a project. This report will cover many of these issues. A similar project has been successfully developed by themore » U. S. Army at Ft. Knox, KY, which will be explained and referred to throughout this report as a backdrop to discussing the challenges and opportunities at LEAD, because the geologic formations and possibilities at both sites are similar. Prior to discussing the opportunity at LEAD, it is important to briefly discuss the successful methane recovery operation at Ft. Knox, because it is applicable to the projected approach for the LEAD methane system. The Ft. Knox project is an excellent example of how the U. S. Army can use an onsite renewable resource to provide a secure energy source that is not dependent on regional energy networks and foreign oil. At Ft. Knox, the U. S. Army contracted (through a utility co-op) with an energy production company to drill wells, establish a distribution infrastructure, and provide the equipment needed to prepare and compress the produced methane gas for use by base operations. The energy production company agreed to conduct the exploratory investigation at Ft. Knox with no cost to the government, as long as they could be granted a long-term contract if a reliable energy resource was established. The Depot is located, in part, over an Ordovician Age shale formation that may have the potential for producing biogenic methane, similar to the Devonian Age shale found beneath Ft. Knox. However, the Ordovician Age Shale beneath the Letterkenny Depot is not known to have any currently producing gas wells.« less
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were deposited on the southern, southwestern, and northern margins of the Russian platform; they are generally absent in the Volga-Ural province, however. The Volga-Ural oil and gas basin is a single artesian system that contains seven aquifers separated by seals. The areas of greatest hydraulic head are in the eastern parts of the basin near areas where the aquifers crop out on the western slopes of the Ural Mountains. The Peri-Caspian basin is the principal drainage area of the artesian system. Approximately 600 oil and gas fields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized as follows: 1) Upper Proterozoic (Bavly beds), which are promising but not yet commercial. 2) Clastic Devonian, which contains the major reserves and includes the main pays of the super-giant Romashkino field. 3) Carbonate Upper Devonian and lowermost Carboniferous, which is one of the main reef-bearing intervals. 4) Visean (Lower Carboniferous) elastics, which are the main pays in the super-giant Arian field. 5) Carbonate Lower and Middle Carboniferous. 6) Clastic Middle Carboniferous Moscovian. 7) Carbonate Middle and Upper Carboniferous. 8) Carbonate-evaporite Lower Permian, which contains the major gas reserves and the lower part of the Melekess tar deposits. 9) Clastic-carbonate Upper Permian, which contains the major part of the Melekess tar deposits. The Volga-Ural province is divided into several productive regions on a basis of differences in structure, distribution of reservoir and source-rock facies, and general composition of the petroleum accumulations. These regions are the Tatar arch, Birsk saddle, Upper Kama depression, Perm-Bashkir arch, Ufa-Orenburg monocline, Melekess-Sernovodsko-Abdulino basin, Zhligulevsko-Orenburg arch, Ural foredeep, and north borders of the Peri-Casplan depression. Exploration activity has declined in recent years; however, interest remains high in several parts of the province, particula
Colton, G.W.
1962-01-01
The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f
Biogeography of late Silurian and devonian rugose corals
Oliver, W.A.
1977-01-01
Three marine benthic faunal realms can be recognized in the Early and Middle Devonian. The Eastern Americas Realm consisted of most of the eastern half of North America and South America north of the Amazon. This realm extended in a southwest direction from the Devonian equator to approximately 35??S and was an isolated epicontinental sea during much of its history. The Eastern Americas Realm was bounded on the west by the Transcontinental Arch, on the north by the Canadian Shield and on the east and southeast by a peninsular extension of the Old Red Continent. These barriers were emergent during much, but not all, of Devonian time. Seaways beyond these barriers belonged to the Old World Realm. The Malvinokaffric Realm that was farther south was apparently temperate to arctic in climate and latitudinal position and contained few corals. Rugose corals in the Eastern Americas Realm show increasing generic-level endemism from the Late Silurian through the Early Devonian; during the late Early Devonian, 92% of the rugosan genera are not known anywhere else in the world. Endemism decreased through the Middle Devonian to zero in the early Late Devonian. The Early Devonian increase in endemism paralleled, and was probably related to, the development of the Old Red Continent as a barrier between America and Africa-Europe. The waning of endemism in the Middle Devonian reflects the breaching of the land barriers. This permitted some migration in and out of the realm in early Middle Devonian time but greatest movements were in late Middle Devonian time. Principal migration directions were from western or Arctic North America into the Michigan-Hudson Bay area and from the southern Appalachian area into Africa. ?? 1977.
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
40Ar/39Ar Dating of Zn-Pb-Ag Mineralization in the Northern Brooks Range, Alaska
Werdon, Melanie B.; Layer, Paul W.; Newberry, Rainer J.
2004-01-01
The 40Ar/39Ar laser step-heating method potentially can be used to provide absolute ages for a number of formerly undatable, low-temperature ore deposits. This study demonstrates the use of this method by determining absolute ages for Zn-Pb-Ag sediment-hosted massive sulfide deposits and vein-breccia occurrences found throughout a 300-km-long, east-west-trending belt in the northern Brooks Range, Alaska. Massive sulfide deposits are hosted by Mississippian to Pennsylvanian(?) black carbonaceous shale, siliceous mudstone, and lesser chert and carbonate turbidites of the Kuna Formation (e.g., Red Dog, Anarraaq, Lik (Su), and Drenchwater). The vein-breccia occurrences (e.g., Husky, Story Creek, West Kivliktort Mountain, Vidlee, and Kady) are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine clastic rocks (the Endicott Group) that stratigraphically underlie the Kuna Formation. The vein-breccias are mineralogically similar to, but not spatially associated with, known massive sulfide deposits. The region's largest shale-hosted massive sulfide deposit is Red Dog; it has reserves of 148 Mt grading 16.6 percent zinc, 4.5 percent lead, and 77 g of silver per tonne. Hydrothermally produced white mica in a whole-rock sample from a sulfide-bearing igneous sill within the Red Dog deposit yielded a plateau age of 314.5 Ma. The plateau age of this whole-rock sample records the time at which temperatures cooled below the argon closure temperature of the white mica and is interpreted to represent the minimum age limit for massive sulfide-related hydrothermal activity in the Red Dog deposit. Sulfide-bearing quartz veins at Drenchwater crosscut a hypabyssal intrusion with a maximum biotite age of 337.0 Ma. Despite relatively low sulfide deposition temperatures in the vein-breccia occurrences (162°-251°C), detrital white mica in sandstone immediately adjacent to large vein-breccia zones was partially to completely recrystallized. The 40Ar/39Ar age spectra and inverse isochron plots of the multicomponent whole-rock sandstone samples are more complex than those of single minerals. However, different minerals have different Ca/K and Cl/K ratios and closure temperatures, and these properties were used to identify portions of spectra dominated by argon release from specific minerals. 40Ar/39Ar laser step-heating analyses of Late Devonian sandstone whole rocks produced spectra that record a two-stage resetting history: a Carboniferous hydrothermal event first and later Mesozoic to Tertiary events, which are in agreement with geologic constraints. The 40Ar/39Ar ages and the similar mineralogy, lead isotope composition, and relative stratigraphic positions support the interpretation that the shale-hosted massive sulfide deposits and most vein-breccia occurrences are temporally and genetically related, and that they are different expressions of Carboniferous basinal dewatering.
Petroleum geology and resources of the Volga-Ural province, U.S.S.R.
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of Triassic age and mixed continental and marine clastic beds of Jurassic and Cretaceous age were deposited on the western, southwestern, and northern margins of the Russian Platform; they are generally absent in the Volga-Ural province, however. Approximately 600 oilfields and gasfields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized; these are, in general, the same as the sedimentation cycles, although some subdivisions have been added. The clastic section of Middle and early Late Devonian age contains the major recoverable oil accumulations, including the supergiant Romashkino field. Cumulative production to 1980 is estimated at 30 to 35 billion barrels of oil equivalent, identified reserves at about 10 billion barrels of oil equivalent, and undiscovered resources at about 7 billion barrels of oil equivalent. Identified reserves of natural gas are estimated at 100 trillion cubic feet and undiscovered resources at 63 trillion cubic feet.
Evolution of Devonian carbonate-shelf margin, Nevada
Morrow, J.R.; Sandberg, C.A.
2008-01-01
The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.B.; Faure, G.
1997-03-01
We used geochemical data to examine the origin and preservation of organic matter contained in the lower part of the Huron Member of the Ohio Shale formation and the Rhinestreet Shale Member of the West Falls Formation (Devonian) in Kentucky, Ohio, West Virginia, and Virginia. The thermal history of the organic matter was determined by relating relative temperatures experienced by the organic matter to the geologic setting. The organic matter in these formations is predominantly marine in origin and was most probably derived largely from algal organisms. Although the rate of production of marine organic matter may have been uniformmore » within the basin, its preservation apparently was controlled by the existence of a set of fault-bounded anoxic subbasins associated with the Rome trough, a Cambrian structural complex. These subbasins apparently were anoxic because they limited oxygen recharge by circulating waters. Preservation of organic matter was also enhanced by periodic blooms of the alga Tasmanites and similar organisms in the waters above the subbasins during both early Huron and Rhinestreet deposition. A significant negative correlation was identified between the vitrinite reflectance peak temperature, and integrated measure of the thermal history of a rock, and the hydrogen index, a measure of the remaining hydrocarbon-generation potential of kerogen. Although peak temperatures were controlled by burial depth, excess heating occurred locally, perhaps by hot brines rising from depth through fractures associated with major structures in the study area.« less
Kolata, Dennis R.; Huff, W.D.; Bergstrom, Stig M.
1998-01-01
Stratal patterns of the Middle Ordovician Hagan K-bentonite complex and associated rocks show that the Black River-Trenton unconformity in the North American midcontinent formed through the complex interplay of eustasy, sediment accumulation rates, siliciclastic influx, bathymetry, seawater chemistry, and perhaps local tectonic uplift. The unconformity is diachronous and is an amalgamated surface that resulted from local late Turinian lowstand exposure followed by regional early Chatfieldian transgressive drowning and sediment starvation. The duration of the unconformity is greatest in southern Wisconsin, northern Illinois, and northern Indiana, where the Deicke and Millbrig K-bentonite Beds converge at the unconformity. On the basis of published isotopic ages for the Deicke and Millbrig beds, it is possible that in these regions erosion and non-deposition spanned a period of as much as 3.2 m.y. Two broad coeval depositional settings are recognized within the North American midcontinent during early Chatfieldian time. 1) An inner shelf, subtidal facies of fossiliferous shale (Spechts Ferry Shale Member and Ion Shale Member of the Decorah Formation) and argillaceous lime mudstone and skeletal wackestone (Guttenberg and Kings Lake Limestone Members) extended from the Canadian shield and Transcontinental arch southeastward through Minnesota, Wisconsin, Iowa, and Missouri. 2) A seaward, relatively deep subtidal, sediment-starved, middle shelf extended eastward from the Mississippi Valley region to the Taconian foreland basins in the central and southern Appalachians and southward through the pericratonic Arkoma and Black Warrior basins. In the inner shelf region, the Black River-Trenton unconformity is a composite of at least two prominent hardground omission surfaces, one at the top of the Castlewood and Carimona Limestone Members and the other at the top of the Guttenberg and Kings Lake Limestone Members, both merging to a single surface in the middle shelf region. The inner and middle shelves redeveloped later in approximately the same regions during Devonian and Mississippian time.
NASA Astrophysics Data System (ADS)
Bowden, S.; Wireman, R.
2016-02-01
Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.
Lenticular stretch structures in eastern Nevada - possible trapping mechanism in supposed graben
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, C.T.; Dennis, J.G.; Lumsden, W.W.
Eastern Nevada is widely recognized as a region of tectonic extension. The dominant structures are generally agreed to be low-dipping, younger over older faults and steeper listric faults that are responsible for the basins (grabens) and ranges (horsts). In the Schell Creek-Duck Creek Range, east of Ely, and in the White Pine Range, southwest of Ely, small lenticular structures bounded by tectonic discontinuities can be clearly seen in the field. These lenticular units, or stretch structures, range in length from a few meters to more than 200 m. All lenticular stretch structures that can be clearly seen in the fieldmore » are stratigraphically restricted; the stretched formations are the Eureka Quartzite, the Pilot Shale, the Joana Limestone, and the Chainman Shale. Still larger stretch structures, which may include several formations, are inferred, and the authors suggest that extension has created lenticular structures at all scales. The Duck Creek and Schell Creek Ranges east of Ely consist mostly of Devonian and older rocks. They are separated by a topographically lower area containing mostly Mississippian and Pennsylvanian rocks. This structure, which separates the ranges, has been referred to as a graben, but field evidence suggests that it is a large-scale lenticular stretch structure. Unlike a true graben, the structure does not extend downward. For example, in several places within the supposed graben, Cambrian and Ordovician rocks project through a cover of Carboniferous Chainman Shale and Ely Limestone, suggesting the Chainman-Ely is a thin sheet underlain by Cambrian-Ordovician rocks. Accordingly, they suggest that extension in the Duck Creek-Schell Creek Ranges stretched the formations into lenticular bodies. Between the Duck Creek and Schell Creek Ranges, the Cambrian-Ordovician is attenuated, and the resulting tectonic depression is occupied by a lenticular mass of Carboniferous rocks.« less
Fishman, Neil S.; Ellis, Geoffrey S.; Paxton, Stanley T.; Abbott, Marvin M.; Boehlke, Adam
2010-01-01
Microfractures also contribute to Woodford Shale porosity but they appear to be lithologically controlled. Fractures are relatively well-developed and are typically perpendicular to bedding in cherts, but these fractures typically end abruptly or become much more diffuse in adjacent mudstones. The brittle nature of the cherts, due to their high quartz content, is most likely the reason for their excellent fracture development, particularly relative to the mudstones, which are composed of much more ductile clay and Tasmanites constituents. Interestingly, the overlap of some petrophysical properties of cherts and mudstones (e.g., porosity, pore apertures) in the Woodford Shale for samples from the Arbuckle Mountains indicates that for shallowly-buried (i.e. minimally compacted) parts of the formation, both lithologies may have exhibited similar behavior relative to fluid movement. Where the Woodford has been more deeply buried and subjected to more intense compaction (i.e. in the Anadarko Basin), the petrophysical characteristics of cherts are likely to have changed only minimally due to their rigid fabric, whereas the petrophysical characteristics of the mudstones are likely to have changed significantly due to compaction and the resultant compression and collapse of ductile constituents such as clays and Tasmanites microfossils (those without quartz infilling). Moldic porosity, which could be expected to develop in kerogen as a consequence of maturation (Loucks and others, 2009), is more likely in the high TOC mudstones, but would also occur in Woodford cherts, which contain lower TOC contents. Owing to the potential for Woodford cherts to better retain porosity, coupled with their contained TOC, cherts may indeed provide important overlooked intervals of gas generation and overall gas storage in the formation. Thus, Woodford cherts may contribute a significant portion of the gas that is produced from the formation. As such, chert beds may play a very significant, heretofore overlooked role as source and reservoir intervals within the Woodford in the Anadarko Basin.
NASA Technical Reports Server (NTRS)
1985-01-01
A photogeologic and remote sensing model of porphyry type mineral sytems is considered along with a Landsat application to development of a tectonic model for hydrocarbon exploration of Devonian shales in west-central Virginia, remote sensing and the funnel philosophy, Landsat-based tectonic and metallogenic synthesis of the southwest United States, and an evolving paradigm for computer vision. Attention is given to the neotectonics of the Tibetan plateau deduced from Landsat MSS image interpretation, remote sensing in northern Arizona, the use of an airborne laser system for vegetation inventories and geobotanical prospecting, an evaluation of Thematic Mapper data for hydrocarbon exploration in low-relief basins, and an evaluation of the information content of high spectral resolution imagery. Other topics explored are related to a major source of new radar data for exploration research, the accuracy of geologic maps produced from Landsat data, and an approach for the geometric rectification of radar imagery.
Sedimentology of the Sbaa oil reservoir in the Timimoun basin (S. Algeria)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehadi, Z.
1990-05-01
In 1980 oil was discovered in the Timimoun portion of the Sbaa depression in Southern Algeria. Until that time this basin had produced only dry gas. Since the 1980 oil discovery, several wells have been drilled. Data acquired from these wells were analyzed and are presented in this study. The oil reservoir is located within a sandstone interval of the Sbaa formation which has an average thickness of 75 m. The Sbaa lies between the Tournaisian (Lower Carboniferous) silts and the Strunian (uppermost Devonian) shales and sandstones. The sedimentological study reveals that the Sbaa formation contains bimodal facies consisting ofmore » coarse siltstones and fine sandstones. The sequence has been attributed to a deltaic environment developed in the central part of the Ahnet basin. The sources of the associated fluvial system are from the surrounding In-Semmen, Tinessourine, and Arak-Foum-Belrem paleohighs. Thermoluminescence indicates the provenance for the Sbaa sands was the crystalline basement Cambrian and Ordovician sections.« less
Page, William R.; Harris, Alta C.; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.
2013-01-01
The most complete sections of Ordovician shelf rocks in Sonora are 50 km (31 mi) northwast of Hermosillo. In these sections, the Lower Ordovician is characterized by intraclastic limestone, siltstone, shale, and chert. The Middle Ordovician is mostly silty limestone and quartzite, and the Upper Ordovician is cherty limestone and some argillaceous limestone. A major disconformity separates the Middle Ordovician quartzite from the overlying Upper Ordovician carbonate rocks and is similar to the disconformity between the Middle and Upper Ordovician Eureka Quartzite and Upper Ordovician Ely Springs Dolomite in Nevada and California. In parts of northwestern Sonora, Ordovician rocks are disconformably overlain by Upper Silurain rocks. Northeastward in Sonora and Arizona, toward the craton, Ordovician rocks are progressively truncated by a major onlap unconformity and are overliand by Devonian rocks. Except in local area, Ordovician rocks are generally absent in cratonic platform sequences in northern Sonora and southern Arizona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCleary, J.; Rogers, T.; Ely, R.
Geophysical well log analysis, literature review, and field work were conducted to develop isopach, structure contour, outcrop, and facies maps and cross sections for the Devonian through Permian strata of a 14,586-km/sup 2/ (5632-square-mile) area in southeastern Utah. The study area includes part of the Paradox Basin, the salt deposits of which are of interest in siting studies for a nuclear waste repository. For this reason hydrologic models of this area are needed. This study, part of which included the development of a three-dimensional stratigraphic computer model utilizing Geographic Information System software, can serve as a base for hydrologic ormore » other models for this area. Within and adjacent to the study area, 730 wells were screened to select the 191 wells analyzed for the study. It was found that the Elbert through Molas formations did not exhibit noticeable facies changes within the study area. The Pinkerton Trail Formation exhibits moderate changes: anhydrite and shale become somewhat more abundant toward the northeast. Facies changes in the Paradox Formation are more dramatic. Thick saline facies deposits are present in the northeast, grading to thinner anhydrite and then to carbonate facies in the south and west. The lithology of the Honaker Trail Formation appears to be fairly uniform throughout the area. Facies changes in the Cutler Group are numerous and sometimes dramatic, and generally correspond to the named formations of the group. Other factors that could affect groundwater flow, such as stratigraphic cover of fine-grained rocks, area of formation outcrops, and fracturing and faulting are discussed and delineated on maps.« less
Early Silurian Foraminifera from Gondwana - an early origin of the multichambered globothalamids?
NASA Astrophysics Data System (ADS)
Kaminski, Michael
2017-04-01
Early Silurian foraminifera until now have been regarded to consist of simple single-chambered monothalamids and two-chambered tubothalamids with an agglutinated wall. Although pseudo-multichambered agglutinated foraminifera first appeared in the mid-Ordovician (Kaminski et al. 2009), the origin of true multichambered forms was not believed to have taken place until the early or middle Devonian at the earliest (Holcová, 2002). New discoveries from the Lower Silurian Qusaiba Shale Member in Saudi Arabia point to an earlier origin of the multichambered globothalamid Foraminifera than the currently accepted estimate of 350 Ma (Pawlowski et al. 2003). The agglutinated foraminiferal genera Ammobaculites and Sculptobaculites have been recovered from dark graptolite-bearing claystones of Telychian age, from the transitional facies between the Qusaiba and Sharawa Members of the Qasim Formation at the type locality near Qusaiba town, Saudi Arabia. The multichambered lituolids occur as rare components in a foraminiferal assemblage consisting mostly of monothalamids. This new finding revises our understanding of the early evolution of the multichambered globothalamid foraminifera. The fossil record now shows that the globothalamids were already present in Gondwana by 435 m.y. Holcová, K. 2002. Silurian and Devonian foraminifers and other acid-resistant microfossils from the Barrandian area. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 58 (3-4), 83-140. Kaminski, M.A., Henderson, A.S., Cetean, C.G. & Waskowska-Oliwa, A. 2009. A new family of agglutinated foraminifera: the Ammolagenidae n.fam., and the evolution of multichambered tests. Micropaleontology, 55 (5), 487-494. Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J.F., Gooday, Aj., Cedhagen, T., Habura, A., & Bowser, SS. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences, 100 (20), 11494-11498
Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.
2012-01-01
Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1 C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1 103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85 103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar) from mineral grains in the shale matrix is regulated by temperature, natural gases obtain and retain a record of the thermal conditions of the source rock. Therefore, noble gases constitute a valuable technique for distinguishing the genetic source and post-genetic processes of natural gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Vivak
The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However.more » the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, however, when the coal was pressurized with CO2 at ambient ≤ P ≤ 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.« less
Bishop, M.G.
1999-01-01
The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the Plover Formation (Lower to Upper Jurassic), combined with marine claystones of the Flamingo Group and Darwin Formation (Upper Jurassic to Lower Cretaceous) comprise the source rocks for the remaining area of the system. These claystones and coals source oil, gas, and condensate accumulations in reservoirs of continental to marine sandstones of the Plover Formation and Flamingo Group. Shales of the regionally distributed Lower Cretaceous Bathurst Island Group and intraformational shales act as seals for hydrocarbons trapped in anticlines and fault blocks, which are the major traps of the province. Production in the Bonaparte Gulf Basin Province began in 1986 using floating production facilities, and had been limited to three offshore fields located in the Vulcan graben sub-basin. Cumulative production from these fields totaled more than 124 million barrels of oil before the facilities were removed after production fell substantially in 1995. Production began in 1998 from three offshore wells in the Zone of Cooperation through floating production facilities. After forty years of exploration, a new infrastructure of pipelines and facilities are planned to tap already discovered offshore reserves and to support additional development.
Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana
Reynolds, Mitchell W.; Hays, William H.
2003-01-01
The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a succession of rocks that includes not only strata equivalent to those of the remainder of the quadrangle, but also the Middle Proterozoic Newland, Greyson, and Spokane Formations, Pennsylvanian and Upper Mississippian Amsden Formation and Big Snowy Group undivided, the Permian and Pennsylvanian Phosphoria and Quadrant Formations undivided, the Jurassic Ellis Group and Lower Cretaceous Kootenai Formation. Hornblende diorite sills and irregular bodies of probable Late Cretaceous age intrude Middle Proterozoic, Cambrian and Devonian strata. No equivalent intrusive rocks are present in structurally underlying successions of strata. In this main part of the quadrangle, the Flathead Sandstone cuts unconformably downward from south to north across the Spokane Formation into the upper middle part of the Greyson Formation. Tertiary (Miocene?) strata including sandstone, pebble and cobble conglomerate, and vitric crystal tuff underlie, but are poorly exposed, in the southeastern part of the quadrangle where they are overlain by late Tertiary and Quaternary gravel. The structural complexity of the quadrangle decreases from northeast to southwest across the quadrangle. At the lowest structural level (Avalanche Butte thrust plate) exposed in the canyon of Beaver Creek, lower and middle Paleozoic rocks are folded in northwest-trending east-inclined disharmonic anticlines and synclines that are overlain by recumbently folded and thrust faulted Devonian and Mississippian rocks. The Mississippian strata are imbricated adjacent to the recumbent folds. In the east-central part of the quadrangle, a structurally overlying thrust plate, likely equivalent to the Hogback Mountain thrust plate of the Hogback Mountain quadrangle adjacent to the east (Reynolds, 20xx), juxtaposes recumbently folded Middle Proterozoic and unconformably overlying lower Paleozoic rocks on the complexly folded and faulted rocks of the Avalanche Butte thrust plate. The highest structural plate, bounded below
NASA Astrophysics Data System (ADS)
Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna
2018-06-01
Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from OIB/E-MORB to N-MORB lava geochemistry away from the Tacheng block. Comparisons with published data suggest that these positive isotopic values, stratigraphic, structural and geochemical relationships can be best understood as an analogue of the relationships between the Ontong Java oceanic plateau and the Pacific oceanic crust. Therefore we propose that the basement of the Tacheng block was an Early Paleozoic oceanic plateau. The southern part of the Tacheng block was an accretionary complex and the northern part was an oceanic basin in the Early Paleozoic, the configuration of which is similar to that of the present Ontong Java oceanic plateau situated on the Pacific oceanic crust, and its accretion into the Solomon accretionary complex. The presence of Ordovician SSZ-type ophiolites, early Paleozoic blueschist and Silurian SSZ-type intrusions in the BMTC, and Early-Middle Paleozoic continental arc-related intrusive rocks in the northern margin of the CBY provide further corroboration of a former subduction zone between the southern West Junggar and the northern margin of the CBY. Furthermore, consideration of the fact that the Kokchetav-North Tianshan range was collaged to the southern margin of the CBY in the Ordovician-Devonian indicates that both ranges were amalgamated synchronously with the CBY constructing the Early-Middle Paleozoic architecture of western Altaids.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min
2018-03-01
Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2008-01-01
Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.
Devonian and Mississippian rocks of the northern Antelope Range, Eureka County, Nevada
Hose, Richard Kenneth; Armstrong, A.K.; Harris, A.G.; Mamet, B.L.
1982-01-01
Lower through Upper Devonian rocks of the northern Antelope Range, Nev., consist of four formational rank units more than 800 m thick, separated from Mississippian units by an unconformity. The lower three Devonian units, the Beacon Peak Dolomite, McColley Canyon Formation, and Denay Limestone are known in other areas; the top unit, the Fenstermaker Wash Formation, is new. The Mississippian units, more than 280 m thick, are divisible into three units which are unlike coeval units elsewhere, and are herein named the Davis Spring Formation, Kinkead Spring Limestone, and Antelope Range Formation. Systematic sampling of the Devonian sequence has yielded relatively abundant conodonts containing several biostratigraphic ally significant taxa. The Mississippian units contain redeposited conodonts of chiefly Late Devonian and Early Mississippian (Kinderhookian) age together with indigenous Osagean foraminifers and algae in the Kinkead Spring Limestone.
NASA Astrophysics Data System (ADS)
Husson, Jon M.; Schoene, Blair; Bluher, Sarah; Maloof, Adam C.
2016-02-01
The Devonian Period hosts extraordinary changes to Earth's biosphere. Land plants began their rise to prominence, with early vascular vegetation beginning its colonization of near-shore environments in the latest Silurian. Across the Silurian-Devonian (Pridoli-Lochkovian) transition, carbon isotope analyses of bulk marine carbonates (δC13carb) from Laurentian and Baltic successions reveal a positive δC13carb shift. Known as the Klonk Event, values reach + 5.8 ‰, making it one of the largest carbon isotope excursions in the Phanerozoic. Assigning rates and durations to these significant events requires a robust, precise Devonian time scale. Here we present 675 micritic matrix and 357 fossil-specific δC13carb analyses from the lower Devonian Helderberg Group of New York and West Virginia that exhibit the very positive δC13carb values observed in other Silurian-Devonian basins. This chemostratigraphic dataset is coupled with 66 ID-TIMS U-Pb dates on single zircons from six ash falls intercalated within Helderberg sediments, including dates on the stratigraphically lowest Devonian ashes yet developed. In this work, we (a) demonstrate that matrix and fossil-specific δC13carb values track one another closely in the Helderberg Group, (b) estimate the Silurian-Devonian boundary age in New York to be 421.3 ± 1.2 Ma (2σ; including decay constant uncertainties), and (c) calculate the time required to evolve from baseline to peak δC13carb values at the onset of the Klonk event to be 1.00 ± 0.25 Myr. Under these constraints, a steady-state perturbation to the global carbon cycle can explain the observed excursion with modern fluxes, as long as DIC concentration in the Devonian ocean remained below ∼2× the modern value. Therefore, potential drivers, such as enhanced burial of organic carbon, need not rely on anomalously high total fluxes of carbon to explain the Klonk Event.
Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky
Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.
2002-01-01
Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.
The impact of precession and obliquity on the Late-Devonian greenhouse climate
NASA Astrophysics Data System (ADS)
De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.
2012-12-01
To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter solstice), precipitation is up to 300 mm/month higher compared to precession minima during the wet season (September - May). During the dry season (June-July-August), the climate is up to 7°C colder during a precession maxima compared to a precession minima. Obliquity doesn't show a significant influence on the climate of the tropical Euramerican continent. However, the imprint of obliquity on the polar climates is extensive with up to 6°C temperature-differences between obliquity maxima and minima at both poles.
Pawlewicz, Mark
2006-01-01
Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been extensively explored for oil and gas. The lateral and vertical variability of the structure, the distribution and complex geologic nature of source rocks, and the depths of potential exploration targets, as well as the high degree of exploration, all indicate that future discoveries in this province are likely to be numerous but in small fields.
Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.
2006-01-01
Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as elemental exchanges, transfers and volatilisation, in potential source-rock shales during natural diagenetic hydrocarbon maturation.
Invasive species and biodiversity crises: testing the link in the late devonian.
Stigall, Alycia L
2010-12-29
During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.
Early Forest Soils and Their Role in Devonian Global Change
Retallack
1997-04-25
A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.
Stage boundary recognition in the Eastern Americas realm based on rugose corals
Oliver, W.A.
2000-01-01
Most Devonian stages contain characteristic coral assemblages but these tend to be geographically and facies limited and may or may not be useful for recognising stage boundaries. Within eastern North America, corals contribute to the recognition of two boundaries: the base of the Lochkovian (Silurian-Devonian boundary) and the base of the Eifelian (Lower-Middle Devonian Series boundary).
NASA Astrophysics Data System (ADS)
Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.
2015-12-01
The last decade has seen a dramatic increase in domestic energy production from unconventional reservoirs. This energy boom has generated marked economic benefits, but simultaneously evoked significant concerns regarding the potential for drinking-water contamination in shallow aquifers. Presently, efforts to evaluate the environmental impacts of shale gas development in the northern Appalachian Basin (NAB), located in the northeastern US, are limited by: (1) a lack of comprehensive ;pre-drill; data for groundwater composition (water and gas); (2) uncertainty in the hydrogeological factors that control the occurrence of naturally present CH4 and brines in shallow Upper Devonian (UD) aquifers; and (3) limited geochemical techniques to quantify the sources and migration of crustal fluids (specifically methane) at various time scales. To address these questions, we analyzed the noble gas, dissolved ion, and hydrocarbon gas geochemistry of 72 drinking-water wells and one natural methane seep all located ≫1 km from shale gas drill sites in the NAB. In the present study, we consciously avoided groundwater wells from areas near active or recent drilling to ensure shale gas development would not bias the results. We also intentionally targeted areas with naturally occurring CH4 to characterize the geochemical signature and geological context of gas-phase hydrocarbons in shallow aquifers of the NAB. Our data display a positive relationship between elevated [CH4], [C2H6], [Cl], and [Ba] that co-occur with high [4He]. Although four groundwater samples show mantle contributions ranging from 1.2% to 11.6%, the majority of samples have [He] ranging from solubility levels (∼45 × 10-6 cm3 STP/L) with below-detectable [CH4] and minor amounts of tritiogenic 3He in low [Cl] and [Ba] waters, up to high [4He] = 0.4 cm3 STP/L with a purely crustal helium isotopic end-member (3He/4He = ∼0.02 times the atmospheric ratio (R/Ra)) in samples with CH4 near saturation for shallow groundwater (P(CH4) = ∼1 atmosphere) and elevated [Cl] and [Ba]. These data suggest that 4He is dominated by an exogenous (i.e., migrated) crustal source for these hydrocarbon gas- and salt-rich fluids. In combination with published inorganic geochemistry (e.g., 87Sr/86Sr, Sr/Ba, Br-/Cl-), new noble gas and hydrocarbon isotopic data (e.g., 20Ne/36Ar, C2+/C1, δ13C-CH4) suggest that a hydrocarbon-rich brine likely migrated from the Marcellus Formation (via primary hydrocarbon migration) as a dual-phase fluid (gas + liquid) and was fractionated by solubility partitioning during fluid migration and emplacement into conventional UD traps (via secondary hydrocarbon migration). Based on the highly fractionated 4He/CH4 data relative to Marcellus and UD production gases, we propose an additional phase of hydrocarbon gas migration where natural gas previously emplaced in UD hydrocarbon traps actively diffuses out into and equilibrates with modern shallow groundwater (via tertiary hydrocarbon migration) following uplift, denudation, and neotectonic fracturing. These data suggest that by integrating noble gas geochemistry with hydrocarbon and dissolved ion chemistry, one can better determine the source and migration processes of natural gas in the Earth's crust, which are two critical factors for understanding the presence of hydrocarbon gases in shallow aquifers.
NASA Astrophysics Data System (ADS)
Brookfield, Michael E.; Hashmat, Ajruddin
2001-10-01
The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.
Unconventional shallow biogenic gas systems
Shurr, G.W.; Ridgley, J.L.
2002-01-01
Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are not clear. Large quantities of water are coproduced with the gas, and geochemical data indicate that the water is fairly fresh and relatively young. Current thinking holds that biogenic gas was generated, and perhaps continues to be, when glacial meltwater descended into the plumbing system provided by fractures. Other examples of late-generation systems include the Devonian New Albany Shale on the eastern margin of the Illinois basin and the Tertiary coalbed methane production on the northwestern margin of the Powder River basin. Both types of biogenic gas systems have a similar resource development history. Initially, little technology is used, and gas is consumed locally; eventually, sweet spots are exploited, widespread unconventional reservoirs are developed, and transport of gas is interstate or international. However, drilling and completion techniques are very different between the two types of systems. Early-generation systems have water-sensitive reservoir rocks, and consequently water is avoided or minimized in drilling and completion. In contrast, water is an important constituent of late-generation systems; gas production is closely tied to dewatering the system during production. Existing production and resource estimates generally range from 10 to 100 tcf for both types of biogenic gas systems. Although both system types are examples of relatively continuous accumulations, the geologic frameworks constrain most-economic production to large geologic structures on the margins of basins. Shallow biogenic gas systems hold important resources to meet the increased domestic and international demands for natural gas.
NASA Astrophysics Data System (ADS)
Morozov, Vladimir P.; Plotnikova, Irina N.; Pronin, Nikita V.; Nosova, Fidania F.; Pronina, Nailya R.
2014-05-01
The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material of Domanicoid facies from the sediments of Mendymski and Domanik horizons of middle substage of Frasnian stage of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. Shale strata are mainly represented by carbonate-chert rocks. They consist mainly of calcite and quartz. The ratio of these rock-forming minerals varies widely - from 25 to 75 percent. Pyrite, muscovite, albite, and microcline are the most common inclusions. Calcareous and ferruginous dolomite (ankerite), as well as magnesian calcite are tracked down as secondary minerals. While performing the tests we found out that the walls of open fractures filled with oil are stacked by secondary dolomite, which should be considered as an indication moveable oil presence in the open-cut. Electron microscopy data indicate that all the studied samples have porosity - both carbonates and carbonate-siliceous rocks. Idiomorphism of the rock-forming grains and pores that are visible under a microscope bring us to that conclusion. The analysis of the images indicates that the type of reservoir is either porous or granular. The pores are distributed evenly in the volume of rock. Their size is very unstable and varies from 0.5 microns to 100 microns. The lowest value are observed in long carbonate-siliceous rocks, the highest values are found in carbonate rocks. The latter is caused by the fact that there is a very strong recrystallization of calcite and its dolomite substitution in carbonates. Open porosity ranges from 0.65 to 7.98 percent, average value is 4.1percent . Effective porosity has an average value of 0.44 percent, ranging from 0.22 to 1.97. Permeability varies from 0.043 to 1.49 mD, average value is 0,191 mD. Organic matter was found in all samples. Its content varies within the section. The fluctuation range of from 1.0 to 20 percent. The lowest content of carbonates is found in carbonates, while the highest is observed in carbonate-siliceous rocks with a high content of chalcedony. Average organic matter content is 5-7 percent. According to Rock-Eval studies of the core, the catagenetic maturity of organic matter corresponds to MK1 - MK2 degree. We found a connection between the type of organic matter and the composition of adsorbed gas. We also could see that the samples with humic organics present in their organic matter and can be characterized by a fair dominance of methane over other gases. There is a clear relationship between organic matter content and the intensity of the gas saturation of the rock. Organic matter is characteristic mainly of the most siliceous formations. In "pure" carbonates, which are represented by micro-layers with different capacities, OM is not observed at all or its content is quite low.
Geology and hydrology of the Fort Belknap Indian Reservation, Montana
Alverson, Douglas C.
1965-01-01
The Fort Belknap Indian Reservation includes an area of 970 square miles in north-central Montana. At its north edge is the Milk River valley, which is underlain by Recent alluvium of the Milk River, glacial deposits, and alluvial deposits of the preglacial Missouri River, which carved and occupied this valley before the Pleistocene Epoch. Rising gently to the south is an undulating glaciated plain broken only by three small syenite porphyry intrusions. Underlying the glacial till of the plain are Upper Cretaceous shale and sandstone of the Bearpaw and Judith River Formations. At the south end of the reservation, 40 miles from the Milk River, an intrusion of syenite porphyry in Tertiary time uplifted, tilted, and exposed the succession of sedimentary rocks overlying the Precambrian metamorphic basement. The sedimentary rocks include 1,000 feet of sandstone and shale of Cambrian age; 2,000 feet of limestone and dolomite of Ordovician, Devonian, and Mississippian age; 400 feet of shale and limestone of Jurassic age; and 3,500 feet of sandstone, siltstone, and shale of Cretaceous age. Extensive gravel terraces of Tertiary and Quaternary age bevel the upturned bedrock formations exposed around the Little Rocky Mountains. Ground water under water-table conditions is obtained at present from alluvium, glaciofluvial deposits, and the Judith River Formation. The water table ranges in depth from a few feet beneath the surface in the Milk River valley alluvium to more than 100 feet deep in the Judith River Formation. Yields to wells are generally low but adequate for domestic and stock-watering use. Quality of the water ranges from highly mineralized and unusable to excellent; many wells in the Milk River valley have been abandoned because of the alkalinity of their water. Potential sources of additional ground-water supplies are the alluvial gravel of creeks issuing from the Little Rocky Mountains and some extensive areas of terrace gravel. The uplift and tilting of the sedimentary sequence around the Little Rocky Mountains and the minor intrusions in the central plain have created artesian conditions within aquifers. Wells obtain artesian water from sandstone aquifers in the Judith River, Eagle, and Kootenai Formations. Other potential aquifers, near their outcrop areas, are the Ellis Group and the Mission Canyon Limestone. Most wells that flow at the surface have small yields, but discharges of as much as 150 gallons per minute have been noted. Quality of artesian water ranges from poor to good. Well depths range from less than 50 to more than 300 feet.
Zero Discharge Water Management for Horizontal Shale Gas Well Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett
Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First,more » water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.« less
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2007-01-01
Sustained increases in energy prices have focused attention on gas resources in low permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are large. Planning and development decisions for extraction of such resources must be area-wide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm the decision to enter such plays depends on reconnaissance level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional scale cost functions. The context of the worked example is the Devonian Antrim shale gas play, Michigan Basin. One finding relates to selection of the resource prediction model to be used with economic models. Models which can best predict aggregate volume over larger areas (many hundreds of sites) may lose granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined by extraneous factors. The paper also shows that when these simple prediction models are used to strategically order drilling prospects, the gain in gas volume over volumes associated with simple random site selection amounts to 15 to 20 percent. It also discusses why the observed benefit of updating predictions from results of new drilling, as opposed to following static predictions, is somewhat smaller. Copyright 2007, Society of Petroleum Engineers.
Palaeozoic gas charging in the Ahnet-Timimoun basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawley, S.J.; Wilson, N.P.; Primmer, T.
1995-08-01
The Ahnet-Timimoun Basin, Southern Algeria, contains significant gas reserves expelled from originally oil prone Silurian and Frasnian shales. The gas is reservoired in Devonian and Carboniferous clastics in inversion anticlines formed, primarily, during the Hercynian orogeny. Integration of organic and inorganic geochemical techniques, such as AFTA, ZFTA, fluid inclusion analysis, vitrinite and chitinizoan reflectance, is entirely consistent with gas generation 300 +/- 30MY, immediately prior to or synchronous with the Hercynian orogeny. Data from gas fields has shown the remobilisation of gas during post Hercynian tectonics. A {open_quotes}two-event{close_quotes} heating/cooling history is proposed: (1) Maximum burial and palaeotemperature at ca. 300more » +/- 30MY prior to or synchronous with Hercynian uplift and cooling. (2) Cooling from a secondary peak (lower than maximum) palaeotemperature at ca. 30-60My following Creataceous burial. Calibrated thermal modelling indicates that Palaeozoic source rocks were heated above 200{degrees}C in the Late Carboniferous. Such high temperatures are consistent with the widespread occurrence of pyrophyllite in Silurian shales. Two end-member thermal models can account for the observed maturities. The first is a constant high Pre-Hercynian heat flow which rapidly decreases during Hercynian uplift to remain at Present day values of 50-75mW/m{sup 2}. Gas expulsion in this case commences much earlier than trap formation. The second is {open_quotes}normal{close_quotes} heat flow of ca. 50mW/m{sup 2} until ca. 310My with a rapid increase at ca. 290My followed by an equally rapid drop to constant present day values - in this model, petroleum generation and expulsion is late in relation to structuring.« less
A geologic framework for mineralization in the western Brooks Range
Young, Lorne E.
2004-01-01
The Brooks Range is a 950-km-long north-vergent fold and thrust belt, which was formed during Mesozoic convergence of the continental Arctic Alaska terrane and the oceanic Angayucham terrane and was further shortened and uplifted in Tertiary time. The Arctic Alaska terrane consists of parautochthonous rocks and the Endicott Mountains and De Long Mountains subterranes. The Endicott Mountains allochthon of the western Brooks Range is the setting for many sulfide and barite occurrences, such as the supergiant Red Dog zinc-lead mine. Mineralization is sediment hosted and most commonly is present in black shale and carbonate turbidites of the Mississippian Kuna Formation. The reconstructed Kuna basin is a 200 by +600 km feature that represents the culmination of a remarkable chain of events that includes three fluvial-deltaic and two or more orogenic cycles, Middle Devonian to Mississippian episodes of extension and igneous activity, and the emergence of a seaward Lower Proterozoic landmass that may have constituted a barrier to marine circulation. Mississippian extension and related horst-and-graben architecture in the western Brooks Range is manifested in part by strong facies variability between coeval units of allochthons and structural plates. Shallow marine to possibly nonmarine arkose, platform to shelf carbonate, slope-to-basin shale, chert and carbonate turbidites, and submarine volcanic rocks are all represented in Mississippian time. The structural setting of Mississippian sedimentation, volcanism, and mineralization in the Kuna basin may be comparable to documented Devono-Mississippian extensional sags or half-grabens in the subsurface north of the Brooks Range. Climate, terrestrial ecosystems, multiple fluvial-deltaic aquifers, and structural architecture affected the liberation, movement, and redeposition of metals in ways that are incompletely understood.
Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.
1997-01-01
Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.
Current perspectives on unconventional shale gas extraction in the Appalachian Basin.
Lampe, David J; Stolz, John F
2015-01-01
The Appalachian Basin is home to three major shales, the Upper Devonian, Marcellus, and Utica. Together, they contain significant quantities of tight oil, gas, and mixed hydrocarbons. The Marcellus alone is estimated to contain upwards of 500 trillion cubic feet of natural gas. The extraction of these deposits is facilitated by a combination of horizontal drilling and slick water stimulation (e.g., hydraulic fracturing) or "fracking." The process of fracking requires large volumes of water, proppant, and chemicals as well as a large well pad (3-7 acres) and an extensive network of gathering and transmission pipelines. Drilling can generate about 1,000 tons of drill cuttings depending on the depth of the formation and the length of the horizontal bore. The flowback and produced waters that return to the surface during production are high in total dissolved solids (TDS, 60,000-350,000 mg L(-1)) and contain halides (e.g., chloride, bromide, fluoride), strontium, barium, and often naturally occurring radioactive materials (NORMs) as well as organics. The condensate tanks used to store these fluids can off gas a plethora of volatile organic compounds. The waste water, with its high TDS may be recycled, treated, or disposed of through deep well injection. Where allowed, open impoundments used for recycling are a source of air borne contamination as they are often aerated. The gas may be "dry" (mostly methane) or "wet," the latter containing a mixture of light hydrocarbons and liquids that need to be separated from the methane. Although the wells can produce significant quantities of natural gas, from 2-7 bcf, their initial decline rates are significant (50-75%) and may cease to be economic within a few years. This review presents an overview of unconventional gas extraction highlighting the environmental impacts and challenges.
NASA Astrophysics Data System (ADS)
Al-Aasm, I. S.; Morad, S.; Durocher, S.; Muir, I.
1996-11-01
An integrated approach combining CSFe relationships, stable isotopic compositions, and lithofacies characterization was utilized to constrain the palaeoenvironmental and early diagenetic conditions of Middle-Upper Devonian (Eifelian-Frasnian) mudrocks from the Mackenzie Mountains, Northwest Territories, Canada. These rocks include the Hare Indian Formation (informally subdivided into the lower Bluefish Member and the Hare Indian Upper Member), Carcajou Marker and Canol Formation. The Bluefish Member is dominated by black, laminated, organic-rich shales (TOC = 0.35-10.34 wt.%; av. 5.83 wt.) with moderate degrees of pyritization (DOP) of 0.34-0.67 (av. 0.55). These mudrocks were deposited in dysoxic marine bottom-waters that became progressively more oxygenated with time. Variations in TOC, DOP and organic matter δ 13C PDB values (-29.7% to -19.9%; av. -27.2%) are attributed to repeated clastic dilution and increased input of terrestrial organic matter in association with shallowing-upward ramp-clinothem cycles. Pyrite δ 34S CDT values (-32.7% to -18.8%; av. -24.9%) indicate an open system, bacteriogenic seawater-sulphate reduction. Conversely, the overlying Hare Indian Upper Member, characterized by clinothem facies, is composed of grey to green mudstone with minor argillaceous limestones and considerably less organic matter contents (TOC = 0.28-2.99 wt.%; δ 13C = -29.5% to -22.5%). Deposition occurred in oxic to slightly dysoxic waters (DOP = 0.20-0.54; δ 34S = -23.0% to -20.9%), depending on the palaeotopographic location along the depositional slope. A rapid rise in sea level drowned the carbonate 'ramp' member of the Ramparts Formation and produced the thin, organic-rich Carcajou Marker. Bottom-water stagnation that resulted from subdued ramp palaeotopography produced anoxic sea bottom. Black, laminated, organic-rich shales from the Canol Formation (TOC = 1.37-6.68 wt.%) are very similar to those of the Bluefish Member, and are likewise basinal sediments. However, TOC, DOP and organic-matter δ 13C PDB values (-29.1% to -20.8%; av. -26.2%) do not show pronounced variations and indicate that low-energy, quietwater conditions persisted over relatively long, uninterrupted periods of time. High DOP values (0.72-0.93) throughout the Canol Formation suggest that deposition occurred in anoxic bottom-waters, but as basin-fill conditions continued there was a shift to a dysoxic environment (DOP = 0.55-0.65), which grades into nearshore and offshore sequences of the overlying Imperial Formation. In contrast with the Hare Indian Formation, much heavier δ 34S CDT values of pyrite in Canol mudrocks (-11.1% to +5.3%; av. -3.1%) point to bacterial sulphate reduction in a closed to semi-closed system with respect to seawater sulphate.
NASA Astrophysics Data System (ADS)
Hickey, A. N.; Junium, C. K.; Uveges, B. T.; Ivany, L. C.; Martindale, R. C.
2017-12-01
The Middle Devonian Appalachian Basin of Central New York hosts an extraordinary diversity of well-studied fossil invertebrates within the shallow marine sequences of the Givetian Age, Hamilton Group. Of particular interest are a series of aerially expansive coral beds with diverse assemblages of rugose corals. These well-preserved specimens provide an excellent opportunity to test the feasibility of δ15N and δ13C analyses in rugose corals in an effort to resolve outstanding issues regarding their paleoecology and ontogeny as well environmental dynamics within the Devonian Appalachian Basin. Here we present carbon and nitrogen isotope analyses of the rugose corals Heliophyllum and Siphonophrentis from the Joshua Coral Bed. Corals were cleaned of the host calcareous shale and sonicated sequentially in deionized water and methanol, and then oxidatively cleaned. Cleaned corals were sectioned into 0.5cm billets to obtain enough residual organic material for analysis. The organic content of the corals is low, but nanoEA allows for serial sampling of 5-10 samples per coral. Coral sections were decarbonated and the residual organic material is filtered and dried prior to analysis. Coral organic matter is analyzed in triplicate using nanoEA, which is a cryo-trapping, capillary focusing technique for δ15N and δ13C. The δ15N of organic matter extracted from rugose corals is, on average, enriched by 2-4‰ relative to the bulk nitrogen in the host rock. As well, the δ13C of organic carbon from the corals is 13C-enriched relative to the bulk rock, but to a lesser degree (no more than 1.5‰). Assuming that the bulk rock carbon and nitrogen are largely representative of the long-term primary production background, the modest enrichment is consistent with a trophic effect, and that rugose corals are likely planktivores. In an individual coral, δ15N ranges by 3-4‰ over its length, and when adjusted for trophic enrichment varies around the average δ15N of bulk sedimentary organic matter (+2.0‰). There is no apparent trajectory in the isotopic composition of organic matter, which suggests that over the sampled life history of the corals we cannot resolve any ontogenetic trends. Therefore, the variability in the δ15N of the coral organic matter likely reflects short-term variability in basinal conditions or changes in coral food supply.
De Vleeschouwer, David; Da Silva, Anne-Christine; Sinnesael, Matthias; Chen, Daizhao; Day, James E; Whalen, Michael T; Guo, Zenghui; Claeys, Philippe
2017-12-22
The Late Devonian envelops one of Earth's big five mass extinction events at the Frasnian-Famennian boundary (374 Ma). Environmental change across the extinction severely affected Devonian reef-builders, besides many other forms of marine life. Yet, cause-and-effect chains leading to the extinction remain poorly constrained as Late Devonian stratigraphy is poorly resolved, compared to younger cataclysmic intervals. In this study we present a global orbitally calibrated chronology across this momentous interval, applying cyclostratigraphic techniques. Our timescale stipulates that 600 kyr separate the lower and upper Kellwasser positive δ 13 C excursions. The latter excursion is paced by obliquity and is therein similar to Mesozoic intervals of environmental upheaval, like the Cretaceous Ocean-Anoxic-Event-2 (OAE-2). This obliquity signature implies coincidence with a minimum of the 2.4 Myr eccentricity cycle, during which obliquity prevails over precession, and highlights the decisive role of astronomically forced "Milankovitch" climate change in timing and pacing the Late Devonian mass extinction.
Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian
NASA Astrophysics Data System (ADS)
Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.
2009-12-01
The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.
Placoderms (Armored Fish): Dominant Vertebrates of the Devonian Period
NASA Astrophysics Data System (ADS)
Young, Gavin C.
2010-05-01
Placoderms, the most diverse group of Devonian fishes, were globally distributed in all habitable freshwater and marine environments, like teleost fishes in the modern fauna. Their known evolutionary history (Early Silurian-Late Devonian) spanned at least 70 million years. Known diversity (335 genera) will increase when diverse assemblages from new areas are described. Placoderms first occur in the Early Silurian of China, but their diversity remained low until their main evolutionary radiation in the Early Devonian, after which they became the dominant vertebrates of Devonian seas. Most current placoderm data are derived from the second half of the group's evolutionary history, and recent claims that they form a paraphyletic group are based on highly derived Late Devonian forms; 16 shared derived characters are proposed here to support placoderm monophyly. Interrelationships of seven placoderm orders are unresolved because Silurian forms from China are still poorly known. The relationship of placoderms to the two major extant groups of jawed fishes—osteichthyans (bony fishes) and chondrichthyans (cartilaginous sharks, rays, and chimaeras)—remains uncertain, but the detailed preservation of placoderm internal braincase structures provides insights into the ancestral gnathostome (jawed vertebrate) condition. Placoderms provide the most complex morphological and biogeographic data set for the Middle Paleozoic; marked discrepancies in stratigraphic occurrence between different continental regions indicate strongly endemic faunas that were probably constrained by marine barriers until changes in paleogeography permitted range enlargement into new areas. Placoderm distributions in time and space indicate major faunal interchange between Gondwana and Laurussia near the Frasnian-Famennian boundary; closure of the Devonian equatorial ocean is a possible explanation.
Egenhoff, Sven O.; Fishman, Neil S.
2013-01-01
Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.
Lamsdell, James C; Selden, Paul A
2017-01-01
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Pardo, Jason D.; Huttenlocker, Adam K.; Small, Bryan J.
2014-01-01
Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian ‘phaneropleurids’ and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in ‘Rhinodipterus’ kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively. PMID:25265394
NASA Astrophysics Data System (ADS)
Anfinson, Owen Anthony
More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages are partially reset since deposition and experienced varying burial histories depending on stratigraphic and geographic location within the basin. AHe ages from Middle Devonian strata from the western margin of the basin indicate episodes of exhumation associated with clastic influxes of sediment into the Sverdrup Basin during the Late Jurassic-Early Cretaceous and Late Cretaceous.
Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.
2011-01-01
Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu-Au deposits from younger magmatic suites in the district. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Naglik, Beata; Toboła, Tomasz; Natkaniec-Nowak, Lucyna; Luptáková, Jarmila; Milovská, Stanislava
2017-02-01
Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917 cm- 1) or water vapor (broad band 2500-3000 cm- 1) occur within two-phased primary inclusion assemblages, while nitrogen (2329 cm- 1) associated with methane and trace amount of carbon dioxide (1285, 1388 cm- 1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266 °C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths.
Silurian pinnacle reefs of the Canadian Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Freitas, T.A.; Dixon, O.A.; Mayr, U.
1993-04-01
Pinnacle reefs are commonly an attractive target for oil exploration because they are usually porous carbonate bodies entombed in impervious, deep-water shales that provide both the source and the seal for hydrocarbons. Silurian pinnacle reefs, the first described in the Canadian Arctic Archipelago, are exposed on Ellesmere and Devon Islands. Two main reef trends occur, one of early middle Llandovery to middle Ludlow age and a second of middle Ludlow to Late Silurian or Early Devonian age. Reefs of both phases contain lime mudstone cores: some are stromatactoid-rich and others consist predominantly of microbialite-rich lime mudstone or microbial boundstone. Faciesmore » sequences of both reef phases show evidence of upward-shallowing overall, but, in the older reefs, isochronous capping facies are dominated either by coral-mirian or by stromatoporoid boundstone and floatstone. This difference perhaps reflects variation in wave stress and apparent ability of a few corals,thickly encrusted by or associated with microbial boundstone and skeletal algae, to withstand greater wave energy than a stromatoporoid-coral-rich reef community. These reefs constitute one of the bright prospects of hydrocarbon exploration in rocks of the Franklinian succession. 43 refs., 9 figs.« less
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2004
Schrader, T.P.
2005-01-01
The Ozark aquifer in northern Arkansas comprises dolomites, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 59 well and 5 spring water-level measurements collected in 2004 in Arkansas and Missouri, indicates maximum water-level altitudes of about 1,188 feet in Benton County and minimum water-level altitudes of about 116 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Comparing the 2004 potentiometric- surface map with a predevelopment potentiometricsurface map indicates general agreement between the two surfaces. Potentiometric-surface differences could be attributed to differences in pumping related to changing population from 1990 to 2000, change in source for public supplies, processes or water use outside the study area, or differences in data-collection or map-construction methods.
Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia
Ulmishek, Gregory F.
2001-01-01
The North Caspian basin is a petroleum-rich but lightly explored basin located in Kazakhstan and Russia. It occupies the shallow northern portion of the Caspian Sea and a large plain to the north of the sea between the Volga and Ural Rivers and farther east to the Mugodzhary Highland, which is the southern continuation of the Ural foldbelt. The basin is bounded by the Paleozoic carbonate platform of the Volga-Ural province to the north and west and by the Ural, South Emba, and Karpinsky Hercynian foldbelts to the east and south. The basin was originated by pre-Late Devonian rifting and subsequent spreading that opened the oceanic crust, but the precise time of these tectonic events is not known. The sedimentary succession of the basin is more than 20 km thick in the central areas. The drilled Upper Devonian to Tertiary part of this succession includes a prominent thick Kungurian (uppermost Lower Permian) salt formation that separates strata into the subsalt and suprasalt sequences and played an important role in the formation of oil and gas fields. Shallow-shelf carbonate formations that contain various reefs and alternate with clastic wedges compose the subsalt sequence on the 1 basin margins. Basinward, these rocks grade into deep-water anoxic black shales and turbidites. The Kungurian salt formation is strongly deformed into domes and intervening depressions. The most active halokinesis occurred during Late Permian?Triassic time, but growth of salt domes continued later and some of them are exposed on the present-day surface. The suprasalt sequence is mostly composed of clastic rocks that are several kilometers thick in depressions between salt domes. A single total petroleum system is defined in the North Caspian basin. Discovered reserves are about 19.7 billion barrels of oil and natural gas liquids and 157 trillion cubic feet of gas. Much of the reserves are concentrated in the supergiant Tengiz, Karachaganak, and Astrakhan fields. A recent new oil discovery on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec
Water resources of the Clarion River and Redbank Creek basins, northwestern Pennsylvania
Buckwalter, Theodore F.; Dodge, C.H.; Schiner, G.R.; Koester, H.F.
1981-01-01
The Clarion River and Redbank Creek basin occupy 1,280 and 545 square miles, respectively, in northwatern Pennsylvania. The area is mostly in Clerion, Elk, and Jefferson Counties and is approximately 70 miles long and 30 miles wide. All drainage is to the Allegheny River. Sedimentary rocks of Late Devionian Early Mississippian, and Pennsylvanian age underlie the area. Rocks of Late Devonian age underlie the entire area and crop out in the deep stream valleys in the north. Lower Mississippian rocks generally crop out in strips along major stream valleys; the strips are narrow in the south and broaden northward. Pennsylvanian rocks cover most of the interfluvial areas between major streams. The Upper Devonian and Lower Mississippian rocks are composed mostly of alternating sandstone and shale. Sandstone may intertongue laterally with shale. The Pennsylvanian rocks are most heterogeneous and contain many commercial coal beds. The major mineral resources are bituminous coal, petroleum, and natural gas. Narly all coal production is from strip mining in Clarion, Elk, and Jefferson Counties. Total coal production exceeded 8 million short tons in 1976. The basins are south and east of the major oil-producing regions in Pennsylvania, but more than 50,000 barrels of crude oil were produced here in 1975. Commercial quantities of natural gas are also obtained. Thirty-three public water-supply systems furnish about two-thirds of the water for domestic use. Surface water is the source of about 90 percent of public-supply water. The remainder is from wells and springs. In an average year, 64 percent of the precipitation in the Clarion River basin and 60 percent in the Redbank Creek basin leave the area as streamflow. The percentage of annuual discharge from each basin that is base runoff averaged 53 and 51 percent, respectively, during 1972-75. Only 4 of 10 stream-gaging stations recorded an average 10-year, 7-consecutive day low flow of at least 0.15 cubic feet per second per square mile. Most wells are completed on bedrock. Yields of bedrock wells are affected mostly by rock type, type of overburden, topography, depth of water-bearing zones, and by the rate and duration of pumping. Water in the bedrock occurs chiefly along fractures and bedding planes. Most wells get water from several zones. Yielding zones occur less frequently as depth increases, but are reported as much as 400 feet below land surface. Optimum well depth is about 350 feet. Well yields range from less than 1 to more than 550 gallons per minute. The best bedrock aquifers are the Lower Mississippian rocks, which have a median specific capacity of 4.3 gallons per minute per foot of drawdown compared to median between 0.38 and 0.67 in the Conemaugh, Allegheny, and Pottsville Groups. The major water-qualitty problems are due to high concentrations of iron, manganese, hardness, and acidity. Some of these problems are related to coal mining that has degraded water quality in parts of Clarion, Clearfield, Elk, and Jefferson Counties. Water-quality problems result from the rock composition. Many streams have low alkalinity concentrations and, consequently, have little capacity to neutralize the acid water from coal mines. Large forested areas, with little development, in Elk, Forest, and Jefferson Counties, have good quality water. The water from over three-quarters of the bedrock wells sampled has dissolved-solids concentratins less than 250 milligrams per liter. Water from aqufers of Pennsylvanian age is generally lower in dissolved solids than that from Lower Mississippian aquifers. Salt water is not a problem, except locally in Devonian rocks. Water from wells on hilltops is generally of better quality than that from wells in valleys (median dissolved solids 140 versus 340 millgrams per liter). In many valleys in Clarion and Jefferson Counties, old abandoned flowing oil and gas wells contribute high
NASA Astrophysics Data System (ADS)
Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.
2016-11-01
Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.
Devonian of the Northern Rocky Mountains and plains
Sandberg, Charles A.; Mapel, William J.
1967-01-01
5. Undivided uppermost Devonian (Famennian, to V-VI) and lowermost Mississippian (Tournaisian, cuI-lower cuIIα) carbonaceous and clastic rocks deposited in six shallow basins interspersed among areas uplifted during the penecontemporaneous Antler orogeny.
Kreitinger, Elizabeth A.; Kappel, William M.
2014-01-01
The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal water-quality standards for common ion and nutrient concentrations with the exception of manganese, which is common in central New York where water sourced from shale rock or glacial sediments derived from shale bedrock naturally develops higher manganese concentrations. One shallow dug well also had elevated sodium and chloride concentrations that are likely sourced from road salt runoff from two nearby roads.
Forster, A.; Merriam, D.F.; Hoth, P.
1998-01-01
The Cherokee basin in southeastern Kansas contains a stratigraphic section consisting mostly of Permian-Pennsylvanian alternating clastics and thin carbonates overlying carbonates of Mississippian and Cambrian-Ordovician age on a Precambrian crytalline basement. Based on a conceptual model of events of deposition, nondeposition, and erosion, a burial history model for (1) noncompaction, and a series of models for (2) compaction are computed for a borehole location in the south-central part of the basin. The models are copled with the calculation of nonsteady-state geothermal conditions. Maximum temperatures during basin evolution of about 70??C at the base of the organic-rich Pennsylvanian are predicted by our models, assuming pure heat conduction and a heat flow from the basement of 60 m W/m2. The maturation of organic matter as indicated by three different vitrinite reflectance (Ro) models is on the order og 0.3-0.5% Ro for Pennsylvanian rocks and 0.6% Ro for the Devonian-Mississippian Cattanooga Shale. Vitrinite reflectance was measured on subsurface smaples from three wells. The measured values correlate in the upper part of the sequence with modeled data, but diverge slightly in the Lower Pennsylvanian and Cattanooga Shale. The differences in maturation may be a result of differing local geological conditions within the basin. The relatively high Ro-depth gradients observed in one borehole may be explained by conditions in the Teeter oil field, which is a typical plains-type anticline that has been affected by fluid flow through vertical faults. Higher Ro values correlate positively with the grade of sulfidfe mineralization in the sediment, which may be a hint of fluid impact. The high Ro values relative to the shallow depth of the Mississippian and the Chattanooga Shale in the Brown well are on the order of Ro values modeled for the same stratigraphic units at present-day greater depths and may reflect uplift of the Ozark dome, located further east, affecting the eastern side of the Cherokee Basin.Based on a concept model of deposition, nondeposition and erosion, a burial history model for noncompaction, and a series of models for compaction are developed for a borehole location in a south-central part of the Cherokee basin in southeastern Kansas. Coupled with the calculation of nonsteady state-state geothermal conditions, the models predict maximum temperatures during evolution of about 70 ??C at the base of the organic-rich Pennsylvanian. A difference in organic matter maturation in the Pennsylvanian and the Chattanooga shale exhibited by vitrinite reflectance models indicate probably differing local geological conditions within the basin.
The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites
NASA Astrophysics Data System (ADS)
von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.
2017-10-01
Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending.
NASA Astrophysics Data System (ADS)
Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong
2018-05-01
The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.
No geochemical evidence for an asteroidal impact at late Devonian mass extinction horizon
NASA Astrophysics Data System (ADS)
McGhee, G. R., Jr.; Gilmore, J. S.; Orth, C. J.; Olsen, E.
1984-04-01
Three sedimentary sequences in New York State (Dunkirk Beach, Walnut Creek Gorge, and Mills Mills) and one sedimentary sequence in Belgium (Sinsin), that cross the Devonian Frasnian-Famennian boundary, were examined for an iridium (Ir) anomaly to determine whether the biotic extinctions at the end of the Cretaceous could have been caused by an asteroidal impact. The sampling at three of the four areas was on 2-cm center points, and 15 to 20 g of sample were collected. The instrumental neutron activation method required 5 g samples, and consequently the distance between samples was less than 1 cm. Though the Devonian samples studied had a high probability of locating an Ir anomaly, none was found. The highest Ir values were between 0.2 and 2 percent of those reported for the marine and terrestrial Ir analyses at the Cretaceous-Tertiary boundary, and Devonian pyrite-rich sediments did not exhibit high Ir concentrations.
Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.
1979-01-01
A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata. In fresh rock, bluish-white opaline-like silica (chalcedonic quartz) fills microfractures, and is believed to have originated by diagenetic mobilization of opaline silica from radiolarian tests and sponge spicules. As revealed by microscopic study, the Gibellini facies originally consisted of siliceous muds, slimes, and oozes high in organic constituents. The organic matter is amorphous flaky and stringy sapropel, and probably includes remains of bacteria, phytoplankton, zooplankton, and minor higher plants. Recognizable organic remnants include radiolarian tests, sponge spicules, conodonts, brachiopod shells, algae, and humic debris. Diagnostic radiolarians indicate a Late Devonian age for the Gibellini facies of the Woodruff Formation. Some pyrite is disseminated through the rock and may be primary (syngenetic) but significant pyrite and marcasite occur in chalcedonic quartz veinlets and appear to be diagenetic. In fresh rock, black solid bitumen and liquid oil fill voids and microfractures. These early phase hydrocarbons probably were released during diagenesis from complex nonhydrocarbon molecular structures originating from living organisms, and formed without any major thermal degradation of the kerogen. Gas chromatographic analysis of the saturated hydrocarbon fraction indicates a very complex mixture dominated by branched and cyclic compounds. Conodont and palynomorph color alteration, vitrinite reflectance, and other organic geochemical data suggest that the organic matter in the rock is thermally immature and has not been subjected to temperatures greater than 60?C since deposition in Devonian time. All of these characteristics are consistent with the interpretation of a relatively low temperature and a shallow-burial history for the Gibellini facies on ridge 7129.
Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine
Gates, Olcott; Moench, R.H.
1981-01-01
Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material
Sandberg, C.A.; Gutschick, R.C.; Johnson, J.G.; Poole, F.G.; Sando, W.J.
1986-01-01
Twenty eustatic and epeirogenic events mainly dated by conodonts are distinguished between the Middle Devonian and the lower Upper Mississippian in Great Basin, in Rocky Mountains and in the Overthrust belt regions.-Journal Editors
Geometry of an outcrop-scale duplex in Devonian flysch, Maine
Bradley, D.C.; Bradley, L.M.
1994-01-01
We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.
Ettensohn, F.R.; Pashin, J.C.
1997-01-01
The Devonian-Carboniferous transition on Laurussia was a time of diverse geologic activity associated with the assembly of Pangea, including episodes of Late Devonian glacial-eustatic lowstand and active orogeny on four margins. Six widespread unconformities are present in the Devonian-Carboniferous (Mississippian) interval on southern parts of Laurussia. We suggest that attention to the timing and plan of the unconformities may provide ways of discerning tectonic and climatic controls on their respective origins. Indeed, unconformities generated by pure eustasy are ideally of interregional extent, whereas unconformities generated by tectonism reflect more local factors associated with the evolution of sedimentary basins. Each of the six unconformities analyzed provides evidence for concurrent eustasy and tectonism. Glaciation was apparently the dominant factor driving the development of unconformities during the latest Devonian. During the Early Carboniferous, however, the volume of glacial ice available to drive eustasy was limited and, at times, tectonism may have been the source of a subordinate eustatic signal. Development of unconformities in southern Laurussia appear to be local manifestations of tectonic and climatic processes associated with supercontinent assembly. Thus, the time may be at hand for construction of a new global stratigraphic paradigm that is based on the plate tectonic supercycle affecting continentality and climate.
Air-breathing adaptation in a marine Devonian lungfish.
Clement, Alice M; Long, John A
2010-08-23
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.
Air-breathing adaptation in a marine Devonian lungfish
Clement, Alice M.; Long, John A.
2010-01-01
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310
Boucot, A.J.; Poole, F.G.; Amaya-Martinez, R.; Harris, A.G.; Sandberg, C.A.; Page, W.R.
2008-01-01
Three brachiopod faunas discussed herein record different depositional and tectonic settings along the southwestern margin of Laurentia (North America) during Devonian time. Depositional settings include inner continental shelf (Cerros de Los Murcielagos), medial continental shelf (Rancho Placeritos), and offshelf continental rise (Rancho Los Chinos). Ages of Devonian brachiopod faunas include middle Early (Pragian) at Rancho Placeritos in west-central Sonora, late Middle (Givetian) at Cerros de Los Murcielagos in northwestern Sonora, and late Late (Famennian) at Rancho Los Chinos in central Sonora. The brachiopods of these three faunas, as well as the gastropod Orecopia, are easily recognized in outcrop and thus are useful for local and regional correlations. Pragian brachiopods dominated by Acrospirifer and Meristella in the "San Miguel Formation" at Rancho Placeritos represent the widespread Appohimchi Subprovince of eastern and southern Laurentia. Conodonts of the early to middle Pragian sulcatus to kindlei Zones associated with the brachiopods confirm the ages indicated by the brachiopod fauna and provide additional information on the depositional setting of the Devonian strata. Biostratigraphic distribution of the Appohimchi brachiopod fauna indicates continuous Early Devonian shelf deposition along the entire southern margin of Laurentia. The largely emergent southwest-trending Transcontinental arch apparently formed a barrier preventing migration and mixing of many genera and species of brachiopods from the southern shelf of Laurentia in northern Mexico to the western shelf (Cordilleran mio-geocline) in the western United States. Middle Devonian Stringocephalus brachiopods and Late Devonian Orecopia gastropods in the "Los Murcielagos Formation" in northwest Sonora represent the southwest-ernmost occurrence of these genera in North America and date the host rocks as Givetian and Frasnian, respectively. Rhynchonelloid brachiopods (Dzieduszyckia sonora) and associated worm tubes in the Los Pozos Formation of the Sonora allochthon in central Sonora are also found in strati-form-barite facies in the upper Upper Devonian (Famennian) part of the Slaven Chert in the Roberts Mountains allochthon (upper plate) of central and western Nevada. Although these brachiopods and worm tubes occur in similar depositional settings along the margin of Laurentia in Mexico, they occur in allochthons that exhibit different tectonic styles and times of emplacement. Thus, the allochthons containing the brachiopods and worm tubes in Sonora and Nevada are parts of separate orogenic belts and have different geographic settings and tectonic histories. Devonian facies belts and faunas in northern Mexico indicate a continuous continental shelf along the entire southern margin of Laurentia. These data, in addition to the continuity of the late Paleozoic Ouachita-Marathon-Sonora orogen across northern Mexico, contradict the early Late Jurassic Mojave-Sonora megashear as a viable hypothesis for large-magnitude offset (600-1100 km) of Proterozoic through Middle Jurassic rocks from California to Sonora. ?? 2008 The Geological Society of America.
Eastern Madre de Dios Devonian generated large volumes of oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.E.; Wagner, J.B.; Carpenter, D.G.
This is the second part of an article giving details of a Mobil Corp. regional geological, geophysical, and geochemical study of the Madre de Dios basin. The assessment covered the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks.
NASA Astrophysics Data System (ADS)
Akondi, R.; Trexler, R.; Sharma, S.; Mouser, P. J.; Pfiffner, S. M.
2016-12-01
The deep subsurface is known to harbor diverse communities of living microbes, and can therefore be expected to also harbor an equally diverse and likely different set of non-viable microbial populations. In this study, diglyceride fatty acids, (DGFA, biomarkers for non-viable microbes) as well as their compound specific isotopes (CSIA) were used to study the yield and variety of DGFAs in deep subsurface mid-Devonian sediments of different lithologies. Pristine sidewall cores were obtained from intervals in the Marcellus, Mahantango, and the Marcellus/Mahantango formation interface. The biomarkers were extracted and DGFAs were methylated to fatty acid methyl esters (FAMEs) and analyzed using GC-MS, while the CSIAs were performed using GC-irMS. Sediments were also analyzed for total organic carbon (TOC), stable carbon isotopic composition of organic carbon (δ13Corg), inorganic carbon (δ13Ccarb), and nitrogen (δ15Norg). TOC concentration was highest in the Marcellus and there was a general trend of increasing TOC from Mahantango to the Marcellus. The δ13Corg and δ13Ccarb increased and decreased respectively from Mahantango to the Marcellus while δ15Norg did not show any trend. The FAME profiles consisted of normal saturated, monounsaturated, polyunsaturated, branched, epoxy, terminally branched, hydroxyl, and dimethyl esters. The total biomass yield and variety of DGFA-FAME profiles were higher in the Mahantango compared to the samples from the Marcellus formation and Marcellus/Mahantango interface, suggesting the presence of more paleo-microbial activity in the less consolidated Mahantango formation. We attribute this to the smaller pore throat sizes within the Marcellus formation compared to the Mahantango formation. Since organic matter in the sediments is also one of the key sources of energy for microbial metabolism, bulk 13C and CSIA of the lipids will be used to understand the source(s) and pathways of the carbon cycling within the microbial communities.
The Carboniferous of the Western Karakoram (Pakistan)
NASA Astrophysics Data System (ADS)
Gaetani, M.; Zanchi, A.; Angiolini, L.; Olivini, G.; Sciunnach, D.; Brunton, H.; Nicora, A.; Mawson, R.
2004-05-01
The results of the study of the Carboniferous successions in the western part of the Northern Karakoram during three geological expeditions are summarized here. Rocks of that period are not uniformly preserved in the several thrust sheets forming the Northern Karakoram. In most of them only the basal part of the Carboniferous, up to the Visean, is preserved, whilst in the Karambar thrust sheet a more complete section—previously almost unknown—is preserved. Four new lithostratigraphic units, time-constrained by brachiopod and conodont biostratigraphy, are described, from bottom to top: (1) the Margach Formation: prevailing dark shales with subordinate fine subarkoses and quartzarenites, up to 300 m thick (mid-Famennian to middle Tournaisian); (2) the Ribat Formation: grey crinoidal limestones passing upwards to dark marly limestones and marls, at least 300 m thick (middle Tournaisian to Serpukhovian); (3) the Lupsuk Formation: subarkoses to feldspathic quartzarenites in thick beds, alternating with dark shales and siltstones, up to 400 m thick (Serpukhovian to uppermost Carboniferous); (4) within the Lupsuk Formation a local member, the Twin Valleys Member, up to 100 m thick, a bioclastic limestone intercalation of post-Moscovian age, is distinguished. The Carboniferous successions are invariably sealed by the arkoses to quartzarenites of the Gircha Formation, 133 m above the base of which, in the Karambar area, an Asselian brachiopod fauna was recovered. The Carboniferous succession is interpreted as recording the evolution of the passive margin of the Northern Karakoram Terrane, from early rifting stage in the Late Devonian to syn-rift events during the Late Carboniferous. The basal part of the Gircha Formation, of latest Carboniferous-earliest Permian age, is considered to have been deposited above a break-up unconformity, linked to the early drifting in the seaway bordering the Karakoram. In the palaeontological appendix the most significant brachiopod taxa (19 species, one new) are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Tyne, A.M.
1995-09-01
Seven subsurface Onondaga reefs have been found in southwestern New York (6) and northwestern Pennsylvania (1). These reefs have had a maximum thickness of about 200 feet and cover an area of a few hundred acres. They are similar to nearly 30 smaller reefs in the same geologic section which have previously been found along the Onodaga outcrop. The discovery well for Onodaga reef gas, although not recognized as such at the time, was the No. 1 Quinlan Oil. The well was drilled in 1933 in the Town of Olean, Cattaraugus County, New York near the New York-Pennsylvania State line.more » The first of the more recent Onondaga reef discoveries occurred in 1967 at Wyckoff in the Town of Jasper, Steuben County, New York. This discovery touched off a leasing and seismic exploration boom in this area of New York. As a result of these studies, two more reefs were discovered in 1971, two in 1974 and the last so far in 1981. These seven reefs have produced 7.1 billion cubic feet of gas. The smallest, Flatstone, has production to data of about 700 million cubic feet. The Onondaga reefs are of basal Onondaga, or Edgecliff, age. The Edgecliff is a light gray, coarsely crystalline, biostromal limestone. Onondaga reefs may have begun forming on somewhat higher parts of the sea floor in crinoid thickets. Because the Onondaga is considerably thicker in that area these so-called {open_quotes}reefs{close_quotes} are buried entirely within the total Onondaga section. They have been called reefs mainly because gas shows have been encountered in the lower Onondaga when it was drilled through by wells aiming for deeper Medina sandstones gas production. Nevertheless, gas production from them has been minimal. The seal consists of surrounding and overlapping black and gray middle Devonian Hamilton shales. The basal portions are surrounded by onlapping upper Onondaga limestones. The source of the gas is believed to be the highly organic Hamilton shale.« less
Pratt, L.M.; Claypool, G.E.; King, J.D.
1986-01-01
Laminated organic-rich shales are interbedded at a scale of centimeters to a few meters with bioturbated organic-poor mudstones or limestones in some fine-grained marine sequences. We have analyzed the organic matter in pairs of laminated/bioturbated interbeds from Cretaceous and Devonian rocks deposited in epicontinental and oceanic settings for the purpose of studying the influence of depositional and early diagenetic environment on the organic geochemical properties of marine shales. Results of these analyses indicate that for rocks that are still in a diagenetic stage of thermal alteration, the relative abundance of biomarker compounds and specific biomarker indices can be useful indicators of depositional and early diagenetic conditions. Pristane/phytane ratios are generally highest for laminated rocks from epicontinental basins and appear to reflect the input of isoprenoid precursors more than oxygenated versus anoxic depositional conditions. The thermally immature laminated rocks are characterized by relatively high contents of 17??(H), 21??(H)-hopanes, hopenes, sterenes and diasterenes, and by strong predominance of the 22R over 22S homohopane isomers. Thermally immature bioturbated samples are characterized by absence of the ??,??-hopanes, by low contents of both saturated and unsaturated polycyclic hydrocarbons, and by slight or no predominance of the 22R over 22S homohopane isomers. There are less obvious compositional differences between the saturated hydrocarbons in the laminated and bioturbated units from the thermally mature sequences. For both the thermally mature and immature laminated samples, the degree of isomerization at the 22C position for hopanes and at the 20C position for steranes is generally consistent with the degree of thermal maturity interpreted from other properties of the organic matter. The bioturbated samples, however, exhibit inconsistent and anomalously high degrees of isomerization for the homohopanes, resulting either from reworking and oxidation of the primary organic matter or from the presence of older recycled organic matter. ?? 1986.
Late Devonian Anoxia Events in the Central Asian Orogenic Belt: a Global Phenomenon
NASA Astrophysics Data System (ADS)
Carmichael, S. K.; Waters, J. A.; Suttner, T. J.; Kido, E.; DeReuil, A. A.; Moore, L. M.; Batchelor, C. J.
2013-12-01
Atmospheric CO2 values decreased dramatically during the Middle Devonian due to the rapid rise of land plants. These changing environmental conditions resulted in widespread anoxia and extinction events throughout the Late Devonian, including the critical Kellwasser and Hangenberg anoxia events, which are associated with major mass extinctions at both the beginning and end of the Famennian Stage of the Late Devonian. Fammenian sediments in northwestern Xinjiang Province, China, represent a highly fossiliferous shallow marine setting associated with a Devonian oceanic island arc complex. Analysis of multiple geochemical proxies (such as U/Th, Ba, normalized P2O5, V/Cr, Zr), magnetic susceptibility, and mineralogical data (biogenic apatite and pyrite framboids) indicates that these Famennian sequences record not only the Upper Kellwasser Anoxic Event at the Frasnian/Famennian (F/F) boundary but also the rebound from the F/F extinction event. Preliminary evidence suggests that the Hangenberg Anoxic Event can also be recognized in the same sequence, although our biostratigraphic control is less precise. Previous studies of the Kellwasser and Hangenberg Events have been performed on continental shelf environments of Laurussia, Gondwana, Siberia, and South China. The Devonian formations of northwest Xinjiang in this study, however, are part of the Central Asian Orogenic Belt (CAOB), which is thought to have formed as part of a complex amalgamation of intra-oceanic island arcs and continental fragments prior to the end of the latest Carboniferous. These results allow us to confirm the presence of the Kellwasser and Hangenberg Events in the open oceanic part of Paleotethys, indicating that both events were global in scope. The presence of an abundant diverse Famennian fauna between these anoxia/extinction events suggests that the shallow marine ecosystems in the CAOB were somewhat protected due to their tectonic location and relative isolation within an open ocean system. Our new data puts the Late Devonian anoxic events recognized in the CAOB into a global rather than regional context, and helps constrain the nature of ocean anoxia during this period by analysis of locations outside subequatorial North America and Europe.
Prediction of resource volumes at untested locations using simple local prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2006-01-01
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.
Caron, Jean-Bernard; Conway Morris, Simon; Shu, Degan
2010-03-08
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles.
NASA Astrophysics Data System (ADS)
Mahmoudi, S.; Mohamed, A. Belhaj; Saidi, M.; Rezgui, F.
2017-11-01
The present work is dealing with the study of lateral and vertical continuity of the multi-layers Acacus reservoir (Ghadames Basin-Southern Tunisia) using the distribution of hydrocarbon fraction. For this purpose, oil-oil and source rock-oil correlations as well as the composition of the light fractions and a number of saturate and aromatic biomarkers parameters, including C35/C34 hopanes and DBT/P, have been investigated. Based on the ratios of light fraction and their fingerprints, the Acacus reservoir from Well1 and Well2 have found to be laterally non-connected although the hydrocarbons they contain have the same source rock. Moreover, the two oil samples from two different Acacus reservoir layers crossed by Well3-A3 and A9, display a similar hydrocarbons distribution, suggesting vertical reservoir continuity. On the other hand, the biomarker distributions of the oils samples and source rocks assess a Silurian ;Hot shale; that is the source rock feeding the Acacus reservoir. The biomarker distribution is characterized by high tricyclic terpanes contents compared to hopanes for the Silurian source rock and the two crude oils. This result is also confirmed by the dendrogram that precludes the Devonian source rocks as a source rock in the study area.
NASA Astrophysics Data System (ADS)
Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel
2016-04-01
Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector-inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS) at Goethe University, Frankfurt. A total of 399 U-Pb spot analyses were carried out on zircons from the sandstones of the Orhanlar Unit. 84% of the data yielded Precambrian ages, which is in marked contrast with the typical arkosic sandstones of the Karakaya Complex in which Precambrian zircons form only 10% of the population. Three zircon grains of Ladinian age suggest a maximum depositional age for the Orhanlar Unit. The most prominent zircon population is of Ediacaran-Cryogenian age (31%). The second largest population is Tonian-Stenian (22%), the third largest Cryogenian-Tonian (9%) and the fourth Devonian-Carboniferous (7%). There are also minor zircon populations of Palaeoproterozoic and Neo-Archean ages. The Precambrian zircon populations in the Orhanlar Unit sandstones are identical to those in the schists of the Sakarya continental crust (P.A. Ustaömer et al. 2012; this study). Their Hf isotope compositions also overlap, suggesting that the Sakarya continental crust could be a source for the sandstones of the Orhanlar Unit. On the other hand, the Hf(t) values of most of the Devonian and Carboniferous detrital zircons differ from those of the Devonian and Carboniferous granites that intrude the Sakarya continental crust. The Karakaya Complex as a whole appears to have been derived from two different source terranes, of which the Orhanlar Unit sandstones represent a minor, but significant component. Possible explanations are that two different source terranes already existed in the same region but that these were not exposed to erosion at the same time or, if exposed simultaneously, experienced different depositional pathways (without mixing); alternatively, the Orhanar Unit represents part of a different tectono-stratigraphic terrane from the other Karakaya Complex units, with which it was tectonically amalgamated prior to Early Jurassic deposition of a common sedimentary cover. Ustaömer PA, Ustaömer T, Robertson AHF (2012), Turkish Journal of Earth Sciences, doi:10.3906/yer-1103-1 Ustaömer T, Ustaömer PA, Robertson AHF, Gerdes A (2015), International Journal of Earth Sciences, DOI 10.1007/s00531-015-1225-8. This work was supported by TUBITAK, Project no 111R015
Kimmeridgian Shales Total Petroleum System of the North Sea Graben Province
Gautier, Donald L.
2005-01-01
The North Sea Graben of northwestern Europe, World Energy Project Province 4025, is entirely offshore within the territorial waters of Denmark, Germany, the Netherlands, Norway, and the United Kingdom. Extensional tectonics and failed rifting are fundamental to the distribution of oil and gas in the province. Accordingly, the geologic history and reser-voir rocks of the province are considered in the context of their temporal relationship to the principal extension and rifting events. The oil and gas accumulations of the province are considered part of a single petroleum system: the Kimmeridg-ian Shales Total Petroleum System (TPS). Source rocks of the Kimmeridgian Shales TPS were deposited in Late Jurassic to earliest Cretaceous time during the period of intensive exten-sion and rifting. The Kimmeridgian Shales contain typical 'type II' mixed kerogen. Oil and gas generation began locally in the North Sea Graben Province by Cretaceous time and has continued in various places ever since. Reservoirs are found in strata with ages ranging from Devonian to Eocene. Pre-rift reservoirs are found in fault-block structures activated during rifting and can be of any age prior to the Late Jurassic. Syn-rift reservoirs are restricted to strata actually deposited during maximum extension and include rocks of Late Jurassic to earliest Cretaceous age. Post-rift reservoirs formed after rifting and range in age from Early Cretaceous to Eocene. Seals are diverse, depending upon the structural setting and reservoir age. Pre-rift reservoirs com-monly have seals formed by fine-grained, post-rift sedimentary sequences that drape the Late Jurassic to earliest Cretaceous structures. Contemporaneous shales such as the Kimmeridge Clay seal many syn-rift reservoirs. Fields with post-rift res-ervoirs generally require seals in fine-grained Tertiary rocks. In most of the North Sea Graben, source rocks have been continuously buried since deposition. Structural trap forma-tion has also taken place continuously since Mesozoic time. As a result, oil and gas are present in a wide variety of settings within Province 4025. Assessment units for the World Energy Project were defined geographically in order to capture regional differ-ences in exploration history, geography, and geological evolution. Three geographic areas were assessed. The Viking Graben, in the northern part of the province, includes both United Kingdom and Norwegian territorial areas. The Moray Firth/Witch Ground in the west-central part of the province is entirely in United Kingdom. waters. The Central Graben in the southern part of the province includes territorial areas of Denmark, Germany, the Netherlands, Norway, and the United Kingdom. The North Sea Graben is estimated to contain between 4.3 and 25.6 billion barrels (BBO) of undiscovered, conventionally recoverable oil. Of that total, the Viking Graben is believed to contain 2.2 to 14.8 BBO of undiscov-ered oil, the Moray Firth/Witch Ground may contain between 0.3 and 1.9 BBO, and the Central Graben was estimated to contain undiscovered oil resources of 1.7 to 8.8 BBO. Prov-ince 4025 was also estimated to hold between 11.8 and 75 trillion cubic feet (TCF) of undiscovered natural gas. Of this total, 6.8 to 44.5 TCF is thought to exist in the Viking Graben, 0.6 to 3.4 TCF is estimated to be in the Moray Firth/Witch Ground, and 4.5 to 27.1 TCF of undiscovered gas is estimated to be in the Central Graben.
Euryhaline ecology of early tetrapods revealed by stable isotopes.
Goedert, Jean; Lécuyer, Christophe; Amiot, Romain; Arnaud-Godet, Florent; Wang, Xu; Cui, Linlin; Cuny, Gilles; Douay, Guillaume; Fourel, François; Panczer, Gérard; Simon, Laurent; Steyer, J-Sébastien; Zhu, Min
2018-06-01
The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ 13 C, δ 18 O and δ 34 S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.
Merschat, Arthur J.; Hatcher, Robert D.; Byars, Heather E.; Gilliam, William G.; Eppes, Martha Cary; Bartholomew, Mervin J.
2012-01-01
The Inner Piedmont extends from North Carolina to Alabama and comprises the Neoacadian (360–345 Ma) orogenic core of the southern Appalachian orogen. Bordered to west by the Blue Ridge and the exotic Carolina superterrane to the east, the Inner Piedmont is cored by an extensive region of migmatitic, sillimanite-grade rocks. It is a composite of the peri-Laurentian Tugaloo terrane and mixed Laurentian and peri-Gondwanan affinity Cat Square terrane, which are exposed in several gentle-dipping thrust sheets (nappes). The Cat Square terrane consists of Late Silurian to Early Devonian pelitic schist and metagraywacke intruded by several Devonian to Mississippian peraluminous granitoids, and juxtaposed against the Tugaloo terrane by the Brindle Creek fault. This field trip through the North Carolina Inner Piedmont will examine the lithostratigraphies of the Tugaloo and Cat Square terranes, deformation associated with Brindle Creek fault, Devonian-Mississippian granitoids and charnockite of the Cat Square terrane, pervasive amphibolite-grade Devonian-Mississippian (Neoacadian) deformation and metamorphism throughout the Inner Piedmont, and existence of large crystalline thrust sheets in the Inner Piedmont. Consistent with field observations, geochronology and other data, we have hypothesized that the Carolina superterrane collided obliquely with Laurentia near the Pennsylvania embayment during the Devonian, overrode the Cat Square terrane and Laurentian margin, and squeezed the Inner Piedmont out to the west and southwest as an orogenic channel buttressed against the footwall of the Brevard fault zone.
Giles, Sam; Darras, Laurent; Clément, Gaël; Blieck, Alain; Friedman, Matt
2015-01-01
Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) ‘Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae. PMID:26423841
NASA Astrophysics Data System (ADS)
Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario
2018-04-01
We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.
NASA Astrophysics Data System (ADS)
Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.
2016-11-01
At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry. Reduced sulphur generation via thermochemical reduction of Late Devonian seawater sulphate produced positive δ34S values in sulphide minerals (+7.5‰ to +19.5‰), coupled with a suite of volatile components (CO2, CH4, C1-C4 hydrocarbons, N2) trapped in Stage 2 quartz. Many of these geochemical features developed during the final stages of fluid ascent, in a system where the fluid cooled close to the site of mineralisation. Using this information, we have modelled the metal transporting capacity of the deep hydrothermal fluid, which even at modest salinities (6 wt.% NaCl) was high (≫100 ppm Pb, Zn), owing to the combined effects of high temperature and low pH (⩽4.5). Therefore in SHMS systems, enhanced geothermal gradients and rapid fluid ascent (with minimal fluid cooling) are considered to be the most important factors for transporting high concentrations of base metals to the site of mineralisation.
Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee
Bradley, Michael W.; Worland, Scott; Byl, Tom
2015-01-01
Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown material weathered from shale, and 4 - the deposition of secondary-sulfate minerals can store trace metals and, during rainfall, result in increased acidity and higher concentrations of trace metals in storm runoff. Understanding the factors that control ARD formation and transport are key to addressing the problems associated with the movement of ARD from the road cuts to the environment. The investigation will provide the Tennessee Department of Transportation with a regional characterization of ARD and provide insights into the geochemical and biochemical attributes for the control and remediation of ARD from road cuts.
Dover, James H.; Berry, William B.N.; Ross, Reuben James
1980-01-01
Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser clastic rocks reported in previously measured sections of the Phi Kappa, as well as the sequence along Phi Kappa Creek from which the name originates, are excluded from the Phi Kappa as revised and are reassigned to two structural plates of Mississippian Copper Basin Formation; other strata now excluded from the formation are reassigned to the Trail Creek Formation and to an unnamed Silurian and Devonian unit. As redefined, the Phi Kappa Formation is only about 240 m thick, compared with the 3,860 m originally estimated, and it occupies only about 25 percent of the outcrop area previously mapped in 1930 by H. G. Westgate and C. P. Ross. Despite this drastic reduction in thickness and the exclusion of the rocks along Phi Kappa Creek, the name Phi Kappa is retained because of widely accepted prior usage to denote the Ordovician graptolitic shale facies of central Idaho, and because the Phi Kappa Formation as revised is present in thrust slices on Phi Kappa Mountain, at the head of Phi Kappa Creek. The lithic and faunal consistency of this unit throughout the area precludes the necessity for major facies telescoping along individual faults within the outcrop belt. However, tens of kilometers of tectonic shortening seems required to juxtapose the imbricated Phi Kappa shale facies with the Middle Ordovician part of the carbonate and quartzite shale sequence of east central Idaho. The shelf rocks are exposed in the Wildhorse structural window of the northeastern Pioneer Mountains, and attain a thickness of at least 1,500 m throughout the region north and east of the Pioneer Mountains. The Phi Kappa is in direct thrust contact on intensely deformed medium- to high-grade metamorphic equivalents of the same shelf sequence in the Pioneer window at the south end of the Phi Kappa-Trail Creek outcrop belt. Along East Pass, Big Lake, and Pine Creeks, north of the Pioneer Mountains, some rocks previously mapped as Ramshorn Slate are lithologically and faunally equivalent to the P
Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacson, P.E.
1987-08-01
Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less
Climate effects caused by land plant invasion in the Devonian
NASA Astrophysics Data System (ADS)
Hir guillaume, Le; yannick, Donnadieu; yves, Goddéris; brigitte, Meyer-Berthaud; gilles, Ramstein
2017-04-01
Land plants invaded continents during the Mid-Paleozoic. Their spreading and diversification have been compared to the Cambrian explosion in terms of intensity and impact on the diversification of life on Earth. Whereas prior studies were focused on the evolution of the root system and its weathering contribution, here we investigated the biophysical impacts of plant colonization on the surface climate through changes in continental albedo, roughness, thermal properties, and potential evaporation using a 3D-climate model coupled to a global biogeochemical cycles associated to a simple model for vegetation dynamics adapted to Devonian conditions. From the Early to the Late Devonian, we show that continental surface changes induced by land plants and tectonic drift have produced a large CO2 drawdown without being associated to a global cooling, because the cooling trend is counteracted by a warming trend resulting from the surface albedo reduction. If CO2 is consensually assumed as the main driver of the Phanerozoic climate, during land-plant invasion, the modifications of soil properties could have played in the opposite direction of the carbon dioxide fall, hence maintaining warm temperatures during part of the Devonian.
NASA Astrophysics Data System (ADS)
Thanh, Tong-Dzuy; Duyen, Than Duc; Hung, Nguyen Huu; My, Bui Phu
2007-01-01
Lower Devonian corals and stromatoporoids have recently been discovered in limestones among low grade metamorphic rocks on the western margin of the Kon Tum Block (South Viet Nam). This unit has been identified as the Cu Brei Formation. Coral and stromatoporoid species have been described including Squameofavosites aff. spongiosus, Parallelostroma cf. multicolumnum, Amphipora cf. rasilis, A. cf. raritalis, Simplexodictyon cf. artyschtense, Stromatopora cf. boriarchinovi and Stromatopora sp. indet. The Cu Brei Formation is exposed in a small area 6 km in length and 3 km wide at the foot of Cu Brei Mountain (Sa Thay District, Kon Tum Province). As this formation is in marine shelf facies it is probable that further exposures of Lower Devonian sediments may be discovered in the Kon Tum Block. This discovery raises the question of the tectonic history of the metamorphic Kon Tum Block. It is possible that the block was not an area of positive uplift from the beginning of Paleozoic as has been supposed, but was submerged in a marine environment, at least on its outer margins, in the Devonian, and possibly even earlier, in Early Paleozoic.
Hydrology, water quality, and effects of drought in Monroe County, Michigan
Nicholas, J.R.; Rowe, Gary L.; Brannen, J.R.
1996-01-01
Monroe County relies heavily on its aquifers and streams for drinking water, irrigation, and other ~ses; however, increased water use, high concentrations of certain constituents in ground water, and droughts may limit the availability of water resources. Although the most densely populated parts of the county use water from the Great Lakes, large amounts of ground water are withdrawn for quarry dewatering, domestic supply, and irrigation.Unconsolidated deposits and bedrock of Silurian and Devonian age underlie Mon_roe County. The unconsolidated deposits are mostly clayey and less than 50 feet thick. Usable amounts of ground water generally are obtained from thin, discontinuous surficial sand deposits or, in the northwestern part of the county, from deep glaciofluvial deposits. In most of the county, however, ground water in unconsolidated deposits is highly susceptible to effects of droughts and to contamination.The bedrock is mostly carbonate rock, and usable quantities of ground water can be obtained from fractures and other secondary openings throughout the county. Transmissivities of the Silurian-Devonian aquifer range from 10 to 6,600 feet squared per day. Aquifer tests and historical informati.on indicate that the Silurian-Devonian aquifer is confmed throughout most of the county. The major recharge area for the Silurian-Devonian aquifer in Monroe County is in the southwest, and groundwater flow is mostly southeastward toward Lake Erie. In the northeastern and southeastern parts of the county, the potentiometric surface of the SilurianDevonian aquifers has been lowered by pumpage to below the elevation of Lake Erie.Streams and artificial drains in Monroe County are tributary to Lake Erie. Most streams are perennial because of sustained discharge from the sand aquifer and the Silurian-Devonian aquifer; however, the lower reaches of River Raisin and Plum Creek lost water to the Silurian-Devonian aquifer in July 1990.The quality of ground water and of streamwater at low flow is suitable for most domestic u~es, irrigation, and recreation. In ground water, dissolved solids and hydrogen sulfide are present at concentrations objectionable to some users. Indicators of ground-water contamination from agricultural activities-pesticides and nitrates-were not present at detectable concentrations or were below U.S. Environmental Protection Agency (USEPA) limits. In streamwater, some treatment to remove bacteria may be necessary in summer months; nitrate concentrations, however, were found to be below USEPA limits.Tritium concentrations indicative of recent recharge to the Silurian-Devonian aquifer are present in a southwest-to-northeast-trending band from Whiteford to Berlin Townships. Generally, where glacial deposits are thicker than 30 feet, rech~rge.takes more than 40 years. Carbon isotope data md1cate that some of the ground water in the Silurian-Devonian aquifer is more than 14,000 years old.Mild droughts are common in Michigan, but long severe droughts, such as those during 1930-37 and 1960-67, are infrequent. The most recent drought, during 1988, was severe but short. Ground-water levels declined throughout the county; the largest declines were probably in the southwest. Shallow bedrock wells completed in only the upper part of the Silurian-Devonian aquifer and near large uses of ground water were especially susceptible to the effects of drought. Deep bedrock wells continued to produce water through the drought of 1988.During droughts, streamflow is reduced because of low ground-water levels and high consumptive uses of surface water. In 1988, annual discharge on the River Raisin was near normal, but monthly averages were below normal from March through August. The quality of surface water during droughts is similar to that during normal lowflow conditions.
Lamsdell, James C.; Braddy, Simon J.
2010-01-01
Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates. PMID:19828493
The first direct evidence of a Late Devonian coelacanth fish feeding on conodont animals
NASA Astrophysics Data System (ADS)
Zatoń, Michał; Broda, Krzysztof; Qvarnström, Martin; Niedźwiedzki, Grzegorz; Ahlberg, Per Erik
2017-04-01
We describe the first known occurrence of a Devonian coelacanth specimen from the lower Famennian of the Holy Cross Mountains, Poland, with a conodont element preserved in its digestive tract. A small spiral and phosphatic coprolite (fossil excrement) containing numerous conodont elements and other unrecognized remains was also found in the same deposits. The coprolite is tentatively attributed to the coelacanth. Although it is unclear whether the Late Devonian coelacanth from Poland was an active predator or a scavenger, these finds provide the first direct evidence of feeding on conodont animals by early coelacanth fish, and one of the few evidences of feeding on these animals known to date. It also expands our knowledge about the diet and trophic relations between the Paleozoic marine animals in general.
NASA Astrophysics Data System (ADS)
Pereira, M. F.; Gutíerrez-Alonso, G.; Murphy, J. B.; Drost, K.; Gama, C.; Silva, J. B.
2017-05-01
Paleozoic continental reconstructions indicate that subduction of Rheic oceanic lithosphere led to collision between Laurussia and Gondwana which was a major event in the formation of the Ouachita-Appalachian-Variscan orogenic belt and the amalgamation of Pangea. However, arc systems which record Rheic Ocean subduction are poorly preserved. The preservation of Devonian detrital zircon in Late Devonian-Early Carboniferous siliciclastic rocks of SW Iberia, rather than arc-related igneous rocks indicates that direct evidence of the arc system may have been largely destroyed by erosion. Here we report in-situ detrital zircon U-Pb isotopic analyses of Late Devonian-Early Carboniferous siliciclastic rocks from the Pulo do Lobo Zone, which is a reworked Late Paleozoic suture zone located between Laurussia and Gondwana. Detrital zircon age spectra from the Pulo do Lobo Zone Frasnian formations show striking similarities, revealing a wide range of ages dominated by Neoproterozoic and Paleoproterozoic grains sourced from rocks typical of peri-Gondwanan terranes, such as Avalonia, the Meguma terrane and the Ossa-Morena Zone. Pulo do Lobo rocks also include representative populations of Mesoproterozoic and Early Silurian zircons that are typical of Avalonia and the Meguma terrane which are absent in the Ossa-Morena Zone. The Famennian-Tournaisian formations from the Pulo do Lobo Zone, however, contain more abundant Middle-Late Devonian zircon indicating the contribution from a previously unrecognized source probably related to the Rheic Ocean magmatic arc(s). The Middle-Late Devonian to Early Carboniferous zircon ages from the siliciclastic rocks of SW Iberia (South Portuguese, Pulo do Lobo and Ossa-Morena zones) have a wide range in εHfT values (- 8.2 to + 8.3) indicating the likely crystallization from magmas formed in a convergent setting. The missing Rheic Ocean arc was probably built on a Meguma/Avalonia type basement. We propose for the Pulo do Lobo Zone that the Frasnian sedimentation occurred through the opening of a back-arc basin formed along the Laurussian active margin during Rheic Ocean subduction, as has been recently proposed for the Rhenohercynian Zone in Central Europe. Detrital zircon ages in the Frasnian siliciclastic rocks indicate provenance in the Meguma terrane, Avalonia and Devonian Rheic Ocean arc(s). As a result of back-arc basin inversion, the Frasnian formations underwent deformation, metamorphism and denudation and were unconformably overlain by Famennian to Visean siliciclastic strata (including the Phyllite-Quartzite Formation of the South Portuguese Zone). The Latest Devonian-Early Carboniferous detritus were probably shed to the Pulo do Lobo Zone (Represa and Santa Iria formations) by recycling of Devonian siliciclastic rocks, from the South Portuguese Zone (Meguma terrane) and from a new distinct source with Baltica/Laurentia derivation (preserved in the Horta da Torre Formation and Alajar Mélange).
The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China
NASA Astrophysics Data System (ADS)
Xu, Bei; Zhao, Pan; Wang, Yanyang; Liao, Wen; Luo, Zhiwen; Bao, Qingzhong; Zhou, Yongheng
2015-01-01
A new tectonic division of the Xing'an-Mongolia orogenic belt (XMOB) in north China has been presented according to our research and a lot of new data of tectonics, geochronology and geochemistry. Four blocks and four sutures have been recognized in the XMOB, including the Erguna (EB), Xing'an-Airgin Sum (XAB), Songliao-Hunshandake (SHB), and Jiamusi (JB), and Xinlin-Xiguitu (XXS), Xilinhot-Heihe (XHS), Mudanjiang (MS) and Ondor Sum-Yongji sutures (OYS). The framework of the XMOB is characterized by a tectonic collage of the blocks and orogenic belts between them. Different Precambrian basements have been found in the blocks, including the Neoproterozoic metamorphic rocks and plutons in the EB, the Neoproterozoic metamorphic rocks in western and eastern of segments of the XAB, Mesoproterozoic and Neoproterozoic metamorphic rocks in middle segments of the XAB, respectively, the Neoproterozoic metamorphic rocks and Mesoproterozoic volcanic rocks and plutons in the SHB, and Neoproterozoic metamorphic rocks in the JB. The XXS resulted from a northwestward subduction of the XAB beneath the EB during the Cambrian, which was followed by the forming of the XHS and OYS in the northwest and south margins of the SHB in the Silurian, respectively. The MS was caused by a westward subduction of the JB beneath the east margin of the SHB during the middle Devonian. The three Cambrian, Silurian and middle Devonian events indicate that the XMOB belongs to a pre-middle Devonian multiple orogenic belt in the Central Asian Orogenic Belt (CAOB). Forming of the XMOB suggests that the southeast part of the Paleo Asian Ocean closed before the middle Devonian.
Devonian (Emsian-Eifelian) fish from the Lower Bokkeveld Group (Ceres Subgroup), South Africa
NASA Astrophysics Data System (ADS)
Anderson, M. E.; Almond, J. E.; Evans, F. J.; Long, J. A.
1999-07-01
Four major groups of fish are represented by fragmentary remains from South Africa's Lower Bokkeveld Group of Early to Middle Devonian age: the Acanthodii, Chondrichthyes, Placodermi and Osteichthyes. These represent the oldest known occurrences of these groups in southern Africa, as well as an important addition to the very meagre record of earlier Devonian fish from the Malvinokaffric Province of southwestern Gondwana. Bokkeveld fish material comes from the Gydo (Late Emsian) and Tra Tra (Middle Eifelian) Formations of the Western Cape and Eastern Cape Provinces. The cosmopolitan marine acanthodian Machæracanthus is represented only by isolated fin spines which may belong to two different species on the basis of their external ornamentation, cross-sectional outline and internal histology. The elasmobranchs are represented by four elements: (1) a flattened chondrocranium which bears affinity to the Late Devonian-Carboniferous symmoriid (protacrodont) 'cladodont' sharks. It is probably the earliest known (Emsian) shark chondrocranium; (2) an isolated, primitive scapulocoracoid with a very short coracoidal ridge; (3) ankylosed and isolated radials, interpreted as parts of pterygial plates of a paired fin of an unknown chondrichthyan bearing affinity to the Middle Devonian Zamponiopteron from Bolivia; and (4) isolated barlike structures, perhaps gill arch or a jaw elements, thought to be from the same taxon as (3). The placoderms are represented by an incomplete trunk armour and fragmentary, finely ornamented plates of a primitive antiarch. The Osteichthyes are represented by a single large scale of an unidentified dipnoan from the Eifelian of the Cedarberg range, as well as a probable sarcopterygian dermal plate from the Emsian of the Prince Albert area. These are among the earliest sarcopterygian remains recorded from the Malvinokaffric Province.
Ziegler, W.; Sandberg, C.A.
2000-01-01
Conodonts are accepted internationally to define Devonian Series and Stage boundaries. Hence, the evolution and taxonomy of pelagic palmatolepids, primarily Palmatolepis and its direct ancestor Mesotaxis, and shallow-water icriodontids, Icriodus, Pelekysgnathus, and "Icriodus", are the major tools for recognizing subdivisions of the Upper Devonian. Palmatolepids are the basis for the Late Devonian Standard Conodont Zonation (ZIEGLER & SANDBERG 1990), whereas icriodontids are the basis for the alternative, integrated shallow-water zonation (SANDBERG & DREESEN 1984). However, an alternative palmatolepid taxonomy for some Frasnian species has been employed recently by some conodont workers using the Montagne Noire (M.N.) zonation, shape analyses of Pa elements, and multielement reconstructions of KLAPPER (1989), KLAPPER & FOSTER (1993); and KLAPPER et al. (1996). Herein, the evolution of palmatolepids and icriodontids is summarized in terms of our zonation and some of the taxonomic differences with the alternative M.N. zonation are exemplified. One of the problems in relating the Standard and M.N. zonations arises from previous errors of interpretation and drafting of the Martenberg section in Germany. This section was designated the reference section for the Frasnian transitans through jamieae Zones by ZIEGLER & SANDBERG (1990). Herein, the early and middle Frasnian zonal boundaries at Martenberg are improved by re-study of our old and recent collections from three profiles, spaced only 4 m apart. Serious problems exist with the Global Stratotype Sections and Points (GSSP's), selected by the Subcommission on Devonian Stratigraphy, following the paleontologic definition of the bases of the Frasnian, Famennian, and Tournaisian Stages, because of the difficulty in making global correlations from these GSSP's. Our summary of these problems should be helpful if future workers decide to relocate these GSSP's.
Algeo, T. J.
1998-01-01
The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.
2008-01-01
A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.
Caron, Jean-Bernard; Conway Morris, Simon; Shu, Degan
2010-01-01
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles. PMID:20221405
Evaluation of ground-water quality data from Kentucky
Sprinkle, C.L.; Davis, R.W.; Mull, D.S.
1983-01-01
The report reviews and summarizes 10,578 chemical analyses, from 2,362 wells and springs in Kentucky. These water-quality data were collected prior to September 30, 1981, and are available in computer files of the U.S. Geological Survey. The principal water-bearing rocks in Kentucky were combined into 10 major groups to aid in data summary preparation and general description of the ground-water quality of the State. Ground water in Kentucky is generally fresh near the outcrop of the rocks comprising the aquifer. Slightly saline to briny water occurs at variable depths beneath the freshwater. Preparation of quadrilinear diagrams revealed three principal geochemical processes in the aquifers of Kentucky: (1) mixing of freshwater and saline water in an interface zone; (2) dedolomitization of the Devonian and Silurian and Lower Mississippian carbonate rocks; (3) sodium for calcium exchange in the freshwater sections of many of the sandstone-shale aquifers. A number of errors and deficiencies were found in the data base. The principal deficiencies were: (1) very few complete analyses which included important field measurements; (2) inadequate definition of the chemistry of the freshwater-saline water interface zone throughout much of the State; (3) no analyses of stable isotopes and dissolved gases; (4) fewer than 10 analyses of most trace metals, radionuclides, and man-made organic chemicals; and (5) no data on bacteria in ground water from any aquifer in the State. (USGS)
The Permo-Triassic uranium deposits of Gondwanaland
NASA Astrophysics Data System (ADS)
le Roux, J. P.; Toens, P. D.
The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.
New insights on the Frasnian/Famennian mass extinction: a role for soil erosion?
NASA Astrophysics Data System (ADS)
Algeo, T.; Gordon, G.; Anbar, A.; Sauer, P.; Schwark, L.; Bates, S.; Lyons, T.; Turgeon, S.; Creaser, R.; Nabbefeld, B.; Grice, K.
2008-12-01
The Frasnian/Famennian (F/F) mass extinction, which killed off a previously thriving tabulate coral- stromatoporoid reef community, was the most severe biotic crisis of the middle Paleozoic. The present study examines the geochemistry of a 28-m stratigraphic interval straddling the F/F boundary in the West Valley drillcore from the northern Appalachian Basin (western New York State), comprising bioturbated shales of the Hanover Formation and mostly laminated shales of the overlying Dunkirk Formation. Paleoredox proxies (DOP, FeT/Al, δ98Mo) indicate an increase in the frequency and intensity of anoxia at the F/F boundary. Proxies for hydrographic conditions (Mo/TOC, Re/TOC, U/TOC) suggest that the depositional basin experienced an interval of deepwater restriction around the boundary, possibly as a consequence of eustatic fall. The boundary is characterized by a large decrease in Zr/Al, indicating lower silt:clay ratios, and by a large decrease in excess Ba (i.e., total Ba-detrital Ba), implying reduced levels of primary productivity. Organic C- and N-isotopic data provide evidence of a major change in organic matter fluxes commencing ~7 meters below the boundary and persisting ~10 m above it. This change is characterized by ca. +5‰ and +15‰ excursions in kerogen δ13C and total organic δ13C, respectively, and by short- term excursions in organic δ15N to as low as -1‰ CDT (from background values of +1 to +2‰) that may provide evidence of cyanobacterial N fixation. Biomarker analysis, still in progress, may provide additional clues concerning changes in organic matter sources. The existing data are consistent with a model of enhanced terrigenous siliciclastic flux to the northern Appalachian Basin at the F/F boundary linked to climatic cooling, eustatic regression, and soil erosion. The rapid development of soils as a consequence of the spread of vascular land plants during the Middle and Late Devonian (Algeo et al., 1995, GSA Today, v. 5(5)) may have created the potential for precipitating marine ecological crises through soil erosion events.
NASA Astrophysics Data System (ADS)
Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.
2016-12-01
Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore-fluid redox, not ancient water column chemistry. While our analyses and biological indicators suggest that the studied samples of the lower Belt Supergroup and New England were deposited in oxic water columns, iron speciation results imply anoxic/ferruginous conditions due to diagenetic alterations affecting the record.
Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.
2006-01-01
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.
NASA Astrophysics Data System (ADS)
Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael
2013-04-01
We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr/Sc ratios of 5-8 and 0.3-0.5, respectively, both for metapelite and metapsammite. The metavolcanic rocks are associated with ocean-island basalt (OIB) or mid-ocean ridge basalts (MORB) due to the immobile trace element ratios Zr/Nb and Y/Nb in the ranges 4.91-8.06 and 0.74-1 for the IOB and >9.2 and >1.25 for the MORB, respectively. Detrital zircon ages for three metapsammites reveal that the major sources mainly are Grenvillian (1250-920 Ma) rocks. Such rocks can be found in the ca. 1 Ga Oaxaquia Complex in NE Mexico (Novillo Gneiss). Hence, short transport can be assumed. Maximum depositional ages are Neoproterozoic, Silurian and Devonian. They indicate that the volcanosedimentary deposition probably took place during Devonian time. Based on our results we suggest a plate-tectonic frame for Oaxaquia which is a modification of accepted models. Most models suggest that Oaxaquia was situated between Laurentia and Gondwana during collision in Carboniferous time. The zircon data indicate that the Granjeno Schist was deposited before the collision of Laurentia and Gondwana. The presence of ocean basalt floor, lava flows and serpentinite lenses intercalated with tuff and active continental margin sedimentary rocks necessitates a near-continental environment, such as a back-arc basin. Hence, we present the first evidence of a subduction zone predating the collision of Laurentia and Gondwana.
World class Devonian potential seen in eastern Madre de Dios basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.E.; Wagner, J.B.; Carpenter, D.G.
The Madre de Dios basin in northern Bolivia contains thick, laterally extensive, organic-rich Upper Devonian source rocks that reached the oil-generative stage of thermal maturity after trap and seal formation. Despite these facts, less than one dozen exploration wells have been drilled in the Madre de Dios basin, and no significant reserves have been discovered. Mobil geoscientists conducted a regional geological, geophysical, and geochemical study of the Madre de Dios basin. The work reported here was designed to assess the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks. It is supported by data from over 3,000 mmore » of continuous slimhole core in two of the five Mobil wells in the basin. Source potential also exists in Cretaceous, Mississippian, and Permian intervals. The results of this study have important implications for future exploration in Bolivia and Peru.« less
Tetrapod trackways from the early Middle Devonian period of Poland.
Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E
2010-01-07
The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.
Geological duration of ammonoids controlled their geographical range of fossil distribution.
Wani, Ryoji
2017-01-01
The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.
Heat flow and thermal history of the Anadarko basin, Oklahoma
Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.
1998-01-01
New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.
Hydrogeology of the West Branch Delaware River basin, Delaware County, New York
Reynolds, Richard J.
2013-01-01
In 2009, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a study of the hydrogeology of the West Branch Delaware River (Cannonsville Reservoir) watershed. There has been recent interest by energy companies in developing the natural gas reserves that are trapped within the Marcellus Shale, which is part of the Hamilton Group of Devonian age that underlies all the West Branch Delaware River Basin. Knowing the extent and thickness of stratified-drift (sand and gravel) aquifers within this basin can help State and Federal regulatory agencies evaluate any effects on these aquifers that gas-well drilling might produce. This report describes the hydrogeology of the 455-square-mile basin in the southwestern Catskill Mountain region of southeastern New York and includes a detailed surficial geologic map of the basin. Analysis of surficial geologic data indicates that the most widespread surficial geologic unit within the basin is till, which is present as deposits of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till and colluvium (remobilized till) cover about 89 percent of the West Branch Delaware River Basin, whereas stratified drift (outwash and ice-contact deposits) and alluvium account for 8.9 percent. The Cannonsville Reservoir occupies about 1.9 percent of the basin area. Large areas of outwash and ice-contact deposits occupy the West Branch Delaware River valley along its entire length. These deposits form a stratified-drift aquifer that ranges in thickness from 40 to 50 feet (ft) in the upper West Branch Delaware River valley, from 70 to 140 ft in the middle West Branch Delaware River valley, and from 60 to 70 ft in the lower West Branch Delaware River valley. The gas-bearing Marcellus Shale underlies the entire West Branch Delaware River Basin and ranges in thickness from 600 to 650 ft along the northern divide of the basin to 750 ft thick along the southern divide. The depth to the top of the Marcellus Shale ranges from 3,240 ft along the northern basin divide to 4,150 ft along the southern basin divide. Yields of wells completed in the aquifer are as high as 500 gallons per minute (gal/min). Springs from fractured sandstone bedrock are an important source of domestic and small municipal water supplies in the West Branch Delaware River Basin and elsewhere in Delaware County. The average yield of 178 springs in Delaware County is 8.5 gal/min with a median yield of 3 gal/min. An analysis of two low-flow statistics indicates that groundwater contributions from fractured bedrock compose a significant part of the base flow of the West Branch Delaware River and its tributaries.
Method for rubblizing an oil shale deposit for in situ retorting
Lewis, Arthur E.
1977-01-01
A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.
Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA)
NASA Astrophysics Data System (ADS)
Pas, Damien; Hinnov, Linda; Day, James E. (Jed); Kodama, Kenneth; Sinnesael, Matthias; Liu, Wei
2018-04-01
The Late Devonian biosphere was affected by two of the most severe biodiversity crises in Earth's history, the Kellwasser and Hangenberg events near the Frasnian-Famennian (F-F) and the Devonian-Carboniferous (D-C) boundaries, respectively. Current hypotheses for the causes of the Late Devonian extinctions are focused on climate changes and associated ocean anoxia. Testing these hypotheses has been impeded by a lack of sufficient temporal resolution in paleobiological, tectonic and climate proxy records. While there have been recent advances in astronomical calibration that have improved the accuracy of the Frasnian time scale and part of the Famennian, the time duration of the entire Famennian Stage remains poorly constrained. During the Late Devonian, a complete Late Frasnian-Early Carboniferous succession of deep-shelf deposits accumulated in the epieric sea in Illinois Basin of the central North-American mid-continent. A record of this sequence is captured in three overlapping cores (H-30, Sullivan and H-32). The H-30 core section spans the F-F boundary; the Sullivan section spans almost all of the Famennian and the H-32 section sampled spans the interval of the Upper Famennian and the D-C boundary. To have the best chance of capturing Milankovitch cycles, 2000 rock samples were collected at minimum 5-cm-interval across the entire sequence. Magnetic susceptibility (MS) was measured on each sample and the preservation of climatic information into the MS signal was verified through geochemical analyses and low-temperature magnetic susceptibility acquisition. To estimate the duration of the Famennian Stage, we applied multiple spectral techniques and tuned the MS signal using the highly stable 405 kyr cycle for Sullivan and the obliquity cycle for the H-30 and H-32 cores. Based on the correlation between the cores we constructed a Famennian floating astronomical time scale, which indicates a duration of 13.5 ± 0.5 myr. An uncertainty of 0.5 myr was estimated for the uncertainties arising from the errors in the stratigraphic position of the F-F and D-C boundaries, and the 405 kyr cycle counting. Interpolated from the high-resolution U-Pb radiometric ages available for the Devonian-Carboniferous boundary we recalibrated the Frasnian-Famennian boundary numerical age to 372.4 ± 0.9 Ma.
Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,
1998-01-01
The Lake Erie-Lake St. Clair Basin covers approximately 22,300 mi ?(square miles) in parts of Indiana, Michigan, Ohio, Pennsylvania, and New York. Situated in two major physiographic provinces, the Appalachian Plateaus and the Central Lowland, the basin includes varied topographic and geomorphic features that affect the hydrology. As of 1990, the basin was inhabited by approximately 10.4 million people. Lake effect has a large influence on the temperature and precipitation of the basin, especially along the leeward southeast shore of Lake Erie. Mean annual precipitation generally increases from west to east, ranging from 31.8 inches at Detroit, Mich., to 43.8 inches at Erie, Pa. The rocks that underlie the Lake Erie-Lake St. Clair Basin range in age from Cambrian through Pennsylvanian, but only Silurian through Pennsylvanian rocks are part of the shallow ground-water flow system. The position of the basin on the edge of the Michigan and Appalachian Basins is responsible for the large range in geologic time of the exposed rocks. Rock types range from shales, siltstones, and mudstones to coarse-grained sandstones and conglomerates. Carbonate rocks consisting of limestones, dolomites, and calcareous shales also underlie the basin. All the basin is overlain by Pleistocene deposits- till, fine-grained stratified sediments, and coarse-grained stratified sediments-most of Wisconsinan age. A system of buried river valleys filled with various lacustrine, alluvial, and coarse glacial deposits is present in the basin. The soils of the Lake Erie-Lake St. Clair Basin consist of two dominant soil orders: Alfisols and Inceptisols. Four other soil orders in the basin (Mollisols, Histisols, Entisols, and Spodosols) are of minor significance, making up less than 8 percent of the total area. The estimated water use for the Lake Erie-Lake St. Clair Basin for 1990 was 10,649 Mgal/d (million gallons per day). Power generation accounted for about 77 percent of total water withdrawals for the basin, whereas agriculture accounted for the least water-use withdrawals, at an estimated 38 Mgal/d. About 98 percent of the total water used in the basin was drawn from surface water; the remaining 2 percent was from ground water. Agricultural and urban land are the predominant land covers in the basin. Agriculture makes up approximately 74.7 percent of the total basin area; urban land use accounts for 11.2 percent; forested areas constitute 10.5 percent; and water, wetlands, rangeland, and barren land constitute less than 4.0 percent. The eight principal streams in the basin are the Clinton, Huron, and Raisin Rivers in Michigan, the Maumee, Sandusky, Cuyahoga, and Grand Rivers in Ohio, and Cattaraugus Creek in New York. The Maumee River, the largest stream in the basin, drains 6,609 mi? and discharges just under 24 percent of the streamflow from the basin into Lake Erie. Combined, the eight principal streams discharge approximately 54 percent of the surface water from the basin to the Lake Erie system per year. Average runoff increases from west to east in the basin. The glacial and recent deposits comprise the unconsolidated aquifers and confining units within the basin. Yields of wells completed in tills range from 0 to 20 gal/min (gallon per minute), but yields generally are near the lower part of this range. Fine-grained stratified deposits can be expected to yield from 0 to 3 gal/ min, and coarse-grained stratified deposits can yield 0.3 to 2,050 gal/min. Pennsylvanian sandstones can yield more than 25 gal/min, but they generally yield 10 to 25 gal/min. Mississippian sandstones in the basin generally yield 2 to 100 gal/min. The Mississippian and Devonian shales are considered to be confining units; in places, they produce small quantities of water from fractures at or near the bedrock surface. Wells completed in the Devonian and Silurian carbonates yield 25 to 500 gal/min, but higher yields have been reported in several zones.
Ground water resources of southeastern Oakland County, Michigan
Ferris, J.G.; Burt, E.M.; Stramel, G.J.; Crosthwaite, E.G.
1954-01-01
The area covered by this report comprises a square which measures three townships on a side and enclose 318 square miles in southeastern Oakland County. The investigation of the ground-water resources of this area was made by the U.S. Geological Survey in cooperation with the Detroit Metropolitan Area Regional Planning Commission, the Michigan Department of Conservation, and the Michigan Water Resources Commission.In 1950 the population of this nine-township area exceeded 341,000, or more than 86 percent of the total population of Oakland County. This county ranks third in the state in number of industrial establishments and workers and is fifteenth in agricultural importance. Its numerous lakes and rolling uplands contribute to its top rank in the state in the number of recreational enterprises in rural or suburban areas.The climate is moderately humid. The average annual precipitation is 30 inches and the mean air temperature is 47.2° F. Snowfall averages 38 inches in the November-April interval. The growing season averages 151 days.The regional land surface slopes from northwest to southeast and has a total relief of 360 feet. Pitted outwash plains and morainal hills that are more than 1,000 feet above sea level in the northwest corner of the area give way southeastward to a sequence of terminal moraines and intervening till plains in the middle part. These give way to the broad lake plains that cover the southeastern third of the area.The area lies on the southeast edge of the Michigan Basin and the bedrock is composed of northwest dipping strata of the Devonian and Mississippian systems. The Antrim shale, of Lake Devonian and early Mississippian age, is the oldest formation cropping out beneath the mantle of glacial Berea sandstone, and Sunbury shale overlie the Antrim and are overlain by the Coldwater shale, their areas of outcrop beneath the drift lying successively farther northwest. These formations are of early Mississippian age.Throughout the area the bedrock is covered by glacial drift which ranges in thickness from 25 to more than 350 feet. The drift increases in thickness from southeast to northwest, but considerable relief on the underlying bedrock surface greatly modifies this trend. Extensive moraines, till plains, lake plains, and gravel outwash plains cover the area. In the northwestern third of the area an extensive upland of gravel plains is dotted with lakes ranging from a few feet to more than 100 feet in depth.Precipitation is the perennial source of all water in this area, whether on the surface of underground. The average annual rainfall on the nine-townships is equivalent to a continuous supply of 450 m.g.d. or 9 times the combined annual withdrawal from all wells in the area.About 53 percent of the area is drained by the Clinton River, 44 percent by the River Rouge, and the remaining 3 percent by the Huron River. Less than one-third of the annual precipitation reappears as surface discharge from the watersheds of this area.About two-thirds of the annual precipitation on the area is lost by evaporation from water and land surfaces and by transpirations from vegetative cover. A substantial part of this large annual water loss is from the many lakes and other exposed water surfaces and from contiguous lands where the depth to the water table is slight. Average annual water losses by evapotranspiration are equivalent to about 280 m.g.d. or nearly 6 times the combined withdrawal from all ground-water supplies in the area.The principal aquifers are the alluvial deposits bordering streams and the buried outwash deposits which represent alluvial fills in preglacial or interglacial stream channels. Intensive well developments in the urban areas have greatly lowered ground-water levels in the buried outwash deposits, have brought localized problems of declining well yield, and have induced migration of mineralized waters from the underlying consolidated formations. During 1952, withdrawals of ground water in the nine township area averages about 50 m.g.d., most of this quantity being pumped from municipal wells. This annual pumpage was distributed as follows: 60 percent in Pontiac and environs; 20 percent in Birmingham, Royal Oak and Troy Township; and the remaining 20 percent throughout the suburban and rural areas.
NASA Astrophysics Data System (ADS)
Klapper, Gilbert; Vodrážková, Stanislava
2013-06-01
Klapper, G. and Vodražkova, S. 2013. Ontogenetic and intraspecific variation in the late Emsian - Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.). Acta Geologica Polonica, 63 (2), 153-174, Warszawa. Samples from populations of Polygnathus serotinus Telford 1975 and P. bultyncki Weddige 1977 from the Prague Basin and Nevada display normal variation for Devonian conodont species. A considerable number of previous authors, however, have proposed unnecessary synonyms of these two species, primarily because they have not recognized ontogenetic variation. In contrast, we interpret the variation as ontogenetic as well as intraspecific and present detailed synonymies as a result. A third species, P. praetrigonicus Bardashev 1992, which has been carried in open nomenclature for many years, is an important indicator of the basal costatus Zone in the Prague Basin, New York, and Nevada. We review the stratigraphic distribution of these three species and the conodont zonation across the Emsian-Eifelian (Lower-Middle Devonian) boundary. Polygnathus pseudocostatus sp. nov. (partitus-costatus zones, central Nevada) is described herein. We have observed a decrease in the pit size during ontogeny in P. bultyncki although we have not measured enough specimens to rule out intraspecific versus ontogenetic variation.
NASA Technical Reports Server (NTRS)
Wang, K.; Geldsetzer, H. H. J.
1992-01-01
Evidence from South China and Western Australia for a 365-Ma impact event in the Lower crepida conodont zone of the Famennian stage of the Late Devonian (about 1.5 Ma after the Frasnian/Famennian extinction event) includes microtektitelike glassy microspherules, geochemical anomalies (including a weak Ir), a probable impact crater (greater than 70 k) at Taihu in South China, and an Ir anomaly in Western Australia. A brachiopod faunal turnover in South China, and the 'strangelove ocean'-like c-delta 13 excursions in both Chinese and Australian sections indicate that at least a regional-scale extinction might have occurred at the time of the impact. A paleoreconstruction shows that South China was very close to and facing Western Australia in the Late Devonian. The carbon isotopic excursions, which occur at the same stratigraphic level in both South China and Western Australia cannot be explained as being coincidental. The c-delta 13 excursions and the brachiopod faunal turnover in South China indicate that there might have been at least a regional (possibly global) extinction in the Lower crepida zone. The impact-derived microspherules and geochemical anomalies (especially the Ir) indicate a Lower crepida zone impact event on eastern Gondwana. The location, type of target rocks, and possibly age of the Taihu Lake crater qualify as the probable site of this Late Devonian impact.
Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.
2000-01-01
This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.
NASA Astrophysics Data System (ADS)
Yang, Gaoxue; Li, Yongjun; Santosh, M.; Yang, Baokai; Yan, Jing; Zhang, Bing; Tong, Lili
2012-10-01
The West Junggar domain in NW China is a distinct tectonic unit of the Central Asian Orogenic Belt (CAOB). It is composed of Paleozoic ophiolitic mélanges, arcs and accretionary complexes. The Sartuohai ophiolitic mélange in the eastern West Junggar forms the northeastern part of the Darbut ophiolitic mélange, which contains serpentinized harzburgite, pyroxenite, dunite, cumulate, pillow lava, abyssal radiolarian chert and podiform chromite, overlain by the Early Carboniferous volcano-sedimentary rocks. In this paper we report new geochronological and geochemical data from basaltic and gabbroic blocks embedded within the Sartuohai ophiolitic mélange, to assess the possible presence of a Devonian mantle plume in the West Junggar, and evaluate the petrogenesis and implications for understanding of the Paleozoic continental accretion of CAOB. Zircon U-Pb analyses from the alkali basalt and gabbro by laser ablation inductively coupled plasma mass spectrometry yielded weighted mean ages of 375 ± 2 Ma and 368 ± 11 Ma. Geochemically, the Sartuohai ophiolitic mélange includes at least two distinct magmatic units: (1) a Late Devonian fragmented ophiolite, which were produced by ca. 2-10% spinel lherzolite partial melting in arc-related setting, and (2) contemporary alkali lavas, which were derived from 5% to 10% garnet + minor spinel lherzolite partial melting in an oceanic plateau or a seamount. Based on detailed zircon U-Pb dating and geochemical data for basalts and gabbros from the Sartuohai ophiolitic mélange, in combination with previous work, indicate a complex evolution by subduction-accretion processes from the Devonian to the Carboniferous. Furthermore, the alkali basalts from the Sartuohai ophiolitic mélange might be correlated to a Devonian mantle plume-related magmatism within the Junggar Ocean. If the plume model as proposed here is correct, it would suggest that mantle plume activity significantly contributed to the crustal growth in the CAOB.
Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte
Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.
2016-01-01
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730
NASA Astrophysics Data System (ADS)
Zwing, A.; Clauer, N.; Liewig, N.; Bachtadse, V.
2009-06-01
This study combines mineralogical, chemical (rare earth elemental (REE)) and isotopic (K-Ar) data of clay minerals as well as chemical compositions (major and REE) of Fe oxide leachates from remagnetized Palaeozoic sedimentary rocks from NE Rhenish Massif in Germany, for which the causes of remagnetization are not yet clear. The dominant carrier of the syntectonic, pervasive Carboniferous magnetization is magnetite. The Middle Devonian clastic rocks record an illitization event at 348 ± 7 Ma probably connected to a major magmatic event in the Mid-German Crystalline Rise, whereas a second illitization episode at 324 ± 3 Ma is coeval to the northward migrating deformation through the Rhenish Massif, being only detected in Upper Devonian and Lower Carboniferous rocks. The age of that younger illitization is not significantly different from that of the remagnetization, which, however, is not restricted to the upper part of the orogenic belt, but affects also the Middle Devonian strata. The REE patterns of the Fe-enriched leachates support two mineralization episodes with varied oxidation-reduction conditions outlined by varied Eu and Ce anomalies. This is not compatible with a unique, pervasive migration of orogenic fluids on a regional scale to explain the remagnetization in the studied region. While clay diagenesis and remagnetization are time-equivalent in Upper Devonian and Lower Carboniferous rocks, they are not so in Middle Devonian rocks. Transformation of smectite into illite cannot, therefore, account for the growth of associated authigenic magnetite, which must have been triggered by a different process. Since remagnetization and deformation ages are similar, the mechanism could relate to local physical conditions such as pressure solution and changing pore fluid pressure due to tectonic stress as well as to chemical conditions such as changing composition of the pore fluids.
Kunk, Michael J.; Wintsch, R.P.; Naeser, C.W.; Naeser, N.D.; Southworth, C.S.; Drake, Avery A.; Becker, J.L.
2005-01-01
New 40Ar/39Ar data reveal ages and thermal discontinuities that identify mapped and unmapped fault boundaries in the Potomac terrane in northern Virginia, thus confirming previous interpretations that it is a composite terrane. The rocks of the Potomac terrane were examined along the Potomac River, where it has been previously subdivided into three units: the Mather Gorge, Sykesville, and Laurel Formations. In the Mather Gorge Formation, at least two metamorphic thermal domains were identified, the Blockhouse Point and Bear Island domains, separated by a fault active in the late Devonian. Early Ordovician (ca. 475 Ma) cooling ages of amphibole in the Bear Island domain reflect cooling from Taconic metamorphism, whereas the Blockhouse Point domain was first metamorphosed in the Devonian. The 40Ar/39Ar data from muscovites in a third (eastern) domain within the Mather Gorge Formation, the Stubblefield Falls domain, record thrusting of the Sykesville Formation over the Mather Gorge Formation on the Plummers Island fault in the Devonian. The existence of two distinctly different thermal domains separated by a tectonic boundary within the Mather Gorge argues against its status as a formation. Hornblende cooling ages in the Sykesville Formation are Early Devonian (ca. 400 Ma), reflecting cooling from Taconic and Acadian metamorphism. The ages of retrograde and overprinting muscovite in phyllonites from domain-bounding faults are late Devonian (Acadian) and late Pennsylvanian (Alleghanian), marking the time of assembly of these domains and subsequent movement on the Plummers Island fault. Our data indicate that net vertical motion between the Bear Island domain of the Mather Gorge complex and the Sykesville Formation across the Plummers Island fault is east-side-up. Zircon fission-track cooling ages demonstrate thermal equillbrium across the Potomac terrane in the early Permian, and apatite fission-track cooling ages record tilting of the Potomac terrane in the Cretaceous or later with the west side up at least 1 km. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Broughton, Paul L.
2013-01-01
The sub-Cretaceous paleotopography underlying giant Lower Cretaceous Athabasca oil sands, northern Alberta, has an orthogonal lattice pattern of troughs up to 50 km long and 100 m deep between pairs of cross-cutting lineaments. These structures are interpreted to have been inherited from a similar pattern of dissolution collapse-subsidence troughs in the underlying Middle Devonian salt beds. Removal of more than 100 m of halite salt fragmented the overlying Upper Devonian strata into fault blocks and collapse breccias that subsided into the underlying dissolution troughs. The unusually low 1:2 to 1:3 thickness ratios of halite salts to the overlying strata resulted in the Upper Devonian strata collapse-subsidence into underlying salt dissolution troughs being more cataclysmic during the first phase of salt removal. The second phase of slower but complete salt removal between the earlier troughs resulted in a more gradual subsidence of the overlying strata. This obliterated the earlier pattern of giant cross-cutting dissolution troughs bounded by major lineaments. The collapse breccia fabrics underlying the earlier troughs differ from those from areas between the troughs. Collapse breccias underlying the large troughs often have crushed fabrics distributed in zones that rapidly pinched out between fault blocks. Breccias between troughs developed as giant mosaics of detached carbonate blocks that formed breccia pipe complexes. Multiple sinkholes up to 100 m deep aligned along multi-km linear valley trends that dissected the sub-Cretaceous paleotopography. These sinkhole trends formed orthogonal patterns inherited from underlying lattice of NW-SE and NE-SW salt structured lineaments. These cross-cutting sinkhole trends have a smaller 5 km scale reticulate pattern similar to the giant 50 km scale pattern of collapse-subsidence troughs. Other sinkholes developed as lower McMurray strata sagged when underlying Devonian fault blocks and breccia pipes differentially subsided.
Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei
2010-03-15
Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, S.; Xinong, X.
2017-12-01
The fifth organic-matter-rich interval (ORI 5) in the He-third Member of the Paleogene Hetaoyuan Formation is believed to be the main exploration target for shale oil in Biyang Depression, eastern China. An important part of successful explorating and producing shale oil is to identify and predict organic-rich shale lithofacies with different reservoir capacities and rock geomechanical properties, which are related to organic matter content and mineral components. In this study, shale lithofacies are defined by core analysis data, well-logging and seismic data, and the spatial-temporal distribution of various lithologies are predicted qualitatively by seismic attribute technology and quantitatively by geostatistical inversion analysis, and the prediction results are confirmed by the logging data and geological background. ORI 5 is present in lacustrine expanding system tract and can be further divided into four parasequence sets based on the analysis of conventional logs, TOC content and wavelet transform. Calcareous shale, dolomitic shale, argillaceous shale, silty shale and muddy siltstone are defined within ORI 5, and can be separated and predicted in regional-scale by root mean square amplitude (RMS) analysis and wave impedance. The results indicate that in the early expansion system tract, dolomitic shale and calcareous shale widely developed in the study area, and argillaceous shale, silty shale, and muddy siltstone only developed in periphery of deep depression. With the lake level rising, argillaceous shale and calcareous shale are well developed, and argillaceous shale interbeded with silty shale or muddy siltstone developed in deep or semi-deep lake. In the late expansion system tract, argillaceous shale is widely deposited in the deepest depression, calcareous shale presented band distribution in the east of the depression. Actual test results indicate that these methods are feasible to predict the spatial distribution of shale lithofacies.
Introduction to special section: China shale gas and shale oil plays
Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng
2015-01-01
Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.
Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014
Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.
2014-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Production...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, A.V.; Coney, P.J.
1987-11-01
Late Devonian sandstone beds are exposed as allochthonous sequences that extend for over 1000 km along the east-west strike of the Brooks Range in northern Alaska. These horizons, at least in part, record Late Devonian tectonism and deposition along the southern margin of the Arctic Alaska block. This study identifies clastic petrofacies in the western Philip Smith Mountains and southern Arctic quadrangles and infers the composition of the source terrane. The paleogeography is not known and the original distribution of lithofacies is uncertain, owing to the extensive post-depositional tectonism. In the study area the sandstones are exposed along rugged mountainmore » tops and high ridges. Although exposures are excellent, access is often difficult. Samples were collected from exposures near the western end of the Chandalar Shelf, Atigun Pass, and the Atigun River valley in the Philip Smith Mountains quadrangle and from the Crow Nest Creek and Ottertail Creek areas in the Arctic quadrangle. 34 refs., 17 figs.« less
Emsian synorogenic paleogeography of the Maine Applachians
Bradley, D.; Tucker, R.
2002-01-01
The Acadian deformation front in the northern Appalachians of Maine and New Hampshire can now be closely located during the early Emsian (Early Devonian; 408-406 Ma). Tight correlations between paleontologically and isotopically dated rocks are possible only because of a new 408-Ma time scale tie point for the early Emsian. The deformation front lay between a belt of Lower Devonian flysch and molasse that were deposited in an Acadian foreland basin and had not yet been folded and a belt of early Emsian plutons that intruded folded Lower Devonian rocks. This plutonic belt includes the newly dated Ore Mountain gabbro (U/Pb; 406 Ma), which hosts magmatic-sulfide mineralization. Along the deformation front, a 407-Ma pluton that locally truncates Acadian folds (Katahdin) was the feeder to volcanic rocks (Traveler Rhyolite; 406-407 Ma) that are part of the foreland-basin succession involved in these same folds. The Emsian igneous rocks thus define a syncollisional magmatic province that straddled the deformation front. These findings bear on three alternative subduction geometries for the Acadian collision.
Wangshangkia, a new Devonian ostracod genus from Dushan of Guizhou, South China
NASA Astrophysics Data System (ADS)
Song, Junjun; Gong, Yiming
2018-02-01
Wangshangkia, a new genus of Ostracoda, from the Late Devonian in Dushan of Guizhou, South China, is described. This genus belongs to the family Bairdiocyprididae Shaver, 1961 and includes two new species, i.e. Wangshangkia dushaniensis and W. bailouiensis. The new genus is characterized by a wide ventral carina with radial striae. It is reported from the Famennian of South China and disappeared just below the Devonian-Carboniferous boundary. Wangshangkia is essentially a benthic crawler and is restricted to the shallow-marine depositional environment with a low hydrodynamic condition. Wangshangkia: urn:lsid:zoobank.org:act:34BF01D4-D202-492D-8E27-BC508EF7EFFB W. dushaniensis: urn:lsid:zoobank.org:act:D267C362-7510-4D19-996B-EA1848D7D025 W. bailouiensis: urn:lsid:zoobank.org:act:FE988AA0-7363-4D9E-A5AB-1526C8DBCDD9
Review of rare earth element concentrations in oil shales of the Eocene Green River Formation
Birdwell, Justin E.
2012-01-01
Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, W.C.; Klein, D.A.; Redente, E.F.
1986-10-01
Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater numbermore » of physiological groups of rhizosphere bacteria was observed in retorted shale, compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale.« less
Liu, Le; Wang, Deming; Meng, Meicen; Xue, Jinzhuang
2017-06-26
The earliest seed plants in the Late Devonian (Famennian) are abundant and well known. However, most of them lack information regarding the frond system and reconstruction. Cosmosperma polyloba represents the first Devonian ovule in China and East Asia, and its cupules, isolated synangiate pollen organs and pinnules have been studied in the preceding years. New fossils of Cosmosperma were obtained from the type locality, i.e. the Leigutai Member of the Wutong Formation in Fanwan Village, Changxing County, Zhejiang Province, South China. The collection illustrates stems and fronds extensively covered in prickles, as well as fertile portions including uniovulate cupules and anisotomous branches bearing synangiate pollen organs. The stems are unbranched and bear fronds helically. Fronds are dimorphic, displaying bifurcate and trifurcate types, with the latter possibly connected to fertile rachises terminated by pollen organs. Tertiary and quaternary rachises possessing pinnules are arranged alternately (pinnately). The cupule is uniovulate and the ovule has four linear integumentary lobes fused in basal 1/3. The striations on the stems and rachises may indicate a Sparganum-type cortex. Cosmosperma further demonstrates diversification of frond branching patterns in the earliest seed plants. The less-fused cupule and integument of this plant are considered primitive among Devonian spermatophytes with uniovulate cupules. We tentatively reconstructed Cosmosperma with an upright, semi-self-supporting habit, and the prickles along stems and frond rachises were interpreted as characteristics facilitating supporting rather than defensive structures.
Cerro de Pasco and other massive sulfide deposits of central Peru
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheney, E.S.
1985-01-01
The famous Cerro de Pasco Pb-Zn-Ag deposit historically has been considered to be hydrothermally derived from an adjacent Tertiary volcanic vent. However, texturally massive pyrite-chert and pyrite-sphalerite-galena in the deposit have the same strike and cross folds as the adjacent pre-Tertiary strata. Both the deposit and the strata are cut by one of the large Longitudinal Faults. Both dikes and pyrite-enargite veins associated with the vent cut the massive sulfides; fragments of massive pyrite occur in the vent. A few examples of laminated pyrite and chert, banded pyrite and chert, banded pyrite and sphalerite, and banded pyrite, sphalerite, and galenamore » are preserved in the massive sulfide portion of the deposit. The deposit has the composition and zoning patterns typical of shale-hosted massive sulfides. Cerro de Pasco probably in part of the pelitic Devonian Excelsior formation. The Colquijirca deposit 8 km to the south and the San Cristobal district 110 km to the south likewise have been considered to be Tertiary volcanic hydrothermal deposits. Colquijirca consists of stratigraphically controlled mantos of layered pyrite, chert and tuff in the Tertiary Calera formation. The mantos of the San Cristobal district are along the upper contact of the pyritic, Permian, Catalina felsic volcanic rocks; some ore consists of laminated pyrite and sphalerite. Tertiary plutons are conspicuously absent at San Cristobal, and the ores are brecciated by Tertiary folding.« less
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2010
Czarnecki, John B.; Pugh, Aaron L.; Blackstock, Joshua M.
2014-01-01
The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 56 well and 5 spring water-level measurements made in 2010 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,174 feet in Carroll County and a minimum water-level altitude measurement of 120 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Water-level altitudes changed 0.5 feet or less in 31 out of 56 wells measured between 2007 and 2010. Despite rapidly increasing population within the study area, the increase appears to have minimal effect on groundwater levels, although the effect may have been minimized by the development and use of surface-water distribution infrastructure, suggesting that most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from groundwater to surface water may be allowing water levels in some wells to recover (rise) or decline at a slower rate in some areas such as in Benton, Carroll, and Washington Counties.
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
Paleozoic shale gas resources in the Sichuan Basin, China
Potter, Christopher J.
2018-01-01
The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.
Method of operating an oil shale kiln
Reeves, Adam A.
1978-05-23
Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.
NASA Astrophysics Data System (ADS)
Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.
2017-12-01
Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the gas extraction. Fourthly, invested the potential land degradation on agricultural, surface water, and forest in developing shale gas extraction scenario. In conclusion, we suggested possible environmental damages and social impacts from shale gas extraction in China.
de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S
2017-12-01
Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.
Tucci, Patrick; McKay, Robert M.
2006-01-01
The greatest limitation to the model is the lack of measured or estimated water-budget components for comparison to simulated water-budget components. Because the model is only calibrated to measured water levels, and not to water-budget components, the model results are nonunique. Other model limitations include the relatively coarse grid scale, lack of detailed information on pumpage from the quarry and from private developments and domestic wells, and the lack of separate water-level data for the Silurian- and Devonian-age rocks.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin
2018-04-01
Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.
Methods for minimizing plastic flow of oil shale during in situ retorting
Lewis, Arthur E.; Mallon, Richard G.
1978-01-01
In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.
Porosity evolution during weathering of Marcellus shale
NASA Astrophysics Data System (ADS)
Gu, X.; Brantley, S.
2017-12-01
Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral weathering; 2) the pyrite/carbonate ratio is higher in the Marcellus shale than in Rose Hill shale, and thus excess acidity generated through pyrite oxidation enhances the dissolution of silicates. We seek to use these and other observations to develop a global model for shale weathering that incorporates both mineral composition and porosity change.
Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins
NASA Astrophysics Data System (ADS)
Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.
2016-12-01
Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its petroleum potential are required.
NASA Astrophysics Data System (ADS)
Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.
2016-05-01
Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28‰; n = 9), and euhedral pyrite (py-II), which has markedly more positive δ34S values (+8‰ to +26‰; n = 86). We argue that stratiform pyrite and barite developed along diagenetic redox fronts, where the isotopic relationships (δ34Spyrite ≈ δ34Sbarite) are explained by anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR). Furthermore, the relatively narrow distribution of δ34Sbarite values is consistent with an open system model of sulphate reduction, in which reduced sulphur generation occurred with a reduced isotopic fractionation (ε34S = <15‰) linked to higher rates of sulphate reduction and AOM-SR. Importantly, hydrothermal sulphides (pyrite, sphalerite and galena) all post-date this diagenetic barite-pyrite assemblage, and textural and mineralogical evidence indicates barite replacement to be an important process during hydrothermal mineralisation. Neither the textures nor the documented isotopic relationships can be produced by processes operating in a euxinic water column, which represents a major departure from the conventional model for SHMS formation at Macmillan Pass. We suggest that positive δ34S values in sulphides, a common feature of SHMS systems both in the Selwyn Basin and throughout the geologic record, could be linked to AOM-SR. At Macmillan Pass, positive δ34Spyrite values developed during open system diagenesis, which was critical for rapid sulphur cycling and the development of an effective metal trap.
Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale
NASA Astrophysics Data System (ADS)
Lin, Senhu
2017-04-01
Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.
Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.
2015-12-17
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.
2017-01-01
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N
2017-01-25
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.
Combuston method of oil shale retorting
Jones, Jr., John B.; Reeves, Adam A.
1977-08-16
A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.
Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong
2013-01-01
Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.
Process for oil shale retorting
Jones, John B.; Kunchal, S. Kumar
1981-10-27
Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.
Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.
Matsunaga, Kelly K S; Tomescu, Alexandru M F
2016-04-01
The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian-Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant-substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays
2011-01-01
To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.
Carbon sequestration in depleted oil shale deposits
Burnham, Alan K; Carroll, Susan A
2014-12-02
A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.
Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying
2018-03-01
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.
New U-Pb zircon ages and the duration and division of Devonian time
Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.
1998-01-01
Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.
Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le
2015-01-01
Background and Aims With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Methods Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. Key Results A new fern-like taxon, Shougangia bella gen. et sp. nov., is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Conclusions Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. PMID:25979918
Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants
NASA Astrophysics Data System (ADS)
Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.
2017-05-01
There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.
Wet separation processes as method to separate limestone and oil shale
NASA Astrophysics Data System (ADS)
Nurme, Martin; Karu, Veiko
2015-04-01
Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
Water management practices used by Fayetteville shale gas producers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J. A.
2011-06-03
Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least threemore » states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.« less
Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming
NASA Astrophysics Data System (ADS)
Nelson, P. H.
2013-12-01
The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.
Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.
2013-01-01
The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.
Irwin, William P.; Mankinen, Edward A.
1998-01-01
The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.
Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.
2009-01-01
The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western contributions of generated oil to the oil sands, the amount generated by the Jurassic source rocks within the study area was 475 BCM (2990 billion bbl). Copyright ?? 2009. The American Association of Petroleum Geologists. All rights reserved.
Gaswirth, Stephanie B.; Lillis, Paul G.; Pollastro, Richard M.; Anna, Lawrence O.
2010-01-01
Two of the total petroleum systems (TPS) defined as part of the U.S. Geological Survey (USGS) assessment of the Williston Basin contain Mississippian Madison Group strata: 1) the Bakken-Lodgepole TPS, which includes the Lodgepole Formation; and 2) the Madison TPS, which includes the Mission Canyon, Charles, and Spearfish formations. The Bakken-Lodgepole TPS is defined as the area in which oil generated from the upper and lower shales of the Upper Devonian-Lower Mississippian Bakken Formation has accumulated in reservoirs in the Three Forks, Bakken, and Lodgepole formations. Two conventional assessment units (AU) have been identified within the Bakken-Lodgepole TPS, including one in the Bakken Formation and another in the Waulsortian mound reservoirs of the lower Lodgepole Formation. Lodgepole Formation Waulsortian mound oil production has been restricted to a small part of Stark County, North Dakota. Reservoirs are sealed by middle and upper Lodgepole Formation tight argillaceous limestones. Several nonproductive mounds and mound-like structures have also been identified in the Lodgepole Formation. Productivity correlates closely with the oil window of the Bakken Formation shales, and also indicates the likelihood of limited lateral migration of Bakken Formation oil into Lodgepole Formation reservoirs in North Dakota and Montana. Such considerations limit the estimated mean of undiscovered, technically recoverable resources to 8 million barrels of oil (MMBO) for the Lodgepole Formation conventional reservoirs. The Madison TPS is defined as the area where oil generated from Mission Canyon and Charles formation source rocks has accumulated in reservoirs of the Mission Canyon and Charles formations and in reservoirs within the Triassic Spearfish Formation. One continuous reservoir AU, the Mission Canyon-Charles AU, was defined within the Madison TPS; its boundary coincides with the TPS boundary. There is extensive conventional production throughout the AU on major structures and in stratigraphic-structural traps. The largest fields are on the Little Knife, Billings Nose, and Nesson anticlines. Recent studies show that Madison Group oils were generated from organic-rich Mission Canyon Formation and Ratcliffe Interval carbonates adjacent to the reservoirs. Seals were formed by overlying or lateral evaporites or tight carbonates. Based on available geologic and production data, the undiscovered oil resources for conventional reservoirs in the Mission Canyon-Charles AU were estimated to have a mean of 45 MMBO.
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
What is shale gas and why is it important?
2012-01-01
Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.
Dyni, John R.
2008-01-01
Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.
Shale Gas Exploration and Development Progress in China and the Way Forward
NASA Astrophysics Data System (ADS)
Chen, Jianghua
2018-02-01
Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.
Chen, Fangwen; Lu, Shuangfang; Ding, Xue
2014-01-01
The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale) formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0)), the original hydrogen index (I H0), the transformation ratio of generated hydrocarbon (F(R o)), and the organopore correction coefficient (C). The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths. PMID:25184155
Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.
2011-01-01
The Cannery Formation consists of green, red, and gray ribbon chert, siliceous siltstone, graywacke-chert turbidites, and volcaniclastic sandstone. Because it contains early Permian fossils at and near its type area in Cannery Cove, on Admiralty Island in southeastern Alaska, the formation was originally defined as a Permian stratigraphic unit. Similar rocks exposed in Windfall Harbor on Admiralty Island contain early Permian bryozoans and brachiopods, as well as Mississippian through Permian radiolarians. Black and green bedded chert with subordinate lenses of limestone, basalt, and graywacke near Kake on Kupreanof Island was initially correlated with the Cannery Formation on the basis of similar lithology but was later determined to contain Late Devonian conodonts. Permian conglomerate in Keku Strait contains chert cobbles inferred to be derived from the Cannery Formation that yielded Devonian and Mississippian radiolarians. On the basis of fossils recovered from a limestone lens near Kake and chert cobbles in the Keku Strait area, the age of the Cannery Formation was revised to Devonian and Mississippian, but this revision excludes rocks in the type locality, in addition to excluding bedded chert on Kupreanof Island east of Kake that contains radiolarians of Late Pennsylvanian and early Permian age. The black chert near Kake that yielded Late Devonian conodonts is nearly contemporaneous with black chert interbedded with limestone that also contains Late Devonian conodonts in the Saginaw Bay Formation on Kuiu Island. The chert cobbles in the conglomerate in Keku Strait may be derived from either the Cannery Formation or the Saginaw Bay Formation and need not restrict the age of the Cannery Formation, regardless of their source. The minimum age of the Cannery Formation on both Admiralty Island and Kupreanof Island is constrained by the stratigraphically overlying fossiliferous Pybus Formation, of late early and early late Permian age. Because bedded radiolarian cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider land...
Preparation of grout for stabilization of abandoned in-situ oil shale retorts
Mallon, Richard G.
1982-01-01
A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Joud, M. Y.; Taleb, M. A.; Horton, John D.
2015-01-01
Phanerozoic oolitic ironstones are hosted in the upper Silurian and lower Devonian rocks of the Gara Bouya Ali Group and the Zemmour Group in the Tindouf Basin in northern Mauritania and in the end Ordovician Tichit Group, the Silurian Oued Chig Group, and the lower Devonian Tenemouj Group in the Taoudeni Basin near Tidjikja. These rock groups define 11 permissive tracts for Algoma-, Superior-, and oolitic-type iron deposits in Mauritania.
McDowell, R.R.; Avary, K.L.; Matchen, D.L.; Britton, J.Q.
2007-01-01
Similar lithologies and lithofacies are present in two Upper Devonian siliciclastic units, the Brallier and Foreknobs formations, in eastern West Virginia and western Virginia, USA. Specimens of an unusual trace fossil, Pteridichnites biseriatus, occur in variable numbers throughout both stratigraphic units. P. biseriatus is present in abundance in the lowermost Brallier and this abundance-zone serves as a local stratigraphic marker for the Brallier. The trace fossil, originally suggested as an indication of polychaete or arthropod locomotion, is herein proposed as the locomotion trace of an unidentified ophiuroid.
Plate tectonic history of the Arctic
NASA Technical Reports Server (NTRS)
Burke, K.
1984-01-01
Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.
Evidence of land plant affinity for the Devonian fossil Protosalvinia (Foerstia)
Romankiw, L.A.; Hatcher, P.G.; Roen, J.B.
1988-01-01
The Devonian plant fossil Protosalvinia (Foerstia) has been examined by solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). Results of these studies reveal that the chemical structure of Protosalvinia is remarkably similar to that of coalified wood. A well-defined phenolic carbon peak in the NMR spectra and the appearance of phenol and alkylated phenols in pyrolysis products are clearly indicative of lignin-like compounds. These data represent significant new information on the chemical nature of Protosalvinia and provide the first substantial organic geochemical evidence for land plant affinity. -Authors
NASA Astrophysics Data System (ADS)
Szrek, P.; Niedźwiedzki, G.; Dec, M.
2012-04-01
Despite of more than 100 years of study, the Lower Devonian deposits of the Holy Cross Mountains (central Poland) are still not well understood from the biostratigraphical, environmental and also paleontological point of views. During field works and excavations conducted in 2011 numerous fossils (body and trace fossils) were discovered in a few Lower Devonian outcrops of the region. The siliciclastic sequence of the Lower Devonian of the southern part of the Holy Cross Mountains, is renowned for abundant vertebrate fossils, including mainly the jawless fish and placoderm remains. During the first detailed taphonomic study of the vertebrate assemblage from the so-called "Placoderm Sandstones" cropping out at the Podłazie near Daleszyce, abundant vertebrate remains have been collected (more than 600 specimens). Their analysis (that is in progress) will be the first description of so rich and numerous vertebrates association from the Central Europe that contains placoderms, sharks, acathodians and sarcopterygians. The degree of fragmentation of the bones and disarticulation of the skeletons suggest that the carcasses were reworked and transported before burial. Sedimentological data suggest deposition in a shallow marine environment. Numerous invertebrate ichnofossils (Phycodes isp. Skolithos isp., Diplichnites isp., Monomorphichnus isp., Lockeia cf. siliquaria, Corophioides isp. and Teichinus isp.) particularly well preserved were ascertained in another Lower Devonian site near Iwaniska. Moreover a very interesting assemblage of trace fossils corresponding to traces of feeding fishes were discovered. They are very similar to those found in much younger deposits (e.g. from the Eocene of Turkey). Its interpretation found them as made by placoderms is taken into consideration recently, because of its fiting to whole morphology of small coccosteids. They are also important that they could be the first imprints of soft body of the placoderm as a life animal according to good preservation of particular specimens. The occurrence of characteristic trace fossils is taken as strong evidence of marine influences of the studied section, where sedimentological features are not so clear, with exceptions of very few surfaces covered with symmetrical wave marks. The distribution of the most common trace fossils recognized in the field allowed for different interpretation than was proposed in the past which set up the river influence in the Lower Dewonian of the eastern part of the Holy Cross Mountains, but it is not confirmed by mentioned above invertebrate ichnofossils. Instead of this the development of Skolithos and Cruziana ichnofacies in Iwaniska profile, indicate high energy conditions in foreshore zone, respectively. All the Lower Devonian sites with trace fossils and vertebrate bonebeds from the Holy Cross Mountains are associated with sandy deposits and have been formed in a sea-coastal zone during rather rapid sedimentation episodes, but differ in fossil abundance and degree of preservation.
Method for maximizing shale oil recovery from an underground formation
Sisemore, Clyde J.
1980-01-01
A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.
Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China
Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang
2015-01-01
In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123
Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.
Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang
2015-01-01
In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.
Map of assessed shale gas in the United States, 2012
,; Biewick, Laura R. H.
2013-01-01
The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.
Comparative acute toxicity of shale and petroleum derived distillates.
Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K
1989-12-01
In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.
Shale gas development impacts on surface water quality in Pennsylvania.
Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J
2013-03-26
Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.
NASA Astrophysics Data System (ADS)
Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.
2018-03-01
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.
Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt
NASA Astrophysics Data System (ADS)
Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat
2017-04-01
Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs
NASA Astrophysics Data System (ADS)
Wang, Y.; Ji, J.; Li, M.
2017-12-01
CO2 enhanced shale gas recovery has proved to be one of the most efficient methods to extract shale gas, and represent a mutually beneficial approach to mitigate greenhouse gas emission into the atmosphere. During the processes of most CO2 enhanced shale gas recovery, liquid CO2 is injected into reservoirs, fracturing the shale, making competitive adsorption with shale gas and displacing the shale gas at multi-scale to the production well. Hydraulic and mechanical coupling actions between the shale and fluid media are expected to play important roles in affecting fracture propagation, CO2 adsorption and shale gas desorption, multi-scale fluid flow, plume development, and CO2 storage. In this study, four reservoir shale samples were selected to carry out triaxial compression experiments of complete strain-stress and post failure tests. Two fluid media, CO2 and N2, were used to flow through the samples and produce the pore pressure. All of the above four compression experiments were conducted under the same confining and pore pressures, and loaded the axial pressure with the same loading path. Permeability, strain-stress, and pore volumetric change were measured and recorded over time. The results show that, compared to N2, CO2 appeared to lower the peak strength and elastic modulus of shale samples, and increase the permeability up two to six orders of magnitudes after the sample failure. Furthermore, the shale samples were dilated by CO2 much more than N2, and retained the volume of CO2 2.6 times more than N2. Results from this study indicate that the CO2 can embrittle the shale formation so as to form fracture net easily to enhance the shale gas recovery. Meanwhile, part of the remaining CO2 might be adsorbed on the surface of shale matrix and the rest of the CO2 be in the pore and fracture spaces, implying that CO2 can be effectively geo-stored in the shale formation.
NASA Astrophysics Data System (ADS)
Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.
2014-12-01
DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon. The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰. In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands. 1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively. We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.
Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application
Mallon, R.G.
1979-12-07
A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.
2011-01-01
The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.
Analysis of the effectiveness of steam retorting of oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, H.R.; Pensel, R.W.; Udell, K.S.
A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less
NASA Astrophysics Data System (ADS)
Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen
Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.
NASA Astrophysics Data System (ADS)
Mark, D.; Rice, C.; Stuart, F.; Trewin, N.
2011-12-01
The Rhynie cherts are hot spring sinters that contain world-renowned plant and animal remains and anomalously high quantities of heavy metals, including gold. The biota in several beds is preserved undeformed with plants in life positions thus establishing that they and the indurating hydrothermal fluids were coeval. Despite the international importance of the Rhynie cherts their age has been poorly constrained for three reasons: (1) lack of a precise radio-isotopic age, (2) low resolution of spore biostratigraphic schemes for Devonian terrestrial deposits, with only one to a few zones per stage, and (3) poor resolution of the early Devonian timescale. Wellman (2004) assigned a Pragian-?earliest Emsian age to the Rhynie cherts on the basis of the spore assemblage. An 40Ar/39Ar dating study targeting Rhynie chert yielded an age of 395 ± 12 Ma (1σ) (Rice et al., 1995). This contribution discusses a new high-precision 40Ar/39Ar age (407.1 ± 2.2 Ma, 2σ) for the Devonian hot-spring system at Rhynie (Mark et al., 2011) and demonstrates that a proposed U-Pb age (411.5 ± 1.1 Ma, 2σ) for the Rhynie cherts (Parry et al., 2011) is inconsistent with both field evidence and our interpretation of the U-Pb data. The 40Ar/39Ar age provides a robust marker for the polygonalis-emsiensis Spore Assemblage Biozone within the Pragian-?earliest Emsian. It also constrains the age of a wealth of flora and fauna preserved in life positions as well as dating gold mineralization. Furthermore, we have now determined the Ar isotope composition of pristine samples of the Rhynie chert using an ARGUS multi-collector mass spectrometer and a low blank laser extraction technique. 40Ar/36Ar are systematically lower than the modern air value (Lee et al., 2006), and are not accompanied by non-atmospheric 38Ar/36Ar ratios. We conclude that the Rhynie chert captured and has preserved Devonian atmosphere-derived Ar. The data indicate that the 40Ar/36Ar of Devonian atmosphere was at least 3 % lower than the modern air value (Lee et al., 2006). Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last c. 407 Ma, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the 40Ar accumulation rate determined from ice cores for the last 800,000 years (Bender et al. 2008) and implies that there has been no resolvable temporal change in outgassing rate since the mid-Palaeozoic. The new chronological and Ar isotope data provide a unique tie point and dictate outgassing of the Earth's interior early in Earth history. [1] Bender, M. et al. (2008) Proceedings of the National Academy of Sciences, 105, 8232-8237. [2] Wellman, C.H., 2004. Proceedings of the Royal Society of London. Biological Sciences, 271, 985-992. [3] Lee, J.Y. et al. (2006) Geochimica et Cosmochimica Acta, 70, 4507-4512. [4] Mark, D.F. et al. (2011) Geochimica et Cosmochimica Acta, 75, 555-569. [5] Parry, S.F. et al. (2011) Journal of the Geological Society, London, 168, 863-872. [6] Rice, C.M. et al. (1995) Journal of the Geological Society, London, 152, 229-2250.
NASA Astrophysics Data System (ADS)
Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge
2018-03-01
The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.
NASA Astrophysics Data System (ADS)
Hoiland, C. W.; Miller, E. L.; Hourigan, J. K.
2013-12-01
The westernmost Brooks Range, Alaska, is underlain by basement of probable Baltic or Timanian affinity (e.g. Miller et al., 2011; Amato et al., 2009), while the eastern Brooks Range is underlain by Laurentian affinity basement (e.g. Strauss et al., 2013). A post-Timanian and pre-Mississippian suture or contact is thus required based on continuity of late Devonian and younger strata across the Brooks Range (e.g. Dumoulin et al., 2002). This inferred juxtaposition has been proposed as the distal and diachronous (though possibly non-collisional) continuation of the Caledonian orogen (e.g. Moore et al., 2012) but the actual location and character of this suture within basement rocks of the Brooks Range remain speculative. New laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb single grain detrital zircon (DZ) geochronology of basement rocks from the Cosmos Hills, Slate Creek, and Wiseman regions suggest that metamorphic rocks in these regions are Devonian, not pre-Devonian. New SHRIMP-RG analyses of the Kogoluktuk orthogneiss (Cosmos) (zircon: 383 Ma × 5 Ma, 2-sigma errors, consistent with Dillon et al. 1980) revealed no inherited cores from which to infer basement affinity. DZ spectra from metasedimentary and metavolcanic wall rock contain youngest detrital zircon populations with ages (390 Ma) just barely older than the cross-cutting intrusive age, providing tight bracketing of depositional age. These zircon ages are noticeably younger than Caledonian magmatic ages (430-420 Ma) suggesting deposition in a volcanically and tectonically active setting (likely extensional) as originally suggested by Hitzman et al (1986). Zircon spectra (Cosmos) contain notable amounts of "Timanian" age zircons (c. 700-550 Ma), and a spread of zircons from 1-2 Ga (including 1.5-1.6 Ga ages of the Laurentian "magmatic gap', e.g. Grove et al. 2008) more typical of derivation from Baltic rather than Laurentian sources. East in the Wiseman and Slate Creek localities, the detrital signature becomes characteristically Laurentian, with a notable absence of Timanian and "magmatic gap" ages. A youngest age population of 390 Ma still provides a maximum depositional age, but minimum age is poorly constrained. The coarse and feldspathic nature of many of these intercalated volcanic and clastic sequences suggests a proximal provenance, thus serving as a proxy for local pre-Devonian basement ages and affinity. We might, therefore, infer a non-Laurentian basement for the AACM at least as far east as the Cosmos Hills but not further east than the Wiseman region. These Devonian-age volcanic/rift basins may be related to slab roll-back and induced backarc rifting that occurred obliquely across a 'Caledonian' suture, possibly in response to global plate re-organization. Rifting, accompanied by bimodal volcanism (the Ambler Sequence), may have aided the removal and translation of peri-Baltic terranes to a position outboard of the proto-Cordilleran margin ('Northwestern Passage' of Colpron & Nelson, 2009). Further correlations might be drawn with the Sakmarian-Magnitogorsk arcs of the pre-Uralian margin of Europe. These Devonian backarc rift sequences - more widespread than previously thought - may serve as critical additional tie-points for paleogeographic reconstructions of the Arctic.
The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation
Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun
2016-01-01
Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168
The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.
Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun
2016-01-01
Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.
NASA Astrophysics Data System (ADS)
Zou, C.; Nie, X.; Qiao, L.; Pan, L.; Hou, S.
2013-12-01
The Longmaxi Shale in the Lower Silurian has been recognized as a favorable target of shale gas exploration in Sichuan basin, China. One important feature of shale gas reservoirs is of high total organic carbon (TOC). Many studies have shown that the spectral gamma-ray measurements are positively correlated to the TOC contents. In this study, the spectral gamma ray responses of five shale outcrop profiles are measured in Chongqing and its adjacent areas, Sichuan basin. Three of the five profiles are located in Qijiang, Qianjiang and Changning in Chongqing, and the other two are located in Qilong and Houtan in Guizhou. The main lithologies of the profiles include mainly black shale, gray shale and silty shale. The spectral gamma-ray measurements provide the contents of potassium (K), uranium (U), and thorium (Th). The result of the five profiles shows that the K and Th contents of gray shale are close to the ones of black shale, while the U contents in the black shale are significantly higher than that in the other rocks. The TOC contents are estimated by using the outcrop-based measurements with an empirical formula. The result shows that the TOC contents are the highest in black shale of Changning profile. It indicates that there is a most promising exploration potential for shale gas in this area. In the future, the outcrop data will be used to construct detailed lithofacies profiles and establish relationships between lithofacies both in outcrop and the subsurface gamma-ray logs. Acknowledgment: We acknowledge the financial support of the National Natural Science Foundation of China (41274185) and the Fundamental Research Funds for the Central Universities.
Lithologies of the basement complex (Devonian and older) in the National Petroleum Reserve - Alaska
Dumoulin, Julie A.; Houseknecht, David W.
2001-01-01
Rocks of the basement complex (Devonian and older) were encountered in at least 30 exploratory wells in the northern part of the NPRA. Fine-grained, variably deformed sedimentary rocks deposited in a slope or basinal setting predominate and include varicolored (mainly red and green) argillite in the Simpson area, dark argillite and chert near Barrow, and widespread gray argillite. Chitinozoans of Middle-Late Ordovician and Silurian age occur in the dark argillite and chert unit. Sponge spicules and radiolarians establish a Phanerozoic age for the varicolored and gray argillite units, both of which contain local interbeds of chert-rich sandstone and silt-stone. Conglomerate and sandstone, also chert-rich but interbedded with mudstone and coal and of Early-Middle Devonian age, occur in the Topagoruk area; these strata formed in a fluvial environment. At East Teshekpuk, granite of probable Devonian age was penetrated. Brecciated, quartz-veined rock of uncertain protolith that may be part of the basement complex was encountered in the Ikpikpuk well. Seismic data indicate that angular unconformities truncate all sedimentary units of the basement complex in NPRA. Rocks correlative in age and lithofacies with the dark argillite and chert unit occur in the subsurface near Prudhoe Bay. Other argillite units in NPRA have similarities to basement rocks in the subsurface adjacent to ANWR and the Ordovician-Silurian Iviagik Group at Cape Lisburne, but lack the interbedded limestones found in the ANWR strata, and are less metamorphosed than, and compositionally distinct from, the Iviagik. The Topagoruk conglomerate and the East Teshekpuk granite resemble the Ulungarat formation and the Okpilak batholith, respectively, in the northeastern Brooks Range.
Friedman, Matt; Brazeau, Martin D
2011-02-07
Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.
Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le
2015-06-01
With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels
2016-01-28
49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A
Gregg, David W.
1983-01-01
An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.
NASA Astrophysics Data System (ADS)
You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.
2017-12-01
Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.
NASA Astrophysics Data System (ADS)
Ahmad, N. R.; Jamin, N. H.
2018-04-01
The research was inspired by series of geological studies on Semanggol formation found exposed at North Perak, South Kedah and North Kedah. The chert unit comprised interbedded chert-shale rocks are the main lithologies sampled in a small-scale outcrop of Pokok Sena area. Black shale materials were also observed associated with these sedimentary rocks. The well-known characteristics of shale that may swell when absorb water and leave shrinkage when dried make the formation weaker when load is applied on it. The presence of organic materials may worsen the condition apart from the other factors such as the history of geological processes and depositional environment. Thus, this research is important to find the preliminary relations of the geotechnical properties of soft rocks and the geological reasoning behind it. Series of basic soil tests and 1-D compression tests were carried out to obtain the soil parameters. The results obtained gave some preliminary insight to mechanical behaviour of these two samples. The black shale and weathered interbedded chert-shale were classified as sandy-clayey-SILT and clayey-silty-SAND respectively. The range of specific gravity of black shale and interbedded chert/shale 2.3 – 2.6 and fall in the common range of shale and chert specific gravity value. In terms of degree of plasticity, the interbedded chert/shale samples exhibit higher plastic degree compared to the black shale samples. Results from oedometer tests showed that black shale samples had higher overburden pressure (Pc) throughout its lifetime compare to weathered interbedded chert-shale, however the compression index (Cc) of black shale were 0.15 – 0.185 which was higher than that found in interbedded chert-shale. The geotechnical properties of these two samples were explained in correlation with their provenance and their history of geological processes involved which predominantly dictated the mechanical behaviour of these two samples.
Discussion on upper limit of maturity for marine shale gas accumulation
NASA Astrophysics Data System (ADS)
Huang, Jinliang; Dong, Dazhong; Zhang, Chenchen; Wang, Yuman; Li, Xinjing; Wang, Shufang
2017-04-01
The sedimentary formations of marine shale in China are widely distributed and are characterized by old age, early hydrocarbon-generation and high thermal evolution degree, strong tectonic deformation and reformation and poor preservation conditions. Therefore whether commercial shale gas reservoirs can be formed is a critical issue to be studied. The previous studies showed that the upper threshold of maturity (Ro%) for the gas generation of marine source rocks is 3.0%. Based on comparative studies of marine shale gas exploration practices at home and abroad and reservoir experimental analysis results, we proposed in this paper that the upper threshold of maturity (Ro%) for marine shale gas accumulation is 3.5%. And the main proofs are as follows: (1) There is still certain commercial production in the area with the higher than 3.0% in Marcellus and Woodford marine shale gas plays in North America; (2) The Ro of the Silurian Longmaxi shale in the Sichuan Basin in China is between 2.5% and 3.3%. However, the significant breakthrough has been made in shale gas exploration and the production exceeds 7 billion m3 in 2016; (3) The TOC of the Cambrian Qiongzhusi organic-rich shale in Changning Region in the Sichuan Basin ranges 2% to 7.1% and the Ro is greater than 3.5%. And the resistivity logging of organic-rich shale appears low-ultra low resistivity and inversion of Rt curve. It's suggested that the organic matters in Qiongzhusi organic-rich shale occurs partial carbonization which leads to stronger conductivity; (4) Thermal simulation experiments showed that the specific surface of shale increases with Ro. And the specific surface and adsorptive capacity both reach maximum when the Ro is 3.5%; (5) The analysis of physical properties and SEM images of shale reservoirs indicated that when Ro is higher than 3.5%, the dominant pores of Qiongzhusi shale are micro-pores while the organic pores are relatively poor-developed, and the average porosity is less than 2%.
Morbidity survey of US oil shale workers employed during 1948-1969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rom, W.N.; Krueger, G.; Zone, J.
The health status of 325 oil shale workers employed at the Anvil Points, Colorado, demonstration facility from 1948 to 1969 was evaluated. As a comparison population, 323 Utah coal miners frequency matched for age were studied. The prevalence of respiratory symptoms among oil shale workers who smoked were similar to the coal miners who smoked, although nonsmoking oil shale workers had fewer symptoms compared to nonsmoking coal workers. Four cases of skin cancers were found on the oil shale workers and eight cases in the controls. Similar numbers of nevi, telangiectasiae, possible pitch warts, pigment changes (solar/senile lentigo), and papillomatamore » (seborrheic keratoses and skin tags) were seen in both groups, while actinic keratoses were more frequent in the oil shale workers. The prevalence of actinic keratoses was significantly associated with oil shale work after allowing for age, sun exposure, and other exposures. The prevalence of pulmonary cytology metaplasia was associated with years of production work in oil shale among both smokers and ex-smokers. More of the oil shale workers had atypical cells in the urine, but the excess mostly found among ex-smokers. Although these workers had short-term and limited oil shale exposure work exposure, the authors recommend that medical surveillance of oil shale workers consider the skin, respiratory, and urinary systems for special observation.« less
Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin
NASA Astrophysics Data System (ADS)
Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao
2018-02-01
In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.
Shale gas development impacts on surface water quality in Pennsylvania
Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.
2013-01-01
Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604
Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,
1985-01-01
An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.
Research continues on Julia Creek shale oil project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.
Wilke, Franziska D H; Schettler, Georg; Vieth-Hillebrand, Andrea; Kühn, Michael; Rothe, Heike
2018-05-18
The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters (Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of unconventional gas can be accompanied by serious health risks due to the release of toxic chemical components and natural occurring radionuclides into the return flow water and their near-surface accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales by interaction with drilling fluids containing additives that are commonly employed for shale gas exploitation. We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 μg/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 μg/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of 238 U is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of 238 U, the 226 Ra activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brantley, S.; Pollak, J.
2016-12-01
The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.
Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy
Hackley, Paul C.; Kus, Jolanta
2015-01-01
We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.
Application of petroleum demulsification technology to shale oil emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, R.E.
1983-01-01
Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.
Combustion heater for oil shale
Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.
1983-09-21
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.
Combustion heater for oil shale
Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.
1985-01-01
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.
Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)
McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.
1983-01-01
In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.
Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M
2015-08-04
Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.
Organic geochemistry: Effects of organic components of shales on adsorption: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.
1988-11-01
The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture ofmore » chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO/sub 3/ solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs.« less
NASA Astrophysics Data System (ADS)
Naseer, Muhammad Tayyab; Asim, Shazia
2017-10-01
Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.
Inventory and evaluation of potential oil shale development in Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angino, E.; Berg, J.; Dellwig, L.
The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less
Blodgett, R.B.
1993-01-01
A new gastropod genus, Dutrochus, is established for members of the family Microdomatidae that are characterized by a reticulate ornament of spiral cords and intersecting, finer collabral threads, with all but one spiral cord being of nearly equal strength, and the single remaining cord being of stronger (nearly twice the order) magnitude and being situated at the periphery. It is represented by the type and only known species, Dutrochus alaskensis n. gen. and sp., from the upper part (lower Eifelian) of the Lower? and Middle Devonian Cheeneetnuk Limestone. The genus is very close and nearly homeomorphic to the Permian microdomatid genus Glyptospira. -from Author
Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.
Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E
2003-06-13
We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.
,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.
2013-01-01
In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.
Oliver, W.A.
1997-01-01
Heliophyllum halli Milne-Edwards and Haime is common to abundant in many Lower and Middle Devonian stratigraphic units in New York. Most Heliophyllum are solitary, but both branching and massive colonies are known. Four 'populations' of colonial Heliophyllum in the Givetian part of the sequence are distinct, as is a fifth form that occurs through the section. Each of the colonial forms is interpreted as an independent derivative of solitary forms of H. halli. The relationships appear to range from infrasubspecific to specific, and it is suggested that the complex should be recognized as the Heliophyllum halli species group.
Impact Ejecta Layer from the Mid-Devonian: Possible Connection to Global Mass Extinctions
NASA Astrophysics Data System (ADS)
Ellwood, Brooks B.; Benoist, Stephen L.; Hassani, Ahmed El; Wheeler, Christopher; Crick, Rex E.
2003-06-01
We have found evidence for a bolide impacting Earth in the mid-Devonian (~380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.
NASA Astrophysics Data System (ADS)
Barash, M. S.
2017-08-01
During the Late Devonian extinction, 70-82% of all marine species disappeared. The main causes of this mass extinction include tectonic activity, climate and sea-level fluctuations, volcanism, and the collision of the Earth with cosmic bodies (impact events). The major causes are considered to be volcanism accompanying formation of the Viluy traps and, probably, basaltic magmatism in the Southern Urals, alkaline magmatism within the East European platform, and volcanism in northern Iran and northern and southern China. Several large impact craters of Late Devonian age have been documented in different parts of the world. The available data indicate that this time period on the Earth was marked by two major sequences of events: terrestrial events that resulted in extensive volcanism and cosmic (or impact) events. They produced similar effects such as emissions of harmful chemical compounds and aerosols to cause greenhouse warming and the darkening of the atmosphere, which prevented photosynthesis and cause ocean stagnation and anoxia. This disrupted the food chain and reduced ecosystem productivity. As a result, all vital processes were disturbed and a large part of the marine biota became extinct.
Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)
Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun
2016-01-01
Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352
Affinities and architecture of Devonian trunks of Prototaxites loganii.
Retallack, G J; Landing, Ed
2014-01-01
Devonian fossil logs of Prototaxites loganii have been considered kelp-like aquatic algae, rolled up carpets of liverworts, enormous saprophytic fungal fruiting bodies or giant lichens. Algae and rolled liverwort models cannot explain the proportions and branching described here of a complete fossil of Prototaxites loganii from the Middle Devonian (386 Ma) Bellvale Sandstone on Schunnemunk Mountain, eastern New York. The "Schunnemunk tree" was 8.83 m long and had six branches, each about 1 m long and 9 cm diam, on the upper 1.2 m of the main axis. The coalified outermost layer of the Schunnemunk trunk and branches have isotopic compositions (δ(13)CPDB) of -25.03 ± 0.13‰ and -26.17 ± 0.69‰, respectively. The outermost part of the trunk has poorly preserved invaginations above cortical nests of coccoid cells embraced by much-branched tubular cells. This histology is unlike algae, liverworts or vascular plants and most like lichen with coccoid chlorophyte phycobionts. Prototaxites has been placed within Basidiomycota but lacks clear dikaryan features. Prototaxites and its extinct order Nematophytales may belong within Mucoromycotina or Glomeromycota. © 2014 by The Mycological Society of America.
Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant
NASA Astrophysics Data System (ADS)
Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang
2016-08-01
The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.
Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant.
Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F; Hao, Shougang
2016-08-23
The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.
Thermal maturity patterns in New York State using CAI and %Ro
Weary, D.J.; Ryder, R.T.; Nyahay, R.E.
2001-01-01
New conodont alteration index (CAI) and vitrinite reflectance (%Ro) data collected from drill holes in the Appalachian basin of New York State allow refinement of thermal maturity maps for Ordovician and Devonian rocks. CAI isotherms on the new maps show a pattern that approximates that published by Harris et al. (1978) in eastern and western New York, but it differs in central New York, where the isotherms are shifted markedly westward by more than 100 km and are more tightly grouped. This close grouping of isograds reflects a steeper thermal gradient than previously noted by Harris et al. (1978) and agrees closely with the abrupt west-to-east increase in thermal maturity across New York noted by Johnsson (1986). These data show, in concordance with previous studies, that thermal maturity levels in these rocks are higher than can be explained by simple burial heating beneath the present thickness of overburden. The Ordovician and Devonian rocks of the Appalachian Basin in New York must have been buried by very thick post-Devonian sediments (4-6 km suggested by Sarwar and Friedman 1995) or were exposed to a higher-than-normal geothermal flux caused by crustal extension, or a combination of the two.
Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant
Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang
2016-01-01
The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant−soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet−dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant−soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated. PMID:27503883
NASA Astrophysics Data System (ADS)
Patočka, F.; Pruner, P.; Štorch, P.
The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective palaeolatitudes of 58°S (Middle Cambrian) and 17°S (Middle Devonian) were inferred for the Barrandian rocks. The Middle Devonian flysch-like siliciclastics of the Prague Basin suggest a reappearance of the deeply dissected Cadomian source area in a proximity of the Barrandian due to early Variscan convergences and collisions of the Armorican microcontinents. Significant palaeotectonic rotations are palaeomagnetically evidenced to take place during oblique convergence and final docking of the Teplá-Barrandian microplate within the Variscan terrane mosaic of the Bohemian Massif.
NASA Astrophysics Data System (ADS)
Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.
2018-07-01
Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Hyder, L. K.; Baxter, P. M.
1989-07-01
One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less
The flux of radionuclides in flowback fluid from shale gas exploitation.
Almond, S; Clancy, S A; Davies, R J; Worrall, F
2014-11-01
This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.
Accelerated weathering of tough shales : final report.
DOT National Transportation Integrated Search
1977-01-01
The purpose of this study was to find or develop a test that would identify a very tough but relatively rapid weathering type of shale that has caused problems when used in embankments as rock. Eight shales, including the problem shale, were collecte...
43 CFR 3900.5 - Information collection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale... information. (b) Respondents are oil shale lessees and operators. The requirement to respond to the... extent and specific characteristics of the Federal oil shale resource. The BLM will use the information...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.; Hyder, L.K.; Alley, P.D.
1988-01-01
Five shales were examined as part of the Sedimentary Rock Program evaluation of this medium as a potential host for a US civilian nuclear waste repository. The units selected for characterization were the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. The micromorphology and structure of the shales were examined by petrographic, scanning electron, and high-resolution transmission electron microscopy. Chemical and mineralogical compositions were studied through the use of energy-dispersive x-ray, neutron activation, atomicmore » absorption, thermal, and x-ray diffraction analysis techniques. 18 refs., 12 figs., 2 tabs.« less
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
NASA Astrophysics Data System (ADS)
Shang, Shengxiang; Dong, Mingzhe; Gong, Houjian
2018-01-01
In this study, the supercritical CO2 huff-n-puff experiment of shale oil has been investigated. Experimental data shows that the addition of isopropanol can greatly improve the recovery of shale oil. And this provides a new way to improve the recovery of shale oil. In this paper, it is also tried to analyze the influencing factor of isopropanol on the recovery of shale oil by analyzing the MMP.
Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.
2014-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.
The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers
OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko
2015-01-01
Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853
Comparison of Pore Fractal Characteristics Between Marine and Continental Shales
NASA Astrophysics Data System (ADS)
Liu, Jun; Yao, Yanbin; Liu, Dameng; Cai, Yidong; Cai, Jianchao
Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel-Halsey-Hill (FHH) model with N2 adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N2 adsorption-desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions (D1 and D2) were obtained at P/Po of 0-0.5 and 0.5-1. The dimension D2 is commonly greater than D1, suggesting that larger pores (diameter >˜ 4nm) have more complex structures than small pores (diameter <˜ 4nm). The fractal dimensions (both D1 and D2) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension D1 is correlative to the TOC content and permeability of marine shale at a similar degree with dimension D2, while the dimension D1 is more sensitive to those of continental shale than dimension D2. Compared with dimension D2, for two shales, dimension D1 is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.
NASA Astrophysics Data System (ADS)
Edwards, Ryan W. J.; Celia, Michael A.
2018-04-01
The potential for shale gas development and hydraulic fracturing to cause subsurface water contamination has prompted a number of modeling studies to assess the risk. A significant impediment for conducting robust modeling is the lack of comprehensive publicly available information and data about the properties of shale formations, shale wells, the process of hydraulic fracturing, and properties of the hydraulic fractures. We have collated a substantial amount of these data that are relevant for modeling multiphase flow of water and gas in shale gas formations. We summarize these data and their sources in tabulated form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiéry, Vincent, E-mail: vincent.thiery@mines-douai.fr; Université de Lille; Bourdot, Alexandra, E-mail: alexandra.bourdot@gmail.com
The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase.more » This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements.« less
43 CFR 3930.10 - General performance standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards. The operator... adversely affect the recovery of shale oil or other minerals producible under an oil shale lease during...
Properties of Silurian shales from the Barrandian Basin, Czech Republic
NASA Astrophysics Data System (ADS)
Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana
2017-04-01
Although shale gas-bearing deposits have a markedly lower gas content than coal deposits, great attention has recently been paid to shale gas as a new potential source of fossil energy. Shale gas extraction is considered to be quite economical, despite the lower sorption capacity of shales, which is only about 10% of coal sorption capacities The selection of a suitable locality for extracting shale gas requires the sorption capacity of the shale to be determined. The sorption capacity is determined in the laboratory by measuring the amount of methane absorbed in a shale specimen at a pressure and a temperature corresponding to in situ conditions, using high pressure sorption. According to the principles of reversibility of adsorption/desorption, this amount should be roughly related to the amount of gas released by forced degassing. High pressure methane sorption isotherms were measured on seven representative samples of Silurian shales from the Barrandian Basin, Czech Republic. Excess sorption measurements were performed at a temperature of 45oC and at pressures up to 15 MPa on dry samples, using a manometric method. Experimental methane high-pressure isotherms were fitted to a modified Langmuir equation. The maximum measured excess sorption parameter and the Langmuir sorption capacity parameter were used to study the effect of TOC content, organic maturity, inorganic components and porosity on the methane sorption capacity. The studied shale samples with random reflectance of graptolite 0.56 to 1.76% had a very low TOC content and dominant mineral fractions. Illite was the prevailing clay mineral. The sample porosity ranged from 4.6 to 18.8%. In most samples, the micropore volumes were markedly lower than the meso- and macropore volumes. In the Silurian black shales, the occurrence of fractures parallel with the original sedimentary bending was highly significant. A greater proportion of fragments of carbonaceous particles of graptolites and bitumens in the Barrandian Silurian shales had a smooth surface without pores. No relation has been proven between TOC-normalized excess sorption capacities or the TOC-normalized Langmuir sorption capacities and thermal maturation of the shales. The methane sorption capacities of shale samples show a positive correlation with TOC and a positive correlation with the clay content. The highest sorption capacity was observed in shale samples with the highest percentage of micropores, indicating that the micropore volume in the organic matter and clay minerals is a principal factor affecting the sorption capacity of the shale samples.
A multi-scale micromechanics framework for shale using the nano-tools
NASA Astrophysics Data System (ADS)
Ortega, J.; Ulm, F.; Abousleiman, Y.
2009-12-01
The successful prediction of poroelastic properties of fine-grained rocks such as shale continues to be a formidable challenge for the geophysics community. The highly heterogeneous nature of shale in terms of its compositional and microstructural features translates into a complex anisotropic behavior observed at macroscopic length scales. The recent application of instrumented indentation for the mechanical characterization of shale has revealed the granular response and intrinsic anisotropy of its porous clay phase at nanometer length scales [1-2]. This discovered mechanical behavior at the grain scale has been incorporated into the development of a multi-scale, micromechanics model for shale poroelasticity [3]. The only inputs to the model are two volumetric parameters synthesizing the mineralogy and porosity information of a shale sample. The model is meticulously calibrated and validated, as displayed in Fig. 1, with independent data sets of anisotropic elasticity obtained from nanoindentation experiments and standard laboratory acoustic measurements for shale specimens with and without organic content. The treatment of the elastic anisotropy corresponding to the porous clay fabric, as sensed by nanoindentation, delineates the contribution of the intrinsic anisotropy in shale to its overall anisotropy observed at macroscales. Furthermore, the proposed poroelastic formulation provides access to intrinsic rock parameters such as Biot pore pressure coefficients that are of importance for problems of flow in porous media. In addition, the model becomes a useful tool in geophysics applications for the prediction of shale acoustic properties from material-specific information such as porosity, mineralogy, and density measurements. References: [1] Ulm, F.-J., Abousleiman, Y. (2006) ‘The nanogranular nature of shale.’ Acta Geot. 1(2), 77-88. [2] Bobko, C., Ulm, F.-J. (2008) ‘The nano-mechanical morphology of shale.’ Mech. Mat. 40(4-5), 318-337. [3] Ortega, J. A., Ulm, F.-J., Abousleiman, Y. (2009) ‘The nanogranular acoustic signature of shale.’ Geophysics 74(3), D65-D84. Fig. 1. Comparisons between predicted and experimental elasticity obtained from nanoindentation experiments (left) and acoustic measurements (right) for shale with and without organic content (hollow and solid data points). Nanoindentation elasticity of the porous clay in shale is presented as a function of the clay packing density (one minus the nanoporosity). The x-1, x-3 directions correspond to parallel and normal-to-bedding plane properties, respectively. All nanoindentation data and acoustic measurements for organic-rich shale from [2-3]. Acoustic measurements for organic-free shale were gathered from literature sources compiled in [3].
Colorado oil shale: the current status, October 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)
Process concept of retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitnai, O.
1984-06-01
A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.
Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.G.
1979-01-01
Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less
NASA Astrophysics Data System (ADS)
Chen, Chunxiang; Cheng, Zheng; Xu, Qing; Qin, Songheng
2018-04-01
In order to explore the high-efficient utilization of oil shale, the effects of different microwave powers and different kinds of catalysts (metal oxides and metal salts) on the temperature characteristics and product yield towards the oil shale are investigated by microwave catalytic pyrolysis. The results show that the effect of microwave power on the heating and pyrolysis rates of oil shale is significant, and the maximum output of shale oil is 5.1% when the microwave power is 1500W; CaO has a certain effect on the temperature rise of oil shale, and MgO and CuO have a certain degree of inhibition, but the addition of three kinds of metal oxidation is beneficial to increase the shale oil production; From the perspective of unit power consumption and gas production, the catalytic effect order of three kinds of metal oxides is MgO> CaO> CuO; The addition of three kinds of metal salts is favorable for the increase of pyrolysis temperature of oil shale, after adding 5% ZnCl2, the unit power consumption of shale oil and pyrolysis gas increases by 62.60% and 81.96% respectively. After adding 5% NaH2PO3, the unit power consumption of shale oil increases by 64.64%, and reduces by 9.56% by adding 5% MgCl2.
Water use for Shale-gas production in Texas, U.S.
Nicot, Jean-Philippe; Scanlon, Bridget R
2012-03-20
Shale-gas production using hydraulic fracturing of mostly horizontal wells has led to considerable controversy over water-resource and environmental impacts. The study objective was to quantify net water use for shale-gas production using data from Texas, which is the dominant producer of shale gas in the U.S. with a focus on three major plays: the Barnett Shale (~15,000 wells, mid-2011), Texas-Haynesville Shale (390 wells), and Eagle Ford Shale (1040 wells). Past water use was estimated from well-completion data, and future water use was extrapolated from past water use constrained by shale-gas resources. Cumulative water use in the Barnett totaled 145 Mm(3) (2000-mid-2011). Annual water use represents ~9% of water use in Dallas (population 1.3 million). Water use in younger (2008-mid-2011) plays, although less (6.5 Mm(3) Texas-Haynesville, 18 Mm(3) Eagle Ford), is increasing rapidly. Water use for shale gas is <1% of statewide water withdrawals; however, local impacts vary with water availability and competing demands. Projections of cumulative net water use during the next 50 years in all shale plays total ~4350 Mm(3), peaking at 145 Mm(3) in the mid-2020s and decreasing to 23 Mm(3) in 2060. Current freshwater use may shift to brackish water to reduce competition with other users.
Field and Lab-Based Microbiological Investigations of the Marcellus Shale
NASA Astrophysics Data System (ADS)
Wishart, J. R.; Neumann, K.; Edenborn, H. M.; Hakala, A.; Yang, J.; Torres, M. E.; Colwell, F. S.
2013-12-01
The recent exploration of shales for natural gas resources has provided the opportunity to study their subsurface geochemistry and microbiology. Evidence indicates that shale environments are marked by extreme conditions such as high temperature and pressure, low porosity, permeability and connectivity, and the presence of heavy metals and radionuclides. It has been postulated that many of these shales are naturally sterile due to the high pressure and temperature conditions under which they were formed. However, it has been shown in the Antrim and New Albany shales that microbial communities do exist in these environments. Here we review geochemical and microbiological evidence for the possible habitation of the Marcellus shale by microorganisms and compare these conditions to other shales in the U.S. Furthermore, we describe the development of sampling and analysis techniques used to evaluate microbial communities present in the Marcellus shale and associated hydraulic fracturing fluid. Sampling techniques thus far have consisted of collecting flowback fluids from wells and water impoundments and collecting core material from previous drilling expeditions. Furthermore, DNA extraction was performed on Marcellus shale sub-core with a MoBio PowerSoil kit to determine its efficiency. Assessment of the Marcellus shale indicates that it has low porosity and permeability that are not conducive to dense microbial populations; however, moderate temperatures and a natural fracture network may support a microbial community especially in zones where the Marcellus intersects more porous geologic formations. Also, hydraulic fracturing extends this fracture network providing more environments where microbial communities can exist. Previous research which collected flowback fluids has revealed a diverse microbial community that may be derived from hydrofrac fluid production or from the subsurface. DNA extraction from 10 g samples of Marcellus shale sub-core were unsuccessful even when samples were spiked with 8x108 cells/g of shale. This indicated that constituents of shale such as high levels of carbonates, humic acids and metals likely inhibited components of the PowerSoil kit. Future research is focused on refining sample collection and analyses to gain a full understanding of the microbiology of the Marcellus shale and associated flowback fluids. This includes the development of an in situ osmosampler, which will collect temporally relevant fluid and colonized substrate samples. The design of the osmosampler for hydraulic fracturing wells is being adapted from those used to sample marine environments. Furthermore, incubation experiments are underway to study interactions between microbial communities associated with hydraulic fracturing fluid and Marcellus shale samples. In conclusion, evidence suggests that the Marcellus shale is a possible component of the subsurface biosphere. Future studies will be valuable in determining the microbial community structure and function in relation to the geochemistry of the Marcellus shale and its future development as a natural gas resource.
Solar heated oil shale pyrolysis process
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1985-01-01
An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.
NASA Astrophysics Data System (ADS)
Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.
2012-12-01
Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in Pennsylvania allows comparison of behaviors of REE in the organic-rich vs. organic-poor end members under the same climate conditions. Our study shows that black shale bedrock has much higher REE contents compared to the Rose Hill gray shale. The presence of reactive phases such as organic matter, carbonates and sulfides in black shale and their alteration greatly enhance the release of REE and other metals to surface environments. This observation suggests that weathering of black shale is thus of particular importance in the global REE cycles, in addition to other heavy metals that impact the health of terrestrial and aquatic ecosystems. Finally, our ongoing investigation of four more gray shale watersheds in Virginia, Tennessee, Alabama, and Puerto Rico will allow for a comparison of shale weathering along a climosequence. Such a systematic study will evaluate the control of air temperature and precipitation on REE release from gray shale weathering in eastern USA.
Characterization of Unconventional Reservoirs: CO2 Induced Petrophysics
NASA Astrophysics Data System (ADS)
Verba, C.; Goral, J.; Washburn, A.; Crandall, D.; Moore, J.
2017-12-01
As concerns about human-driven CO2 emissions grow, it is critical to develop economically and environmentally effective strategies to mitigate impacts associated with fossil energy. Geologic carbon storage (GCS) is a potentially promising technique which involves the injection of captured CO2 into subsurface formations. Unconventional shale formations are attractive targets for GCS while concurrently improving gas recovery. However, shales are inherently heterogeneous, and minor differences can impact the ability of the shale to effectively adsorb and store CO2. Understanding GCS capacity from such endemic heterogeneities is further complicated by the complex geochemical processes which can dynamically alter shale petrophysics. We investigated the size distribution, connectivity, and type (intraparticle, interparticle, and organic) of pores in shale; the mineralogy of cores from unconventional shale (e.g. Bakken); and the changes to these properties under simulated GCS conditions. Electron microscopy and dual beam focused ion beam scanning electron microscopy were used to reconstruct 2D/3D digital matrix and pore structures. Comparison of pre and post-reacted samples gives insights into CO2-shale interactions - such as the mechanism of CO2 sorption in shales- intended for enhanced oil recovery and GCS initiatives. These comparisons also show how geochemical processes proceed differently across shales based on their initial diagenesis. Results show that most shale pore sizes fall within meso-macro pore classification (> 2 nm), but have variable porosity and organic content. The formation of secondary minerals (calcite, gypsum, and halite) may play a role in the infilling of fractures and pore spaces in the shale, which may reduce permeability and inhibit the flow of fluids.
Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011
Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael
2011-01-01
Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.
World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States
2011-01-01
The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.
CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION
The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...
Rapid gas development in the Fayetteville shale basin, Arkansas
Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...
Oil shale extraction using super-critical extraction
NASA Technical Reports Server (NTRS)
Compton, L. E. (Inventor)
1983-01-01
Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.
Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L.
2004-01-01
Pb and Sr isotope data were obtained on the shale-hosted Zn-Pb-Ag Red Dog deposits (Qanaiyaq, Main, Aqqaluk, and Paalaaq), other shale-hosted deposits near Red Dog, and Zn-Pb-Ag sulfide and barite deposits in the western and central Brooks Range. The Red Dog deposits and other shale-hosted Zn-Pb-Ag deposits near Red Dog are hosted in the Mississippian Kuna Formation, which is underlain by a sequence of marine-deltaic clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. Ag-Pb-Zn vein-breccias are found in the Endicott Group. Galena formed during the main mineralization stages in the Red Dog deposits and from the Anarraaq and Wulik deposits have overlapping Pb isotope compositions in the range 206Pb/204Pb = 18.364 to 18.428, 207Pb/204Pb = 15.553 to 15.621, and 208Pb/204Pb = 38.083 to 38.323. Galena and sphalerite formed during the main ore-forming stages in the Red Dog deposits define a narrow field on standard uranogenic and thorogenic Pb isotope diagrams. Lead in sulfides of the Red Dog district is less radiogenic (238U/204Pb: ?? = 9.51-9.77) than is indicated by the average crustal lead evolution model (?? = 9.74), a difference consistent with a long history of evolution at low ratios of ?? before the Carboniferous. The homogeneous regional isotopic reservoir of Pb may indicate large-scale transport and leaching of minerals with various ?? ratios and Th/Pb ratios. Younger and genetically unrelated fluids did not significantly disturb the isotopic compositions of galena and sphalerite after the main mineralization event in the Red Dog district. Some pyrite shows evidence of minor Pb remobilization. The overall lead isotope homogeneity in the shale-hosted massive sulfide deposits is consistent with three types of control: a homogeneous regional source, mixing of lead during leaching of a thick sedimentary section and fluid transport, or mixing at the site of deposition. Isotopic variability of the hydrothermal fluids, as represented by galena in the Red Dog district, appears to be consistent with a simple mixing system. Evidence indicates that galena was deposited from largely similar hydrothermal solutions throughout the Red Dog district. A shared regional isotopic reservoir is also supported by the correspondence of Pb isotope compositions of galena in deposits of the Red Dog district and galena in clastic rocks (vein-breccias). Leaching of metals and progressive extraction of radiogenic lead from the clastic rocks in the Endicott Group may account for the trend of increasing 206Pb/204Pb in galena of the Red Dog district. Galena in the Red Dog deposits is unlikely to have been derived entirely from the same isotopic reservoir as that represented by the lead in the Kuna Formation or from the igneous rocks in the Red Dog district. Sr isotope data for barite, calcite, and witherite from the Red Dog deposits are compared with data from regional barite that is associated with sulfides and from barite in sulfide-poor occurrences. Fluids with heterogeneous Sr isotope signatures are indicated. Barite in the Main deposit extends to higher ratios of 87Sr/86Sr (0.709034-0.709899) than barite in the Anarraaq deposit (0.708615-0.709256). All barite is more radiogenic than Carboniferous seawater. Other Mississippian(?) shale-hosted deposits and mineral occurrences containing barite in the Red Dog district and barite in regional occurrences east of Red Dog in the western and central Brooks Range also have heterogeneous 87Sr/86Sr ratios. Carbonate (87Sr/86Sr = 0.710319-0.713637) and witherite (87 Sr/86 Sr = 0.710513) in the Main deposit are more radiogenic than barite. In contrast, carbonate (87Sr/86Sr = 0.708196-0.709740) intergrown with massive sulfides at Anarraaq has isotopic compositions similar to that of barite. Paragenetic and isotop ic studies suggest that early barite is similar to barite typically formed in cold seeps along continental margins. This early fine-grained barite formed before the main mineralizat
Apparatus for oil shale retorting
Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.
1986-01-01
A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
World Shale Resource Assessments
2015-01-01
Four countries: Chad, Kazakhstan, Oman and the United Arab Emirates (UAE) have been added to report “Technically Recoverable Shale Oil and Shale Gas Resources.” The report provides an estimate of shale resources in selected basins around the world. The new chapters cover shale basins from the Sub-Saharan Africa region, represented by Chad; the Caspian region, represented by Kazakhstan; and the Middle East region, represented by Oman and the United Arab Emirates (UAE) and are available as supplemental chapters to the 2013 report.
Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...
Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less
Life cycle water consumption for shale gas and conventional natural gas.
Clark, Corrie E; Horner, Robert M; Harto, Christopher B
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.
Water Resources and Natural Gas Production from the Marcellus Shale
Soeder, Daniel J.; Kappel, William M.
2009-01-01
The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.
Removing heavy metals from wastewaters with use of shales accompanying the coal beds.
Jabłońska, Beata; Siedlecka, Ewa
2015-05-15
A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.
Updated methodology for nuclear magnetic resonance characterization of shales
NASA Astrophysics Data System (ADS)
Washburn, Kathryn E.; Birdwell, Justin E.
2013-08-01
Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.