Science.gov

Sample records for dewatering

  1. Flocculation and dewatering

    SciTech Connect

    Scheiner, B.J. ); Ince, D. )

    1990-05-01

    This article deals with flocculation and dewatering and the developments in this field during 1989. Particular attention is paid to fine coal and a discussion of the international viewpoint on this subject is given.

  2. Dewatering blastholes cuts explosives costs

    SciTech Connect

    Pishaw, S.R.

    1987-11-01

    The author discusses ways to use ANFO inexpensively. They say there are several advantages of dewatering and that there are two primary methods of dewatering blastholes or blasting areas. One method is to use pumps and poly sleeving or liners. The other method is presplit dewatering. The author lists some guidelines for presplitting for information, consideration, and discussion. Often larger mining operations require a combination of presplitting and dewatering with blasthole pumps.

  3. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  4. Energy demand in sludge dewatering.

    PubMed

    Chu, C P; Lee, D J; Chang, C Y

    2005-05-01

    This work investigates the energy required to dewater a suspension, i.e., activated sludge dewatered by centrifugation or consolidation. Total energy input to the suspension from the dewatering device, bond strength between adjacent water and solid surface, and intra-cake friction loss were evaluated for original and flocculated sludges. In centrifugal dewatering, most energy input during the initial stage was consumed by overcoming process irreversibility other than intra-cake friction, and, thereby, had a low energy efficiency. To increase centrifuge speed or to flocculate the sludge at optimal flocculant dosage would yield a high-energy input. In the consolidation test, most energy input at the initial stage was consumed in breaking down the bond strength until the moisture content reduced to less than the critical content. During subsequent dewatering stages, friction loss became the dominant source of energy loss. Dewatering sludge with high-energy efficiency is beneficial to optimally operate a dewatering process.

  5. Thermal dryer dewaters solids

    SciTech Connect

    DiMascio, F.J.; Burrowes, P.A.

    1993-09-01

    Solids incineration is traditionally an energy-intensive solids handling process at wastewater treatment plants. To reduce energy costs, the Buffalo (N.Y.) Sewer Authority has added an indirect thermal dryer to its treatment plant to dewater solids before incineration. In the first 3 months of operation, the authority reduced its solids inventory from 634,400 to 227,300 kg. Solids processed in the plant`s multiple-hearth incinerators varied from 11 to 12.75 wet Mg/hr at feed concentrations averaging 21% total solids. And, the dryer was operated with less than 5% downtime. The cost of this indirect thermal dryer system, including construction and equipment, was $995,000. 1 fig., 2 tabs.

  6. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  7. Dewatering of fine coal using hyperbaric filter

    SciTech Connect

    Yang, J.; Wang, X.H.; Parekh, B.K.

    1995-12-31

    Removal of moisture from ultra-fine clean coal (minus 100 mesh) to below 20% level is difficult using conventional dewatering equipment. This paper describes a couple of dewatering approaches which were found to be effective in providing filter cakes containing less than 20% moisture. These approaches involve addition of metal ion-surfactant, and split size dewatering of coal without addition of any reagent.

  8. DESIGN MANUAL: DEWATERING MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    This manual discusses the many factors involved in selecting and designing dewatering equipment for organic sludges produced during primary and secondary municipal wastewater treatment. ive-step approach is outlined for the selection and design of the dewatering equipment for eit...

  9. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, L.W.

    1985-08-30

    This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

  10. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.

    PubMed

    He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan

    2014-01-01

    Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.

  11. Combined fields dewatering of seaweed (Nereocystis luetkeana)

    SciTech Connect

    Lightfoot, D.G.; Raghavan, G.S.V.

    1994-05-01

    Increasing pressures on our agricultural systems necessitate the investigation of alternative food and feed sources. The ocean coasts of the world provide one potential alternative, as they provide a habitat for millions of tonnes of brown marine algae, or kelp. In this study, a combined fields (mechanical pressure and electro-osmosis) dewatering technique was investigated for dewatering kelp. Electro-osmosis was shown to significantly improve conventional press dewatering of kelp. Dewatering kelp was found to significantly reduce its ash contents and available carbohydrates, and increase its protein, fat, and uronic acid contents. Furthermore, energy costs for producing dried kelp meal were found to be significantly lower if dewatering precedes thermal drying. 35 refs., 9 figs., 3 tabs.

  12. Dewatering of biomaterials by mechanical thermal expression

    SciTech Connect

    Clayton, S.A.; Scholes, O.N.; Hoadley, A.F.A.; Wheeler, R.A.; McIntosh, M.J.; Huynh, D.Q.

    2006-07-01

    Dewatering by mechanical thermal expression (MTE) for a range of materials is explored using a laboratory-scale MTE compression-permeability cell. It is shown that MTE can be used to effectively dewater a range of biomaterials including lignite, biosolids, and bagasse. The underlying dewatering mechanisms relevant to MTE, namely (1) filtration of water expelled due to thermal dewatering, (2) consolidation, and (3) flash evaporation, are discussed. At lower temperatures, the dominating dewatering mechanism is consolidation, but with increasing temperature, thermal dewatering becomes more important. A major focus is an investigation of the effects of processing parameters, including temperature (20 to 200{sup o}C) and pressure (1.5 to 24 MPa), on material permeability, a fundamental dewatering parameter. It is illustrated that permeability is particularly dependent on the processing temperature, owing to changes in both the material structure and the water properties. In addition, a comparison of permeability in the direction of applied force (axial) and perpendicular to the direction of applied force (radial) is presented. It is shown that, due to alignment of particles under the applied force, the permeability and, hence, rate of water removal in the radial direction is greater than in the axial direction. SEM micrographs are presented to illustrate the particle alignment.

  13. Soil vapor extraction with dewatering

    SciTech Connect

    Thomson, N.R.

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  14. Filtratin and dewatering of fine coal

    SciTech Connect

    Gala, H.B.; Kakwani, R.; Chiang, S.H.; Tierney, J.W.; Klinzing, G.E.

    1981-01-01

    A fundamental study on filtration and dewatering of fine coal is described. Experiments are being conducted in three areas: (1) the microscopic analysis of filter cakes; (2) the measurement of equilibrium desaturation; and (3) the determination of filtration and dewatering rates. Preliminary experimental results are presented together with some observations on the microstructure of filter cakes. A three dimensional network model has also been developed and is being used to analyze experimental data. 10 figures, 2 tables.

  15. Dewatering of contaminated river sediments

    NASA Technical Reports Server (NTRS)

    Church, Ronald H.; Smith, Carl W.; Scheiner, Bernard J.

    1994-01-01

    Dewatering of slurries has been successfully accomplished by the proper use of polymers in flocculating the fine particulate matter suspended in mineral processing streams. The U.S. Bureau of Mines (USBM) entered into a cooperative research effort with the U.S. Army Corps of Engineers (Corps) for the purpose of testing and demonstrating the applicability of mining flocculation technology to dredging activities associated with the removal of sediments from navigable waterways. The Corps has the responsibility for maintaining the navigable waterways in the United States. Current technology relies primarily on dredging operations which excavate the material from the bottom of waterways. The Corps is testing new dredging technology which may reduce resuspension of sediments by the dredging operation. Pilot plant dredging equipment was tested by the Corps which generated larger quantities of water when compared to conventional equipment, such as the clam shell. The transportation of this 'excess' water adds to the cost of sediment removal. The process developed by the USBM consists of feed material from the barge being pumped through a 4-in line by a centrifugal pump and exiting through a 4-in PVC delivery system. A 1,000-gal fiberglass tank was used to mix the polymer concentrate. The polymer was pumped through a 1-in line using a variable speed progressive cavity pump and introduced to the 4-in feed line prior to passing through a 6-in by 2-ft static mixer. The polymer/feed slurry travels to the clarifying tank where the flocculated material settled to the bottom and allowed 'clean' water to exit the overflow. A pilot scale flocculation unit was operated on-site at the Corps' 'Confined Disposal Facility' in Buffalo, NY.

  16. Dewatering in biological wastewater treatment: A review.

    PubMed

    Christensen, Morten Lykkegaard; Keiding, Kristian; Nielsen, Per Halkjær; Jørgensen, Mads Koustrup

    2015-10-01

    Biological wastewater treatment removes organic materials, nitrogen, and phosphorus from wastewater using microbial biomass (activated sludge, biofilm, granules) which is separated from the liquid in a clarifier or by a membrane. Part of this biomass (excess sludge) is transported to digesters for bioenergy production and then dewatered, it is dewatered directly, often by using belt filters or decanter centrifuges before further handling, or it is dewatered by sludge mineralization beds. Sludge is generally difficult to dewater, but great variations in dewaterability are observed for sludges from different wastewater treatment plants as a consequence of differences in plant design and physical-chemical factors. This review gives an overview of key parameters affecting sludge dewatering, i.e. filtration and consolidation. The best dewaterability is observed for activated sludge that contains strong, compact flocs without single cells and dissolved extracellular polymeric substances. Polyvalent ions such as calcium ions improve floc strength and dewaterability, whereas sodium ions (e.g. from road salt, sea water intrusion, and industry) reduce dewaterability because flocs disintegrate at high conductivity. Dewaterability dramatically decreases at high pH due to floc disintegration. Storage under anaerobic conditions lowers dewaterability. High shear levels destroy the flocs and reduce dewaterability. Thus, pumping and mixing should be gentle and in pipes without sharp bends.

  17. Behavioral responses of freshwater mussels to experimental dewatering

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Lellis, William A.

    2015-01-01

    Understanding the effects of flow alteration on freshwater ecosystems is critical for predicting species responses and restoring appropriate flow regimes. We experimentally evaluated the effects of 3 dewatering rates on behavior of 6 freshwater mussel species in the context of water-removal rates observed in 21 Atlantic Coast rivers. Horizontal movement differed significantly among species and dewatering rates, but a significant species × dewatering interaction suggested that these factors influence movement in complex ways. Species differences in movement were evident only in controls and under slow dewatering rates, but these differences disappeared at moderate and fast dewatering rates. Burrowing behavior did not differ with respect to species identity or dewatering rate. The proportion of individuals that became stranded did not differ among species, but most individuals became stranded under low and moderate dewatering, and all individuals became stranded under fast dewatering. Mortality after stranding differed strongly among species along a gradient from 25% inPyganodon cataracta to 92% in Alasmidonta marginata. Together, these results suggest that species behavior may differ under gradual dewatering, but all species in our study are poorly adapted for rapid dewatering. Most of the 21 rivers we assessed experienced dewatering events comparable to our moderate rate, and several experienced events comparable to our fast rate. Dewatering events that exceed the movement or survival capability of most mussel species can be expected to result in assemblage-wide impacts. Consequently, the rate of water level change may be important in refining target flow conditions for restoration.

  18. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  19. [Study on dewatering of activated sludge under applied electric field].

    PubMed

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  20. Space Shuttle solid rocket booster dewatering system

    NASA Technical Reports Server (NTRS)

    Fishel, K. R.

    1982-01-01

    After the launch of the Space Shuttle, the two solid rocket boosters (SRB's) are jettisoned into the ocean where they float in a spar (vertical) mode. It is cost effective to recover the SRB's. A remote controlled submersible vehicle has been developed to aid in their recovery. The vehicle is launched from a support ship, maneuvered to the SRB, then taken to depth and guided into the rocket nozzle. It then dewaters the SRB, using compressed air from the ship, and seals the nozzle. When dewatered, the SRB floats in a log (horizontal) mode and can be towed to port for reuse. The design of the remote controlled vehicle and its propulsion system is presented.

  1. Dewatering of flue gas desulfurization sulfite solids

    SciTech Connect

    Garrison, F.C.; Wells, W.L.

    1984-06-12

    The dewatering capabilities of sulfite sludges from flue gas desulfurization facilities are substantially improved by the addition of relatively small amounts of sodium thiosulfate additive, or additives derived from or related to sodium thiosulfate, into the scrubber slurry liquor. As an added embellishment, these predetermined amounts of said additives are greater than those required for effecting substantial scale inhibition in the scrubber innards. Subsequently, conventional dewatering of the sulfite sludge to about 80 to 90 percent solids directly produces a waste product disposable in both an economically and an environmentally acceptable manner, in that the thixotropic characteristics of such sludges which are associated therewith upwards to about 70 percent solids therein are completely eliminated.

  2. Electroacoustic dewatering of food and other suspensions

    SciTech Connect

    Kim, B.C.; Zelinski, M.S.; Criner, C.L.; Senapati, N.; Muralidhara, H.S.; Jirjis, B.; Beard, R.E.; Cummings, C.; Chauhan, S.P.

    1989-05-31

    The food processing industry is a large user of energy for evaporative drying due to limited effectiveness of conventional mechanical dewatering machines. Battelle's Electroacoustic Dewatering (EAD) process improves the performance of mechanical dewatering machines by superimposing electric and ultrasonic fields. A two phase development program to demonstrate the benefits of EAD was carried out in cooperation with the food processing industry, the National Food Processors Association (NFPA) and two equipment vendors. In Phase I, laboratory scale studies were carried out on a variety of food suspensions. The process was scaled up to small commercial scale in Phase II. The technical feasibility of EAD for a variety of food materials, without adversely affecting the food properties, was successfully demonstrated during this phase, which is the subject of this report. Two Process Research Units (PRUs) were designed and built through joint efforts between Battelle and two equipment vendors. A 0.5-meter wide belt press was tested on apple mash, corn fiber, and corn gluten at sites provided by two food processors. A high speed citrus juice finisher (a hybrid form of screw press and centrifuge) was tested on orange pulp. These tests were carried out jointly by Battelle, equipment vendors, NFPA, and food processors. The apple and citrus juice products were analyzed by food processors and NFPA. 26 figs., 30 tabs.

  3. The utilization of forward osmosis for coal tailings dewatering

    EPA Science Inventory

    The feasibility of dewatering coal tailings slurry by forward osmosis (FO) membrane process was investigated in this research. A prototype cell was designed and used for the dewatering tests. A cellulosic FO membrane (Hydration Technology Innovations, LLC, Albany, OR) was used fo...

  4. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  5. Dewatering studies of fine clean coal

    SciTech Connect

    Parekh, B.K. . Center for Applied Energy Research)

    1991-01-01

    The main objective of the present research program is to study and understand dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effect of metal ions and surfactant to lower the moisture of clean coal using conventional vacuum dewatering technique. During this contract period adsorption of di-, tri-, and tetra-valent metal ions, and octadecylamine onto the clean coal was studied. The adsorption of divalent copper ions provided three charge reversal points (or zero-point-of-charges) for the clean coal. The lowest amount of moisture in the filter cake was obtained near the two charge reversal points of the copper-coal system. For the tri-valent aluminum ions and tetra-valent titanium ions one charge reversal, at pH 8.0 and pH 5.0 was observed, respectively. The moisture in the filter cake was lowest near the zero point of charge (ZPC) or both the metal ions. Adsorption of octadecylamine onto the coal provided one ZPC at pH {approximately}7. 0. However, moisture content of the filter cake was not significantly lowered at this pH Morphology of the filter cake obtained without the addition of metal ions or surfactant, showed segregation of large particle at the bottom of filter cake. Efforts are in progress to determine effect of combining metal ions and various (nonionic and anionic) surfactant on filtration, and utilizing a better approach to study the in-situ morphology of the filter cake. 13 figs.

  6. Compression and swelling of activated sludge cakes during dewatering.

    PubMed

    Sveegaard, Steffen Gralert; Keiding, Kristian; Christensen, Morten Lykkegaard

    2012-10-15

    A drainage/filtration apparatus was developed for automatically determining sedimentation velocity and dewatering rate. Pressure-step testing was used to study filter cake compressibility, resistance, and swelling. Activated sludge was analysed, and the data indicate that the sludge is highly compressible even at low pressures (10 kPa). Furthermore, compressed sludge cakes swell if the pressure is released. Hence, the average specific cake resistance decreases if the pressure is released, though the resistance is higher after the compression cycle than before. Sludge must be dewatered under low pressure, because higher pressure only compresses the cake and does not improve the dewatering rate.

  7. Dewatering of fibre suspensions by pressure filtration

    NASA Astrophysics Data System (ADS)

    Hewitt, Duncan R.; Paterson, Daniel T.; Balmforth, Neil J.; Martinez, D. Mark

    2016-06-01

    A theoretical and experimental study of dewatering of fibre suspensions by uniaxial compression is presented. Solutions of a one-dimensional model are discussed and asymptotic limits of fast and slow compression are explored. Particular focus is given to relatively rapid compression and to the corresponding development of spatial variations in the solidity and velocity profiles of the suspension. The results of complementary laboratory experiments are presented for nylon or cellulose fibres suspended in viscous fluid. The constitutive relationships for each suspension were measured independently. Measurements of the load for different fixed compression speeds, together with some direct measurements of the velocity profiles using particle tracking velocimetry, are compared with model predictions. The comparison is reasonable for nylon, but poor for cellulose fibres. An extension to the model, which allows for a strain-rate-dependent component in the network stress, is proposed, and is found to give a dramatic improvement in the model predictions for cellulose fibre suspensions. The reason for this improvement is attributed to the microstructure of cellulose fibres, which, unlike nylon fibres, are themselves porous.

  8. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES

    SciTech Connect

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens

    2004-07-01

    MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in order to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At

  9. Restructuring of colloidal cakes during dewatering.

    PubMed

    Madeline, J B; Meireles, M; Bourgerette, C; Botet, R; Schweins, R; Cabane, B

    2007-02-13

    Aqueous suspensions of aggregated silica particles have been dewatered to the point where the colloidal aggregates connect to each other and build a macroscopic network. These wet cakes have been compressed through the application of osmotic pressure. Some cakes offer a strong resistance to osmotic pressure and remain at a low volume fraction of solids; other cakes yield at low applied pressures, achieving nearly complete solid/liquid separation. We used small angle neutron scattering and transmission electron microscopy to determine the processes by which the particles move and reorganize during cake collapse. We found that these restructuring processes follow a general course composed of three stages: (1) at all scales, voids are compressed, with large voids compressed more extensively than smaller ones; the local order remains unchanged; (2) all voids with diameters in the range of 2-20 particle diameters collapse, and a few dense regions (lumps) are formed; and (3) the dense lumps build a rigid skeleton that resists further compression. Depending on the nature of interparticle bonds, some cakes jump spontaneously into stage 3 while others remain stuck in stage 1. To elucidate the relation between bond strength and compression resistance, we have constructed a numerical model of the colloidal network. In this model, particles interact through noncentral forces that are produced by springs attached to their surfaces. Networks made of bonds that break upon stretching evolve through a plastic deformation that reproduces the three stages of restructuring evidenced by the experiments. Networks made of bonds that are fragile jump into stage 3. Networks made of bonds that can be stretched without breaking evolve through elastic compression and restructure only according to stage 1.

  10. Dewatering of floated oily sludge by treatment with rhamnolipid.

    PubMed

    Long, Xuwei; Zhang, Guoliang; Han, Li; Meng, Qin

    2013-09-01

    Oily sludge dewatering is practically needed prior to sludge treatments. However, the conventional use of physical treatments with or without chemical conditionings presented poor feasibility in industrial applications due to either poor cost-efficiency or lacking environmental friendliness. In this paper, biosurfactant rhamnolipid was for the first time applied for dewatering of oily sludge. Rhamnolipid treatments under the concentration of 300-1000 mg/L, pH of 5-7 and temperature of 10-60 °C could directly separate 50-80% of water from the stable oily sludge. And both mono-rhamnolipid and di-rhamnolipid were identified to be of equivalent dewatering ability, which is closely related to their equivalent performance in breaking the emulsified oil droplets. Demulsification was found to be involved in settling water from oily sludge. Furthermore, the effectiveness of rhamnolipid was further demonstrated at pilot scale (1000 L) treatment of oily sludge. After pilot treatment, the settled water with residual oil of 10 mg/L and soluble COD of about 800 mg/L could be directly effluxed into the biotreatment system while the concentrated oil sludge with a reduced volume by 60-80% can be pumped into coking tower, achieving completely harmless treatment. It seems that rhamnolipid as dewatering agent was of great prospects in the industrial dewatering of oily sludge.

  11. Dewatering of floated oily sludge by treatment with rhamnolipid.

    PubMed

    Long, Xuwei; Zhang, Guoliang; Han, Li; Meng, Qin

    2013-09-01

    Oily sludge dewatering is practically needed prior to sludge treatments. However, the conventional use of physical treatments with or without chemical conditionings presented poor feasibility in industrial applications due to either poor cost-efficiency or lacking environmental friendliness. In this paper, biosurfactant rhamnolipid was for the first time applied for dewatering of oily sludge. Rhamnolipid treatments under the concentration of 300-1000 mg/L, pH of 5-7 and temperature of 10-60 °C could directly separate 50-80% of water from the stable oily sludge. And both mono-rhamnolipid and di-rhamnolipid were identified to be of equivalent dewatering ability, which is closely related to their equivalent performance in breaking the emulsified oil droplets. Demulsification was found to be involved in settling water from oily sludge. Furthermore, the effectiveness of rhamnolipid was further demonstrated at pilot scale (1000 L) treatment of oily sludge. After pilot treatment, the settled water with residual oil of 10 mg/L and soluble COD of about 800 mg/L could be directly effluxed into the biotreatment system while the concentrated oil sludge with a reduced volume by 60-80% can be pumped into coking tower, achieving completely harmless treatment. It seems that rhamnolipid as dewatering agent was of great prospects in the industrial dewatering of oily sludge. PMID:23764581

  12. Application of electro acoustics for dewatering pharmaceutical sludge

    SciTech Connect

    Golla, P.S.; Johnson, H.W. ) Senthilnathan, P.R. )

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by an electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.

  13. Electrode kinetic and electro-kinetic effects in electroosmotic dewatering of clay suspensions

    SciTech Connect

    Vijh, A.K.

    1997-05-01

    Lockhart`s remarks on the author`s previous interpretation of the electrochemical aspects of the electroosmotic dewatering (EOD) of clay suspensions are analyzed to provide some further clarification. Based on Lockhart`s excellent work, the authors put forward here novel electrochemical interpretations of some features of the following experimental observations: (1) Galvani dewatering; (2) the dewatering efficiency; and (3) high voltage needed for dewatering Al-kaolinite and aluminum electrode effect.

  14. Sludge dewatering: Sewage treatment. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 250 citations and includes a subject term index and title list.)

  15. Sludge dewatering: Sewage treatment. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. 15. VIEW NORTHNORTHEAST OF TOW TANK No. 2, DEWATERED. ENCLOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW NORTH-NORTHEAST OF TOW TANK No. 2, DEWATERED. ENCLOSED AREAS AT BACK OF TUNNEL IS A HOUSING FOR CONDUCTING PERFORMANCE TESTING ON AIRCRAFT MODELS IN A VORTEX. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  17. Fate of E. coli across mechanical dewatering processes.

    PubMed

    Monteleone, M C; Furness, D; Jefferson, B; Cartmell, E

    2004-07-01

    Five UK sludge treatment plants have been monitored for Escherichia coli (E.coli) variation after mechanical belt press and centrifuge dewatering processes. A complementary laboratory trial was also completed to examine the effects of varying centrifugal force on raw sludge E.coli content. An E.coli balance between the numbers contained in the flows entering and exiting four full scale centrifuge dewatering systems indicated a minimum 63 % increase in E.coli numbers between the input feed and sludge cake for a digested sludge input to the centrifuge. For two of the centrifuge sites this increase was statistically significant and corresponded to an increase in E.coli concentration ranging up to 1.4 Log after centrifugation. However, E.coli variation was found to be dependent on the type of sludge, as centrifuge dewatering of raw sludge at full scale resulted in a 40 % decrease in E.coli numbers. The complementary laboratory centrifuge work confirmed that E.coli numbers decreased in raw sludge after centrifugation. E.coli numbers were not observed to increase in digested sludge which had been dewatered using a belt press. A decrease of 44 % was observed. PMID:15346864

  18. A parametric study of dewatering of fine coal

    SciTech Connect

    Sung, D.J.; Lee, K.J.; Parekh, B.K.

    1996-12-31

    A statistical design of parametric study of pressure filtration for fine coal dewatering is presented. The effects of five major process parameters of the dewatering, i.e. applied pressure, filtration time, cake thickness, solids concentration and slurry pH, on cake moisture reduction and air consumption were investigated. The study was conducted starting with two level factorial experiments to identify the most significant parameters in the filtration process, and concluding with response surface methodologies to establish an optimum operating condition for the dewatering of fine coal with these significant variables. An operating process condition for the dewatering that provided satisfactory performance was determined to be an applied pressure of 93 psi with a cake thickness of 2.5 cm and a filtration time of 4.8 minutes for this specific laboratory filtration system. At the optimum process condition the filter cake containing about 22 percent moisture by weight was obtained and the air was consumed by 4.1 m{sup 3}/(m{sup 2} min.kg). 6 refs., 4 figs., 2 tabs.

  19. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  20. Building pit dewatering: application of transient analytic elements.

    PubMed

    Zaadnoordijk, Willem J

    2006-01-01

    Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.

  1. Improvement of dewatering capacity of a petrochemical sludge.

    PubMed

    Buyukkamaci, Nurdan; Kucukselek, Emrah

    2007-06-01

    Oily sludge produced from a petrochemical industry was used to investigate the improvement of its dewatering properties. The oil content (OC) and the dry solid content (DS) of the raw sludge were respectively, 15% and 3.6% by weight. The capillary suction time (CST) and the specific resistance to filtration (SRF) of the raw petrochemical industrial sludge were found to be 2000s and approximately 5.5x10(16)m/kg, respectively. Conventional chemical conditioners such as alum, lime, and polyelectrolyte, and less conventional ones like fly ash, gypsum, and bentonite were used in the sludge conditioning studies. Conventional chemical conditioners gave better results for the enhancement of the dewatering capacity of the sludge. The best result was obtained by using 0.9% cationic polyelectrolyte by weight, and a decrease of 99%-95% were achieved for CST and SRF, respectively, when this dosage of cationic polyelectrolyte was used. PMID:17101214

  2. Dewatering of ultrafine coal: Final report, August 1984-December 1986

    SciTech Connect

    Chiang, Shiao-Hung; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Badgujar, M.; Binkley, T.; Cheng, Yisun; Huang, Suxuan; Qamar, I.; Venkatadri, R.

    1986-12-01

    The surfactant, Aerosol-OT, was used to wash distilled water cakes. In previous studies, cakes were washed with Triton X-114. The dewatering performance and influence on cake structure of the two reagents are compared. Also, filter cakes were analyzed using an image analysis system and micrographic analysis of coal particles was initiated. In the area of theoretical modelling, the concept of bond-flow correlation greatly improved the network model predicting the experimental desaturation curves. Predicted results for treated cakes suggested that the effect of the presence of surface-active agents was adequately accounted for. The effects of the various operating conditions on the filtration/dewatering characteristics of the 10 ..mu..m coal particles were assessed and comparisons with the -32 mesh coal were made as to its trends in response to changes in the operating conditions. 20 refs., 75 figs., 17 tabs.

  3. Dewatering/reconstitution of fine clean coal slurry

    SciTech Connect

    Sung, D.J.; Shao, X.; Parekh, B.K.

    1998-07-01

    This paper describes an innovative approach for in-situ dewatering/hardening of fine clean coal slurry. The technique uses various fibrous waste materials added to coal slurry before dewatering process to obtain a dewatered product with lower cake moisture as well as sufficient strength to facilitate its handling. The study was conducted on both vacuum and pressure bench scale apparatus for dewatering and reconstitution of fine clean coal slurry. The fibrous waste materials investigated included plastic, newspaper, carpet mixed office waste, raw paper and wood fibers. The effects of several surfactants and flocculants on final moisture content of the filter cakes were also determined. The results showed that using the vacuum filter, addition of 10 Kg/ton of mixed office waste fibers decreased the filter cake moisture from 41.3 to 34.8% by weight, a 16% moisture reduction over the baseline data. The addition of fibers showed moisture reduction as well as large improvement in solids loading as much as 2 fold over those observed in the absence of fibers. For the pressure filtration, the addition of plastic fibers provided a filter cake containing 21.4% moisture which is about 2.1% lower than that of the untreated filter cake. The average final cake moisture reduction of 1.5% was achieved for the test fibers using the pressure filter. It was also found that fiber addition in pressure filtration led to shorter cake formation time thus increasing the filtration rate of the coal slurry. The hardening properties of the dried filter cakes with fibers improved significantly such that the cake compression strength improved from 0 to 4.5 Kg/cm{sup 2}, impact resistance from 0 to 4, abrasion resistance from 0 to 70%, and dust reduction efficiency from 0 to 75%.

  4. Dewatering/reconstitution of fine clean coal slurry

    SciTech Connect

    Sung, D.J.; Shao, X.; Parekh, B.K.

    1998-04-01

    This paper describes an innovative approach for in-situ dewatering/hardening of fine clean coal slurry. The technique uses various fibrous waste materials added to coal slurry before dewatering process to obtain a dewatered product with lower cake moisture as well as sufficient strength to facilitate its handling. The study was conducted on both vacuum and pressure bench scale apparatus for dewatering and reconstitution of fine clean coal slurry. The fibrous waste materials investigated included plastic, newspaper, carpet, mixed office waste, raw paper and wood fibers. The effects of several surfactants and flocculants; on final moisture content of the filter cakes were also determined. The results showed that using the vacuum filter, addition of 10 Kg/ton of mixed office waste fibers decreased the filter cake moisture from 41.3 to 34.8 percent by weight, a 16 percent moisture reduction over the baseline data. The addition of fibers showed moisture reduction as well as large improvement in solids loading as much as 2 fold over those observed in the absence of fibers. For the pressure filtration, the addition of plastic fibers provided a filter cake containing 21.4 percent moisture which is about 2.1 percent lower than that of the untreated filter cake. The average final cake moisture reduction of 1.5 percent was achieved for the tested fibers using the pressure filter. It was also found that fiber addition in pressure filtration led to shorter cake formation time thus increasing the filtration rate of the coal slurry. The hardening properties of the dried filter cakes with fibers improved significantly such that the cake compression strength improved from 0 to 4.5 Kg/cm{sup 2}, impact resistance from 0 to 4, abrasion resistance from 0 to 70 percent, and dust reduction efficiency from 0 to 75 percent.

  5. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge

    PubMed Central

    Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei

    2015-01-01

    The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132

  6. Synergism in polyethylene oxide dewatering of phosphatic clay waste

    SciTech Connect

    Smelley, A.G.; Scheiner, B.J.

    1980-01-01

    As part of research conducted in its mission to effect pollution abatement, the Bureau of Mines, US Department of the Interior, is developing a dewatering technique that allows for disposal of phosphatic clay wastes, for reuse of water now lost with clays, and for reclamation of mined land. The technique utilizes a high-molecular-weight nonionic polyethylene oxide polymer (PEO) that has the ability to flocculate and dewater phosphatic clay wastes. A synergistic flocculation study was made to determine whether a portion of PEO could be replaced by other reagents. Several groups of reagents were tested: (1) those that increased the zeta potential of the phosphatic clay wastes; (2) those capable of hydrogen bonding; and (3) those which flocculated the phosphatic clay waste. Reduction in PEO consumption occurred only with addition of those reagents able to flocculate the slime. The use of natural guar gums resulted in a lower PEO requirement and also yielded a dewatered product of higher solids content, 43 to 45%, versus 33 to 35% obtained with PEO alone.

  7. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge.

    PubMed

    Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei

    2015-01-01

    The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L(-1) flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 10(10) m∙kg(-1). Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions.

  8. Drying characteristics of electro-osmosis dewatered sludge.

    PubMed

    Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun

    2016-12-01

    Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input. PMID:27063252

  9. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-08-15

    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  10. Dewatering: Coal and mineral processing. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the technology of dewatering. Included is coverage of techniques, processes, and evaluations applied to coal processing, coal slurry preparation, ash treatments, and processing of other mineral ores. Mechanical devices, heating devices, filtering techniques, air drying, the use of surfactants and flocculants, and design techniques in dewatering systems are discussed. Dewatering of peats, sewage sludges, and industrial sludges are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  11. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.

    PubMed

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2010-04-01

    Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to

  12. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  13. Locally produced natural conditioners for dewatering of faecal sludge.

    PubMed

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372

  14. Locally produced natural conditioners for dewatering of faecal sludge

    PubMed Central

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-01-01

    ABSTRACT In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400–500 kg M. oleifera/t TS, 300–800 kg lime/t TS and 25–50 kg polymer solution/t TS. In comparison, chitosan required 1.5–3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22–81% and reduce dewatering time with drying beds by 59–97%. This means that the area of drying beds could be reduced by 59–97% with end-use as soil conditioner, or 9–26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372

  15. New coal dewatering technology turns sludge to powder

    SciTech Connect

    2009-03-15

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  16. OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE PROCESSING AREA. WATER USED IN PROCESSING AT THE STAMP MILL WAS CIRCULATED HERE FOR RECLAMATION. SANDS WERE SETTLED OUT AND DEPOSITED IN ONE OF TWO TAILINGS HOLDING AREAS. CLEARED WATER WAS PUMPED BACK TO THE MILL FOR REUSE. THIS PROCESS WAS ACCOMPLISHED BY THE USE OF SETTLING CONES, EIGHT FEET IN DIAMETER AND SIX FEET HIGH. THE REMAINS OF FOUR CONES ARE AT CENTER, BEHIND THE TANK IN THE FOREGROUND. TO THE LEFT IS THE MAIN ACCESS ROAD BETWEEN THE MILL AND THE PARKING LOT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. Redd dewatering effects on hatching and larval survival of the robust redhorse

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.; Sessions, F. W.

    2013-01-01

    Riverine habitats have been altered and fragmented from hydroelectric dams and change spatially and temporally with hydropower flow releases. Hydropeaking flow regimes for electrical power production inundate areas that create temporary suitable habitat for fish that may be rapidly drained. Robust redhorse Moxostoma robustum, an imperiled, rare fish species, uses such temporary habitats to spawn, but when power generation ceases, these areas are dewatered until the next pulse of water is released. We experimentally simulated the effects of dewatering periods on the survival of robust redhorse eggs and larvae in the laboratory. Robust redhorse eggs were placed in gravel in eyeing-hatching jars (three jars per treatment) and subjected to one of four dewatering periods (6, 12, 24 and 48 h), followed by 12 h of inundation for each treatment, and a control treatment was never dewatered. Egg desiccation was observed in some eggs in the 24- and 48-h treatments after one dewatering period. For all treatments except the control, the subsequent dewatering period after eggs hatched was lethal. Larval emergence for the control treatment was observed on day 5 post-hatching and continued until the end of the experiment (day 21). Larval survival was significantly different between the control and all dewatering treatments for individuals in the gravel. These findings support the need for hydropower facilities to set minimum flows to maintain inundation of spawning areas for robust redhorse and other species to reduce dewatering mortality.

  18. Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin

    SciTech Connect

    Johnson, K.J.; Coats, A. ); Marinello, S.A. )

    1992-11-01

    Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

  19. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  20. Sludge dewatering: Sewage and industrial wastes. (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning sewage sludge dewatering techniques and equipment in industrial and municipal waste treatment systems. Topics include dewatering processes and control, activated sludge systems, fluidized bed systems, biological treatment, heavy metal recovery, and economic aspects. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants

    SciTech Connect

    Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

    2006-12-22

    The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The

  2. Dewatering of alumino-humic sludge: impacts of hydroxide.

    PubMed

    Bache, D H; Papavasilopoulos, E N

    2003-08-01

    The paper draws together information on factors which influence the conditioning and dewatering behaviour of an alum sludge gained from the coagulation of a low-turbidity coloured water. A principal focus is the potential impact of aluminium hydroxide on the sludge character. Background information is provided on the composition of the source floc for the domain pH 6.0-6.5 and Al>2.0mg/l. From this, there were many pointers to the presence of Al(OH)(3)(s) within the floc. A series of comparisons were made between an alum sludge and a hydroxide suspension at a concentration equivalent to the coagulant fraction within the sludge. The parameters studied included floc size, floc density, polymer adsorption and dewatering behaviour at different time-scales. In all cases, there were strong similarities in the behaviour of the two suspensions-indicating the potential impact of the hydroxide. There was also evidence of common features being displayed by both the organic fractions and the hydroxide. It was suggested that some of the behavioural features might emanate from a common fractal structure within the source floc, the fractal dimension (approximately 1) being insensitive to composition.

  3. Surfactant-enhanced electroosmotic dewatering of mineral ultrafines

    SciTech Connect

    Grant, C.S.; Matteson, M.J.; Clayfield, E.J. )

    1991-01-01

    The rate and extent of electroosmotic dewatering of mineral ultrafines are dependent on the surface charge density which is quantitatively measured by the zeta potential. This research tailors the surface electrical properties of a naturally uncharged ochre (iron oxide) mineral slurry by altering the concentration of potential determining hydroxide ions to facilitate electroosmotic dewatering. The adsorption of hydroxide ions (9 {times} 10{sup {minus}4} to 9 {times} 10{sup {minus}3} M) onto the iron oxide surface provides the necessary increase in zeta potential; however, the resulting electrostatic dispersion of the particles severely limits the hydraulic permeability. Subsequent addition of cetyl trimethyl ammonium bromide (5 {times} 10{sup {minus}4} to 5 {times} 10{sup {minus}3} M), a cationic surfactant, reflocculates the particles, while maintaining sufficient zeta potential to generate an electroosmotic effect. Hydraulic performance of the treated slurries is characterized by measurement of flow rate data and specific resistance determination. Further characterization of the electrokinetic properties through electrophoretic mobility studies verifies the proposed adsorption mechanism.

  4. Comprehensive experimental study on prevention of land subsidence caused by dewatering in deep foundation pit with hanging waterproof curtain

    NASA Astrophysics Data System (ADS)

    Yang, T. L.; Yan, X. X.; Wang, H. M.; Huang, X. L.; Zhan, G. H.

    2015-11-01

    Land subsidence caused by dewatering of deep foundations pit has currently become the focus of prevention and control of land subsidence in Shanghai. Because of the reliance on deep foundation dewatering pit projects, two comprehensive test sites were established to help prevent land subsidence. Through geological environmental monitoring during dewatering of a deep foundation pit, the analysis of the relation between artesian water level and soil subsidence, some basic features of land subsidence caused by dewatering of deep foundation pits are elucidated. The results provide a scientific basis for prevention and control of land subsidence caused by dewatering in deep foundation pits.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  6. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  7. Evaluation of geotextile filtration applying coagulant and flocculant amendments for aquaculture biosolids dewatering and phosphorus removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastes contained in the microscreen backwash discharged from intensive recirculating aquaculture systems were removed and dewatered in simple geotextile bag filters. Three chemical coagulation aids, (aluminum sulfate (alum), ferric chloride, and calcium hydroxide (hydrated lime)), were tested in com...

  8. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen. PMID:25192669

  9. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  10. Simultaneous dewatering and reconstitution in a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Gray, M.L.; Killmeyer, R.P.; Finseth, D.H.

    1994-12-31

    The Pittsburgh Energy Technology Center has developed a dewatering and reconstitution process in which bitumen emulsion is added to a fine clean coal slurry ahead of the dewatering device. The process simultaneously improves dewatering efficiency and reduces dustiness of the fine coal product during subsequent handling. This paper describes the test results from dewatering and reconstitution of fine coal in a 500 lb. per hour continuous bench scale high-gravity solid-bowl centrifuge in PETC`s Coal Preparation Process Research Facility. Test results will be evaluated in terms of type and dosage of emulsion, product moisture and strength, and product handling and dust reduction efficiency. A preliminary cost analysis will also be included.

  11. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  12. Combined method for simultaneously dewatering and reconstituting finely divided carbonaceous material

    SciTech Connect

    Wen, Wu-Wey; Deurbrouck, Albert W.

    1990-01-01

    A finely-divided carbonaceous material is dewatered and reconstituted in a combined process by adding a binding agent directly into slurry of finely divided material and dewatering the material to form a cake or consolidated piece which can be hardened by drying at ambient or elevated temperatures. Alternatively, the binder often in the form of a crusting agent is sprayed onto the surface of a moist cake prior to curing.

  13. Prevention partition for land subsidence induced by engineering dewatering in Shanghai

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Liu, X. T.; Yang, T. L.

    2015-11-01

    Land subsidence in shanghai has been found for more than 70 years. In the early years, it was mainly caused by groundwater exploitation. In recent years, engineering dewatering in shallow ground (within 90 m) has become a major source for land subsidence in the rapid urbanization course. A management partition of land subsidence induced by foundation pit dewatering for the first confined aquifer was suggested.

  14. Development of a Two-Stage Microalgae Dewatering Process - A Life Cycle Assessment Approach.

    PubMed

    Soomro, Rizwan R; Ndikubwimana, Theoneste; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented.

  15. Development of a Two-Stage Microalgae Dewatering Process - A Life Cycle Assessment Approach.

    PubMed

    Soomro, Rizwan R; Ndikubwimana, Theoneste; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  16. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    PubMed Central

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  17. Fundamental study for improvement of dewatering of fine coal/refuse. Semi-annual report, November 1981-April 1982

    SciTech Connect

    Chiang, S.H.; Klinzing, G.E.; Tierney, J.W.; Bayles, G.; Gala, H.; Kakwani, R.; Pien, H.L.; Rega, R.; Yetis, U.

    1982-05-01

    The objectives of this research program are to formulate models for predicting the efficiency of mechanical dewatering, the rate of dewatering and the residual moisture content of dewatered coal/refuse and to suggest improved mechanical dewatering methods. To achieve these objectives, the following tasks are being carried out: (1) characterization of fine coal particles and filter cakes; (2) theoretical models for fine coal dewatering, (3) experimental measurement of dewatering; and (4) enhanced dewatering methods. Some highlights for this reporting period are: (1) important improvements in the micrographic analysis of coal filter cakes were achieved, (2) refinement of the model to predict the one-phase flow rate and permeability for the coal cake was initiated; (3) controlled filtration and dewatering experiments were carried out with different size fractions of the -32 mesh Pittsburgh seam-Bruceton mine coal; (4) filtration and dewatering experiments with five surfactants were completed; and (5) data analysis shows a strong correlation for the adsorption isotherm of all five surfactants with the reduction in moisture content. 6 references, 31 figures, 7 tables.

  18. Impact of environmental dewatering of Lower Granite and Little Goose reservoirs on benthic invertebrates and macrophytes

    SciTech Connect

    Cushing, C.E.

    1993-09-01

    An investigation into the effects of dewatering on the benthic fauna in Lower Granite and Little Goose reservoirs was undertaken. Benthos in both the soft bottom regions of the reservoirs as well as those inhabiting the rock rip-rap along the shoreline were studied. These organisms provide an important food resource for both migrating salmonids and resident fish species; thus, impacts of contemplated dewatering schemes require evaluation. The results of these studies indicate that there were no significant, long-term impacts to the soft bottom benthos as a result of dewatering in Little Goose Reservoir. In fact, higher numbers of some taxa indicate that there may have been a washout of these organisms from Lower Granite Reservoir with subsequent deposition in the upper reaches of Little Goose Reservoir. This should be accompanied by a coincident decrease in these organisms in Lower Granite Reservoir. However, we did not have pre-dewatering samples from Lower Granite Reservoir with which we could compare post-filling samples to determine if the dewatering resulted in lower benthic populations.

  19. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    PubMed

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production.

  20. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  1. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  2. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    PubMed

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. PMID:26928758

  3. Experience dewatering fine coal in solidbowl centrifuges at the York Canyon preparation plant

    SciTech Connect

    Alderman, J.K.

    1995-08-01

    In 1990, a study was undertaken at P&M`s York Canyon preparation plant to evaluate options for dewatering froth flotation product. The existing vacuum disc filter was in need of replacement from wear and neglect, and analysis of the feed to the filter showed that only 7% of the particles were larger than 0.15mm (100 mesh) while nearly 60% of the particles were finer than 0.45mm (325 mesh). Size analysis of the filter cake indicated a mass mean diameter (MMD) of 0.092mm and surface moisture of the filter cake was 33%. Preliminary modeling indicated that a surface moisture of 26% might be attainable for this cake with efficient mechanical dewatering. Based upon the fineness of the feed and the need to replace the filter, in 1991 P&M conducted the field testing with a pilot-scale Sharples high-G solidbowl centrifuge. Data from the pilot scale tests led to the conclusion that the solidbowl centrifuges could recover over 90% of feed solids while providing a surface moisture of about 25% in the product cake. When a decision was made in 1992 to replace the existing plant at York Canyon with a new, larger preparation plant, the commercial scale Sharples high-G solidbowl centrifuges were selected for fine dewatering. The following discussion deals with the plant fine coal dewatering circuitry, start-up problems, remedial actions, and machine dewatering performance.

  4. Improved electroacoustic dewatering (EAD) belt press for food products. Phase 3, Technical progress report

    SciTech Connect

    Not Available

    1994-02-01

    Battelle`s electroacoustic dewatering (EAD) process improves the performance of mechanical dewatering processes for several food products (such as corn fiber) by superimposing electric and ultrasonic fields. EAD has the potential to save 0.027 to 0.035 quad/yr energy by 1995 in the food processing industry, which consumed 0.15 to 0.18 quad in 1986. This report covers Phase III for demonstrating the EAD prototype on corn wet milling products (corn fiber and gluten); only Task 1 (prototype preparation and planning) was completed. EAD performance was examined in the laboratory; availability of a test site was examined. The single-roll, postdewatering EAD belt press prototype can accept material predewatered by a screw press, centrifuge, or any other mechanical dewatering device. The two-belt system, utilizing a copper-polymer cathode belt, performed as well as the three-belt system used in Phase II.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  6. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  7. Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current.

    PubMed

    Olivier, Jérémy; Conrardy, Jean-Baptiste; Mahmoud, Akrama; Vaxelaire, Jean

    2015-10-01

    Compared to conventional dewatering techniques, electrical assisted mechanical dewatering, also called electro-dewatering (EDW) is an alternative and an effective technology for the dewatering of sewage sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and to determine the influence of the process parameters (e.g. applied electric current, applied voltage, and the initial amount of dry solids) on the kinetics of EDW-process for activated urban sludge. Also significant efforts have been devoted herein to provide comprehensive information about the EDW mechanisms and to understand the relationship between these operating conditions with regards to develop a qualitative and quantitative understanding model of the electro-dewatering process and then produce a robust design methodology. The results showed a very strong correlation between the applied electric current and the filtrate flow rate and consequently the electro-dewatering kinetics. A higher applied electric current leads to faster EDW kinetics and a higher final dry solids content. In contrast, the results of this work showed a significant enhancement of the dewatering kinetics by decreasing the mass of the dry solids introduced into the cell (commonly known as the sludge loading).

  8. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  9. Evaluation of hyperbaric filtration for fine coal dewatering. Third quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. Progress is described.

  10. Reactive Sandpacks for the Attenuation of Sr-90 in Groundwater for Dewatering Applications

    NASA Astrophysics Data System (ADS)

    Jeen, S.

    2011-12-01

    At many nuclear sites, dewatering is necessary to facilitate building construction, the installation and repair of underground utilities, and the installation of subsurface remedial works in wet ground. When dewatering is required in areas where the groundwater contains contaminants, the proper management of large quantities of contaminated dewatering effluent can be costly and onerous. If the contamination can remain in the ground, the problems and costs of surface storage and treatment would be much reduced. Reactive sandpacks have been proposed as an alternative treatment method for Sr-90 in groundwater. In concept, reactive sandpacks are installed around the screens of dewatering wells, replacing the non-reactive conventional sand pack, such that the contaminant is altered or sorbed in the ground during the dewatering process. While the concept appears to be useful, it has not been determined whether reaction kinetics are fast enough in the fast moving water near the well-screen for satisfactory retention of the contaminant in a dewatering application. This study tested the concept of reactive sandpacks under realistic pumping conditions, by conducting in situ column experiments. Two sets of column experiments were conducted for the period of 49-55 days each, with each set composed of two 10 cm columns placed in a well at the Chalk River site. The well was screened in an actual Sr-90 groundwater plume. Columns were filled with clinoptilolite (i.e., a natural zeolite), and lowered into the well so that groundwater passed through the columns at different velocities in the range expected near the pumping well (33-200 m/day). Measurements of gross beta for the effluent water showed that the columns with higher flow velocities experienced earlier partial breakthrough of Sr-90 than the columns with lower velocities. The extent of the breakthrough of Sr-90 was also proportional to the flow velocity. Distribution coefficients, determined by fitting the normalized

  11. Development of A Continuous Process for Displacement Dewatering

    SciTech Connect

    Dave Beck

    2006-10-30

    The subject of this contract was to investigate the viability of a new process for dewatering paper called displacement pressing. The term “displacement pressing” was coined in the 1980s by researchers to describe a paper dewatering process where air is blown through a sheet of paper while it is being pressed. It was shown at that time that the combination of air and low pressing force could dramatically increase both sheet bulk and sheet solids which in theory would translate into huge savings in energy and fiber consumption. But there was a catch. Although the research results were dramatic, no one could figure out a commercially viable process to carry out displacement pressing. All research work had been done with batch processes, and there was no obvious way to convert these processes into a continuous process. By the end of the early1990’s no one was researching in this area because no continuous process existed. Recently we proposed a new method to carry out displacement pressing. Our process uses special pressing fabrics and a special 4 roll press that we call a “Beck Cluster Press” or BCP. The BCP provides a pressurized atmosphere that acts on a moving web of paper and fabrics. The special fabrics designed for this process use this atmosphere to press the sheet and at the same time, these special fabrics force air through the sheet to carry out displacement pressing. 1 Because of the complexity and cost of building the first functioning BCP, a simple simulator was built to confirm and study the process. Although results from this simulator were extremely favorable, financial times were hard in the paper industry. We are grateful for the DOE contract that allowed us to continue research that showed the tremendous benefits of displacement pressing. Specifically, accomplishments from the DOE contract are as follows: 1. A narrow (5” wide sheet) lab Beck Cluster Press (BCP) was started up, and made operational. This press accepts hand sheets and

  12. Impact of Joule Heating and pH on Biosolids Electro-Dewatering.

    PubMed

    Navab-Daneshmand, Tala; Beton, Raphaël; Hill, Reghan J; Frigon, Dominic

    2015-05-01

    Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.

  13. Hydrologic considerations in dewatering and refilling Lake Carlton : Orange and Lake Counties, Florida

    USGS Publications Warehouse

    Anderson, Warren; Hughes, G.H.

    1977-01-01

    Lake Carlton straddles the line between Lake and Orange Counties in central Florida. The 382-acre lake is highly eutrophic and subject to virtually perpetual algal blooms. The Florida Game and Fresh Water Fish Commission has proposed to restore the lake to a less eutrophic state by dewatering the lake long enough to allow the muck on its bottom to dry and compact. Lake Carlton would be permanently sealed off from Lake Carlton. On the assumption that the seasonal rainfall would be normal, and that the dewatering phase would begin on March 1, the predicted time required to dewater the lake at a pumping rate of 50,000 gpm (gallons per minute) is 21 days. The average rate of pumping required to maintain the lake in a dewatered condition is computed to be 2,400 gpm. If pumping is ended May 31, the predicted altitude to which the lake would recover by October 31 as a result of net natural input is 56.2 feet above sea level. Raising the lake level to 63 feet above sea level by October 31 would require that the net natural input be supplemented at an average rate of about 4,860 gpm between May 31 and October 31. (Woodard-USGS)

  14. Dewatering systems and techniques for coalbed methane wells. Volume 2. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The study shows that contemporary oil field systems are adequate for coalbed dewatering. In general, sucker rod systems were preferred for the shallower depths with fluid-operated systems more applicable for the deeper wells. No system was an overwhelming choice based on cost. Oil field electric submersibles were generally oversized for the flow rates and reservoirs used in this study.

  15. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra).

    PubMed

    Lee, Chai Siah; Chong, Mei Fong; Robinson, John; Binner, Eleanor

    2015-07-01

    The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process.

  16. Centrifugal dewatering and reconstitution of fine coal by the GranuFlow Process

    SciTech Connect

    Wen, W.W.; Utz, B.R.; Killmeyer, R.P.

    1997-12-31

    A continuous pilot-scale test of the GranuFlow Process was conducted using a screen-bowl centrifuge for the dewatering and reconstitution of column flotation concentrate at a coal preparation plant in Virginia. In this test, a slipstream of the fine-clean-coal slurry from the column flotation concentrate was treated with a bitumen emulsion before dewatering. The treated products from the screen-bowl centrifuge appeared to be dry and in a free-flowing granular form, while the untreated products were wet, sticky, and difficult to handle. Specifically, test results indicated that the average moisture contents of the dewatered coal were 35.7, 35.5, 32.6, 29.9, and 26.5 wt% with Orimulsion additions of 0, 0.7, 3.2, 4.8, and 6.4 wt%, respectively. The handleability and dust reduction of the dewatered coal product were also vastly improved. A preliminary cost estimate of using Orimulsion in the GranuFlow Process is also included. Because of the simplicity of the process and the low cost of the bitumen emulsion, the commercialization potential of the GranuFlow Process is significant.

  17. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fire pump required by 46 CFR 28.820, a bilge pump may be used for other purposes. (g) Each vessel must... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps,...

  18. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fire pump required by 46 CFR 28.820, a bilge pump may be used for other purposes. (g) Each vessel must... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps,...

  19. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fire pump required by 46 CFR 28.820, a bilge pump may be used for other purposes. (g) Each vessel must... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps,...

  20. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas was evaluated. Emergence traps were deployed 19 May-20 Oct 2009 (22 wk) and 27 May-18 Nov 2010 (25 wk). A t...

  1. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Boundary Lines or With More Than 16 Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be... this section, a space used in the sorting or processing of fish in which water is used must be...

  2. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Boundary Lines or With More Than 16 Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be... this section, a space used in the sorting or processing of fish in which water is used must be...

  3. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Boundary Lines or With More Than 16 Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be... this section, a space used in the sorting or processing of fish in which water is used must be...

  4. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Boundary Lines or With More Than 16 Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be... this section, a space used in the sorting or processing of fish in which water is used must be...

  5. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Boundary Lines or With More Than 16 Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be... this section, a space used in the sorting or processing of fish in which water is used must be...

  6. Evaluation of thickening and dewatering characteristics of SRC-I wastewater treatment sludges. Final technical report

    SciTech Connect

    Not Available

    1984-05-01

    The SRC-I Demonstration Plant in Newman, Kentucky, will generate several different sludges as a result of providing extensive wastewater treatment. Because construction of this plant has been postponed indefinitely, there has been an opportunity to generate additional data pertinent to waste treatment. Accordingly, this report presents the results of a study on the thickening and dewatering characteristics of several of the wastewater treatment sludges. The study included: evaluation of chemical conditioning agents; aerobic digestion of biological sludges; gravity thickening; and the relative effectiveness of dewatering by centrifuge, vacuum filter, belt filter, and pressure filter. Sludges were tested individually and in combination. The results indicated that the biological sludge could be best dewatered by pressure filtration. The chemical sludges should be combined prior to dewatering, which should be provided by a belt filter. The tar acid sludge will be kept separate, due to its low pH, and ultimate disposal will be by incineration. The tar acid sludge was more concentrated than had been expected. As a result, thickening, rather than centrifuging, is the recommended treatment for this sludge. All sludges were tested for leachate toxicity by the extraction procedure method. The results were negative, indicating the sludges are non-hazardous in heavy metal concentrations, according to RCRA classification. The test results have identified design changes for the proposed wastewater treatment facilities.

  7. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability.

  8. Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey

    SciTech Connect

    Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

    2002-02-27

    Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a

  9. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    PubMed

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be

  10. Ultra scale-down device to predict dewatering levels of solids recovered in a continuous scroll decanter centrifuge.

    PubMed

    Lopes, A G; Keshavarz-Moore, E

    2013-01-01

    During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC.

  11. Application of osmotic dewatering to the controlled crystallization of biological macromolecules and organic compounds

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Sikdar, Subhas K.; Walker, Cheryl; Korszun, Z. Richard

    1991-03-01

    Several methods of crystallization of biological macromolecules depend upon the transport of water through the vapor phase - a process that is sensitive to ambient conditions (temperature, relative humidity). Other methods depend on the transport of solute by diffusion or through a membrane. By regulating the solute concentration on the outside of a reverse-osmosis membrane it is possible to control the rate at which macromolecules and other solutes are concentrated inside a membrane-bound fluid. The effect of dewatering rate on lysozyme crystal quality and growth rate was assessed. A 3-fold increase in concentration over a 9 day period yielded tetragonal crystals 0.5 mm on a side with sharp edges and with ordering at least to 1.73 Å. Transparent crystals of triglycine sulfate were grown by osmotic dewatering; in this case crystal growth could be enhanced or reversed by manipulating the external solution.

  12. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P.; Johnson, H.R.; Eason, R.; Chiang, S.M.; Cheng, Y.S.; Kehoe, D.

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  13. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. ); Johnson, H.R.; Eason, R. ); Chiang, S.M.; Cheng, Y.S. ); Kehoe, D. )

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  14. Method for simultaneous use of a single additive for coal flotation, dewatering and reconstitution

    SciTech Connect

    Wen, Wu-Wey; Gray, M.L.; Champagne, K.J.

    1993-11-09

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  15. Dewatering studies of fine clean coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Parekh, B.K.

    1992-08-01

    Physical cleaning of ultra-fine coal using an advanced froth flotation techniques provides a low ash product, however, due to high surface area of particles the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of advanced froth flotation processes. The main objective of the present research program is to study and understand the dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effects of metal ions and surfactant to lower the moisture of clean coal using a conventional vacuum dewatering technique. The studies have identified a combination of metal ion and surfactant found to be effective in providing a 22 percent moisture filter cake.

  16. Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution

    DOEpatents

    Wen, Wu-Wey; Gray, McMahan L.; Champagne, Kenneth J.

    1995-01-01

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  17. Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans.

    PubMed

    Wong, Jonathan W C; Murugesan, Kumarasamy; Yu, Shuk Man; Kurade, Mayur B; Selvam, Ammaiyappan

    2016-01-01

    Bioleaching using an iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, and its biogenic flocculants was evaluated to improve the dewaterability of chemically enhanced primary treatment (CEPT) sewage sludge. CEPT sludge in flasks was inoculated with A. ferrooxidans culture, medium-free cells and the cell-free culture filtrate with and without the energy substance Fe(2+), and periodically the sludge samples were analysed for the dewaterability. This investigation proves that bioleaching effectively improved the sludge dewaterability as evidenced from drastic reduction in capillary suction time (≤20 seconds) and specific resistance to filtration (≥90%); however, it requires an adaptability period of 1-2 days. On the other hand, the biogenic flocculant produced by A. ferrooxidans greatly decreased the time-to-filtration and facilitated the dewaterability within 4 h. Results indicate that rapid dewatering of CEPT sludge by biogenic flocculants provides an opportunity to replace the synthetic organic polymer for dewatering. PMID:26901727

  18. Review of Design Approaches Applicable to Dewatering Uranium Mill Tailings Disposal Pits

    SciTech Connect

    Gutknecht, P. J.; Gates, T. E.

    1982-03-01

    This report is a review of design approaches in the literature that may be applicable to uranium mill tailings drainage. Tailings dewatering is required in the deep mined-out pits used for wet tailings disposal. Agricultural drainage theory is reviewed because it is seen as the most applicable technology. It is concluded that the standard drain-pipe envelope design criteria should be easily adapted. The differences in dewatering objectives and physical characteristics between agricultural and tailings drainage systems prevent direct technology transfer with respect to drain spacing calculations. Recommendations for further research are based on the drainage features unique to uranium mill tailings. It is recommended that transient solutions be applied to describe liquid movement through saturated and partially saturated tailings. Modeling should be used to evaluate the benefits of drainage design approaches after careful consideration of potential construction problems.

  19. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant.

    PubMed

    Lin, Qintie; Peng, Huanlong; Zhong, Songxiong; Xiang, Jiangxin

    2015-03-21

    Flocculation is one of the most widely used cost-effective pretreatment method for sludge dewatering, and a novel environmentally friendly and efficient flocculant is highly desired in the sludge dewatering field. In this study, a novel combined silicon-aluminum-ferric-starch was synthesized by grafting silicon, aluminum, and iron onto a starch backbone. The synthesized starch flocculant was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, X-ray powder diffraction, and thermogravimetric analysis. The dewatering performance of secondary sludge was evaluated according to the capillary suction time, settling volume percentage, and specific resistance to filtration. The results indicated that the copolymer exhibited: (1) a good dewatering efficiency over a wide pH range of 3.0-11.0, (2) superior sludge dewatering performance compared to those of polyaluminum chloride (PACl), polyacrylamide (PAM), ferric chloride, and (3) a discontinuous surface with many channels or voids that helps to mobilize the impermeable thin layer of secondary sludge during filter pressing. Such a novel copolymer is a promising green flocculant for secondary sludge dewatering applications. PMID:25497034

  20. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption. PMID:27448036

  1. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption.

  2. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge].

    PubMed

    Qian, Xu; Wang, Yi-li; Zhao, Li

    2016-05-15

    For magnetic Fe₃O₄ microparticles conditioning--pressure electro-osmotic dewatering (MPEOD) process of activated sludge (AS), the effects of operating parameters (optimal dosage of Fe₃O₄, electric field duration, mechanical pressure and voltage) on the dewatering efficiency and energy consumption were investigated, and the optimal conditions were determined. Moreover, the properties of supernatant and sludge along MPEOD process were studied as well as the interaction force between the sludge biosolids. Taking the energy consumption into consideration, the results showed that the optimal dewatering effect for AS could be achieved with a magnetic Fe₃O₄ microparticles dosage of 0.15 g · g⁻¹, an electric field duration of 2 h, a mechanical pressure of 400-600 kPa and a voltage of 30-50 V. When MPEOD was conducted at 400 kPa and 50 V for 2 h, the sludge reduction rate reached 98.30%, the percentage of water removal was 99.34% and the moisture content of AS decreased from 99.18% to 44.46%. The corresponding consumption of energy was 0.013 3 kW · h · kg⁻¹. The coagulation mechanism played a slight role in the AS conditioning with magnetic Fe₃O₄ micro-particles. In fact, magnetic Fe₃O₄micro-particles could greatly decrease the acid-base interaction (WA) between AS biosolids, cause floc growth and enlarge pores in AS aggregates, which will be beneficial to AS dewatering. Compared to DLVO theory, the extended DLVO theory could accurately describe the aggregation and dispersion behavior of sludge particles.

  3. [Magnetic Fe₃O₄Microparticles Conditioning-Pressure Electro-osmotic Dewatering (MPEOD) of Sewage Sludge].

    PubMed

    Qian, Xu; Wang, Yi-li; Zhao, Li

    2016-05-15

    For magnetic Fe₃O₄ microparticles conditioning--pressure electro-osmotic dewatering (MPEOD) process of activated sludge (AS), the effects of operating parameters (optimal dosage of Fe₃O₄, electric field duration, mechanical pressure and voltage) on the dewatering efficiency and energy consumption were investigated, and the optimal conditions were determined. Moreover, the properties of supernatant and sludge along MPEOD process were studied as well as the interaction force between the sludge biosolids. Taking the energy consumption into consideration, the results showed that the optimal dewatering effect for AS could be achieved with a magnetic Fe₃O₄ microparticles dosage of 0.15 g · g⁻¹, an electric field duration of 2 h, a mechanical pressure of 400-600 kPa and a voltage of 30-50 V. When MPEOD was conducted at 400 kPa and 50 V for 2 h, the sludge reduction rate reached 98.30%, the percentage of water removal was 99.34% and the moisture content of AS decreased from 99.18% to 44.46%. The corresponding consumption of energy was 0.013 3 kW · h · kg⁻¹. The coagulation mechanism played a slight role in the AS conditioning with magnetic Fe₃O₄ micro-particles. In fact, magnetic Fe₃O₄micro-particles could greatly decrease the acid-base interaction (WA) between AS biosolids, cause floc growth and enlarge pores in AS aggregates, which will be beneficial to AS dewatering. Compared to DLVO theory, the extended DLVO theory could accurately describe the aggregation and dispersion behavior of sludge particles. PMID:27506042

  4. Hydrophobic Dewatering of Fine Coal. Topical report, March 1, 1995-March 31, 1997

    SciTech Connect

    Yoon, R.; Sohn, S.; Luttrell, J.; Phillips, D.

    1997-12-31

    Many advanced fine coal cleaning technologies have been developed in recent years under the auspices of the U.S. Department of Energy. However, they are not as widely deployed in industry as originally anticipated. An important reason for this problem is that the cleaned coal product is difficult to dewater because of the large surface area associated with fine particles. Typically, mechanical dewatering, such as vacuum filtration and centrifugation, can reduce the moisture to 20-35% level, while thermal drying is costly. To address this important industrial problem, Virginia Tech has developed a novel dewatering process, in which water is displaced from the surface of fine particulate materials by liquid butane. Since the process is driven by the hydrophobic interaction between coal and liquid butane, it was referred to as hydrophobic dewatering (HD). A fine coal sample with 21.4 pm median size was subjected to a series of bench-scale HD tests. It was a mid-vol bituminous coal obtained from the Microcel flotation columns operating at the Middle Fork coal preparation plant, Virginia. All of the test results showed that the HD process can reduce the moisture to substantially less than 10%. The process is sensitive to the amount of liquid butane used in the process relative to the solids concentration in the feed stream. Neither the intensity nor the time of agitation is critical for the process. Also, the process does not require long time for phase separation. Under optimal operating conditions, the moisture of the fine coal can be reduced to 1% by weight of coal.

  5. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra).

    PubMed

    Lee, Chai Siah; Chong, Mei Fong; Robinson, John; Binner, Eleanor

    2015-07-01

    The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process. PMID:25929197

  6. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. PMID:21565440

  7. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    The dewaterability of sewage sludge can be described by the total solids concentration of the sludge cake and the polymer-demand for conditioning. The total solids concentration of the sludge cake depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by the type and the intensity of their physical bonding to the solids. In a sewage sludge suspension four different types of water can be distinguished. These are the free water, which is not bound to the particles, the interstitial water, which is bound by capillary forces between the sludge flocs, the surface water, which is bound by adhesive forces and intracellular water. Only the share of free water can be separated during mechanical dewatering. It can be shown, that by thermo-gravimeteric measurement of the free water content, an exact prediction of full-scale dewatering results is possible. By separation of all free water during centrifugation the maximum dewatering result is reached. Polymer conditioning increases the velocity of the sludge water release, but the free water content is not influenced by this process. Furthermore it is not possible, to replace the measuring of the water distribution by other individual parameters such as ignition loss.

  8. Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS

    SciTech Connect

    Richmond, Marshall C.; Perkins, William A.

    2009-12-01

    River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m$^3$/s discharge reduction affected the most area at discharges less than 3400 m$^3$/s. At flows above 3400 m$^3$/s, the affected area by a 280 m$^3$/s discharge reduction (about 25 ha) was relatively constant. A 280 m$^3$/s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (\\emph{Oncorhynchus tshawytscha}) that rear in the shallow near-shore areas in the Hanford Reach.

  9. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    2016-01-01

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption. PMID:27508372

  10. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  11. Evaluation of hyperbaric filtration for fine coal dewatering. Quarterly technical progress report, 1996

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I, model development, Phase II, laboratory studies, Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments to date are reported for the three phases.

  12. Model analysis of effects on water levels at Indiana Dunes National Lakeshore caused by construction dewatering

    USGS Publications Warehouse

    Marie, James R.

    1976-01-01

    The computer models were developed to investigate possible hydrologic effects within the Indiana Dunes National Lakeshore caused by planned dewatering at the adjacent Bailly Nuclear Generator construction site. The model analysis indicated that the planned dewatering would cause a drawdown of about 4 ft under the westernmost pond of the Lakeshore and that this drawdown would cause the pond to go almost dry--less than 0.5 ft of water remaining in about 1 percent of the pond--under average conditions during the 18-month dewatering period. When water levels are below average, as during late July and early August 1974, the pond would go dry in about 5.5 months. However, the pond may not have to go completely dry to damage the ecosystem. If the National Park Service 's independent study determines the minimum pond level at which ecosystem damage would be minimized, the models developed in this study could be used to predict the hydrologic conditions necessary to maintain that level. 

  13. [Performance and Factors Analysis of Sludge Dewatering in Different Wastewater Treatment Processes].

    PubMed

    Liu, Ji-bao; Li, Ya-ming; Lü, Jian; Wei, Yuan-song; Yang, Min; Yu, Da-wei

    2015-10-01

    Sludge dewatering is one of the keys for sludge disposal and treatment of municipal wastewater treatment plants. In this study, the sludge dewaterability, flocculant consumption and costs of sludge dewatering for different wastewater treatment processes including A2/O and A2/O-MBR processes were analyzed, as well as the factors of sludge dewatering were analyzed by redundancy analysis (RDA) method, based on the data of one municipal wastewater treatment plant of Beijing in 2013. Results showed that both sludge dewaterability and flocculant consumption presented the seasonal variation, which means sludge dewatering was harder and coupled with higher flocculant consumption in the winter. Although the lower moisture content of dewatered sludge was obtained in the A2/O-MBR process (81.92% ± 1.64% ) compared with that in the A2/O process (82.56% ± 1.35%), the consumptions of flocculant [ (8.70 ± 7.25) kg x t(-1) DS] and electric energy (331.82 kW x h x t(-1) DS) in the A2/O-MBR process were higher than those in the A2/O process [(7.42 ± 2.96) kg x t(-1) DS, 121.57 kW x h x t(-1) DS for flocculant consumption and electric energy respectively], resulting in higher operation costs (RMB 204.76 yuan x t(-1) DS of flocculant consumption and RMB 231.61 yuan x t(-1) DS of energy consumption for the A2/O-MBR, RMB 175.00 yuan x t(-1) DS of flocculant consumption and RMB 84.86 yuan x t(-1) DS of energy consumption for the A2/O, respectively). Results of RDA showed that the seasonal variation of sludge dewaterability mainly depended on the content of organic matter in sludge which was related to the seasonal factors such as temperature, and was also impacted by the operating parameters such as SRT in wastewater treatment.

  14. Effects of Cationic Polyacrylamide Characteristics on Sewage Sludge Dewatering and Moisture Evaporation

    PubMed Central

    Pan, Chengyi

    2014-01-01

    The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g−1 CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g−1 CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g−1 CPAM with 8 million MW and 40% CD, 6 mg g−1 CPAM with 5 million MW and 40% CD, 6 mg g−1 CPAM with 3 million MW and 40% CD, and 10 mg g−1 CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering. PMID:24878582

  15. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    PubMed

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites. PMID:27479237

  16. Biodegradation and chemical precipitation of dissolved nutrients in anaerobically digested sludge dewatering centrate.

    PubMed

    Galvagno, G; Eskicioglu, C; Abel-Denee, M

    2016-06-01

    The objective of this research was to assess specific side-stream treatment processes for biodegradation and precipitation of dissolved nutrients in dewatering centrate. In this study, characterization was made of a conventional suspended growth deammonification treatment process for transforming dissolved polyphosphate (poly-P), dissolved organic phosphorus (DOP) and dissolved organic nitrogen (DON) in two types of dewatering centrate. The deammonification process was configured as a sequencing batch reactor (SBR), combining partial nitrification and anaerobic ammonia oxidation (anammox) in a single tank. The first centrate feed studied was from the full-scale Annacis Island wastewater treatment plant (AIWWTP) located in Metro Vancouver, Canada. The second centrate feed was from a lab-scale anaerobic digester (AD) fed waste sludge from the existing City of Kelowna Wastewater Treatment Facility (KWTF), located in the Okanagan Valley, Canada. In addition, poly aluminum chloride (PACL) dosing was assessed for final polishing of dissolved nutrients. The deammonification SBR (DeSBR) process showed similar treatment characteristics for both the KWTF and AIWWTP centrates with excellent DON removal and poor non-reactive dissolved phosphorus (NRDP) removal. A statistical comparison of the DOP and poly-P through the DeSBR process suggests that DOP has a higher biodegradation potential. Future research focused on understanding the variables associated with degradation of DOP could lead to better NRDP removal through deammonification processes. Utilization of a post-anammox PACL chemical dosing stage can achieve the objective of precipitating any residual DON and NRDP and producing an effluent that has lower dissolved nutrients than the pre-digestion KWTF dewatering centrate scenario. PMID:27023924

  17. Dewatering studies of fine clean coal. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Parekh, B.K.

    1992-12-31

    Physical cleaning of ultra-fine coal using advanced froth flotation technique provides a low ash product; however, the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of the advanced flotation processes. The main objective of the present research program is to study and understand dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach utilized synergistic effect of metal ions and surfactant addition to lower the moisture of clean coal using the conventional vacuum dewatering technique. The studies have identified a combinations of metal ions and surfactants in providing a 22 percent moisture filter cake. Surface chemical study indicated a direct correlation between the point-of-zero charge (PZC) of metal ion/fine coal system and lowering of moisture in the filter cake. Adsorption of either metal ions or surfactants alone did not provide a significant reduction of moisture in the filter cake. However, a combination of the two provided a filter cake containing about 22 percent moisture. Filtration tests conducted using a laboratory vacuum drum filter indicated that the results obtained in batch filtration could be reproduced on a continuous filtration unit. FT-IR studies indicated that anionic surfactant and metal ions form complex species which adsorbs on the fine coal and results in improved moisture reduction during filtration. Recommendations are offered for testing this novel dewatering process on a pilot scale at a coal preparation plant in Illinois.

  18. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    NASA Astrophysics Data System (ADS)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  19. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    PubMed Central

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-01-01

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PMID:25893998

  20. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    PubMed

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation.

  1. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  2. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge.

    PubMed

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-04-01

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PMID:25893998

  3. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  4. Diagenesis, dewatering, and source rock potential of Ordovician shales from the High Atlas, Morocco

    SciTech Connect

    Evans, I.J.

    1988-08-01

    The Ordovician shales of the High Atlas are interpreted as shelf sediments. They contain uncommon thin, wave-rippled, fine sandstone layers which record rare high-energy event and are attributed to winter storm action. The shales coarsen upward and the sandstone horizons become more common toward the top of the sequence, reflecting increasing proximality up the sequence from an outer to a mid-shelf setting. In places the shales contain large ferroan carbonate concretions. These have been analyzed together with the shales to determine the diagenetic and dewatering history of the sequence. Comparison of the chemistry of the noncarbonate fraction within the concretions with that of the host shales has led to quantitative mass-transfer models for the system. These suggest the sequence was an important source of cementing components (e.g., Ca, Si) for adjacent potential reservoir rocks. Other elements (e.g., Al, Mg, K) have not moved out of the system; the shales were not therefore a source for authigenic aluminosilicates as is often supposed. The major transport/dewatering pathways were the interbedded storm-sandstone horizons. These are now extensively quartz cemented. Local synsedimentary faults were probably also important conduits. These results have important implications regarding the relationship between shale and sandstone diagenesis. The shales presently contain up to 1% TOC. In the study area, however, they are thermally postmature with respect to hydrocarbon generation. Equivalent rocks which have experienced less burial should be considered potential source rocks.

  5. Particulates in hydrometallurgy: Part III. Dewatering behavior of flocculated laterite acid leach residues

    NASA Astrophysics Data System (ADS)

    Briceno, A.; Osseo-Asare, K.

    1995-02-01

    Three polyacrylamide-based polymers of different chemical properties (polymer A, 34 pct anionic, 11×106 mol wt; polymer B, 7 pct anionic, 7.5×106 mol wt; polymer C, nonionic, 13.5×106 mol wt) were used to evaluate the flocculation behavior of laterite acid leach residues. The solid-liquid separation characteristics of the leach residues were investigated with the aid of settling rate, supernatant turbidity, and slurry filtrability measurements. The polymeric flocculants were found to be effective in improving the dewatering properties of the acid leach residues. Polymer effectiveness increased with increasing polymer dosage for all the polymers, but an optimum polymer dose was only found for polymer A (34 pct anionic, 11×106 mol wt) in the studied range of polymer addition. Similarly, the dewatering behavior was improved at higher polymer molecular weight. In addition, it was found that the flocculation performance was adversely affected by an increase in the degree of polymer hydrolysis which, in turn, increases the ratio of carboxylic to amide functional groups in the polymer chain. Polymer C (nonionic ˜0 pct hydrolysis, 13.5×106 mol wt) was found to be the most efficient flocculant in terms of all the performance criteria investigated. The preceding results were rationalized in terms of bridging flocculation, the ionization and molecular configuration of the polymers, hydrogen bonding, and the solid/aqueous interfacial charge.

  6. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    PubMed

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. PMID:26803742

  7. Characterization of a bioflocculant from potato starch wastewater and its application in sludge dewatering.

    PubMed

    Guo, Junyuan; Zhang, Yuzhe; Zhao, Jing; Zhang, Yu; Xiao, Xiao; Wang, Bin; Shu, Bi

    2015-07-01

    A bioflocculant was produced by using potato starch wastewater; its potential in sludge dewatering and potato starch wastewater treatment was investigated. Production of this bioflocculant was positively associated with cell growth, and a highest value of 0.81 g/L was obtained. When incubated with this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 20.8% and 3.9 × 10(12) m/kg, respectively, which were much better than the ones obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyacrylamide (PAM) were used simultaneously. With potato starch wastewater, chemical oxygen demand (COD) and turbidity removal rates could reach 52.4 and 81.7%, respectively, at pH value of 7.5 when the bioflocculant dose was adjusted to 30 mg/L; from a practical standpoint, the removal of COD and turbidity reached 48.3 and 72.5%, respectively, without pH value adjustment.

  8. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    PubMed

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation.

  9. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    PubMed

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. PMID:24534793

  10. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge.

    PubMed

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-04-16

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family.

  11. Prediction and verification of centrifugal dewatering of P. pastoris fermentation cultures using an ultra scale-down approach.

    PubMed

    Lopes, A G; Keshavarz-Moore, E

    2012-08-01

    Recent years have seen a dramatic rise in fermentation broth cell densities and a shift to extracellular product expression in microbial cells. As a result, dewatering characteristics during cell separation is of importance, as any liquor trapped in the sediment results in loss of product, and thus a decrease in product recovery. In this study, an ultra scale-down (USD) approach was developed to enable the rapid assessment of dewatering performance of pilot-scale centrifuges with intermittent solids discharge. The results were then verified at scale for two types of pilot-scale centrifuges: a tubular bowl equipment and a disk-stack centrifuge. Initial experiments showed that employing a laboratory-scale centrifugal mimic based on using a comparable feed concentration to that of the pilot-scale centrifuge, does not successfully predict the dewatering performance at scale (P-value <0.05). However, successful prediction of dewatering levels was achieved using the USD method (P-value ≥0.05), based on using a feed concentration at small-scale that mimicked the same height of solids as that in the pilot-scale centrifuge. Initial experiments used Baker's yeast feed suspensions followed by fresh Pichia pastoris fermentation cultures. This work presents a simple and novel USD approach to predict dewatering levels in two types of pilot-scale centrifuges using small quantities of feedstock (<50 mL). It is a useful tool to determine optimal conditions under which the pilot-scale centrifuge needs to be operated, reducing the need for repeated pilot-scale runs during early stages of process development.

  12. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics.

    PubMed

    Wang, Liping; Zhang, Lei; Li, Aimin

    2014-11-15

    Dewatering is very important for excess sludge treatment and disposal. Hydrothermal treatment coupled with mechanical expression is a novel technology, in which a conventional pressure dewatering is combined with hydrothermal effect to realize an improved liquid/solids separation with low energy consumption. In this study, the process was performed by way of that the excess sludge was hydrothermally treated first and then the mechanical expression was employed immediately at increased temperature in two separate cells respectively. The results demonstrated that the mechanical expression employed at increased temperature showed a significant advantage than that at room temperature, given a further reduction of 19-47% of the moisture content. The dewatering process at room temperature was mostly depended on the effect of mechanical expression. Hydrothermal process, more importantly than mechanical effect at increased temperatures, seemed to govern the extent to which the dewatering process occurred. The dewatering began to show a positive effect when the temperature was exceeded the threshold temperature (between 120 and 150 °C). The residence time of 30 min promoted a substantial conversion in the sludge surface properties. After dewatering at temperatures of 180-210 °C, the moisture content decreased from 52 to 20% and the corresponding total water removal as filtrate was between 81 and 93%. It was observed that the moisture content of filter cake correlated with surface charge (Rp = -0.93, p < 0.05) and relative hydrophobicity (Rp = -0.99, p < 0.05). The calculated energy balance suggested that no additional external energy input is needed to support the dewatering process for excess sludge. The dewatering process needs an obviously lower energy input compared to thermal drying and electro-dewatering to produce a higher solids content cake.

  13. Parallel studies on dewatering and conditioning of an alum sludge and an aluminium hydroxide suspension.

    PubMed

    Papavasilopoulos, E N; Bache, D H

    2001-01-01

    The paper shows a comparison between properties of an alum sludge gained from the coagulation of a coloured water with those of a suspension of aluminium hydroxide at a concentration equivalent to the coagulant fraction within the sludge. Background information is provided on composition and aspects of the source floc. The comparisons embraced floc size, polymer adsorption, and dewatering parameters including specific resistance to filtration, capillary suction time and the equilibrium moisture content under pressure. In all cases, there were strong similarities in the behaviour of the two suspensions. It is suggested that such features emanate from a common fractal structure within the source floc, whose fractal index (approximately/= 1) has been found to be insensitive to the composition of the floc.

  14. UV-Initiated Polymerization of Cationic Polyacrylamide: Synthesis, Characterization, and Sludge Dewatering Performance

    PubMed Central

    Zheng, Huaili; Sun, Yongjun; Tan, Mingzhuo; Chen, Wei; Liao, Yong

    2013-01-01

    P(AM-DAC-BA) was synthesized through copolymerization of acrylamide (AM), acryloyloxyethyl trimethyl ammonium chloride (DAC), and butylacrylate (BA) under ultraviolet (UV) initiation using response surface methodology (RSM). The influences of light intensity, illumination time, and photoinitiator concentration on the intrinsic viscosity [η] of P(AM-DAC-BA) were investigated. RSM model based on the influencing data was established for optimizing synthetic conditions. It was found that, at light intensity 1491.67 μw·cm−2, illumination time 117.89 min, and photoinitiator concentration 0.60‰, there was a better material performance achieved. Thus P(AM-DAC-BA) prepared under the above conditions showed excellent dewatering performance that, with 40 mg·L−1 P(AM-DAC-BA) at pH 7, the residual turbidity of supernatant and the dry solid content were up to 38 NTU, 28.5%, respectively. PMID:24459451

  15. The role of ionic surfactants in compression dewatering of alum sludge

    SciTech Connect

    Chu, C.P.; Lee, D.J.; Huang, C.

    1998-10-01

    This work has experimentally investigated the characteristics of filtration followed by consolidation dewatering of an alum sludge, with especial attention to the effects of adding ionic surfactants (SDS or CTAB). The filtration and consolidation stages at a pressure of 3000 psi were discussed separately. The efficiency of filtration is enhanced in the presence of surfactant molecules; however, the cationic surfactant (CTAB) raises the consolidation rate while the anionic surfactant (SDS) retards it. A newly proposed theological model has been employed for interpreting the consolidation data. CTAB would not alter markedly the moisture distribution in the sludge, but SDS does increase markedly the amount of the tightly bound moisture by diminishing the portion occupied by pore water. The possible role of surfactants in the sludge flocs is considered. Both surfactants can be used as conditioning aids during the filtration stage. However, the applications of SDS to the consolidation stage are not encouraged.

  16. Dewatering studies on the waste slurry from the biological denitrification reactors

    SciTech Connect

    Taylor, P.A.

    1982-01-06

    The biological denitrification reactors at the Oak Ridge Y-12 Plant produce about 800,000 L/y of an effluent containing calcium carbonate, aluminum hydroxide, bacteria, and dissolved organics. The effluent is currently being used to neutralize the old acid-waste ponds. Since these ponds will be phased out around 1985, a new disposal process will be required to treat the effluent from the denitrification reactors. Based on small-scale tests, a horizontal, solid-bowl centrifuge is recommended to perform the initial dewatering of the effluent slurry. The sludge from the centrifuge could be further processed, if desired, prior to burial. The clear liquid will require an aeration step to degrade the dissolved organics prior to discharge. This aeration step could be carried out in conjunction with the biological degradation of used machining coolants in one large reactor.

  17. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  18. An experimental study and theoretical modeling of fine coal/refuse filtration and dewatering

    SciTech Connect

    Cheng, Y.

    1988-01-01

    The characteristics of fine coal and coal refuse are experimentally investigated by using a laboratory scaled vacuum/air pressure filter. Filter cakes formed under different conditions are micrographically analyzed, and the pore space of the filter cakes is quantified by its equivalent pore size distribution, hydraulic pore diameter distribution and neck size distribution. Three typical Chinese coals, a Pittsburgh seam coal and a refuse sample ware used, and the effects of important operating variables on the filterabilities and the extent of dewatering of these samples are experimental determined. Since macroscopic properties of filter cakes are controlled by the microscopic pore structures, the filter cakes formed in the filtration experiments are analyzed by using a Leitz TAS-Plus image analysis system. A three dimensional simple cubic lattice network is constructed to represent the complex pore structures of filter cakes. The bonds in the network conduct fluid flow and are correlated in the macroflow direction. The sizes and shapes of the bond are determined by three pore size distributions obtained from the cake structural analysis. The equivalent pore diameter distribution determines the cross sectional areas of the bonds, the hydraulic pore diameter considers the shapes of the bonds, and the neck size distribution assigns the neck size to the bonds. Network models are developed based on percolation theory. Single phase permeabilities and dewatering curves of the filter cakes have been successfully predicted by the models. The models, which have been successfully used to predict properties of single phase and two phase flow through a filter cake, may be applied in other fields such as the flow of water through soils and the flow of oil and gas in underground reservoirs.

  19. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Xia; Shen, Shui-Long; Yuan, Da-Jun

    2016-08-01

    For deep excavation pits that require the pumping of confined groundwater, a combination of a retaining wall and dewatering with large-diameter wells is usually adopted during excavation to improve safety. Since a retaining wall has a much lower hydraulic conductivity than the surrounding material in the aquifer, blocking of seepage to prolong the seepage path of the groundwater outside of the pit is effective. The retaining walls used during excavation dewatering cause hydraulic head drawdown inside the pit much faster than outside the pit. Thus, difference in hydraulic head between inside and outside of the pit increases. To investigate the mechanism of the blocking effect, numerical simulation using the finite difference method (FDM) was conducted to analyze the effects of pumping in the pit. The FDM results show that drawdown varies along the depth of the confined aquifer. The influence factors of drawdown inside and outside the pit include insertion depth of retaining walls, anisotropy of a confined aquifer and screen length of pumping wells. In addition, FDM results also show that the drawdown-time curve can be divided into four stages: in Stage I, drawdown inside the pit is very small and outside the pit it is almost zero; in Stage II, drawdown increases quickly with time; in Stage III, the drawdown curve is parallel to the Cooper-Jacob curve on semi-log axes; and in Stage IV, the drawdown becomes constant. These characteristics of the drawdown curve under the blocking effect of a retaining wall in an aquifer provide a way of estimating hydrogeological parameters according to pumping test results.

  20. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  1. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  2. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system.

    PubMed

    Dai, Xiaohu; Luo, Fan; Yi, Jing; He, Qunbiao; Dong, Bin

    2014-02-01

    Polyacrylamide (PAM) used in sludge dewatering widely exists in high-solid anaerobic digestion. Degradation of polyacrylamide accompanied with accumulation of its toxic monomer is important to disposition of biogas residues. The potential of anaerobic digestion activity in microbial utilization of PAM was investigated in this study. The results indicated that the utilization rate of PAM (as nitrogen source) was influenced by accumulation of ammonia, while cumulative removal of amide group was accorded with zeroth order reaction in actual dewatered system. The adjoining amide group can combined into ether group after biodegradation. PAM can be broken down in different position of its carbon chain backbone. In actual sludge system, the hydrolytic PAM was liable to combined tyrosine-rich protein to form colloid complex, and then consumed as carbon source to form monomer when easily degradable organics were exhausted. The accumulation of acrylamide was leveled off ultimately, accompanied with the yield of methane.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  4. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties.

    PubMed

    Wang, Jian-Ping; Yuan, Shi-Jie; Wang, Yi; Yu, Han-Qing

    2013-05-15

    Flocculation process is one of the most widely used techniques for water and wastewater treatment, and also for sludge dewatering. Synthesis of natural biopolymers or modification of natural biopolymers as environmentally friendly flocculants is highly desired in the field of environmental protection. In this work, a water soluble copolymer flocculant, STC-g-PDMC (starch-graft-poly (2-methacryloyloxyethyl) trimethyl ammonium chloride) was synthesized through grafting a monomer, (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC), onto starch initiated by potassium persulphate. Acetone and ethanol were used for copolymer precipitation and purification in the synthesis, which diminished the toxicity during the synthesis process. The graft copolymer was characterized using Fourier-transform infrared spectroscopy, (1)H nuclear magnetic resonance, X-ray powder diffraction, thermogravimetric analysis and elemental analysis. The prepared STC-g-PDMC exhibited a highly effective flocculation capability for kaolin suspensions compared with starch and polyacrylamide as control. The charge neutralization effect played an important role in the flocculation process at low flocculant dosages. When it was used as dewatering agent for anaerobic sludge, the conditioned sludge could be easily filtered after the dosage reached 0.696% of the dry weight of sludge. Such a graft copolymer is a promising green agent for wastewater treatment and sludge dewatering applications.

  5. Evaluation of hyperbaric filtration for fine coal dewatering. Tenth quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonseca, A.

    1995-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: Phase I, model development; Phase II, laboratory studies; and Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in-all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments are discussed for all three phases of study.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  7. Estimated Fall Chinook Salmon Survival to Emergence in Dewatered Redds in a Shallow Side Channel of the Columbia River

    SciTech Connect

    McMichael, Geoffrey A.; Rakowski, Cynthia L.; James, B B.; Lukas, Joe

    2005-08-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) often spawn in the tailraces of large hydroelectric dams on the Columbia River. Redds built in shallow habitats downstream of these dams may be periodically dewatered due to hydropower operations prior to the emergence of fry. To determine whether fall Chinook salmon redds were successful in a shallow area subjected to periodic dewatering downstream of Wanapum Dam on the Columbia River, we installed 7 redd caps and monitored fry emergence. Large numbers of live fry were captured from the redds between March 9 and May 18, 2003. Estimated survival from egg to fry for these redds, which were all subjected to some degree of dewatering during the incubation and post-hatch intragravel rearing period, ranged from 16.1 to 63.2 percent and averaged 27.8 percent (assuming 4,500 eggs/redd). The peak emergence date ranged from April 1 to 29, with the average peak about April 14, 2003. Mean fork length of fall Chinook salmon emerging from individual redds ranged from 38.3 to 41.2 mm, and lengths of fish emerging from individual redds increased throughout the emergence period.

  8. Evaluation of hyperbaric filtration for fine coal dewatering. Eleventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1995-12-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I - Model Development, Phase II - Laboratory Studies, Phase III - Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  9. Evaluation of hyperbaric filtration for fine coal dewatering. Twelfth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-02-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely: (1) Phase I Model Development; (2) Phase II Laboratory Studies; and (3) Phase III Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  10. Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, August 1982-August 1983

    SciTech Connect

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.J.; Tierney, J.W.; Adams, J.; Bhat, N.; Binkley, T.; Chi, S.M.; Kakwani, R.; Qamar, I.

    1983-09-01

    The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal with experiments also being conducted with Upper Freeport and Illinois No. 6 coals. During the past year, filter cakes from the above coals with widely varied size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. A module of the network model for calculating single phase permeabilities was completed and tested. The report is divided into four parts: summary and deliverables; work forecast for the 1983-84; detailed descriptions of technical progress for particle/filter cake characterization; theoretical modeling, and enhanced dewatering methods; and appendices. 11 references, 35 figures, 11 tables.

  11. Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products.

    PubMed

    Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale

    2012-05-15

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.

  12. Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products

    SciTech Connect

    Bhave, Ramesh R; Kuritz, Tanya; Powell, Lawrence E; Adcock, Kenneth Dale

    2012-01-01

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. We have evaluated the dewatering of Nannochloropsis sp. with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ~99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, it can be shown that an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.

  13. Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products.

    PubMed

    Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale

    2012-05-15

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes. PMID:22510094

  14. Compressional rheology: A tool for understanding compressibility effects in sludge dewatering.

    PubMed

    Stickland, Anthony D

    2015-10-01

    Water and wastewater treatment sludges exhibit compressible behaviour due to flocculation and aggregation. At a critical solids concentration called the gel point, which is as low as 1-2 v/v%, a continuous interconnected network of particles is formed that can resist an applied load. The applied load (mechanical filtration pressure or buoyancy in settling for example) must exceed the network strength in order to consolidate the network. The network strength increases with solids concentration such that the equilibrium extent of consolidation is a function of the applied load. Improved understanding of the nature of compressible suspensions can have a significant impact through optimising design and operation of sludge handling and dewatering processes. This work gives an overview of compressional rheology, which has proven to be a useful tool for describing the solid-liquid separation of compressible systems. This is followed by three examples where compressibility effects must be taken into account, namely the extraction of material properties for extremely compressible materials, consolidation and crust formation during constant rate evaporation, and the effect of bed height in thickening.

  15. Characteristics and kinetics of phosphate adsorption on dewatered ferric-alum residuals.

    PubMed

    Wang, Changhui; Guo, Wei; Tian, Binghui; Pei, Yuansheng; Zhang, Kejiang

    2011-01-01

    The characteristics and kinetics of phosphate (P) adsorption on dewatered ferric-alum water treatment residuals (Fe-Al-WTRs) have been investigated. The existence of both aluminum (Al) and iron (Fe) in the residuals can result in significantly high P adsorption capacities. The P adsorption kinetics of Fe-Al-WTRs exhibited an initial rapid phase, followed by a slower phase. This could be described by three models, including a pseudo-first-order equation, a pseudo-second-order equation, and a double-constant rate equation. The latter was especially good for those runs with initial P concentrations of 500 and 1000 mg L(-1). Both the Langmuir and Freundlich isotherms fit the experimental data well, particularly the Freundlich isotherm, which had a correlation coefficient of 0.9930. The maximum measured P adsorption capacity of Fe-Al-WTRs was 45.42 mg g(-1), which is high when compared to those of most WTRs, as well as other reported adsorbents. The results also show that the P adsorption is a spontaneous endothermic process. Highest P adsorption capacities of Fe-Al-WTRs were measured at low pHs and a particle size range of 0.6 to 0.9 mm.

  16. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.

    PubMed

    O'Kelly, Brendan C

    2008-01-01

    The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials. PMID:17936608

  17. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering

    NASA Astrophysics Data System (ADS)

    Pratt, Brian R.

    1998-04-01

    Syneresis cracks, often confused with subaerial desiccation phenomena, are traditionally ascribed to subaqueous shrinkage whereby salinity changes caused deflocculation of clay. This and other previously proposed mechanisms fail to account for their occurrence in low-energy, typically non-evaporitic facies, stratigraphically sporadic distribution, intrastratal formation under shallow burial depths, variation in morphology, degree of contraction, generation of sedimentary dikelets as crack fills, and deformation of dikelets and enclosing layers. Instead, it is suggested that ground motion from strong synsedimentary earthquakes caused argillaceous sediments to dewater, interbedded sands and silts to be almost simultaneously liquefied and injected into the resulting fissures, and then these dikelets to be distorted. Comparative rarity of syneresis cracks in Phanerozoic versus Precambrian marine strata is considered to be primarily an evolutionary consequence of theological changes caused by increased organic binding of clay flocs in the water column, greater input of organic matter into the sediment, and the diversification of sediment-dwelling bacteria and meiofauna in Phanerozoic deposits.

  18. Strategies for Treating and Dewatering Contaminated Soils and Sediments Simultaneously - 13389

    SciTech Connect

    Bickford, Jody; Foote, Martin

    2013-07-01

    MSE Technology Applications, Inc. (MSE) was asked to perform a series of treatability studies by Global Technologies, Inc. (Global) and M{sup 2} Polymer Technologies, Inc. (M{sup 2} Polymer) using Global's metal treatment agent, Molecular Bonding System (MBS) and M{sup 2} Polymer's super-absorbent polymer, Waste Lock 770 (WL-770). The primary objective of the study was to determine if the two products could be used as a one-step treatment process to reduce the leachability of metals and de-water soils and/or sediments simultaneously. Three phases of work were performed during the treatability study. The first phase consisted of generating four bench-scale samples: two treated using only MBS and two treated using only WL- 770, each at variable concentrations. The second phase consisted of generating nine bench-scale samples that were treated using MBS and WL-770 in combination with three different addition techniques. The third phase consisted of generating four intermediate-scale samples that were treated using MBS and WL-770 simultaneously. The soils used in the treatability study were collected at the Mike Mansfield Advanced Technology Center in Butte, Montana. The collected soils were screened at 4 mesh (4.75 millimeters (mm)) to remove the coarse fraction of the soil and spiked with metallic contaminants of lead, cadmium, nickel, mercury, uranium, chromium, and zinc. (authors)

  19. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils

    SciTech Connect

    Merchand, P.; Lacy, S. M.

    1985-11-05

    Oil is dehydrated and/or desalted by the influence of a dewatering and desalting formulation which can be characterized as an admixture of (i) a demulsifier preferably an alkylene oxide aklyl phenol-formaldehyde condensate such as a poly ethoxylated nonylphenol-for-maldehyde condensate and (ii) a deoiler which is usefully a polyol such as ethylene glycol or poly (ethylene glycol) of Mw ranging from 106 to 44,000 and preferably ethylene glycol. The aqueous formulation may usefully contain a cosolvent such as isopropanol. The surface active agent composition is admixed with the salt-containing oil which has been emulsified with water, and heated whereby the formulation of surface active agents aids in breaking of the emulsion and transfer of salts to the aqueous phase preferably after passage through an electric coalescer whereby a clean oil product suitable for use in refining operations is recovered with remarkably low oil carry under with the effluent water when ethylene glycol is formulated into the system as the deoiler.

  20. Applicability of industrial wastewater as carbon source for denitrification of a sludge dewatering liquor.

    PubMed

    Chen, Jiazhong; Lee, Yoomin; Oleszkiewicz, Jan A

    2013-01-01

    The applicability of four industrial waste streams from potato processing, canola processing and oil refining, biodiesel production (glycerol), and glycol as substitutes to methanol and ethanol in denitrification of anaerobically digested sludge dewatering liquor (centrate) was evaluated in bench-scale sequencing batch reactors. It was found that glycerol was the best substitute with the specific denitrification rate (SDNR) of 13 mg NO3-N/(g VSS x h) followed by potato processing wastewater at 12mg NO3-N/(g VSS x h). Both substrates produced faster SDNR than methanol's 10mg NO3-N/(g VSS x h); however, they were inferior to ethanol's 17 mg NO3-N/(g VSS x h). Glycol had SDNR of 8 mg NO3-N/(g VSS x h) and demonstrated a very fast acclimation rate, i.e. the response in increased denitrification rate was visible in three days following glycol addition. Canola processing and oil refining wastewater was considered an inappropriate carbon source due to a low SDNR of 5 mg NO3-N/(g VSS x h) and apparent inhibitory effect on nitrification.

  1. Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering.

    PubMed

    Zhang, Jiefeng; She, Qianhong; Chang, Victor W C; Tang, Chuyang Y; Webster, Richard D

    2014-03-18

    Separating urine from domestic wastewater promotes a more sustainable municipal wastewater treatment system. This study investigated the feasibility of applying a forward osmosis (FO) dewatering process for nutrient recovery from source-separated urine under different conditions, using seawater or desalination brine as a low-cost draw solution. The filtration process with the active layer facing feed solution exhibited relatively high water fluxes up to 20 L/m(2)-h. The process also revealed relatively low rejection to neutral organic nitrogen (urea-N) in fresh urine but improved rejection of ammonium (50-80%) in hydrolyzed urine and high rejection (>90%) of phosphate, potassium in most cases. Compared to simulation based on the solution-diffusion mechanism, higher water flux and solute flux were obtained using fresh or hydrolyzed urine as the feed, which was attributed to the intensive forward nutrient permeation (i.e., of urea, ammonium, and potassium). Membrane fouling could be avoided by prior removal of the spontaneously precipitated crystals in urine. Compared to other urine treatment options, the current process was cost-effective and environmentally friendly for nutrient recovery from urban wastewater at source, yet a comprehensive life-cycle impact assessment might be needed to evaluate and optimize the overall system performance at pilot and full scale operation. PMID:24564179

  2. Environmental assessment of different dewatering and drying methods on the basis of life cycle assessment.

    PubMed

    Stefaniak, J; Zelazna, A; Pawłowski, A

    2014-01-01

    Sewage sludge is an inevitable product of wastewater treatment in municipal wastewater plants and its amount has increased dramatically due to the growing number of sewage systems users. This sludge needs to be adequately treated in order to decrease its hazardous properties and any negative influence on the environment. In this paper, gate to gate analysis, on the basis of life cycle assessment (LCA), was carried out in order to compare the environmental impact of alternative ways of sludge processing employing a dewatering press and three different kinds of dryers - belt dryer, container dryer and batch dryer. SimaPro 7.2 software and Ecoinvent 2.2 database were used to estimate the carbon footprint and energy balance of these processes. The main energy consumption in the scenarios analyzed is caused by the drying process. The solution based on application of the batch dryer allows a saving of 39.6% of energy compared with the most energy-consuming solution using a belt dryer. Sludge processing using belt and container dryers cause greater environmental burdens. PMID:24569277

  3. Application of a three-dimensional network model to coal dewatering

    SciTech Connect

    Qamar, I.

    1986-01-01

    A bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves, single phase permeabilities and two phase flow properties (dewatering curves) for coal filter cakes. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give a capillary pressure less than 0.5 psia) is assigned to the nodes and the rest is distributed to the bonds according to the pore size distribution. The micrographic pore size distribution, used as an input, is determined experimentally. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam Coal), formed with distilled water, have been calculated. The results for six -32 mesh coal cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters - the entry diameter constant. A correlation is presented to estimate the modified entry diameter constant using experimentally determined surface tension and contact angle values. The size distribution of particles in dispersed state has been correlated with that in the cake which in turn has been correlated with the pore size distribution. An equilibrium desaturation curve has been successfully calculated for -32 mesh Pittsburgh Seam coal using the pore size distribution estimated from the dispersed particle size distribution. Calculated single phase permeabilities, using a bond-flow correlated network and a simple cubic lattice, agree with the experimental values better than a bond-correlated network using a face-centered cubic lattice.

  4. Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering.

    PubMed

    Zhang, Jiefeng; She, Qianhong; Chang, Victor W C; Tang, Chuyang Y; Webster, Richard D

    2014-03-18

    Separating urine from domestic wastewater promotes a more sustainable municipal wastewater treatment system. This study investigated the feasibility of applying a forward osmosis (FO) dewatering process for nutrient recovery from source-separated urine under different conditions, using seawater or desalination brine as a low-cost draw solution. The filtration process with the active layer facing feed solution exhibited relatively high water fluxes up to 20 L/m(2)-h. The process also revealed relatively low rejection to neutral organic nitrogen (urea-N) in fresh urine but improved rejection of ammonium (50-80%) in hydrolyzed urine and high rejection (>90%) of phosphate, potassium in most cases. Compared to simulation based on the solution-diffusion mechanism, higher water flux and solute flux were obtained using fresh or hydrolyzed urine as the feed, which was attributed to the intensive forward nutrient permeation (i.e., of urea, ammonium, and potassium). Membrane fouling could be avoided by prior removal of the spontaneously precipitated crystals in urine. Compared to other urine treatment options, the current process was cost-effective and environmentally friendly for nutrient recovery from urban wastewater at source, yet a comprehensive life-cycle impact assessment might be needed to evaluate and optimize the overall system performance at pilot and full scale operation.

  5. [Optimization for phosphorous removal in thickening and dewatering sludge water by polyaluminum chloride].

    PubMed

    Zhou, Zhen; Hu, Da-Long; Qiao, Wei-Min; Chen, Guan-Han; Jiang, Ling-Yan; Li, Zhen; Mai, Sui-Hai

    2014-06-01

    Based on the comparison of phosphorous removal in sludge water and its supernatant by polyaluminum chloride (PAC), separate and combined effects of Al/P mole ratio, pH and mixing speed (MS) on phosphorus removal by PAC for the supernatant of thickening and dewatering sludge water were analyzed by the response surface methodology (RSM), and kinetics of phosphorous removal by PAC was also investigated. The results showed that direct addition of PAC into sludge water deteriorated its settling characteristics, and suspended solids in the sludge water could decrease the phosphorus removal efficiency. The RSM analysis results demonstrated that the effect of individual operation parameter on phosphorus removal was followed as the order of Al/P > pH > MS, and the optimal process parameters with phosphorus removal efficiency of 97.8% were Al/P = 2.49, pH = 8.3 and MS 398 r x min(-1), respectively. The verification experiment showed that the RSM model was valid and effective. Kinetic analysis illustrated that phosphorus removal by PAC was divided into two stages, a chemical precipitation and rapid adsorption stage, followed by a chemical precipitation stage that conformed to the second-order kinetics.

  6. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    USGS Publications Warehouse

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  7. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this

  8. Metagenomic Comparison of Antibiotic Resistance Genes Associated with Liquid and Dewatered Biosolids.

    PubMed

    McCall, Crystal A; Bent, Elizabeth; Jørgensen, Tue S; Dunfield, Kari E; Habash, Marc B

    2016-03-01

    Municipal biosolids (MBs) that are land-applied in North America are known to possess an active microbial population that can include human pathogens. Activated sludge is a hotspot for the accumulation of antibiotics and has been shown to be a selective environment for microorganisms that contain antibiotic resistance genes (ARGs); however, the prevalence of ARGs in MBs is not well characterized. In this study, we enriched the plasmid metagenome from raw sewage sludge and two CP2 MBs, a mesophilic anaerobic digestate and a dewatered digestate, to evaluate the presence of ARGs in mobile genetic elements. The CP2-class biosolids are similar to Class B biosolids in the United States. The CP2 biosolids must meet a microbiological cut off of 2 × 10 colony-forming units (CFU) per dry gram or 100 mL of biosolids. The enriched plasmid DNA was sequenced (Illumina MiSeq). Sequence matching against databases, including the Comprehensive Antibiotic Resistance Database (CARD), MG-RAST, and INTEGRALL, identified potential genes of interest related to ARGs and their ability to transfer. The presence and abundance of different ARGs varied between treatments with heterogeneity observed among the same sample types. The MBs plasmid-enriched metagenomes contained ARGs associated with resistance to a variety of antibiotics, including β-lactams, rifampicin, quinolone, and tetracycline as well as the detection of extended spectrum β-lactamase genes. Cultured bacteria from CP2 MBs possessed antibiotic resistances consistent with the MBs metagenome data including multiantibiotic-resistant isolates. The results from this study provide a better understanding of the ARG and MGE profile of the plasmid-enriched metagenome of CP2 MBs. PMID:27065392

  9. [Optimized cultivation of a bioflocculant M-C11 produced by Klebsiella pneumoniae and its application in sludge dewatering].

    PubMed

    Liu, Jie-Wei; Ma, Jun-Wei; Liu, Yan-Zhong; Yang, Ya; Yue, Dong-Bei; Wang, Hong-Tao

    2014-03-01

    A bioflocculant-producing Klebsiella pneumoniae strain C11 was screened out from activated sludge and the optimal medium conditions for the production of microbial flocculant M-C11 were determined. The bioflocculant was used in activated sludge dewatering and compared with conventional chemical conditioners. Effects of pH, CaCl2 dosages and M-C11 dosages on sludge dewaterability were investigated. The optimized conditions for M-C11 production indicated that the optimal medium carbon, nitrogen, metal ion were 30 g x L(-1) glucose, 2 g x L(-1) NaNO3 and 0.5 g x L(-1) MgSO4, respectively. The flocculating rate with kaolin suspension was as high as 91.70%, when incubated in a rotary shaker at 150 r x min(-1) and 37 degrees C for 48 h. The microbial focculant showed excellent pH and thermal stability over a pH range of 4-8 and a temperature range of 20-60 degrees C. Then the bioflocculant M-C11 produced by Klebsiella pneumoniae was employed to enhance the sludge dewaterability. The sludge resistance to filtration (SRF) and cake moisture decreased from 11.64 x 10(12) m x kg(-1) and 98.86% to 4.66 x 10(12) m x kg(-1) and 83.74%, respectively. Sludge dewatering performance was more significantly improved with the optimal conditioning dosages (pH = 6, 3 mL M-C11, 4 mL CaCl2), than inorganic flocculating reagents such as aluminum sulfate and polymeric aluminum chloride (PAC). The microbial flocculant has advantages over traditional sludge conditioners for its lower cost, benign biodegradability and ignorable secondary pollution. In addition, it was favorably adapted to the sludge pH and salinity. The novel bioflocculant could be used as a potential conditioner for sludge dewatering.

  10. Study of de-watering from the gelatinous precipitate formed during co-precipitation of Nd-YAG powder

    SciTech Connect

    Karmakar, Sanjib; Sharma, Rachna; Pathak, S. K.; Gupta, S. M.; Gupta, P. K.

    2013-02-05

    Neodymium doped Yttrium Aluminium Garnet (Nd:YAG) ceramics have been synthesised using coprecipitation technique and high temperature vacuum sintering. Gelatinous like precipitates were obtained when precursors of Nd, Al and Yb-nitrate solutions are co-precipitated using ammonia co-precipitant. De-watering from the gelatinous like precipitates is a big challenge and it possesses difficulty in filtration. Evaporation of water by heating resulted in strong agglomerated powder. Different agents were used to ease the filtration process, which is correlated with the phase in the calcined powder.

  11. A new, pellet-forming fungal strain: its isolation, molecular identification, and performance for simultaneous sludge-solids reduction, flocculation, and dewatering.

    PubMed

    Subramanian, S Bala; Yan, Song; Tyagi, R D; Surampalli, R Y

    2008-09-01

    Filamentous and nonfilamentous microorganisms can cause bulking and foaming in wastewater sludge settling and dewatering. In this research, sludge degradation and bioflocculation was studied using pellet-forming filamentous fungi isolated from municipal wastewater sludge. To understand the role of filamentous fungi in sludge settling and dewatering, the isolated fungi was inoculated with both spores and pellets (beads) into sterilized and nonsterilized sludge having different suspended-solids concentrations. Biofloc formation, sludge settling, sludge degradation, change in pH of fungal-grown medium, zeta potential, and microscopic analysis of bioflocs were performed. The suspended-solids concentration was found to decrease over 5 d of incubation because of use and biodegradation by fungal biomass. The isolated fungal strain was well adapted to forming biofloc and to interacting with natural microbial flora and exhibited low capillary-suction time for sludge dewatering. PMID:18939607

  12. Field evaluation of gas-lift and progressive-cavity pumps as effective dewatering methods for coalbed methane wells. Final report, April 1984-December 1985

    SciTech Connect

    Graves, S.L.; Hollingsworth, F.C.; Beavers, W.M.

    1986-03-01

    Field evaluations of gas-lift and progressive-cavity pumps were conducted to determine their effectiveness as dewatering techniques for coalbed-methane wells in the Warrior Coal Field. AMPCO installed a gas-lift system in AMPCO Well No. 6. Problems included poor performance of all gas-lift valve designs and higher instantaneous water production rates than anticipated due to heading and unloading. The test provided the conclusion that gas lift is an effective start-up dewatering tool for initial removal of large amounts of water and solids but that in use as a long-term dewatering tool, needs additional evaluation relative to capital cost, valve design, and extended performance.

  13. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  14. Poc-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    B.K. Parekh; D. Tao; J.G. Groppo

    1998-10-21

    In the last quarterly report, it was noticed that the baseline dewatering data varied significantly. This abnormality was attributed to the use of house vacuum which varied significantly during the testing. This quarter tests were repeated using a portable vacuum pump which provided a constant vacuum of 25 inches of mercury. Using 30 secs cake drying time and 30 secs cake formation time, the high- and low-porosity ceramic leaf filters provided 21.5% and 18.0% filter cake moistures, respectively. The solids loading on the high- and low-porosity filters were 0.8 Kg/m 2 and 0.44 Kg/m 2 , respectively. Addition of 10 g/t of an anionic flocculant lowered the filter cake moisture from 22.0% to 14.0% using the high-porosity filter, and 18.0% to 13.5% using the low-porosity filter. Addition of 15 g/t of a cationic flocculant lowered filter cake moisture from 18.0% to 16.0% using the low-porosity filter. High-porosity filter did not provide any lowering of filter cake moisture, however, the solids loading increased from 1.5 kg/m 2 to 5.8 kg/m 2 at a flocculant dosage of 25 g/t. This high solids loading indicated thicker filter cake which would retain a high moisture. Among the three surfactants studied, only the non-ionic and the cationic were effective in lowering the filter cake moisture. 0.4 kg/t of a non-ionic surfactant (octyl phenoxy polyethoxy ethanol) lowered filter cake moisture from 19.5% to 16.8%; and 1 kg/t of the cationic surfactant CPCL, lowered the filter cake moisture from 19.0% to 15.8%. Addition of 0.4 kg/t of copper ions or 0.3 kg/t of aluminum ions lowered the filter cake moisture from 20.5% to 17.0%, using the low-porosity filter. The high-porosity filter which showed increase solids loading (thicker filter cakes) did not provide any lowering of the filter cake moisture. Low-porosity filter was found to be more effective in lowering the filter cake moisture than high-porosity ceramic filter. However, high-porosity was more effective in providing higher

  15. The assessment of human exposure to radionuclides from a uranium mill tailings release and mine dewatering effluent.

    PubMed

    Ruttenber, A J; Kreiss, K; Douglas, R L; Buhl, T E; Millard, J

    1984-07-01

    This study provides an assessment of human exposure to radiation from a river system contaminated by radionuclides of the 238U decay series released through a dam break at a uranium mill tailings pond and by the continuous discharge of dewatering effluent from 2 uranium mines. The in vivo analyses of radionuclides in 6 Navajo Indians who lived near the river indicate no detectable elevations above background concentrations. Dose estimates for inhalation of suspended river sediment indicate a maximum annual 50-yr dose commitment of 204 mrem to the endosteum. Estimates of doses (50-yr dose commitments) from the ingestion of livestock range between 1 mrem (to liver) and 79 mrem (to bone) suggest that the major contribution to human exposure is from mine dewatering effluent that has been continuously released into the river system for many years. Although the estimated exposures do not exceed existing state or federal regulations, their magnitude justifies further measurement of radionuclides in animals and in the natural environment and the consideration of strategies to reduce radiation exposure to humans and animals.

  16. Survival and behaviour of juvenile unionid mussels exposed to thermal stress and dewatering in the presence of a sediment temperature gradient

    USGS Publications Warehouse

    Archambault, L.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Our findings suggest that rising stream water temperature and dewatering may directly impact freshwater mussel abundance by causing mortality and may have indirect impacts via sublethal effects. Reduced burrowing capacity may hamper ability to escape predation or unfavourably high or low flows, and decreased byssus production may inhibit attachment and dispersal capabilities in juveniles.

  17. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  18. Anaerobic and aerobic transformations affecting stability of dewatered sludge during long-term storage in a lagoon.

    PubMed

    Lukicheva, Irina; Tian, Guanglong; Cox, Albert; Granato, Thomas; Pagilla, Krishna

    2012-01-01

    The goal of this work was to study long-term behavior of anaerobically digested and dewatered sludge (biosolids) in a lagoon under anaerobic and aerobic conditions to determine the stability of the final product as an indicator of its odor potential. Field lagoons were sampled to estimate spatial and temporal variations in the physical-chemical properties and biological stability characteristics such as volatile solids content, accumulated oxygen uptake, and soluble protein content and odorous compound assessment. The analyses of collected data suggest that the surface layer of the lagoon (depth of above 0.15 m) undergoes long-term aerobic oxidation resulting in a higher degree of stabilization in the final product. The subsurface layers (depth 0.15 m below the surface and deeper) are subjected to an anaerobic environment where the conditions favor the initial rapid organic matter degradation within approximately the first year, followed by slow degradation. PMID:22368823

  19. Effects of sludge retention time on oxic-settling-anoxic process performance: Biosolids reduction and dewatering properties.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Bustamante, Heriberto; Price, William E; Nghiem, Long D

    2016-10-01

    In this study, the effect of sludge retention time (SRT) on oxic-settling-anoxic (OSA) process was determined using a sequencing batch reactor (SBR) attached to external aerobic/anoxic reactors. The SRT of the external reactors was varied from 10 to 40d. Increasing SRT from 10 to 20d enhanced volatile solids destruction in the external anoxic reactor as evidenced by the release of nutrients, however, increasing the SRT to 40d did not enhance volatile solids destruction further. Relatively short SRT (10-20d) favoured the conversion of destroyed solids into inert products. The application of an intermediate SRT (20d) of the external reactor showed the highest sludge reduction performance (>35%). Moreover, at the optimum SRT, OSA improved sludge dewaterability as demonstrated by lower capillary suction time and higher dewatered cake solids content. PMID:27474952

  20. Optimized production of a novel bioflocculant M-C11 by Klebsiella sp. and its application in sludge dewatering.

    PubMed

    Liu, Jiewei; Ma, Junwei; Liu, Yanzhong; Yang, Ya; Yue, Dongbei; Wang, Hongtao

    2014-10-01

    The optimized production of a novel bioflocculant M-C11 produced by Klebsiella sp. and its application in sludge dewatering were investigated. The optimal medium carbon source, nitrogen source, metal ion, initial pH and culture temperature for the bioflocculant production were glucose, NaNO3, MgSO4, and pH7.0 and 25°C, respectively. A compositional analysis indicated that the purified M-C11 consisted of 91.2% sugar, 4.6% protein and 3.9% nucleic acids (m/m). A Fourier transform infrared spectrum confirmed the presence of carboxyl, hydroxyl, methoxyl and amino groups. The microbial flocculant exhibited excellent pH and thermal stability in a kaolin suspension over a pH range of 4.0 to 8.0 and a temperature range of 20 to 60°C. The optimum bioflocculating activity was observed as 92.37% for 2.56mL M-C11 and 0.37g/L CaCl2 dosages using response surface methodology. The sludge resistance in filtration (SRF) decreased from 11.6×10(12) to 4.7×10(12)m/kg, which indicated that the sludge dewaterability was remarkably enhanced by the bioflocculant conditioning. The sludge dewatering performance conditioned by M-C11 was more efficient than that of inorganic flocculating reagents, such as aluminum sulfate and polymeric aluminum chloride. The bioflocculant has advantages over traditional sludge conditioners due to its lower cost, benign biodegradability and negligible secondary pollution. In addition, the bioflocculant was favorably adapted to the specific sludge pH and salinity.

  1. Nitrogen, phosphorus, and bacteria tile and groundwater quality following direct injection of dewatered municipal biosolids into soil.

    PubMed

    Gottschall, N; Edwards, M; Topp, E; Bolton, P; Payne, M; Curnoe, W E; Coelho, B Ball; Lapen, D R

    2009-01-01

    Application of municipal biosolids (sewage) to agricultural land is a common practice to improve soil physical quality and fertility. The chosen method of land application can have a strong impact on the extent of adjacent water contamination by nutrients and bacteria. Dewatered municipal biosolids (DMB) were applied to silt-clay loam experimental field plots in Ontario, Canada using two application methods: (i) surface spreading followed by shallow incorporation (SS) and (ii) a newly developed implement that directly injects DMB into the topsoil (DI). The objective of this study was to compare N, P, and bacteria quality of tile drainage and shallow groundwater associated with each land application technique. There were no significant differences (P > 0.05) in N, P, and bacteria tile mass loads among the application treatments for time periods <100 d postapplication, when the greatest peak loads and peak tile water concentrations were observed. Both land application treatments caused groundwater Escherichia coli contamination to at least 1.2 m depth below surface after the first postapplication rainfall event, and NO(3)-N contamination to at least 2.0 m depth below surface. The DI treatment did, however, have significantly (P < 0.05) higher tile mass loads of total Kjeldahl N (TKN), total phosphorus (TP), E. coli, Enterococci, and Clostridium perfringens relative to the SS treatment for time periods >100 d postapplication. Nevertheless, relative to tile effluent data collected <100 d postapplication (no application treatment differences), peak loads, and concentrations during this time were, overall, considerably lower for both treatments. This finding, along with no significant differences in N, P, and bacteria groundwater concentrations among the application treatments, and that the direct injection technique could potentially reduce vector attraction problems and odor, suggests that the direct injection technique should be considered a dewatered municipal

  2. Nitrogen, phosphorus, and bacteria tile and groundwater quality following direct injection of dewatered municipal biosolids into soil.

    PubMed

    Gottschall, N; Edwards, M; Topp, E; Bolton, P; Payne, M; Curnoe, W E; Coelho, B Ball; Lapen, D R

    2009-01-01

    Application of municipal biosolids (sewage) to agricultural land is a common practice to improve soil physical quality and fertility. The chosen method of land application can have a strong impact on the extent of adjacent water contamination by nutrients and bacteria. Dewatered municipal biosolids (DMB) were applied to silt-clay loam experimental field plots in Ontario, Canada using two application methods: (i) surface spreading followed by shallow incorporation (SS) and (ii) a newly developed implement that directly injects DMB into the topsoil (DI). The objective of this study was to compare N, P, and bacteria quality of tile drainage and shallow groundwater associated with each land application technique. There were no significant differences (P > 0.05) in N, P, and bacteria tile mass loads among the application treatments for time periods <100 d postapplication, when the greatest peak loads and peak tile water concentrations were observed. Both land application treatments caused groundwater Escherichia coli contamination to at least 1.2 m depth below surface after the first postapplication rainfall event, and NO(3)-N contamination to at least 2.0 m depth below surface. The DI treatment did, however, have significantly (P < 0.05) higher tile mass loads of total Kjeldahl N (TKN), total phosphorus (TP), E. coli, Enterococci, and Clostridium perfringens relative to the SS treatment for time periods >100 d postapplication. Nevertheless, relative to tile effluent data collected <100 d postapplication (no application treatment differences), peak loads, and concentrations during this time were, overall, considerably lower for both treatments. This finding, along with no significant differences in N, P, and bacteria groundwater concentrations among the application treatments, and that the direct injection technique could potentially reduce vector attraction problems and odor, suggests that the direct injection technique should be considered a dewatered municipal

  3. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge.

    PubMed

    Citeau, M; Larue, O; Vorobiev, E

    2011-03-01

    This paper deals with the influence of pH, salt and polyelectrolytes on the electro-dewatering (EOD) of agro-industrial sludge at 3% w/w of dry matter. Initially, a selection of polyelectrolyte types and doses was carried out for mechanical dewatering tests. Subsequent EOD tests were carried out in a laboratory two sided filter press at constant electric current density of 80 A/m(2) and at pressure of 5 bar. It was found that whatever was the initial value of pH, salt content or polyelectrolyte type, the EOD progressed always towards the same equilibrium point at around 50% w/w of dry matter. EOD rate and energy input was not affected by the presence of polyelectrolyte whatever was its charge density and molecular weight. However, EOD rate and specific energy consumption and repartition of liquid at anode and cathode sides were strongly influenced by the salt content (adjusted by Na(2)SO(4)) or by the initial pH (adjusted with H(2)SO(4) or NaOH). EOD performed better at lower salt content and at slightly acid pH. In optimum conditions, the process (EOD) required 2 h to reach dry matter of 40% w/w with specific energy consumption of 0.25 k Wh/kg of water removed for the treatment of conditioned sludge. For comparison, compression without electric field at 5 bar required 11 h to reach 22% w/w of dry matter. This work emphasizes and demonstrates that the electrolytic hydroxide and hydronium ions formed at the electrodes have considerable influence in the course of EOD.

  4. Effect of surfactant washing on enhanced dewatering of fine coal. [Microstructure and porosity of coal filter cakes

    SciTech Connect

    Binkley, T.O.

    1985-01-01

    The final moisture content of fine coal filter cakes in coal preparation plants is determined by the filtration and dewatering process. Washing the coal filter cake with a surfactant solution is a potentially economical technique to reduce the final moisture in a fine coal filter cake. The microscopic structure of the porous coal filter cake determines the relative permeability, porosity and final moisture content of the coal filter cake. An experimental study of washing fine coal filter cakes formed from coal-water slurries was conducted. The effect of surfactants on the structure of fine coal filter cakes and the final moisture of these filter cakes was investigated. The filter cake structure was determined using the Cahn and Fullman section chord method. This micrographic technique of quantitative stereology utilized an optical microscope and an image analyzer to measure particle and pore sizes. The washing phenomena using Triton X-114 and Aerosol-OT was investigated to determine the ability of surfactants to enhance the dewatering of fine coal. A significant reduction in final moisture content was achieved by washing the filter cake with a 100 ppM Aerosol-OT solution. While Triton X-114 can also produce a significant reduction in the final moisture content in a filter cake, the amount of surfactant adsorbed from the wash liquor onto the coal in the filter cake was, however, more than Aerosol-OT. Wash ratios of ten gave optimum results for both types of surfactants. The effects of washing on particle and pore size distributions in the coal filter cake were analyzed by micrographic measurement. The mean size of the particles and pores was used to correlate the washing results. Comparisons were made between double distilled water filter cakes and double distilled water filter cakes washed with either double distilled water or surfactant solutions. Experimental results are discussed. 25 refs., 68 figs., 32 tabs.

  5. Predicting spread of invasive exotic plants into de-watered reservoirs following dam removal on the Elwha River, Olympic National Park, Washington

    USGS Publications Warehouse

    Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve

    2011-01-01

    The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.

  6. Reassessment of the effects of construction dewatering on ground-water levels in the Cowles Unit, Indiana Dunes National Lakeshore, Indiana : Supplement to Geological Survey Water Resources Investigations 78-138

    USGS Publications Warehouse

    Gillies, Daniel C.; Lapham, Wayne W.

    1980-01-01

    A revised dewatering plan for the construction of a nuclear power plant at the Northern Indiana Public Service Company 's (NIPSCO) Bailly Generating Station and evidence that suggests that a change in the characteristics of the confining unit 2 in and near Cowles Bog National Landmark may exist have resulted in a reassessment of the effects of construction dewatering on ground-water levels in the Indiana Dunes National Lakeshore. Model results indicate that the revision in the dewatering plan produces water-level declines that do not differ significantly from those described previously. However, when the change in the confining unit beneath Cowles Bog is considered, simulations of the simultaneous decline of a seepage mound after sealing of the fly-ash-ponds and the second phase of construction dewatering indicate that the simulated water-level declines in the aquifer unit 1 at Cowles Bog may be below the water levels tolerated by the National Park Service after 18 months. The water levels may even decline below the tolerable levels in spite of NIPSCO 's proposed plan of artificially recharging the aquifer unit 1 near the excavation site at 400 gal/min. The magnitude of the simulated water-level declines in unit 1 within the Lakeshore, caused by pumping from the excavation, depends on the relation in time between the second phase of dewatering and the decline of the seepage mound after sealing of the fly-ash-ponds, but not on the duration of dewatering beyond 18 months. (USGS)

  7. Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: analysis of the influence of the operating conditions using the response surface methodology.

    PubMed

    Mahmoud, Akrama; Fernandez, Aurora; Chituchi, Toma-Mihai; Arlabosse, Patricia

    2008-08-01

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (temperature <100 degrees C and pressure <3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite rotatable design was used to establish the optimum conditions for the TAMD of suspensions of fine particles. Significant regression models, describing changes on final dry solids content with respect to independent variables, were established with regression coefficients (usually called determination coefficients), R(2), greater than 80%. Experiments were carried out on a laboratory filtration/compression cell, firstly on different compressible materials: synthetic mineral suspensions such as talc and synthetic organic suspensions such as cellulose, and then on industrial materials, such as bentonite sludge provided by Soletanche Bachy Company. Experiment showed that the extent of TAMD for a given material is particularly dependent on their physical and chemical properties but also on processing parameters.

  8. Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings.

    PubMed

    Xu, Fuqing; Wang, Feng; Lin, Long; Li, Yebo

    2016-01-01

    To select a proper inoculum for the solid state anaerobic digestion (SS-AD) of yard trimmings, digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters were compared at substrate-to-inoculum (S/I) ratios from 0.2 to 2 (dry basis), and total solids (TS) contents from 20% to 35%. The highest methane yield of around 244L/kg VSfeed was obtained at an S/I ratio of 0.2 and TS content of 20% for both types of inoculum. The highest volumetric methane productivity was obtained with dewatered effluent at an S/I ratio of 0.6 and TS content of 24%. The two types of inoculum were found comparable regarding methane yields and volumetric methane productivities at each S/I ratio, while using dewatered effluent as inoculum reduced the startup time. An S/I ratio of 1 was determined to be a critical level and should be set as the upper limit for mesophilic SS-AD of yard trimmings.

  9. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy)

    NASA Astrophysics Data System (ADS)

    Brunetti, Elio; Jones, Jon P.; Petitta, Marco; Rudolph, David L.

    2013-03-01

    The development of large-scale bedrock quarry operations often requires high-volume and long-term groundwater extraction to maintain a sustainable working environment. These dewatering activities often influence groundwater levels and flow patterns regionally. In the present study, the influence of the dewatering of the travertine quarry operations near the city of Tivoli, Italy, are quantitatively investigated through an integrated analysis of field data and numerical modeling. Lowering of regional groundwater levels in the vicinity of the quarry has led to destructive land subsidence and alterations to the flow system sustaining a hot-spring area. The study employs a finite element numerical model (FEFLOW) to evaluate and quantify the impact of the extensive dewatering on fault-controlled regional groundwater flow in the Acque Albule basin. By incorporating the physical field data and historical hydrologic information, the numerical model was calibrated against three groundwater scenarios, reproducing the effects of different exploitation activities, coupled with natural changes over the course of the quarry operation. The results indicate that groundwater withdrawals by the mining industry and by "Terme di Roma" spa resulted in the cessation of flow from the primary thermal spring and a drop in the phreatic level in the area consequently affected by land subsidence.

  10. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  11. Bacterial polymer production using pre-treated sludge as raw material and its flocculation and dewatering potential.

    PubMed

    More, T T; Yan, S; Hoang, N V; Tyagi, R D; Surampalli, R Y

    2012-10-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to different sludge solids concentrations (17.0; 22.4; 29.8; 37.3; 44.8 g/L, respectively) and the pre-treated sludge was used as raw material for Serratia sp.1 to produce extracellular polymeric substances (EPS). After 72 h of fermentation, total EPS of 2.3 and 3.4 g/L were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.5 g/L in acid-thermal treated sludge. Lower EPS were produced at relatively higher solids concentrations (37.3; 44.8 g/L). Broth, crude forms of capsular and slime EPS were extracted from fermented broths and used as conditioning agents by combining with 150 mg of Ca(2+)/L of kaolin suspensions. Maximum flocculation activity of 79.1% and increased dewatering by 52.2% was achieved using broth and crude capsular EPS, respectively. The results demonstrated that EPS having high flocculating capability could be produced using wastewater sludge as sole raw material.

  12. Scale-down of continuous filtration for rapid bioprocess design: Recovery and dewatering of protein precipitate suspensions.

    PubMed

    Reynolds, T; Boychyn, M; Sanderson, T; Bulmer, M; More, J; Hoare, M

    2003-08-20

    The early specification of bioprocesses often has to be achieved with small (tens of millilitres) quantities of process material. If extensive process discovery is to be avoided at pilot or industrial scale, it is necessary that scale-down methods be created that not only examine the conditions of process stages but also allows production of realistic output streams (i.e., streams truly representative of the large scale). These output streams can then be used in the development of subsequent purification operations. The traditional approach to predicting filtration operations is via a bench-scale pressure filter using constant pressure tests to examine the effect of pressure on the filtrate flux rate and filter cake dewatering. Interpretation of the results into cake resistance at unit applied pressure (alpha) and compressibility (n) is used to predict the pressure profile required to maintain the filtrate flux rate at a constant predetermined value. This article reports on the operation of a continuous mode laboratory filter in such a way as to prepare filter cakes and filtrate similar to what may be achieved at the industrial scale. Analysis of the filtration rate profile indicated the filter cake to have changing properties (compressibility) with time. Using the insight gained from the new scale-down methodology gave predictions of the flux profile in a pilot-scale candle filter superior to those obtained from the traditional batch filter used for laboratory development.

  13. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation.

    PubMed

    Ma, Jiao; Zhang, Lei; Li, Aimin

    2016-10-01

    In this study, dewatered sludge (DS) and food waste (FW) were co-biodried by balancing substrate's property and microbial aspect. A series of experiments were conducted to explore the effects of mixing ratio, particle size of bulking agent, air-flow rate and initial moisture content (MC). A synergistic enhancement of co-biodrying of FW and DS was observed in terms of a stable temperature profile and long high-temperature duration. The biodrying index (water removal/VS consumption) indicated that the co-biodrying had a high efficiency for water removal with less organics consumption, especially for DS/FW=2/2. The small size (<3mm) of bulking agent and initial MC of 62.68% was preferable for the biodrying process by providing adequate free air space and extra carbon source. A moderate air-flow rate of 0.04m(3)h(-1)kg(-1) showed the best water carrying capacity. This finding suggests that the co-biodrying strategy could be a promising approach to treating different organic wastes with synergistic enhancement. PMID:27324927

  14. Effects of dilution ratio and Fe° dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment.

    PubMed

    Yu, Li; Jiang, Wentian; Yu, Yang; Sun, Chenglin

    2014-01-01

    Biohydrogen fermentation of dewatered sludge (DS) with sewage at ratios from 4:1 to 1:20 was investigated. Hydrothermal pretreatment of the sludge solution was performed to accelerate the organic release from the solid phase. The maximum hydrogen yield of 26.3 ± 0.5 mL H₂/g volatile solid (VS) was obtained at a 1:10 ratio. Although addition of zero valent iron (ZVI) to anaerobic system was not new, the study of dosing it to enhance the biohydrogen yield might be the first attempt. While Fe° plate slightly affected the hydrogen yield, Fe° powder improved the amount of hydrogen by 16% and shortened the lag time by 36%. The state of bacteria in the reactor added with ZVI powder was changed and the key enzyme activity was improved as well. Correspondingly, the mechanism of ZVI in accelerating the biofermentation process was also proposed. Our research provides a solution for the centralized treatment of DS in a city. PMID:25244137

  15. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation.

    PubMed

    Ma, Jiao; Zhang, Lei; Li, Aimin

    2016-10-01

    In this study, dewatered sludge (DS) and food waste (FW) were co-biodried by balancing substrate's property and microbial aspect. A series of experiments were conducted to explore the effects of mixing ratio, particle size of bulking agent, air-flow rate and initial moisture content (MC). A synergistic enhancement of co-biodrying of FW and DS was observed in terms of a stable temperature profile and long high-temperature duration. The biodrying index (water removal/VS consumption) indicated that the co-biodrying had a high efficiency for water removal with less organics consumption, especially for DS/FW=2/2. The small size (<3mm) of bulking agent and initial MC of 62.68% was preferable for the biodrying process by providing adequate free air space and extra carbon source. A moderate air-flow rate of 0.04m(3)h(-1)kg(-1) showed the best water carrying capacity. This finding suggests that the co-biodrying strategy could be a promising approach to treating different organic wastes with synergistic enhancement.

  16. Nitrogen dynamics model for a pilot field-scale novel dewatered alum sludge cake-based constructed wetland system.

    PubMed

    Kumar, J L G; Zhao, Y Q; Hu, Y S; Babatunde, A O; Zhao, X H

    2015-01-01

    A model simulating the effluent nitrogen (N) concentration of treated animal farm wastewater in a pilot on-site constructed wetland (CW) system, using dewatered alum sludge cake (DASC) as wetland substrate, is presented. The N-model was developed based on the Structural Thinking Experiential Learning Laboratory with Animation software and is considering organic nitrogen, ammonia nitrogen (NH3) and nitrate nitrogen (NO3-N) as the major forms of nitrogen involved in the transformation chains. Ammonification (AMM), ammonia volatilization, nitrification (NIT), denitrification, plant uptake, plant decaying and uptake of inorganic nitrogen by algae and bacteria were considered in this model. pH, dissolved oxygen, temperature, precipitation, solar radiation and nitrogen concentrations were considered as forcing functions in the model. The model was calibrated by observed data with a reasonable agreement prior to its applications. The simulated effluent detritus nitrogen, NH4-N, NO3-N and TN had a considerably good agreement with the observed results. The mass balance analysis shows that NIT accounts for 65.60%, adsorption (ad) (11.90%), AMM (8.90%) followed by NH4-N (Plants) (5.90%) and NO3-N (Plants) (4.40%). The TN removal was found 52% of the total influent TN in the CW. This study suggested an improved overall performance of a DASC-based CW and efficient N removal from wastewater.

  17. Effects of dilution ratio and Fe° dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment.

    PubMed

    Yu, Li; Jiang, Wentian; Yu, Yang; Sun, Chenglin

    2014-01-01

    Biohydrogen fermentation of dewatered sludge (DS) with sewage at ratios from 4:1 to 1:20 was investigated. Hydrothermal pretreatment of the sludge solution was performed to accelerate the organic release from the solid phase. The maximum hydrogen yield of 26.3 ± 0.5 mL H₂/g volatile solid (VS) was obtained at a 1:10 ratio. Although addition of zero valent iron (ZVI) to anaerobic system was not new, the study of dosing it to enhance the biohydrogen yield might be the first attempt. While Fe° plate slightly affected the hydrogen yield, Fe° powder improved the amount of hydrogen by 16% and shortened the lag time by 36%. The state of bacteria in the reactor added with ZVI powder was changed and the key enzyme activity was improved as well. Correspondingly, the mechanism of ZVI in accelerating the biofermentation process was also proposed. Our research provides a solution for the centralized treatment of DS in a city.

  18. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering.

    PubMed

    van Kempen, R; Mulder, J W; Uijterlinde, C A; Loosdrecht, M C

    2001-01-01

    A SHARON system has been constructed at the Utrecht WWTP and at the Rotterdam Dokhaven WWTP. In the SHARON process rejection water from dewatering of digested sludge is treated for N-removal. It concerns a high active process operating without sludge retention. Due to differences in growth rate nitrite oxidisers can be washed out of the system while ammonia oxidisers are maintained, resulting in N-removal over nitrite. The SHARON process was selected in competition with several other techniques. The feed of a SHARON system is concentrated, with ammonia concentrations ranging from 0.5 to 1.5 g N/l. The results show that conversion rates of 90% are well possible with N-removal mainly via the nitrite route. The process was shown to be stable. Due to the high ammonium influent concentrations pH control is of great importance, preventing process inhibitions. The acidifying effect of nitrification can be compensated completely by CO2 stripping during aeration and by denitrification. Heat production by biological conversions is significant, due to the high inlet concentrations, and contributes to the optimal operating temperature of 30-40 degrees C. PMID:11496665

  19. InSAR analysis of aquifer-system response to 20 years of mine-dewatering in the Carlin gold trend, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Bell, J. W.; Katzenstein, K.

    2012-12-01

    The Carlin trend in north-central Nevada has the second largest gold resources in the world, most of it produced from large open-pit mines. Heavy groundwater dewatering is required at the mines to lower water levels below the depth of mining which can exceed 400-500 m. The resulting water level declines have produced surface deformation (subsidence) that can be detected and modeled with InSAR to characterize the aquifer-system response and to estimate hydraulic parameters in order to test and refine groundwater models. In a series of studies we examined the effects of dewatering at mines operated by Newmont Mining Corporation and Barrick Gold of North America near Battle Mountain and Carlin, Nevada. The Lone Tree mine operated a large-scale dewatering program between 1992-2006 using deep bedrock wells that pumped between 64-92 hm3/yr (52,000-75,000 acre-ft/yr) and lowered bedrock water levels more than 120 m. InSAR analysis of ERS and Envisat data for the 1992-2000 and 2004-2010 periods showed that as much as 50 cm of aquifer-system compaction occurred in bedrock and in alluvial basin deposits with subsidence rates ranging between 3-6 cm/yr. Since dewatering ended in late 2006 and water levels began rising, only 7 cm of aquifer-system recovery (uplift) has occurred as of 2010 suggesting that most of the aquifer-system compaction was likely inelastic, apparently in the pumped fractured bedrock. The InSAR subsidence data differ significantly from the pre-pumping groundwater model which predicted 2.5 m of subsidence for the 1992-2000 period. The results yield bulk storage coefficients in the range of 7 x 10-3 to 5.6 x 10-5 with a most frequent value of 1.0 x 10-3 (Baffoe-Twum, 2007), InSAR-derived hydraulic values that can provide better constraints on specific storage estimates in future groundwater models. The Betze-Post mine has been dewatering continually since late 1989 with maximum pumping rates of greater than 140 hm3/yr (110,000 acre-ft/yr) in the early and

  20. Dewatering of the Clayton Formation during construction of the Walter F George Lock and Dam, Fort Gaines, Clay County, Georgia

    USGS Publications Warehouse

    Stewart, J.W.

    1973-01-01

    area readily accessihle by barge from the Gulf of Mexico to Columbus, Ga. During dewatering, the potentiometric surface was lowered from a pre-pumping altitude of about 115 to 120 feet above msl to a minimum altitude of about 40 feet above msl, or near the bottom of the "shell" limestone. The stage of the Chattahoochee River ranged from about 20 to 60 feet above the potentiometric surface at the dewatering sites. The Chattahoochee River seemingly is recharging the Clayton Formation near the damsite, possibly through large solution cavities such as were observed during construction of the spillway site at the river. Furthermore, a "honeycombed" network of large solution holes caused the collapse of a section of "earthy" limestone near the powerhouse site. Some underground leakage is expected to occur at the damsite because of the cavernous condition of the limestone, particularly on the Alabama side of the river.

  1. Responses of a non N-limited forest plantation to the application of alkaline-stabilized dewatered dairy factory sludge.

    PubMed

    Omil, Beatriz; Mosquera-Losada, Rosa; Merino, Agustín

    2007-01-01

    Amendment of forest soils with dewatered dairy factory sludge (DDFS), characterized by low heavy metal contents and high amounts of degradable C, can prevent the depletion of soil nutrients that results from intensive harvesting in forest plantations. However, this practice involves environmental risks when N supplies exceed the demand of plants or when the strong acidity of the soil favors the mobility of trace metals. These aspects were assessed in a young radiata pine plantation growing in a sandy, acidic, and organic N-rich soil for the 7 yr after application of a DDFS. The supply of limiting nutrients (mainly P, Mg, and Ca) provided by application of the DDFS, along with control of the ground vegetation, improved the nutritional status of the stand and led to increases in timber volume of more than 60 to 100%. Increases in soil inorganic N were observed during the first months after amendment. Data from soil incubation experiments revealed that some of the additional N was immobilized and, to a lesser extent, denitrified due to the readily available organic C content of the DDFS. Leaching and increased plant uptake of N were prevented by a combination of the latter processes and the low rate of nitrification. The strong acidity of the soil enhanced the availability of Mn and Zn to plants, although the maximum concentrations did not reach levels harmful to organisms. We conclude that although application of DDFS has positive effects on tree nutrition and growth and the environmental risks are low, repeated application may favor mobility of N and availability of heavy metals. PMID:17965379

  2. Responses of a non N-limited forest plantation to the application of alkaline-stabilized dewatered dairy factory sludge.

    PubMed

    Omil, Beatriz; Mosquera-Losada, Rosa; Merino, Agustín

    2007-01-01

    Amendment of forest soils with dewatered dairy factory sludge (DDFS), characterized by low heavy metal contents and high amounts of degradable C, can prevent the depletion of soil nutrients that results from intensive harvesting in forest plantations. However, this practice involves environmental risks when N supplies exceed the demand of plants or when the strong acidity of the soil favors the mobility of trace metals. These aspects were assessed in a young radiata pine plantation growing in a sandy, acidic, and organic N-rich soil for the 7 yr after application of a DDFS. The supply of limiting nutrients (mainly P, Mg, and Ca) provided by application of the DDFS, along with control of the ground vegetation, improved the nutritional status of the stand and led to increases in timber volume of more than 60 to 100%. Increases in soil inorganic N were observed during the first months after amendment. Data from soil incubation experiments revealed that some of the additional N was immobilized and, to a lesser extent, denitrified due to the readily available organic C content of the DDFS. Leaching and increased plant uptake of N were prevented by a combination of the latter processes and the low rate of nitrification. The strong acidity of the soil enhanced the availability of Mn and Zn to plants, although the maximum concentrations did not reach levels harmful to organisms. We conclude that although application of DDFS has positive effects on tree nutrition and growth and the environmental risks are low, repeated application may favor mobility of N and availability of heavy metals.

  3. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  4. STELLA software as a tool for modelling phosphorus removal in a constructed wetland employing dewatered alum sludge as main substrate.

    PubMed

    Kumar, J L G; Wang, Z Y; Zhao, Y Q; Babatunde, A O; Zhao, X H; Jørgensen, S E

    2011-01-01

    A dynamic simulation model was developed for the removal of soluble reactive phosphorus (SRP) from the vertical flow constructed wetlands (VFCW) using a dynamic software program called STELLA (structural thinking, experiential learning laboratory with animation) 9.1.3 to aid in simulating the environmental nature and succession of relationship between interdependent components and processes in the VFCW system. In particular, the VFCW employed dewatered alum sludge as its main substrate to enhance phosphorus (P) immobilization. Although computer modelling of P in treatment wetland has been well studied especially in recent years, there is still a need to develop simple and realistic models that can be used for investigating the dynamics of SRP in VFCWs. The state variables included in the model are dissolved phosphorus (DISP), plant phosphorus (PLAP), detritus phosphorus (DETP), plant biomass (PLBI) and adsorbed phosphorus (ADSP). The major P transformation processes considered in this study were adsorption, plant and microbial uptake and decomposition. The forcing functions which were considered in the model are temperature, radiation, volume of wastewater, P concentration, contact time, flow rate and the adsorbent (i.e., alum sludge). The model results revealed that up to 72% of the SRP can be removed through adsorption process whereas the uptake by plants is about 20% and the remaining processes such as microbial P utilization and decomposition, accounted for 7% SRP removal based on the mass balance calculations. The results obtained indicate that the model can be used to simulate outflow SRP concentration, and it can also be used to estimate the amount of P removed by individual processes in the VFCW using alum-sludge as a substrate. PMID:21644152

  5. Process-based modelling of phosphorus removal in a novel constructed wetland system using dewatered alum-sludge as substrate.

    PubMed

    Kumar, J L G; Zhao, Y Q; Babatunde, A O

    2011-01-01

    A process-based model that can evaluate the transport and the fate of phosphorus (P) in agricultural wastewater was developed for a novel 4-stage dewatered alum sludge cakes (DASC) based constructed wetlands (CWs) system using STELLA software (version 9.1.4). The model considered adsorption, plant and microbial uptakes as the major forms of P involved in the transformation chains. The results were obtained by experimental procedure through laboratory measurement, from literature and/or calibration. The observed effluent P concentration in the CWs ranged from 3.62 to 8.50 mg/L (stage 1), 2.00 to 4.45 mg/L (stage 2), 1.39 to 3.76 mg/L (stage 3) and 0.52 to 2.36 mg/L (stage 4), whereas the simulated values ranged from 2.12 to 10.99 mg/L (stage 1), 1.32 to 5.65 mg/L (stage 2), 0.84 to 3.64 mg/L (stage 3) and 0.53 to 2.25 mg/L (stage 4), respectively. The simulated and observed values of P removal in the CWs system were in good agreement. A mass balance analysis was performed for all the major processes which resulted in a major pathway of P removal through adsorption (64-75%, 58-66%, 57-63% and 49-58%) followed by plant uptake (7-11%, 8-14%, 14-17% and 9-19%) and microbial uptake (3-7%, 3-5%, 9-12% and 7-12%) for stage 1, stage 2, stage 3 and stage 4, respectively. Thus the mathematical model developed in this study could be used to explain the removal processes and simulate the fate of P in the DASC-based CWS system. PMID:22097060

  6. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Zhao, Youcai; Niu, Jing; Chai, Xiaoli; Su, Lianghu; Li, Yu-You; Liu, Yuan; Du, Jingru; Hojo, Toshimasa; Hu, Yong

    2013-11-15

    Potential reuse of dewatered sludge (DS) and municipal solid waste incineration (MSWI) bottom ash as components to develop controlled low-strength material (CLSM) was explored. The effects of DS:MSWI bottom ash:calcium sulfoaluminate (CS¯A) cement ratio and thermal treatment of MSWI bottom ash at 900 °C on the mechanical and microstructural properties of CLSM were intensively studied to optimize the process. Results showed DS and MSWI bottom ash could be utilized for making CLSM. The CLSM prepared with milled MSWI bottom ash gave higher unconfined compressive strength (UCS) of 2.0-6.2 MPa following 1 year of curing at 1.0:0.1:0.9 ≤ DS:MSWI bottom ash:CS¯A ≤ 1.0:0.8:0.2. However, the corresponding strengths for CLSM containing thermally treated MSWI bottom ash ranged from 0.7 to 4.6 MPa, decreasing 26-65%. The microstructural analysis by X-ray powder diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), as well as scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectroscopy (EDS) revealed that ettringite (C3A·3CS¯·H32, or AFt) crystals were the most important strength-producing constituents which grew into and filled the CLSM matrix pores. Milled MSWI bottom ash addition favored the formation of highly crystalline AFt phases and accordingly enhanced compressive strengths of CLSM specimens. In contrast, thermal treatment at 900 °C produced new phases such as gehlenite (Ca2Al2SiO7) and hydroxylapatite (Ca5(PO4)3(OH)), which deteriorated the pozzolanic activity of bottom ash and caused the strengths to decrease. Leaching tests evidenced that leachable substances from CLSM samples exhibited negligible health and environmental risks. The results of this study suggested that MSWI bottom ash can be effectively recycled together with DS in developing CLSM mixtures with restricted use of CS¯A cement.

  7. Recovery and reconnaissance of the Leading Creek watershed, Meigs County, Ohio, following a dewatering of Meigs {number_sign}31 coal mine

    SciTech Connect

    Currie, R.J.; Astin, L.E.; Yeager, M.M.; Cherry, D.S.; Hassel, J.H. van |

    1995-12-31

    A database has been developed before and after the dewatering of the Meigs {number_sign}31 deep coal mine in Meigs County, Ohio, three years ago. This strategy was to compare potential recovery of the watershed in the mainstem of Leading Creek as well as to reconnaissance the tributaries for point-source input into the creek. After the dewatering process, {approximately} half of the 31-mile Leading Creek mainstem received a discharge of conductivity, low pH, high metals (iron, manganese, copper, aluminum), and total suspended solids (TSS). Most forms of aquatic life in the creek were depleted in the impacted areas, but recovery has been encouraging. Relative fish abundance has returned to pre-event levels, while benthic macroinvertebrates show recovery in two key stream segments. Reconnaissance of the watershed indicated that the system is uniquely segregated with high sedimentation from agricultural input in the upper half and abandoned mined land (AML) discharges in the lower. The AML-influenced tributaries were intermittently toxic throughout the year with 48-hr LC50 values of 14.6--6.0% effluent at Thomas Fork tributary. Macroinvertebrate assemblages in many of the AML and agriculturally influenced tributaries ranged from 0--3 taxa. The consequence of erosion/sedimentation loading is being addressed relative to autochromous input of in-stream AML/TSS input versus that from allochthomous input from stream bank/land use management.

  8. Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations.

    PubMed

    Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y

    2013-07-01

    This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges.

  9. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK.

    PubMed

    Mayes, W M; Large, A R G; Younger, P L

    2005-12-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels.

  10. Western oil-shale development: a technology assessment. Volume 5: an investigation of dewatering for the modified in-situ retorting process, Piceance Creek Basin, Colorado

    SciTech Connect

    Not Available

    1982-01-01

    The C-a and the C-b tracts in the Piceance Creek Basin are potential sites for the development of oil shale by the modified in-situ retorting (MIS) process. Proposed development plans for these tracts require the disturbance of over three billion m/sup 3/ of oil shale to a depth of about 400 m (1312 ft) or more below ground level. The study investigates the nature and impacts of dewatering and reinvasion that are likely to accompany the MIS process. The purpose is to extend earlier investigations through more refined mathematical analysis. Physical phenomena not adequately covered in previous studies, particularly the desaturation process, are investigated. The present study also seeks to identify, through a parametric approach, the key variables that are required to characterize systems such as those at the C-a and C-b tracts.

  11. Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED).

    PubMed

    Qian, Xu; Wang, Yili; Zheng, Huaili

    2016-01-01

    Magnetic micro-particles (MMPs) and magnetic field (MF) were utilized as a coupling conditioning unit before dewatering activated sludge (AS) under a horizontal electric field. The removal and migration of free and bound water in AS during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED) were determined. The organic matter migration between the solid and liquid phases of AS biosolids was also analyzed. Results show that MMPs dosage and MF intensity were determined as 0.15 g/g dry solids and 0.065 T for the best dewaterability, respectively. The optimum dewatering conditions for CM-HED with the final water content of 89.98% were 40 V and 120 min as determined using the response surface methodology. MMPs conditioning could induce a slight coagulation among AS flocs, increase the particle size from 85.9 μm to 92.3 μm and decrease mass fractal dimension from 2.18 to 2.07. The MMPs-conditioned AS also showed a network-like structure, banded cells with shrunk surfaces. CM-HED process effectively reduced the free water content (FWC) and bound water content (BWC) but increased the portion of BWC in AS. The corresponding removal ratios of bound water and free water were 52.89% and 95.86% at the anode side and 46.28% and 92.75% at the cathode side, respectively. The coupling magnetic conditioning led to the largest BWC reduction of 23.14% in CM-HED process, and most of this reduction approaching 92.83% occurred during magnetic micro-particle conditioning stage. Gravity field caused the largest sludge reduction of 87.45%. During HED stage, the removal ratio of free water in AS was 63.73% at the anode side and 36.54% at the cathode side, while it was 21.9% and 10.96% for bound water, respectively. Along with water removed by CM-HED process, the organic matter in supernatant/filtrate increased, and a sharp rise occurred during HED stage. Meanwhile, the extracellular polymeric substance (EPS) contents initially decreased at MMPs-MF conditioning stage

  12. Performance evaluation and prediction for a pilot two-stage on-site constructed wetland system employing dewatered alum sludge as main substrate.

    PubMed

    Babatunde, A O; Zhao, Y Q; Doyle, R J; Rackard, S M; Kumar, J L G; Hu, Y S

    2011-05-01

    Dewatered alum sludge, a widely generated by-product of drinking water treatment plants using aluminium salts as coagulants was used as main substrate in a pilot on-site constructed wetland system treating agricultural wastewater for 11 months. Treatment performance was evaluated and spreadsheet analysis was used to establish correlations between water quality variables. Results showed that removal rates (in g/m(2)d) of 4.6-249.2 for 5 day biochemical oxygen demand (BOD(5)), 35.6-502.0 for chemical oxygen demand (COD), 2.5-14.3 for total phosphorus (TP) and 2.7-14.6 for phosphate (PO(4)P) were achieved. Multiple regression analysis showed that effluent BOD(5) and COD can be predicted to a reasonable accuracy (R(2)=0.665 and 0.588, respectively) by using input variables which can be easily monitored in real time as sole predictor variables. This could provide a rapid and cheap alternative to such laborious and time consuming analyses and also serve as management tools for day-to-day process control. PMID:21382711

  13. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK.

    PubMed

    Mayes, W M; Large, A R G; Younger, P L

    2005-12-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. PMID:15993994

  14. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water.

    PubMed

    Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying

    2016-05-01

    The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation. PMID:26922316

  15. Effects of seepage from fly-ash settling ponds and construction dewatering on ground-water levels in the Cowles unit, Indiana Dunes National Lakeshore, Indiana

    USGS Publications Warehouse

    Meyer, William R.; Tucci, Patrick

    1979-01-01

    Part of the Indiana Dunes National Lakeshore shares a common boundary with the Northern Indiana Public Service Company (NIPSCO). This area is underlain by unconsolidated deposits approximately 180 feet thick. NIPSCO accumulates fly ash from the burning of coal in electric-power generating units in settling ponds. Seepage from the ponds has raised ground-water levels above natural levels approximately 15 feet under the ponds and more than 10 feet within the Lakeshore. NIPSCO is presently (1977) constructing a nuclear powerplant, and construction activities include pumping ground water to dewater the construction site. The company has installed a slurry wall around the site to prevent lowering of ground-water levels within the Lakeshore. Plans call for continuous pumping through at least December 1979. A multilayered digital flow model was constructed to simulate the ground-water system. The model was used to demonstrate the effects of seepage from the fly-ash ponds on ground-water levels. Also, the model indicated a decline of 3 feet or less in the upper sand unit and 5 feet or less in the lower sand unit within the Lakeshore.

  16. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized.

  17. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report,January--March 1997

    SciTech Connect

    Tao, D.; Grappo, J.G.; Parekh, B.K.

    1997-05-07

    Laboratory centrifugal dewatering tests were conducted to study the effects of anionic and cationic flocculants on filtration of PMCC compliance (low sulfur) and non-compliance (high sulfur) ultrafine coal slurry. The results obtained with compliance coal indicated that use of 30 g/t anionic flocculant reduced filter cake moisture from 32. 3 to 29.0 percent and increased solids recovery by two absolute percentage points. Use of cationic flocculant had no effects on solids recovery but lowered cake moisture to 27 percent at a dosage of 15 g/t. With the non-compliance coal slurry addition of 15 g/t anionic flocculant lowered cake moisture from 30 to 28.5 percent with marginal effects on solids recovery; addition of cationic flocculant reduced cake moisture by one absolute percentage point. Both flocculants showed marginal effects on solids recovery. Laboratory vacuum filter leaf filtration studies showed that use of flocculants considerably increased filtration kinetics. For example, addition of 15 g/t anionic flocculant to the compliance coal slurry increased filtration kinetics by 10 times and addition of 15 g/t.

  18. Kinetics of nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium.

    PubMed

    Lee, Mong-Chuan; Lin, Yen-Hui; Yu, Huang-Wei

    2014-11-01

    A mathematical model system was derived to describe the kinetics of ammonium nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium. The model incorporates diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A batch test was conducted to observe the nitrification of ammonium-nitrogen ([Formula: see text]-N) and the growth of nitrifying biomass. The compositions of nitrifying bacterial community in the batch kinetic test were analyzed using PCR-DGGE method. The experimental results show that the most staining intensity abundance of bands occurred on day 2.75 with the highest biomass concentration of 46.5 mg/L. Chemostat kinetic tests were performed independently to evaluate the biokinetic parameters used in the model prediction. In the column test, the removal efficiency of [Formula: see text]-N was approximately 96 % while the concentration of suspended nitrifying biomass was approximately 16 mg VSS/L and model-predicted biofilm thickness reached up to 0.21 cm in the steady state. The profiles of denaturing gradient gel electrophoresis (DGGE) of different microbial communities demonstrated that indigenous nitrifying bacteria (Nitrospira and Nitrobacter) existed and were the dominant species in the fixed biofilm process.

  19. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water.

    PubMed

    Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying

    2016-05-01

    The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation.

  20. Extending the use of dewatered alum sludge as a P-trapping material in effluent purification: Study on two separate water treatment sludges.

    PubMed

    Zhao, Y Q; Yang, Y

    2010-08-01

    The generation of alum sludge from drinking water purification process remains inevitable when aluminium sulphate is used as primary coagulant for raw water coagulation. Sustainable managing such the sludge becomes an increasing concern in water industry. Its beneficial reuse is therefore highly desirable and has attracted considerable research efforts. In view of the novel development of alum sludge as a value-added raw material for beneficial reuse for wastewater treatment, this study examined the maximum phosphorus-adsorption capacity of two dewatered alum sludges sampled from two largest water treatment works in Dublin, Ireland. The objective lies in clarifying the change of alum sludge characteristics and its P-adsorption capacity over the location of the alum sludge produced and the raw water being treated. Experiments have demonstrated that the two alum sludges have the similar P adsorption capacity (14.3 mg P/g sludge for Ballymore-Eustace sludge and 13.1 mg P/g sludge for Leixlip sludge at pH 7.0). However, the study supports that alum sludge beneficial reuse as a low cost adsorbent for P immobilization should study its P-adsorption capacity before any decision of large application is made since the raw water quality will affect the sludge characteristics and therefore influence its adsorption ability.

  1. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to

  2. Bench-scale testing of DOE/PETC`s GranuFlow Process for fine coal dewatering and handling. 1: Results using a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Killmeyer, R.P.; Lowman, R.H.; Elstrodt, R.

    1995-12-31

    Most advanced fine-coal cleaning processes involve the use of water. Utility companies are concerned not only with the lower Btu content of the resulting wet, cleaned coal, but more importantly with its handleability problems. Solutions to these problems would enhance the utilization of fine-coal cleaning processes in the utility industry. This paper describes testing of the GranuFlow Process, developed and patented by the Pittsburgh Energy Technology Center (PETC) of the US Department of Energy, using a high-gravity solid bowl centrifuge for dewatering and reconstitution of fine-cleaned-coal slurry at 300 lb per hour in PETC`s Coal Preparation Process Research Facility. Fine-cleaned-coal slurry was treated with a bitumen emulsion before dewatering in a high-gravity solid-bowl centrifuge. The treated products appeared to be dry and in a free-flowing granular form, while the untreated products were wet, lumpy, sticky, and difficult to handle. Specifically, test results indicated that the moisture content, handleability, and dust reduction of the dewatered coal product improved as the addition of emulsion increased from 2% to 8%. The improvement in handleability was most visible for the 200 mesh (75 micron) x 0 coal, when compared with 150 mesh (106 micron) x 0, 65 mesh (212 micron) x 0 or 28 mesh (600 micron) x 0 coals. Test results also showed that the moisture content was dramatically reduced (26--37% reduction) for the four different sizes of coals at 6 or 8% emulsion addition. Because of the moisture reduction and the granular form of the product, the freezing problem was also alleviated.

  3. Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Travé, Anna; Labaume, Pierre; Calvet, Francesc; Soler, Albert

    1997-12-01

    The lower Eocene Ainsa basin was formed during the first stages of the south-Pyrenean foreland basin evolution due to southwestward migration of imbricated thrust-folds. Isotopic and elemental geochemistry of syn-kinematic veins (calcite and celestite) and their marly host-rock, sampled in three thrust-fault zones and one footwall syncline, allows us to characterize the origin of pore fluids and the early stages of their evolution and circulation during the early deformation of the basin-fill. The isotopic composition of sulfur and the {87Sr }/{86Sr } ratios of calcites and celestites from the veins in the footwall syncline show that the original fluid had the isotopic composition of Eocene seawater. The different {87Sr }/{86Sr } ratio in veins from the thrust-fault zones compared with the same ratio in the marly host-rock of the footwall syncline indicates that the thrust-fault zones acted as conduits for advective fluids. The relatively high {87Sr }/{86Sr } ratio in the veins related to the thrust-fault zones indicates that the fluid originated from the interaction of seawater with an external fluid coming from deeper sources or from the meteoric weathering of the emerged part of the belt. δ 18O and δ 13C values of calcites show that the isotopic composition of the calcite-cements in veins was controlled by the isotopic composition of the marly host sediment. Depletion of both δ 18O and δ 13C with respect to Eocene seawater composition, together with elemental geochemistry of calcite cements in the veins, points to burial transformations of a seawater-derived fluid to a formation water composition. The distribution of δ 18O and δ 13C values of the marly host-rock and calcite cements in veins of the four outcrops probably resulted from differences in the meteoric water influences. The hydrogeological regime at the toe of the submarine thrust system was dominated by tectonically-induced dewatering of the foreland basin sediments. The thrust-fault zones were

  4. Clastic-hosted stratiform, vein/breccia and disseminated Zn-Pb-Ag deposits of the northwestern Brooks Range, AK: Are they different expressions of dewatering of the same source basin

    SciTech Connect

    Schmidt, J.M. ); Werdon, M.B. . Dept. of Geology)

    1993-04-01

    Sphalerite and galena, with significant silver occur in 3 distinct types of mineralization hosted in Upper Devonian and Carboniferous clastic rocks of the northwestern Brooks Range. The best known are Zn-Pb-Ag massive sulfide deposits with variable pyrite, barite, and hydrothermal silifica hosted in Mississippian (to Pennsylvanian ) black siliceous shale and chert, and similar to shale-hosted Pb-Zn massive sulfide deposits worldwide. Zn-Pb-Ag breccias and veins are hosted in Upper Devonian to Lower Mississippian fine-grained quartzites and siltstone which stratigraphically underlie the massive sulfide-hosting units. The breccia-vein and disseminated occurrences are co-extensive with the rocks that host massive sulfide deposits, and with the western part of the Endicott Group clastic basin. Pb isotopic ratios of galena from all the deposits are remarkably uniform, and suggest a single Pb source. The authors genetic model suggests that all types are the result of dewatering of a single clastic source basin. Different mineralization styles are probably due to variable depths of emplacement (at or below the seafloor), thermal variations related to extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional faulting and permeability variations in local stratigraphy. The most likely sources for Zn and Pb are clay minerals within the lowermost (Hunt Fork Shale) portions of the western Endicott Group.

  5. Simulation of sludge dewatering on belt filters.

    PubMed

    Christensen, Morten Lykkegaard; Petersen, Rasmus Rosenlund; Jørgensen, Lars Bjerg

    2010-01-01

    A mathematical model for belt filters was developed to determine optimum load rate and belt speed during drainage of flocculated biological sludge. Numerical simulations were performed for belt filters with and without plows, and the model fit experimental data well. Experiments showed that highly compressible cakes were formed during drainage, which was important. Due to cake compression, the final sludge dry matter content increased with load rates as long as the drainage time was sufficiently long. The dry matter content could be increased by stacking the cake at the end of the process. An optimum load rate was found. At high load rates, the drainage time was too short and the dry matter content decreased with load due to high cake resistance. The resistance could be lowered by mixing cake and suspension during the process.

  6. Electro-kinetic dewatering of oily sludges.

    PubMed

    Yang, Lin; Nakhla, George; Bassi, Amarjeet

    2005-10-17

    An oily sludge from a rendering facility was treated using electro-kinetic (EK) techniques employing two different experimental designs. The bench scale used vertical electrodes under different operational conditions, i.e. varied electrode spacing at 4, 6 and 8 cm with electric potential of 10, 20 and 30 V, respectively. The highest water removal efficiency (56.3%) at bench scale was achieved at a 4 cm spacing and 30 V. Comparison of the water removal efficiency (51.9%) achieved at the 20 V at 4 cm spacing showed that power consumption at 30 V was 1.5 times larger than that at 20 V, suggesting a further increase of electric potential is unnecessary. The solids content increased from an initial 5 to 11.5 and 14.1% for 20 and 30 V, respectively. The removal of oil and grease (O&G) was not significant at this experimental design. Another larger scale experiment using a pair of horizontal electrodes in a cylinder with 15 cm i.d. was conducted at 60 V at an initial spacing of 22 cm. More than 40.0% of water was removed and a very efficient oil separation from the sludge was achieved indicating the viability of electro-kinetic recovery of oil from industrial sludge.

  7. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  8. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  9. The ABCs of pump selection for mine dewatering

    SciTech Connect

    Morgan, S.E.

    2008-10-15

    Choosing the right type of pump for removing water from mine operations can provide significant benefits in overall performance and cost of operation. The article describes the types of pump most commonly used: vertical turbine pumps, electric and hydraulic submersible pumps, horizontal multistage centrifugal pumps and horizontal single-stage centrifugal pumps. It gives points to consider when selecting a suitable pump, including solids handling capacity and acid content, portability, automatic operation, easy maintenance and parts availability. 1 photo.

  10. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled “Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges”. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  11. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  12. Use of hydrocyclones for centrifugal dewatering of waste water sediments

    SciTech Connect

    Lipmanovich, V.Y.

    1984-07-01

    This article investigates the effectiveness of hydrocyclones in the separation of abrasive inclusions from the sediment of primary sedimentation tanks at the Orekhovo-Zuevo aeration station. The studies were performed in a pressure hydrocyclone which was fed with wet sediment from the primary sedimentation tanks with a water content of 93.8-95.5% and an ash content of 35.1-45.1%. The flow rate characteristics and the qualitative indices of the hydrocyclone operation, depending on its geometric parameters and inlet pressure, were determined. In the process of sediment separation in the hydrocyclones, the moisture content of the drained fluid rises above and that of the slime falls below the moisture content of the wet sediment. It is established that the pattern of change in the moisture content of the separation products, the content of the dry and mineral matters, and the efficiency of separation of the dry and mineral matters with the change in the pressure at the hydrocyclone inlet and its geometric parameters in the case of activated sludge treatment is similar to the pattern of change in the corresponding indices in the cases of hydrocyclone processing of the sediment from primary sedimentation tanks.

  13. The use of acoustic fields as a filtration and dewatering aid

    PubMed

    Smythe; Wakeman

    2000-03-01

    An experimental rig has been developed to study the effects of electric and acoustic field combinations on the filtration rate of titanium dioxide suspensions. Ultrasound energy is applied tangentially to the filter medium. Electric field strengths, suspension characteristics and process parameters can all be varied independently. Results from an experimental programme demonstrate that the use of ultrasound across the cake surface can decrease the specific cake flow resistance and increase the filtration rates of low-concentration rutile suspensions (0.1% v/v). Changes in the conductivity induced by ultrasonic irradiation affect the suspension such that the application of an electrical field is enhanced, giving an equivalent electric field strength higher than that applied.

  14. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Topp, Edward; Sibley, Paul K

    2014-05-01

    Biosolids generally contain the microbiocidal agents triclosan (TCS) and triclocarban (TCC) that are persistent during wastewater treatment and sorp to organic material. The present study investigated the concentration of TCS in tissues of radish, carrot, and soybean grown in potted soil amended with biosolids. Highest mean concentrations of TCS in radish, carrot, and soybean root tissue midway through the life cycle were 24.8 ng/g, 49.8 ng/g, and 48.1 ng/g dry weight, respectively; by the conclusion of the test, however, concentrations had declined to 2.1 ng/g, 5.5 ng/g, and 8.4 ng/g dry weight, respectively. Highest mean concentrations of TCS in radish and carrot shoot tissue were 33.7 and 18.3 ng/g dry weight at days 19 and 45, respectively, but had declined to 13.7 ng/g and 5.5 ng/g dry weight at days 34 and 69, respectively. Concentration of TCS in all samples of soybean seeds was below method detection limit (i.e., 2.8 ng/g dry wt). The present study also examined the concentration of TCS and TCC in edible portions of green pepper, carrot, cucumber, tomato, radish, and lettuce plants grown in a field amended with biosolids. Triclosan was detected only in cucumber and radish up to 5.2 ng/g dry weight. Triclocarban was detected in carrot, green pepper, tomato, and cucumber up to 5.7 ng/g dry weight. On the basis of the present study and other studies, we estimate that vegetable consumption represents less than 0.5% of the acceptable daily intake of TCS and TCC. These results demonstrate that, if best management practices for land application of biosolids in Ontario are followed, the concentration of TCS and TCC in edible portions of plants represents a negligible exposure pathway to humans. PMID:24375516

  15. Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex

    USGS Publications Warehouse

    Stauffer, P.; Bekins, B.A.

    2001-01-01

    At the toe of the northern Barbados accretionary complex, temperature and pore water chemistry data indicate that fluid flow is channeled along the de??collement and other shallow thrust faults. We examine mechanisms that may prevent consolidation and maintain high permeability over large sections of the de??collement. High-resolution bulk density data from five boreholes show that the de??collement is well consolidated at some sites while other sites remain underconsolidated. Underconsolidated de??collement behavior is associated with kilometer-scale negative-polarity seismic reflections from the de??collement plane that have been interpreted to be fluid conduits. We use a coupled fluid flow/consolidation model to simulate the loading response of a 10-km-long by 680-m-thick slice of sediment as it enters the accretionary complex. The simulations capture 185 ka (5 km) of subduction, with a load function representing the estimated effective stress of the overriding accretionary prism (3.8?? taper angle). Simulation results of bulk density in the de??collement 3.2 km arcward of the deformation front are compared with observations. The results show that persistent high pore pressures at the arcward edge of the simulation domain can explain underconsolidated behavior. The scenario is consistent with previous modeling results showing that high pore pressures can propagate intermittently along the de??collement from deeper in the complex. Simulated seaward fluxes in the de??collement (1-14 cm yr-1) lie between previous estimates from modeling studies of steady state (1 m yr-1) flow. Maximum simulated instantaneous fluid sources (2.5??10-13 s-1) are comparable to previous estimates. The simulations show minor swelling of incoming sediments (fluid sources ??? -3 ?? 1015 s-1) up to 3 km before subduction that may help to explain small-scale shearing and normal faulting proximal to the protode??collement. Copyright 2001 by the American Geophysical Union.

  16. A study on the dewatering of industrial waste sludge by fry-drying technology.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun

    2009-08-30

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum, lead, zinc, mercury, and cadmium. Most importantly, if the dried sludge is used as a solid fuel, these heavy metals can be collected from the dust collector after combustion.

  17. Coliform aerosols generated from the surface of dewatered sewage applied to a forest clearcut.

    PubMed Central

    Edmonds, R L; Littke, W

    1978-01-01

    Concentrations of airborne coliform bacteria as high as 1.5 X 10(4) m-3 were observed 8 cm above anaerobically digested sewage sludge applied to a forest clearcut. Dry conditions and high wind speeds tended to favor aerosol generation. PMID:367270

  18. A method for detecting dewatering effects of underground mining activities on surface wetlands

    SciTech Connect

    Hayden-Wing, L.D.; Baldwin, J.R.; Webber, K.; Winstead, J.B.

    1999-07-01

    In 1996 US Energy/Kennecott Uranium Company initiated a large-scale, long-term monitoring program to document whether or not proposed uranium mining activities under Green Mountain in Central Wyoming would cause a groundwater draw-down resulting in changes in the existing riparian/wetland habitats. The monitoring program consisted of establishing 12 study drainages on Green Mountain and six control drainages on an adjacent but hydrologically isolated mountain not scheduled for mining. Baseline data were collected in 1996 and 1997 prior to the commencement of mining. For each drainage, breeding bird densities (birds/km) and richness (species/km), winter wild ungulate fecal pellet group densities (groups/km), small mammal densities (captures/trap night), and density and species composition of aquatic macro invertebrates were measured along permanent, marked transects within each riparian zone. In order to characterize the baseline vegetation and isolate the effects of livestock grazing, species composition, percent cover, production, and type boundary delineation of riparian vegetation were quantified within adjacent fenced and unfenced half-acre sample sites within each drainage. Baseline photographs were taken at permanent marked points from fixed angles at each of the sample sites. Piezometer holes were drilled at each monitoring site for measuring potential changes in ground water levels over time. If, during mining, water levels are found to drop significantly from baseline, a new study of wildlife and vegetative parameters would be conducted to determine whether or not significant decreases in wetland function or changes from baseline characteristics have occurred.

  19. Dewatering systems and techniques for coalbed methane wells. Volume 1. Final report

    SciTech Connect

    McGinnis, N.

    1983-08-01

    The production of methane from most coalbeds requires the removal of the water to reduce the hydrostatic pressure and increase the relative permeability to gas flow. This study provides an evaluation of contemporary oil and gas pumping systems for this application. The systems evaluated are sucker rod (beam pumping unit), electric submersible, hydraulic jet, hydraulic piston, plunger lift, and gas lift. Ten well systems were defined to normalize the basis of comparison for the fluid-powered systems. The systems were evaluated for pumping 15 and 200 barrels per day (bpd) of water from depths of 1,000, 2,500, 4,000, and 8,000 feet. Comparisons were developed for equipment, installation, and OandM costs for each system, and combinations of systems when smaller units are used to replace initial installations later in the well life. Subjective rankings were also developed using 17 criteria to reflect individual field situations and environments.

  20. Integrated R and D on liberation, classification, beneficiation, dewatering, and agglomeration

    SciTech Connect

    Clark, K.N.; Lockhart, N.C.; Waugh, A.B.; Firth, B.A. |

    1995-10-01

    Australia is the world`s largest coal exporter, and technological advancement is a key element of the coal industry strategy. The issues include: increased recovery of saleable coal; enhanced quality, i.e. lower ash, moisture, fines, phosphorus (sulphur is a relatively minor problem for Australian coals); better quality control; higher throughputs/lower costs; improved handling and transport; and reduced environmental impacts. In process terms, many coal preparation operations, particularly fine coal circuits, are relatively inefficient, and all circuits must also be matched and integrated for optimum overall operation. A holistic approach to technological improvement is desirable. This paper summarizes research and development efforts, within CSIRO and its collaborators, across the unit operations as outlined in the title.

  1. Relationship of shale dewatering and smectite dehydration to undercompaction occurrence. Final report, October 1995--September 1996

    SciTech Connect

    Leftwich, J.T. Jr.

    1996-12-01

    The cause(s) of abnormal fluid pressures in sedimentary basins are not clearly understood. One step in determining the mechanism(s) of abnormal pressure generation in sedimentary basins is to develop and understanding of the relationship among undercompacted shale, abnormal pressure, and temperature. The research focused on understanding undercompaction and how it related to smectite-illite conversion. A series of carefully designed experiments were used to help clarify and evaluate the relationship of smectite-illite transformation to undercompaction. Work was performed at the East Flour Bluff oil field, Nueces County, TX and the Ann Mag oil field, south TX.

  2. Method and apparatus for de-watering biomass materials in a compression drying process

    DOEpatents

    Haygreen, John G.

    1986-01-01

    A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

  3. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils

    SciTech Connect

    Merchant, P. Jr.; Lacy, S.M.

    1988-04-12

    A process for separating emulsified water from water-in-crude oil emulsion produced from underground reservoirs is described which comprises: (a) dispersing from 1 volume ppm to 50 volume ppm of a water soluble demulsifier into the crude oil containing water emulsified therein the parts being based on the volume of the oil; (b) permitting the water to separate from the crude oil; and (c) removing the water from the crude oil.

  4. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  5. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fire pump required by 46 CFR 28.820, a bilge pump may be used for other purposes. (g) Each vessel must comply with the oil pollution prevention requirements of 33 CFR parts 151 and 155. ... with a fixed secondary or backup bilge pump having an independent and separate source of power from...

  6. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fire pump required by 46 CFR 28.820, a bilge pump may be used for other purposes. (g) Each vessel must comply with the oil pollution prevention requirements of 33 CFR parts 151 and 155. ... with a fixed secondary or backup bilge pump having an independent and separate source of power from...

  7. Flocculation and filtration dewatering of coal slurries aided by a hydrophobic polymeric flocculant

    SciTech Connect

    Attia, Y.A.; Yu, S. )

    1991-01-01

    This study investigated the adsorption behavior of a totally hydrophobic polymer, FR-7A, and its role in the flocculation and filtration of fine coal slurries. Adsorption of FR-7A on coal, pyrite, and shale minerals revealed that: (a) FR-7A had a higher adsorption affinity to coal and pyrite than that on shale; (b) an acidic slurry condition favored unselective adsorption of FR-7A on coal minerals, leading to improved total flocculation and filtration of fine coal slurries, while alkaline pH and the presence of SMP favored selective adsorption and flocculation of coal from associated minerals in the slurry; and (c) FR-7A aided the flocculation of coal slurries and improved the moisture removal by filtration from 42.4 to 37%.

  8. Staged flocculation followed by thickening and dewatering of flotation tailings and uncleaned sludges

    SciTech Connect

    Borts, M.A.; El'skaya, N.S.; Lur'e, I.G.

    1982-11-06

    A multistage flocculation process using either polyacrylamide (PAA) or polyethylene oxide, for the removal or recovery of solids from sludges and coal washings is described. Optimization number of flocculation stages must be determined experimentally and depends upon intial solids concentration charge rate, hydrocyclone diameter, agitation speeds and the consumption rate of the flocculation agent.

  9. Pressate from peat dewatering as a substrate for bacterial growth. [Rhizopus arrhizus; Xanthomonas campestris; Aureobasidium

    SciTech Connect

    Mulligan, C.N.; Cooper, D.G.

    1985-07-01

    This study considered the possibility of using water expressed during the drying of fuel-grade peat as a substrate for microbial growth. Highly humified peat pressed for 2.5 min at 1.96 MPa produced water with a chemical oxygen demand of 690 mg/liter. Several biological compounds could be produced by using the organic matter inexpressed peat water as a substrate. These included polymers such as chitosan, contained in the cell wall of Rhizopus arrhizus, and two extracellular polysaccharides, xanthan gum and pullulan, produced by Bacillus subtilis grown in the expressed water. Small additions of nutrients to the peat pressate were necessary to obtain substantial yields of products. The addition of peptone, yeast extract, and glucose improved production of the various compounds. Biological treatment improved the quality of the expressed water to the extent that in an industrial process it could be returned to the environment.

  10. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    SciTech Connect

    Isfahani, RN; Fazeli, A; Bigham, S; Moghaddam, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their venting through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.

  11. Thermal dewatering of coal. Progress report, October 1-December 31, 1984

    SciTech Connect

    Suuberg, E.M.; Deevi, S.C.

    1985-01-01

    The following conclusions can be drawn from the work described in this paper. (1) The volumetric shrinkage accompanying dying of lignite appears to roughly proportional to the loss of moisture from the lignite. It is affected by macroscopicmechanical factors that are difficult to quantify at this time. The extent of shrinkage perpendicular to the bedding plane may be greater or less than that in directions parallel to the bedding plane, but macroscopic cracks generally develop first in a direction parallel to the bedding plane. (2) Mercury porosimetry is of limited applicability to coals of this rank. An enormous fraction of the porosity is found as macroscopic ''cracks'' that, depending upon sample preparation, may be difficult to distinguish from interparticle voidage. Some tentative evidence of compressibility effects has also been noted. Apparent hysteresis in the high pressure (perhaps compressibility-limited) range appears to be partly a kinetic effect. (3) As usual, CO/sub 2/ adsorption indicates specific surface areas about two orders of magnitude greater than does N/sub 2/ adsorption. There does appear to be an affect of drying on N/sub 2/ surface areas -generally the more severe the drying procedure, the lower the apparent surface area. The shape of the pore size distribution curve is largely unaffected by the severity of drying. There seems to be only a slight downward shift of the whole distribution curve with severity of drying. Mercury intrusion and gas adsorption porosity results from one another by an order of magnitude in the overlap region. The reasons for this are not yet fully understood. 11 refs., 13 figs., 7 tabs.

  12. Thermal dewatering of coal. Progress report, July 1-September 30, 1984

    SciTech Connect

    Deevi, S.C.; Suuberg, E.M.

    1984-10-01

    Pore structure of a porous material can be studied by adsorption measurements, density measurements, mercury porosimetry and small angle x-ray scattering techniques. In our previous report, we indicated that pore structure of selected coals would be determined by the mercury porosimetry technique followed by adsorption measurements in order to understand the pore size distribution of low rank coals, and to see how this is affected by moisture retention in the coals. At a later stage of the project, the results of these techniques will be compared with small angle x-ray scattering data as indicated in our proposal. The methods for the determination of surface area, pore size distribution and density of the samples are briefly described followed by the experimental procedure adopted. 14 refs., 5 figs., 2 tabs.

  13. Pore-filling cements in turbidites; Southern California: Products of early diagenesis and dewatering of shale

    NASA Astrophysics Data System (ADS)

    Krystinik, L. F.

    Cementation of deep sea fan deposits which begins at the sediment water interface and continues progressively to the maximum depths was studied. The type and intensity of cementation is determined, in part, by the labile components within the system. Authigenic iron-rich smectite (AIRS) is the earliest cement in deep sea sediment. Formation of AIRS begins with the dissolution of biogenic silica. The Stevens sand provides insight into the early stages of graywacke formation. A significant volume of nondetrital, nonpseudomatrix clay is generated by precipitation of dissolved species carried into a sandstone body by waters expelled from adjacent shale. The Stevens also provides insight into turbidite sedimentation within a restricted basin supplied by several sediment sources. Most Cenozoic turbidities from southern California contain either calcite cement which occludes porosity and preserves the initial character of the sediment, or a silica clay cement which reduces porosity slightly, but occludes permeability. Cementation of sandstones by clays precipitated from pore fluids generated in adjacent shales may be a first step toward the genesis of graywacke.

  14. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Topp, Edward; Sibley, Paul K

    2014-05-01

    Biosolids generally contain the microbiocidal agents triclosan (TCS) and triclocarban (TCC) that are persistent during wastewater treatment and sorp to organic material. The present study investigated the concentration of TCS in tissues of radish, carrot, and soybean grown in potted soil amended with biosolids. Highest mean concentrations of TCS in radish, carrot, and soybean root tissue midway through the life cycle were 24.8 ng/g, 49.8 ng/g, and 48.1 ng/g dry weight, respectively; by the conclusion of the test, however, concentrations had declined to 2.1 ng/g, 5.5 ng/g, and 8.4 ng/g dry weight, respectively. Highest mean concentrations of TCS in radish and carrot shoot tissue were 33.7 and 18.3 ng/g dry weight at days 19 and 45, respectively, but had declined to 13.7 ng/g and 5.5 ng/g dry weight at days 34 and 69, respectively. Concentration of TCS in all samples of soybean seeds was below method detection limit (i.e., 2.8 ng/g dry wt). The present study also examined the concentration of TCS and TCC in edible portions of green pepper, carrot, cucumber, tomato, radish, and lettuce plants grown in a field amended with biosolids. Triclosan was detected only in cucumber and radish up to 5.2 ng/g dry weight. Triclocarban was detected in carrot, green pepper, tomato, and cucumber up to 5.7 ng/g dry weight. On the basis of the present study and other studies, we estimate that vegetable consumption represents less than 0.5% of the acceptable daily intake of TCS and TCC. These results demonstrate that, if best management practices for land application of biosolids in Ontario are followed, the concentration of TCS and TCC in edible portions of plants represents a negligible exposure pathway to humans.

  15. Extending shelf-life of ready-to-eat microgreens by optimizing dewatering procedure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microgreens have gained increasing popularity as food ingredients in recent years, because of their high nutritional value, as well as their abundant, diverse, and distinct sensorial characteristics including a variety of fresh flavors and aromas and vivid colors. However, their commercial productio...

  16. Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution

    SciTech Connect

    Bigham, S; Isfahani, RN; Moghaddam, S

    2014-03-01

    A slow molecular diffusion rate often limits the desorption process of an absorbate molecule from a liquid absorbent. To enhance the desorption rate, the absorbent is often boiled to increase the liquid vapor interfacial area. However, the growth of bubbles generated during the nucleate boiling process still remains mass-diffusion limited. Here, it is shown that a desorption rate higher than that of boiling can be achieved, if the vapor absorbent interface is continuously replenished with the absorbate-rich solution to limit the concentration boundary layer growth. The study is conducted in a LiBr-water-solution, in which the water molecules' diffusion rate is quite slow. The manipulation of the vapor solution interface concentration distribution is enabled by the mechanical confinement of the solution flow within microchannels, using a hydrophobic vapor-venting membrane and the implementation of microstructures on the flow channel's bottom wall. The microstructures stretch and fold the laminar streamlines within the solution film and produce vortices. The vortices continuously replace the concentrated solution at the vapor solution interface with the water-rich solution brought from the bottom and middle of the flow channel. The physics of the process is described using a combination of experimental and numerical studies. Published by Elsevier Ltd.

  17. A new model of coal-water interaction and relevance for dewatering

    SciTech Connect

    Suuberg, E.M.

    1991-01-01

    This project is concerned with the ability of coal to hold moisture is it a manifestation of the well-known ability of coal to swell, when exposed to good solvents The question implies that the long-held belief that coal holds a significant portion of its moisture by classical capillary condensation processes, is possibly in error. To explore this hypothesis further requires an examination of the basic phenomena governing the swelling of coals in good solvents. This is the focus of the first part of this project. The possibility that coal holds a significant portion of its moisture by solvent swelling mechanisms leads to an interesting technical issue. It is well known that simple drying of low rank coals is ineffective because the process is reversible. Mild pyrolytic treatments of the coals in oil, steam or liquid water itself pyrolytically remove oxygen groups, which are assumed to be those that hold water most strongly by hydrogen bonding. The treatments have been designed to minimize tar formation and decrepitation of the particles. In relation to the present new hypothesis concerning water retention, it is likely that a sound approach to permanent drying would involve highly crosslinking the coal at mild drying conditions. The crosslinked coal could not swell sufficiently to hold much water. It is identifying processes to achieve this goal, that constitute the objective of the second phase of this work.

  18. Temperature- and pH-Responsive Benzoboroxole-Based Polymers for Flocculation and Enhanced Dewatering of Fine Particle Suspensions.

    PubMed

    Lu, Han; Wang, Yinan; Li, Lin; Kotsuchibashi, Yohei; Narain, Ravin; Zeng, Hongbo

    2015-12-16

    Random copolymers based on N-isopropylacrylamide (NIPAAm) containing 2-aminoethyl methacrylamide hydrochloride (AEMA) and 5-methacrylamido-1,2-benzoboroxole (MAAmBo) were synthesized and subsequently evaluated for their performance in solid-liquid separation at various pH and temperatures. The strong interactions between benzoboroxole residues and kaolin hydroxyl groups were evaluated for the first time in the flocculation of fine particle suspensions. The lower critical solution temperatures (LCSTs) of PAMN decreases because of the hydrophobic nature of the benzoboroxole moieties, resulting in strong hydrophobic interaction at temperatures higher than the LCSTs. Temperature and pH responsive polymer, P(AEMA51-st-MAAmBo76-st-NIPAM381) (denoted as PAMN) shows the ability to induce fastest settling at a low dosage of 25 ppm and under the condition of pH 9 and 50 °C. The accelerated settling rate is considered to be due to the strong adhesion of benzoboroxole residues to the kaolin hydroxyl groups, the electrical double layer force, and the hydrophobic force. During condensation phase, increasing the pH of sediment to pH 11 could attain the most compact structure. Random copolymers containing benzoboroxole groups act as dispersants (due to pH-responsive character) rather than flocculants at pH 11, providing repulsive force that enables particles to rearrange their position and consolidate well. Through a two-step solid-liquid separation including settling phase and consolidation phase, rapid settling and compact sediment are feasible simultaneously.

  19. A comparison of instrumental dewatering methods for the separation and concentration of suspended sediment for subsequent trace element analysis

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Hooper, R.C.

    1989-01-01

    The continuous-flow centrifuges can process whole water at an influent feed rate of 41 per minute; however, when suspended sediment concentrations are low (<30 mg l-1), when small volumes of whole water are to be processed (30 to 401), or when suspended sediment mean grain size is very fine (<10 ??m), influent feed rates of 21 per minute may be more efficient. Tangential-flow filtration can be used to process samples at the rate of 11 per minute. -from Authors

  20. Working to gain public acceptance of sewage sludge composting and use of liquid and dewatered sludge on land

    SciTech Connect

    Walker, J.M.

    1995-06-01

    The purpose of this paper is (1) to examine those factors that especially spark the resistance and concern of citizens to land utilization and composting of sewage sludge and (2) to characterize essential ingredients that are invariably a part of the most successful systems for reducing the resistance and minimizing the concerns of these citizens. Experiences in the Washington, D.C. Metropolitan Area will be discussed which show how municipal authorities and/or their agents have worked with citizens. These discussions show how their efforts have either alleviated or increased citizen concern and resistance to sludge utilization and composting.

  1. Pharmaceuticals, hormones, anthropogenic waste indicators, and total estrogenicity in liquid and solid samples from municipal sludge stabilization and dewatering

    USGS Publications Warehouse

    Furlong, Edward T.; Gray, James L.; Quanrud, David M.; Teske, Sondra S.; Werner, Stephen L.; Esposito, Kathleen; Marine, Jeremy; Ela, Wendell P.; Zaugg, Steven D.; Phillips, Patrick J.; Stinson, Beverley

    2012-01-01

    The ubiquitous presence of pharmaceuticals and other emerging contaminants, or trace organic compounds, in surface water has resulted in research and monitoring efforts to identify contaminant sources to surface waters and to better understand loadings from these sources. Wastewater treatment plant discharges have been identified as an important point source of trace organic compounds to surface water and understanding the transport and transformation of these contaminants through wastewater treatment process is essential to controlling their introduction to receiving waters.

  2. Temperature- and pH-Responsive Benzoboroxole-Based Polymers for Flocculation and Enhanced Dewatering of Fine Particle Suspensions.

    PubMed

    Lu, Han; Wang, Yinan; Li, Lin; Kotsuchibashi, Yohei; Narain, Ravin; Zeng, Hongbo

    2015-12-16

    Random copolymers based on N-isopropylacrylamide (NIPAAm) containing 2-aminoethyl methacrylamide hydrochloride (AEMA) and 5-methacrylamido-1,2-benzoboroxole (MAAmBo) were synthesized and subsequently evaluated for their performance in solid-liquid separation at various pH and temperatures. The strong interactions between benzoboroxole residues and kaolin hydroxyl groups were evaluated for the first time in the flocculation of fine particle suspensions. The lower critical solution temperatures (LCSTs) of PAMN decreases because of the hydrophobic nature of the benzoboroxole moieties, resulting in strong hydrophobic interaction at temperatures higher than the LCSTs. Temperature and pH responsive polymer, P(AEMA51-st-MAAmBo76-st-NIPAM381) (denoted as PAMN) shows the ability to induce fastest settling at a low dosage of 25 ppm and under the condition of pH 9 and 50 °C. The accelerated settling rate is considered to be due to the strong adhesion of benzoboroxole residues to the kaolin hydroxyl groups, the electrical double layer force, and the hydrophobic force. During condensation phase, increasing the pH of sediment to pH 11 could attain the most compact structure. Random copolymers containing benzoboroxole groups act as dispersants (due to pH-responsive character) rather than flocculants at pH 11, providing repulsive force that enables particles to rearrange their position and consolidate well. Through a two-step solid-liquid separation including settling phase and consolidation phase, rapid settling and compact sediment are feasible simultaneously. PMID:26592529

  3. The influence of a rapid drawdown and prolonged dewatering on angling pressure, catch and harvest in a Nebraska reservoir

    USGS Publications Warehouse

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2015-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  4. REACTIVATION AND REGROWTH OF INDICATOR ORGANISMS ASSOCIATED WITH ANAEROBICALLY DIGESTED AND DEWATERED BIOSOLIDS: EPA’S PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  5. Vulnerability of larval lamprey to Columbia River hydropower system operations—effects of dewatering on larval lamprey movements and survival

    USGS Publications Warehouse

    Liedtke, Theresa L.; Weiland, Lisa K.; Mesa, Matthew G.

    2015-01-01

    Numbers of adult and juvenile Pacific lamprey ( Entosphenus tridentatus ) in the upper Columbia River Basin of the interior Pacific Northwest have decreased from historical levels (Close and others, 2002), raising concerns f rom State and Federal agencies and Tribal entities. In 1994, the U.S. Fish and Wildlife Service designated Pacific lamprey as a Category 2 candidate species and in 2003, the species was petitioned for listing under the Endangered Species Act. Listing consideration and potential recovery planning are significantly hindered by a lack of information on the basic biology and ecology of lampreys, including limiting factors. To date (2015), several factors that may limit lamprey production require study, including dam passage issues, contaminants, and effects on habitat.

  6. Vulnerability of larval lamprey to Columbia River hydropower system operations—effects of dewatering on larval lamprey movements and survival

    USGS Publications Warehouse

    Liedtke, Theresa L.; Weiland, Lisa K.; Mesa, Matthew G.

    2015-08-27

    Numbers of adult and juvenile Pacific lamprey ( Entosphenus tridentatus ) in the upper Columbia River Basin of the interior Pacific Northwest have decreased from historical levels (Close and others, 2002), raising concerns f rom State and Federal agencies and Tribal entities. In 1994, the U.S. Fish and Wildlife Service designated Pacific lamprey as a Category 2 candidate species and in 2003, the species was petitioned for listing under the Endangered Species Act. Listing consideration and potential recovery planning are significantly hindered by a lack of information on the basic biology and ecology of lampreys, including limiting factors. To date (2015), several factors that may limit lamprey production require study, including dam passage issues, contaminants, and effects on habitat.

  7. Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, June 1979-June 1980. Part II. Appendices

    SciTech Connect

    Chiang, S.H.; Fulton, P.F.; Klinzing, G.E.; Tierney, J.W.; Chao, J.; Gala, H.; Kakwani, R.; Riquelme, G.; Roy, R.

    1980-07-01

    Since the development of the first quantitative method of microscopic analysis, many techniques and improved methods have been developed and applied for the various measurements. These improvements included both the mathematical analysis of quantitative stereology as well as the equipment necessary to make the measurements and perform the data acquisition and reduction. However, the single most important factor in the rapidly growing use of quantitative stereology has been the introduction of a large number of instruments capable of rapidly scanning the sample, examining a number of features on the sample and accomplishing the measurements in a manual or a fully aromatic mode. The Omnicon Alpha Image Analyzer is such an equipment which performs these operations with accuracy and speed. The Omnicon Alpha Image Analyzer offers essential measurements like count, oversize count, projected length, area and first diameter for analyzing a wide variety of objects. These measurements are of two basic types: selected features in the field with the aid of the light pen and field-based measurements in which all detected features in the field are measured as a single set. Image formation is a crucial step in the image analysis and the Omnicon Alpha 500 system analyses micro and macroscopic images from a wide variety of imaging devices.

  8. Numerical investigation to assess the possibility of utilizing a new type of mechanically thermally dewatered (MTE) coal in existing tangentially-fired furnaces

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Naser, J.

    2011-04-01

    The mechanical and thermal expression (MTE) process can be used to remove the moisture from high moisture coal such as lignite by applying the thermal energy and mechanical force. The moisture content of lignite at Yallourn, VIC, Australia is around 60-70%. Two-third of the water from the lignite can be removed at 150°C and 5.1 MPa by this process. In the conventional drying process, moisture is driven off by evaporation when the lignite passes through the mill. This process is inefficient from a thermodynamic point of view, because the latent heat of evaporation has to be supplied from the hot flue gas. This paper presents computational fluid dynamics (CFD) investigation of fluid flow and combustion of conventional lignite and MTE lignite in a tangentially fired full-scale industrial furnace. The idea is to investigate the aerodynamics and combustion effect of using MTE lignite in existing furnaces. The furnace investigated was Yallourn stage-2 in Victoria, Australia. CFD software CFX-4 (User Guide, CFX-4-Solver. AEA Technology. Harwell Laboratory, Oxfordshire, 1997) was used in this investigation. The MTE process is under development and has not been used in the real power station for the commercial production of electricity, hence no experimental data is available for comparison with the numerical predictions. To gain confidence in the MTE lignite simulations, the temperature contours and oxygen concentration at different furnace level of the conventional lignite combustion were validated first against the available experimental data. Then the predicted results of MTE lignite combustion were compared with conventional lignite combustion to assess the possibility of burning MTE lignite in existing tangentially fired furnaces.

  9. A new model of coal-water interaction and relevance for dewatering. Quarterly technical progress report, 1 March--31 May 1993

    SciTech Connect

    Suuberg, E.M.; Yun, Y.; Lilly, W.D.; Leung, K.; Gates, T.; Otake, Y.; Deevi, S.C.

    1993-12-31

    It has been noted that there is no single, distinct measure of the bulk modulus of coals measurable in mercury porosimetry experiments. As with other modulus measurements on coal, there is a hysteresis associated with these measurements of bulk modulus. The hysteresis is presumably associated with the time-dependent reorganization of its macromolecular network structure, in response to the applied stresses. The above results confirm what has been inferred from other types of measurements on the porosity and surface areas of coals. It has been concluded that because coal behaves as a viscoelastic gel ( as opposed to a rigid solid) on the timescales of interest, then many of the ``classical`` characterizations of porosity might provide a misleading picture of the structure of coals. Here, it has been specifically concluded that ``corrections`` for coal compressibility, commonly used in mercury porosimetry work on raw coals, are subject to some uncertainty from this source. At the higher temperatures of actual coal processing, and especially in the presence of solvents, there is an even greater uncertainty concerning the applicability of these measurements, since the physical structure of the coal can be dramatically altered. The apparent bulk moduli of coals do not vary widely with rank. The pre-extraction of the coal or presence of water in the coal affect the moduli by only a small amount. Water is an effective swelling agent for low rank coals, swelling lignites by 30 to 40%, relative to a dry state. There is, however, no evidence from the values of bulk modulus obtained here that the rubbery state of the coal, as is attainable in pyridine swelling of higher ranks, exists in the wet lignites. We therefore indirectly support earlier workers in their conclusion that the effect of moisture content on dynamic moduli is small.

  10. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants.

  11. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  12. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  13. Use of a single-bowl continuous-flow centrifuge for dewatering suspended sediments: effect on sediment physical and chemical characteristics

    USGS Publications Warehouse

    Rees, T.F.; Leenheer, J.A.; Ranville, J.F.

    1991-01-01

    Sediment-recovery efficiency of 86-91% is comparable to that of other types of CFC units. The recovery efficiency is limited by the particle-size distribution of the feed water and by the limiting particle diameter that is retained in the centrifuge bowl. Contamination by trace metals and organics is minimized by coating all surfaces that come in contact with the sample with either FEP or PFA Teflon and using a removable FEP Teflon liner in the centrifuge bowl. -from Authors

  14. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    SciTech Connect

    Vijayan, S.; Wong, Chi Fun; Buckley, L.P.

    1992-12-31

    It is an object of the claimed invention to combine chemical treatment with microfiltration process to treat groundwater, leachate from contaminated soil washing, surface and run-off waters contaminated with toxic metals, radionuclides and trace amounts of organics from variety of sources. The process can also be used to treat effluents from industrial processes such as discharges associated with smelting, mining and refining operations. Influent contaminants amenable to treatment are from a few mg/L to hundreds of mg/L. By selecting appropriate precipitation, ion exchange and adsorption agents and conditions, efficiencies greater than 99.9 percent can be achieved for removal of contaminants. The filtered water for discharge can be targeted with either an order of magnitude greater or lower than contaminant levels for drinking water.

  15. A new model of coal-water interaction and relevance for dewatering. Quarterly technical progress report, December 1, 1991--February 28, 1992

    SciTech Connect

    Suuberg, E.M.

    1992-09-01

    The possibility that coal holds a significant portion of its moisture by solvent swelling mechanisms leads to an interesting technical issue. It is well known that simple drying of low rank coals at minemouth is ineffective because the process is reversible, to a significant degree. The economic advantages of pre-shipment drying have however dictated a search for ``permanent`` drying procedures. These have been developed by largely empirical means, and involve mild pyrolytic treatments of the coals in oil, steam or liquid water itself. The idea has always been to pyrolytically remove oxygen groups, which are assumed to be those that hold water most strongly by hydrogen bonding. The treatments have been designed to minimize tar formation and decrepitation of the particles, both highly undesirable. In relation to the present new hypothesis concerning water retention, it is likely that a sound approach to permanent drying would involve highly crosslinking the coal at mild drying conditions. The crosslinked coal could not swell sufficiently to hold much water. It is identifying processes to achieve this goal, that constitute the objective of the second phase of this work.

  16. A new model of coal-water interaction and relevance for dewatering. Quarterly technical progress report, 1 September 1991--30 November 1991

    SciTech Connect

    Suuberg, E.M.

    1991-12-31

    This project is concerned with the ability of coal to hold moisture is it a manifestation of the well-known ability of coal to swell, when exposed to good solvents? The question implies that the long-held belief that coal holds a significant portion of its moisture by classical capillary condensation processes, is possibly in error. To explore this hypothesis further requires an examination of the basic phenomena governing the swelling of coals in good solvents. This is the focus of the first part of this project. The possibility that coal holds a significant portion of its moisture by solvent swelling mechanisms leads to an interesting technical issue. It is well known that simple drying of low rank coals is ineffective because the process is reversible. Mild pyrolytic treatments of the coals in oil, steam or liquid water itself pyrolytically remove oxygen groups, which are assumed to be those that hold water most strongly by hydrogen bonding. The treatments have been designed to minimize tar formation and decrepitation of the particles. In relation to the present new hypothesis concerning water retention, it is likely that a sound approach to permanent drying would involve highly crosslinking the coal at mild drying conditions. The crosslinked coal could not swell sufficiently to hold much water. It is identifying processes to achieve this goal, that constitute the objective of the second phase of this work.

  17. 75 FR 20379 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Hollister...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... existing mine water management facilities that currently include a reverse-osmosis and desilting water treatment plant and rapid infiltration basins by adding underground dewatering wells and obtaining...

  18. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples...

  19. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples...

  20. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples...

  1. 24. Pump Room interiordewatering pump motor on upper level. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Pump Room interior-dewatering pump motor on upper level. Note the removable roof hatch (steel frame) directly above motor. Dewatering pumps motor control center at left - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  2. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  3. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provided in 40 CFR 125.30-125.32, any existing point source subject to this subpart must achieve the..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3%...

  4. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provided in 40 CFR 125.30-125.32, any existing point source subject to this subpart must achieve the..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3%...

  5. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provided in 40 CFR 125.30-125.32, any existing point source subject to this subpart must achieve the..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3%...

  6. Ground-water appraisal of sand plains in Benton, Sherburne, Stearns, and Wright counties, central Minnesota

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1980-01-01

    Both modeled areas will support additional withdrawals, but caution must be exercised because lowering ground-water levels will also lower lake levels and reduce streamflow. In some areas, aquifer dewatering will reduce individual well yields.

  7. 40 CFR 436.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Discharges of process generated waste water and mine dewatering discharges, shall not exceed the following... volume of waste water which would result from a 10-year 24-hour precipitation event....

  8. 40 CFR 436.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Discharges of process generated waste water and mine dewatering discharges, shall not exceed the following... volume of waste water which would result from a 10-year 24-hour precipitation event....

  9. 40 CFR 436.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Discharges of process generated waste water and mine dewatering discharges, shall not exceed the following... volume of waste water which would result from a 10-year 24-hour precipitation event....

  10. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  11. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  12. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  13. Third technical contractors' conference on peat

    SciTech Connect

    Not Available

    1981-01-01

    The conference dealt with the estimation of US peat reserves, methods for the gasification of peat, including biogasification, techniques for dewatering peat, and the harvesting of peat. Separate abstracts were prepared for the individual papers. (CKK)

  14. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    EPA Science Inventory

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  15. India: Gujarat

    Atmospheric Science Data Center

    2013-04-16

    ... title:  Dewatering Effects from the Gujarat Earthquake     View Larger Image ... India's Republic Day is normally celebrated, a devastating earthquake hit the state of Gujarat. About 20,000 people died and millions were ...

  16. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stumps, large timbers, furniture, and major appliances), digested and dewatered sludges from waste water treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed...

  17. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stumps, large timbers, furniture, and major appliances), digested and dewatered sludges from waste water treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed...

  18. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stumps, large timbers, furniture, and major appliances), digested and dewatered sludges from waste water treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed...

  19. 28. Pump Room interiorMain valve control panel with status indicators ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Pump Room interior-Main valve control panel with status indicators for main flooding/dewatering valves and gates. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  20. 45. Photograph of a published page. OPERATIONS IN 'H' OR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Photograph of a published page. OPERATIONS IN 'H' OR DEWATERING BUILDING: HOLSTON DEFENSE CORPORATION. 'HOLSTON ARMY AMMUNITION PLANT.' Page 16. (no date). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  1. 46 CFR 185.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to... fixed extinguishing system if installed. (v) Maneuver vessel to minimize effect of wind on fire. (vi)...

  2. 75 FR 5564 - Notice of a Project Waiver of Section 1605 (Buy American Requirement) of the American Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... technologies based on the following factors: Maintain the current annual average dewatered sludge cake solids... variation in feed solids concentrations and sludge mix ratios to provide consistent and optimum cake...

  3. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  4. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  5. A Simple Method for Determining Specific Yield from Pumping Tests

    USGS Publications Warehouse

    Ramsahoye, L.E.; Lang, Solomon Max

    1961-01-01

    A simpler solution which greatly reduces the time necessary to compute the specific yield by the pumping-test method of Remson and Lang (1955) is presented. The method consists of computing the volume of dewatered material in the cone of depression and comparing it with the total volume of discharged water. The original method entails the use of a slowly converging series to compute the volume of dewatered material. The solution given herein is derived directly from Darcy's law.

  6. Isotherm study of reactive Blue 19 adsorption by an alum sludge

    NASA Astrophysics Data System (ADS)

    Khim, Ong Keat; Nor, Mohd Asri Md; Mohamad, Syuriya; Nasaruddin, Nas Aulia Ahmad; Jamari, Nor Laili-Azua; Yunus, Wan Md Zin Wan

    2015-05-01

    This study investigates the adsorption of Reactive Blue 19 using dewatered alum sludge. The dewatered alum sludge was a sludge produced from drinking water treatment plant. Batch adsorption experiments were performed to investigate the mechanism of the dye adsorption. The adsorption was rapid at its initial stage but the rate decreased as it approached equilibrium. The adsorption data were evaluated by Langmuir and Freundlich isotherm models but was best described by the Langmuir isotherm model as it gave the highest correlation.

  7. Operating and maintenance guidelines for screenbowl centrifuges

    SciTech Connect

    Jahnig, W.S.R.; Bratton, R.; Luttrell, G.

    2009-01-15

    Plant dewatering circuits equipped with screenbowl centrifuges need to be well designed, properly operated, and adequately maintained to maximize the dewatering performance. The most important 'feed variables' are particle size, dry solids feed rate and slurry flow rate. The most important 'machine variables' include pool depth, rotational speed and gearbox ratio. The article discusses the effect of these parameters and offers some maintenance guidelines. The article was adapted from a paper presented at CoalPrep 2008. 6 refs., 2 figs., 2 tabs.

  8. Formate-assisted pyrolysis

    DOEpatents

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  9. Publ 420, management of water discharge

    SciTech Connect

    Not Available

    1990-01-01

    This book describes coagulation and flocculation theory and methods used by petroleum refiners to optimize end-of-pipe treatment of process water and the dewatering of sludges. Some of the topics covered are systems optimization; the theory and mechanisms of coagulation and flocculation; properties of suspended solids; chemicals used for coagulation and flocculation, including synthetic polyelectrolytes; destabilization models; and recommendations for use of granular-media filtration, dissolved- and induced-air flotation, activated-sludge treatment, and sludge dewater.

  10. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    PubMed

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  11. Pore destruction resulting from mechanical thermal expression

    SciTech Connect

    Clayton, S.A.; Wheeler, R.A.; Hoadley, A.F.A.

    2007-07-01

    Mechanical thermal expression (MTE) is a dewatering technology ideally suited for the dewatering of internally porous biomaterials. For such materials, the combined application of temperature and compressive force in the MTE process enhances the collapse of the porous structure, resulting in effective water removal. In this article, a comparison of the dewatering of titanium dioxide, which is an ideal incompressible, non-porous material, and lignite, which is a porous plant-based biomaterial, is presented. The comparison is based on the parameters critical to dewatering, namely the material compressibility and the permeability. With the aid of mercury porosimetry results, a detailed discussion of the pore destruction of lignite resulting from MTE processing is presented. It is illustrated that there is a well-defined relationship between the pore size distribution after MTE dewatering and the MTE temperature and pressure. The discussion is extended to an investigation of the effects of MTE processing conditions on the effective and noneffective porosity. The effective porosity is defined as the interconnected porosity, which contributes to flow through the compressed matrix, while the non-effective porosity is the remaining porosity, which does not contribute to flow. It is illustrated that there is a linear relationship in both the effective and non-effective porosity with the total porosity. The linear relationship is independent of the processing conditions. It is also shown that MTE processing collapses the effective and non-effective pores at roughly the same rate.

  12. Drying kinetics and stabilization of sewage sludge in lagoon in hot climate.

    PubMed

    Idris, A; Yen, O B; Hamid, M H A; Baki, A M

    2002-01-01

    A sludge lagoon has been adopted as a simple and cost effective method for dewatering of sludge. The processes occurring in a sludge lagoon include thickening, dewatering, storage and stabilization; all happening simultaneously. The objective of this study is to determine the dewatering and drying rates at pilot-scale which occur in a lagoon having different design configurations. Two types of sludge lagoons with different initial sludge depth (0.75 m and 0.375 m) were investigated to measure the drying behavior and drying efficiency. The first design is a sludge lagoon with a clay bottom where the dewatering mechanisms are decanting supernatant and evaporation. The second design is a sludge lagoon installed with a sand and underdrains system, where the dewatering mechanisms are filtration or draining and evaporation. Sludge drying kinetic models with high fitness were plotted to describe the sludge drying behavior. Drying of sludge in a sludge lagoon with a clay bottom can best be described by an exponential function. Whereas, drying of sludge in a sludge lagoon with sand and underdrains system followed a logarithmic function. A lagoon designed with sand and underdrains system and having shallower sludge depth was the most efficient. The reduction in volatile solids was lower than 4% during the study period. The drying process proceeded with an increase in dryness and decline in pH value. PMID:12448479

  13. Drying kinetics and stabilization of sewage sludge in lagoon in hot climate.

    PubMed

    Idris, A; Yen, O B; Hamid, M H A; Baki, A M

    2002-01-01

    A sludge lagoon has been adopted as a simple and cost effective method for dewatering of sludge. The processes occurring in a sludge lagoon include thickening, dewatering, storage and stabilization; all happening simultaneously. The objective of this study is to determine the dewatering and drying rates at pilot-scale which occur in a lagoon having different design configurations. Two types of sludge lagoons with different initial sludge depth (0.75 m and 0.375 m) were investigated to measure the drying behavior and drying efficiency. The first design is a sludge lagoon with a clay bottom where the dewatering mechanisms are decanting supernatant and evaporation. The second design is a sludge lagoon installed with a sand and underdrains system, where the dewatering mechanisms are filtration or draining and evaporation. Sludge drying kinetic models with high fitness were plotted to describe the sludge drying behavior. Drying of sludge in a sludge lagoon with a clay bottom can best be described by an exponential function. Whereas, drying of sludge in a sludge lagoon with sand and underdrains system followed a logarithmic function. A lagoon designed with sand and underdrains system and having shallower sludge depth was the most efficient. The reduction in volatile solids was lower than 4% during the study period. The drying process proceeded with an increase in dryness and decline in pH value.

  14. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  15. Engineering development of selective agglomeration. Site closeout report

    SciTech Connect

    Not Available

    1993-04-01

    The Selective Agglomeration POC facility consisted of a coal crushing and grinding circuit, followed by an agglomeration circuit and product dewatering. (A plot plan of the facility is shown in Figure 1-2.) The coal crushing and grinding system consisted of a hammermill coal crusher, weigh-belt feeder, two ball mills (primary and secondary), and necessary hoppers, pumps, and conveyors. The mills were capable of providing coal over a range of grinds from a d{sub 50} of 125 to 25 microns. Slurry discharged from the ball mills was pumped to the agglomeration circuit. The agglomeration circuit began with a high-shear mixer, where diesel was added to the slurry to begin the formation of microagglomerates. The high-shear mixer was followed by two stages of conventional flotation cells for microagglomerate recovery. The second-stage-flotation-cell product was pumped to either a rotary-drum vacuum filter or a high-G centrifuge for dewatering. The dewatered product was then convoyed to the product pad from which dump trucks were used to transfer it to the utility plant located next to the facility. Plant tailings were pumped to the water clarifier for thickening and then dewatered in plate-and-frame filter presses. These dewatered tailings were also removed to the utility via dump truck. Clarified water (thickener overflow) was recycled to the process via a head tank.

  16. Stormwater permitting for a large construction project: NPDES and Boston's Central Artery/Tunnel

    SciTech Connect

    Bryan, B.B. )

    1993-01-01

    The promulgation of EPA's NPDES stormwater discharge regulations occurred during the latter planning stages for Boston's Central Artery/Tunnel Project, making this project, one of the largest single urban highway projects ever built, one of the first to be permitted under new regulations. The Project consists of 128 land miles of new highway, including numerous ramps and interchanges, and a harbor tunnel, with stormwater discharging during construction from at least 38 separate points. Complicating the permitting situation, stormwater is combined with dewatering discharges from excavations in filled and former industrial areas. Working closely with EPA Region 1 and the Massachusetts Department of Environmental Protection, the Massachusetts Highway Department submitted a permit application combining estimates of dewatering discharge quality derived from groundwater sampling with all the elements of a NPDES application for construction stormwater. The resulting permit contained two separate sets of monitoring requirements for the same discharge points, one for stormwater and one for dewatering. Quarterly monitoring was required for both dewatering and stormwater for metals, suspended solids, TPH, and VOC. Limits of 50 mg/1 TSS and 5 mg/1 TPH were established for dewatering only.

  17. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses.

    PubMed

    Walter, I; Martínez, F; Cala, V

    2006-02-01

    The environmental impact of sewage sludges depends on the availability and phytotoxicity of their heavy metal. The influence of representative sludges (dewatered anaerobic, pelletization, and composted sludge) on the availability of heavy metals, and their effects on seed germination were compared. The total heavy metal concentrations were below the maximum permitted for land-applied waste and the differences among them were small. The DTPA-extracted metal concentrations were rather different. The sequential extraction of the compost showed a slight increase in Cd and Cu availability, and a decrease in the availability of Fe, Mn, Ni and Zn. Pelletization increased the availability of Ni and slightly reduced that of Cr. The dewatering sludge led to greater availability of Cr and Mn but reduced the concentration of Cd. The three different sludges also affected seed germination and root elongation in different ways. The most serious adverse effects were caused by the dewatered sludge extract.

  18. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    1996-05-23

    The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

  19. The electrodewatering of sewage sludges

    SciTech Connect

    Barton, W.A.; Miller, S.A.; Veal, C.J.

    1999-03-01

    Electrodewatering (EDW), the enhancement of conventional pressure filtration by an electric field, is an emerging technology with the potential to improve dewatering especially for difficult materials. CSIRO has many years of experience in EDW, ranging from bench scale tests to demonstration trials. A recent program has investigated the applicability of EDW to aerobic wastewater treatment sludges which are particularly difficult to dewater using conventional equipment. The bench scale filtration experiments produced cakes with solids contents of 35--46 wt% using EDW, compared with 24--30 wt% using pressure filtration alone. The paper: describes how the dewatering results were achieved; identifies a relationship between moisture removal limits by EDW and the forms of water within the sludge; and shows the results of preliminary attempts to mathematically model the EDW process.

  20. The Influence of Dam Removal on Upland Soils

    NASA Astrophysics Data System (ADS)

    Lafrenz, M. D.; Bean, R. A.; Uthman, D.

    2011-12-01

    Driven largely by anadromous fish passage issues, several dams have been removed in the Pacific Northwest and several more are slated to be removed there and in other regions of North America. While much effort has gone into modeling and monitoring the geomorphic and ecologic response of stream channels to dam removal, little research has investigated changes in upland soils following inundation resulting from dam construction, and none had evaluated how these upland soils would respond to dewatering following dam removal. The removal of a relatively large dam - Marmot Dam on the Sandy River in Northwest Oregon, presented an opportunity to evaluate the effect of dewatering on what were formerly upland rather than floodplain soils. We compared the dewatered soils to downstream upland soils that had not been inundated and modified a "ripening" index, which had been developed to characterize dewatered estuary soils in Dutch polders, in order to evaluate the physical and chemical changes taking place in these soils. Two years following dam removal, the previously inundated soils have higher organic matter percentage, cation exchange capacity, and nitrogen levels than downstream soils that were not inundated; yet, this new riparian area is largely devoid of vegetation while the downstream soils maintain a thick (10 cm) O horizon. The carbon to nitrogen ratios (C:N) of upstream surface horizons are low (13:1) and increase markedly with soil depth (54:1); the C:N ratios of downstream soils are typical of other forested soils in this region (28:1 at the surface and 26:1 at depth). Prior to dam removal, it is likely that all upstream, inundated soils had high C:N ratios due to the persistent anaerobic conditions under the reservoir. Following dam removal, soil microbes needing to supplement their nitrogen consumption with soluble nitrogen likely out-competed higher plants for plant available nitrogen. The C:N ratio should have dropped to an equilibrium; this was not

  1. Interpretation of groundwater age tracers (CFC-12, 14C, 4He) in a mining-influenced stream-aquifer system with transient recharge dynamics.

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah; Cook, Peter; Kipfer, Rolf; Dogramaci, Shawan

    2014-05-01

    Interpretation of groundwater age tracers often requires consideration of the mixing of groundwater with varying residence times. Quantification of mixing can be approached through measurement of multiple groundwater age indicators with varying ranges of temporal sensitivity, and their interpretation using lumped parameter models. However, in systems altered by mining, where recharge mechanisms are highly transient in space and time, lumped parameter models do not adequately represent the complexity of the system. In the Pilbara region of Western Australia, water abstracted during dewatering of ore-body aquifers is disposed of by discharging it into ephemeral streams and allowing it to recharge the aquifer. Because this water is essentially being recycled, stable isotopes and chloride are not useful tracers of the impact of this dewatering discharge. In contrast, gas tracers that respond rapidly to exposure to the atmosphere are more useful tracers for constraining the influence of dewatering discharge on the aquifer water balance. In this study we measured CFC-12, 14C and noble gases in production wells and transects of piezometers perpendicular to the stream. Even in samples from wells screened over intervals of 1 m, we observe combinations of tracer concentrations that indicate mixing of groundwater with contrasting residence times. For example, all samples contained measureable CFC-12 concentrations, including those with appreciable terrigenic 4He. Interpretation of these data requires consideration of the history of mining activity in the area. Stream 14C activities, which now range from 50 to 75 pMC, are a function of the dewatering discharge, and are no longer in equilibrium with the atmosphere. As a result, groundwater that recharged prior to mining operations can have higher 14C activities than groundwater that recharged through the stream in the last 10 years. The dewatering discharge has caused the stream to transition from a disconnected ephemeral

  2. 1. View east at west facade of culvert outlet headwall, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View east at west facade of culvert outlet headwall, above which part of the canal bank has been removed. Foreground to background: streambed and coffer dam (mound in center) that was used in dewatering the culvert; intake pipes (extreme left and right) for dewatering pumps; deteriorated culvert outlet headwall with upper portion of wall fallen away; horizontal masonry cutoff wall extending above the culvert outlet partially up the canal bank (cutoff wall was exposed by removal of part of canal bank); towpath at top of canal bank. - Delaware & Raritan Canal, Six Mile Run Culvert, .2 mile South of Blackwells Mills Road, East Millstone, Somerset County, NJ

  3. An explanation of flocculation using Lewis acid-base theory

    SciTech Connect

    Brown, P.M.; Stanley, D.A.; Scheiner, B.J.

    1988-01-01

    This paper describes a Bureau of Mines-devleoped method of dewatering clay slurries based on flocculation by high-molecular-weight polymers and water removal from the formed flocs using a trommel or hydrosieve. The exchange ion on the clays affects their dewaterability. Metal ions in solution and on the exchange sites of smectite clays are known to act as Lewis acids. Recent work has determined that these ions can be titrated with high-molecular-weight polymers. The relative acidity of the exchange ion and the basicity of the polymer determined by the new method give insight into the dewatering mechanism.

  4. Experimental studies on steam pressure filtration of coal concentrate filter cakes

    SciTech Connect

    Gerl, S.; Stahl, W.

    1995-12-31

    Steam pressure filtration combines mechanical and thermal processes in one filtration device. Steam condensation at the cold layers of the filter cake, build a condensation front, which even removes the capillary water from the porous filter cake. Depending on the choice of parameters it is possible to achieve a very low residual moisture content. The influence of the parameters on the dewatering results was systematically examined on a bench-scale apparatus. This paper explains the physical fundamentals, the influence of the cake dewatering parameters, and one possible method of applying the process to a disk filter device as well.

  5. Belt Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Broste, Dale

    This lesson, an introduction to belt management, was developed for a course in sludge treatment and disposal. Fundamental principles of belt filter operation are described. Chemical conditioning and the effect on sludge characteristics are discussed, and a detailed description of the different zones of dewatering is presented. Information on…

  6. Alcohol production from fermentation of sweet potatoes

    SciTech Connect

    Egg, R.P.; Coble, C.G.; O'Neal, H.P.; Sweeten, J.M.

    1982-12-01

    A study was conducted to determine the ethanol production characteristics of sweet potatoes. Ethanol yields were as high as 137 liters per tonne of feedstock using procedures developed for grain. Major problems encountered were low ethanol concentrations in the beer and poor stillage dewatering properties.

  7. Effect of solid separation and composting on the energy content of swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure represents a significant source of renewable bioenergy. In order to utilize current thermochemical energy conversion processes, a dry material (more than 90% total solids) is recommended. Solid-liquid separation can serve as a useful pretreatment of animal manure as a dewatering tool. ...

  8. Annual Report for Gravity Collection Lysimeter Monitoring Plan – ERDF Cells 5 and 6

    SciTech Connect

    M. L. Proctor

    2006-04-04

    The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters. Therefore, the scope of this report will be to establish constituent levels and document dewatering activities completed to date.

  9. DETAIL OF DENVER DISC FILTER IN CO91107, SUCTION END. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DENVER DISC FILTER IN CO-91-107, SUCTION END. NOTE BEARING HOUSING WITH CAST LOGO, SUCTION PIPE GOING OFF TO THE RIGHT, AND FILTER DISC IN BACKGROUND. VACUUM INSIDE DISCS FURTHER DEWATERED CONCENTRATE. AS DISC SLOWLY ROTATED A BAR SCRAPED DRIED CONCENTRATE FROM OUTSIDE OF FILTER CLOTH. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  10. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  11. Second technical contractors' conference on peat

    SciTech Connect

    Not Available

    1980-01-01

    This conference reported the status of the US Department of Energy Peat Program. The program includes peat resource surveys of eleven states, peat gasification process and equipment studies, dewatering studies, and environmental and socioeconomic factors in the development of peat technology. Separate abstracts were prepared for selected papers. (CKK)

  12. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... engine installation, each pump may be driven off a different propulsion engine. (e) A submersible... submersible electric bilge pump provided the hose or tube does not penetrate any required watertight...

  13. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... engine installation, each pump may be driven off a different propulsion engine. (e) A submersible... submersible electric bilge pump provided the hose or tube does not penetrate any required watertight...

  14. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... engine installation, each pump may be driven off a different propulsion engine. (e) A submersible... submersible electric bilge pump provided the hose or tube does not penetrate any required watertight...

  15. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... engine installation, each pump may be driven off a different propulsion engine. (e) A submersible... submersible electric bilge pump provided the hose or tube does not penetrate any required watertight...

  16. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... engine installation, each pump may be driven off a different propulsion engine. (e) A submersible... submersible electric bilge pump provided the hose or tube does not penetrate any required watertight...

  17. Thermal dryers for solids

    SciTech Connect

    Billings, C.H.

    1993-12-01

    This article describes an indirect thermal dryer added to dewater solids before incineration of sewage sludge at a Buffalo, New York waste water treatment plant. In the first three months of operation, the solids inventory was reduced from about 799 tons to 250 tons. The solids processed in the plant's multiple hearth incinerators varied from 12 to 14 tons per hour.

  18. 40 CFR 436.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste water and mine dewatering discharges, shall not exceed the following limitations: Effluent... if the facilities are designed, constructed and maintained to contain or treat the volume of waste water which would result from a 10-year 24-hour precipitation event....

  19. 40 CFR 436.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste water and mine dewatering discharges, shall not exceed the following limitations: Effluent... if the facilities are designed, constructed and maintained to contain or treat the volume of waste water which would result from a 10-year 24-hour precipitation event....

  20. 40 CFR 436.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste water and mine dewatering discharges, shall not exceed the following limitations: Effluent... if the facilities are designed, constructed and maintained to contain or treat the volume of waste water which would result from a 10-year 24-hour precipitation event....

  1. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stumps, large timbers, furniture, and major appliances), digested and dewatered sludges from waste water... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-2 Recommended procedures: Design. (a) In addition to the residential and commercial...

  2. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples...

  3. Coal prep '94

    SciTech Connect

    Not Available

    1994-01-01

    The Coal Prep 1994 Conference held May 3-5, 1994 in Lexington, KY presented papers on materials handling, developments in other countries, research and development, dewatering, and coal cleaning. The papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

  4. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.; Jiang, X.; Tao, D.; Parekh, B.K.; Meloy, T.

    1996-10-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

  5. Expanding a Natural Product Line.

    ERIC Educational Resources Information Center

    Conrad, Paul

    1994-01-01

    Describes a business started as a profitable solution to one dairy farm's manure management challenges. Manure is anaerobically digested, dewatered, composted and sold as bagged potting soil, germinating mix, and soil amendments for the gardening market. Describes the development of the business and keys to its success. (LZ)

  6. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... the anticipated occurrence of surface effects following backfilling. (c) The applicant shall describe the source of the hydraulic transport mediums, method of dewatering the placed backfill, retainment...

  7. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... the anticipated occurrence of surface effects following backfilling. (c) The applicant shall describe the source of the hydraulic transport mediums, method of dewatering the placed backfill, retainment...

  8. Fourth technical contractors' conference on peat

    SciTech Connect

    Not Available

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  9. PILOT LAND TREATMENT OF PAH-CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Hazardous dredged sediments are typically placed in confined disposal facilities (CDFs) which are designed to dewater and contain but not treat sediments. Since navigational dredging in the U.S. is quickly filling many CDFs, these facilities have little available capacity for ne...

  10. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameter BCT effluent limitations Produced Water (all facilities) Oil & Grease The maximum for any one day... in 40 CFR 125.30-125.32, any existing point source subject to this subpart must achieve the following... Cuttings and Dewatering Effluent: 1 All facilities except Cook Inlet No discharge. Cook Inlet:...

  11. Process for treating contaminated soil

    SciTech Connect

    Lebowitz, H.E.; Kulik, C.J.

    1995-10-24

    A process is provided for treating soil contaminated with oils, tars and light hydrocarbons. A slurry is formed with coal, water and the contaminated soil and agitated at elevated temperature, resulting in the transfer of the oil from the soil to the coal. The coal and soil mixture is then dewatered for disposal by burning or burial in a landfill. 2 figs.

  12. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  13. Filtration and flocculation in industrial processes. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. Filtration and flocculation in industrial processes. (Latest citations from Fluidex). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Filtration and flocculation in industrial processes. (Latest citations from Fluidex). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning theoretical aspects, system design, evaluations, and standards for filtration and flocculation techniques and equipment used in various industrial processes. Applications include air filtration, dust collection, water filtration, dewatering, and flocculant separation. A variety of filter types and flocculation mechanisms is discussed. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  16. Soil application of various biochars produced from both dry and wet pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to 1) compare physico-chemical and thermal characteristics of swine manure-based hyrdochar and pyrochar, and 2) investigate greenhouse gas emission and groundwater pollution potentials of the swine hydrochar when used as a soil amendment. Dewatered swine solids wer...

  17. Use of alkyl sulfates in the dewaterng of a coal flotation concentrate

    SciTech Connect

    Zubkova, Yu.N.; Basenkova, V.L.; Kucher, R.V.

    1981-01-01

    The possibility has been shown of using anionic SAAs in the dewatering of a coal flotation concentrate. It has been established that the adsorption of alkyl sulfates (ASs) obeys the general laws of the adsorption of organic substances from solutions on coals. The addition of electrolytes intensifies the adsorption of ASs, leading to the hydrophobization of the coal particles. 10 refs.

  18. Using ecologically relevant hydrologic indices to examine temporal changes in unregulated streams in Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water demand in the Great Plains region is lowering groundwater levels, reducing base flow and dewatering vulnerable streams. In western Kansas, groundwater has ceased to supply dependable baseflow to previously perennial streams. The change in baseflow has altered both the natural flow ...

  19. Using ecologically relevant hydrologic indices to examine temporal changes in unregulated streams in Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for water, especially for agriculture, is one of the major reasons for dewatering the streams and lowering groundwater levels in the Great Plains region. As the conditions have worsened in many areas groundwater has ceased to supply the dependable baseflow to some perennial streams, thus maki...

  20. 76 FR 78601 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... permanent stream dewatering, and changes in the timing and volume of snowmelt (76 FR 18694, April 5, 2011... impact of warming temperatures and altered precipitation patterns on diminishing sea ice (73 FR 28288... and higher emission standards for light-duty vehicles (75 FR 25324, May 7, 2010), but states that...

  1. 75 FR 6389 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... presses. This is a project specific waiver and only applies to the use of the specified product for the... treatment facility improvements will include replacement of the existing belt filter press for sludge... that two 6-channel rotary press sludge dewatering units, manufactured by Fournier Industries of...

  2. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  3. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-06-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment and disposal of sewage sludges. Citations discuss sludge digestion, dewatering, disinfection, stabilization, chlorination, and desulfurization. Topics include pretreatment programs, land disposal, incineration, and waste utilization. Environmental monitoring and protection, federal regulations, and legal aspects are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  4. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... off air to the fire: close hatches, ports, doors, manual ventilators, and the like and shut off the... weathertight door, hatch, and air-port to prevent taking water aboard or further flooding in the vessel. (2... pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check,...

  5. 46 CFR 185.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Coast Guard. (3) Fire. (i) Cut off air supply to fire—close items such as hatches, ports, doors... flooding. (i) Close all watertight and weathertight doors, hatches, and airports to prevent taking water... in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps...

  6. 46 CFR 122.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... watertight and weathertight doors, hatches, and airports to prevent taking water aboard or further flooding... driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if... radiotelephone. (vi) Continue search until released by Coast Guard. (3) Fire. (i) Cut off air supply to...

  7. 46 CFR 122.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... watertight and weathertight doors, hatches, and airports to prevent taking water aboard or further flooding... driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if... radiotelephone. (vi) Continue search until released by Coast Guard. (3) Fire. (i) Cut off air supply to...

  8. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  9. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and related fuel lines and accessories, are prohibited except where used for portable dewatering...

  10. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and related fuel lines and accessories, are prohibited except where used for portable dewatering...

  11. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and related fuel lines and accessories, are prohibited except where used for portable dewatering...

  12. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS... for portable dewatering pumps or outboard motor installations. (b) The design, construction, and... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant....

  13. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and related fuel lines and accessories, are prohibited except where used for portable dewatering...

  14. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  15. Continuous High-solids corn liquefaction and fermentation with stripping of ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous resear...

  16. Annual Report for Gravity Collection Lysimeter Monitoring Plan - ERDF Cells 5 and 6

    SciTech Connect

    W. E. Remsen

    2006-12-19

    The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters. Therefore, the scope of this report will be to establish constituent levels and document dewatering activities completed to date.

  17. 46 CFR 62.10-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... detection, watertight integrity, and dewatering systems. Independent refers to equipment arranged to perform... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Terms Used... attaining or carrying out an operator-specified equipment response or sequence. Boiler low-low water...

  18. 46 CFR 62.10-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... detection, watertight integrity, and dewatering systems. Independent refers to equipment arranged to perform... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Terms Used... attaining or carrying out an operator-specified equipment response or sequence. Boiler low-low water...

  19. 46 CFR 62.10-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... detection, watertight integrity, and dewatering systems. Independent refers to equipment arranged to perform... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Terms Used... attaining or carrying out an operator-specified equipment response or sequence. Boiler low-low water...

  20. 46 CFR 62.10-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... detection, watertight integrity, and dewatering systems. Independent refers to equipment arranged to perform... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Terms Used... attaining or carrying out an operator-specified equipment response or sequence. Boiler low-low water...

  1. 46 CFR 62.10-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... detection, watertight integrity, and dewatering systems. Independent refers to equipment arranged to perform... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Terms Used... attaining or carrying out an operator-specified equipment response or sequence. Boiler low-low water...

  2. Environmental Impact Of The Use Of Contaminated Sediments As Partial Replacement Of The Aggregate Used In Road Construction

    EPA Science Inventory

    The Indiana Harbor Canal (IHC) is a waterway extensively polluted with heavy metals and petroleum. Since there are limited disposal options for the petroleum-contaminated sediments (PCSs) of the canal, the environmental impact of IHC dewatered sediment when used as partial repla...

  3. 38. Y&D Drawing 216455 (1942), 'Dry Dock 4 General Arrangement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Y&D Drawing 216455 (1942), 'Dry Dock 4 General Arrangement Sections F-F, G-G, H-H, I-I'; sectional views through pump room, flooding and dewatering chambers. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  4. 40 CFR 61.251 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meaning given them in the Clean Air Act or 40 CFR part 61, subpart A. The following terms shall have the following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative...

  5. 40 CFR 61.251 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meaning given them in the Clean Air Act or 40 CFR part 61, subpart A. The following terms shall have the following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative...

  6. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples...

  7. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stumps, large timbers, furniture, and major appliances), digested and dewatered sludges from waste water... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-2 Recommended procedures: Design. (a) In addition to the residential and commercial...

  8. 75 FR 38539 - Notice of Availability of Final Supplemental Environmental Impact Statement Updating Cumulative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ..., facilities to support mine dewatering, and facilities to support backfill operations. Surface disturbance... gold mine in Eureka and Elko counties, Nevada, and by this notice is announcing its availability. The... of Decision (ROD) for Newmont Mining Corporation's Leeville Project, an underground gold mine...

  9. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluids, drill cuttings, and dewatering effluent Free Oil No discharge. 2 Non-aqueous drilling... Free Oil No discharge. 2 Well Treatment, Workover and Completion Fluids Free Oil No discharge. 2... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY...

  10. Appalachian clean coal technology consortium

    SciTech Connect

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.; Jiang, D.; Tao, D.; Parekh, B.K.; Meloy, T.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  11. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  12. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for... any fixed extinguishing-system. (5) Maneuver the vessel to minimize the effect of wind on the fire....

  13. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for... any fixed extinguishing-system. (5) Maneuver the vessel to minimize the effect of wind on the fire....

  14. 46 CFR 185.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if possible. (iv) Check all intake and discharge lines, which penetrate the hull... fixed extinguishing system if installed. (v) Maneuver vessel to minimize effect of wind on fire. (vi)...

  15. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Recycle provisions. 141.76 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.76 Recycle provisions. (a... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must...

  16. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Recycle provisions. 141.76 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.76 Recycle provisions. (a... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must...

  17. 40 CFR 435.45 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3% by volume. Free oil No discharge. 2 Diesel oil No discharge. Mercury 1 mg/kg dry weight maximum in the stock... determined by the suspended particulate phase (SPP) toxicity test. See § 435.41(ee). 5 When Cook...

  18. 40 CFR 435.45 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3% by volume. Free oil No discharge. 2 Diesel oil No discharge. Mercury 1 mg/kg dry weight maximum in the stock... determined by the suspended particulate phase (SPP) toxicity test. See § 435.41(ee). 5 When Cook...

  19. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in 40 CFR 125.30-125.32, any existing point source subject to this subpart must achieve the following... dewatering effluent SPP Toxicity Minimum 96-hour LC5. of the SPP Toxicity Test 4 shall be 3% by volume. Free oil No discharge. 2 Diesel oil No discharge. Mercury 1 mg/kg dry weight maximum in the stock...

  20. 40 CFR 435.45 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and dewatering effluent SPP Toxicity Minimum 96-hour LC50. of the SPP Toxicity Test 4 shall be 3% by volume. Free oil No discharge. 2 Diesel oil No discharge. Mercury 1 mg/kg dry weight maximum in the stock... determined by the suspended particulate phase (SPP) toxicity test. See § 435.41(ee). 5 When Cook...

  1. Fruit, vegetable, and grain processing wastes

    SciTech Connect

    Andrews, R.M.; Soderquist, M.R.

    1980-06-01

    This is a literature review of fruit, vegetable and grain processing wastes. The factors affecting water usage and methods of conservation were examined. Various processes were investigated which included the pulp recovery from caustic peeled tomato skin, the dewatering of citrus, washing leafy vegetables with recycled process water and the potato processing industry.

  2. REACH SPECIFIC CHANNEL STABILIZATION BASED ON COMPREHENSIVE EVALUATION OF VALLEY FILL HISTORY, ALLUVIAL ARCHITECTURE AND GROUNDWATER HYDROLOGY IN A MOUNTAIN STREAM IN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Kingston meadow, located in the Toiyabe Range, is one of many wet meadow complexes threatened by rapid channel incision in the mountain ranges of the central Great Basin. Channel incision can lower the baselevel for groundwater discharge and de-water meadow complexes resulting in...

  3. Nutrient and Bacterial Transport in Runoff from Soil and Pond Ash Amended Feedlot Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides environmental and economic benefits. However, the water quality effects of pond ash use are not well defined. The objectives of this field investigation were t...

  4. Phytotoxic effects of sewage sludge extracts on the germination of three plant species.

    PubMed

    Ramírez, Wilson A; Domene, Xavier; Andrés, Pilar; Alcañiz, Josep M

    2008-11-01

    In order to evaluate the ability of three types of extracts to explain the ecotoxicological risk of treated municipal sewage sludges, the OECD 208A germination test was applied using three plants (Lolium perenne L., Brassica rapa L., and Trifolium pratense L.). Three equivalent batches of sludge, remained as dewatered sludge, composted with plant remains and thermally dried, from an anaerobic waste water treatment plant were separated. Samples from these three batches were extracted in water, methanol, and dichloromethane. Plant bioassays were performed and the Germination Index (GI) for the three plants was evaluated once after a period of 10 days. Germination in extracts was always lower than the respective controls. The germination in composted sludge (GI 40.9-86.2) was higher than the dewatered (GI 2.9-45.8), or thermally dried sludges (GI 24.6-64.4). A comparison of the germination between types of extracts showed differences for dewatered sludge with the three plants, where the water and methanol extracts had significantly lower germination than the dichloromethane extract. A higher half maximal effective concentration (EC50) in composted extracts was established, mainly in the water extract (EC50 431-490 g kg(-1)). On the contrary, the germination was strongly inhibited in the water extract of the dewatered sludge (EC50 14 g kg(-1)). The germination was positively correlated with the degree of organic matter stability of the parent sludge, and an inverse correlation was detected for total nitrogen, hydrolysable nitrogen and ammonium content. It is concluded that the phytotoxic effect of the water extract is more closely related to hydrophilic substances rather than lipophilic ones, and care must be taken with dewatered sludge application, especially with their aqueous eluates. Results obtained in this work show the suitability of the use of sludge extracts in ecotoxic assays and emphasize the relevance of sewage sludge stabilization by post

  5. Changes in Hydraulic Gradient, Hyporheic Exchange, and Patterns of Nutrient Concentration between Dry and Wet Season Flows for a Tropical Mountain Stream

    NASA Astrophysics Data System (ADS)

    Fabian, M.; Endreny, T.; Lautz, L.; Siegel, D.

    2009-05-01

    Mountain streams are a common source in Central America for community water supplies (CWS). These streams become dewatered by the CWS during dry season low flows, with potential impacts on hydraulic gradients, hyporheic exchange flow, terrestrial-aquatic linkages, and nutrient dynamics, which may ultimately affect aquatic and riparian micro-ecosystems. We are presenting preliminary results of a study conducted in Buena Vista, a village in Yoro, Honduras where the mountain stream was instrumented and manipulated to measure impacts of a CWS. Piezometric head and stream water levels were taken at 7 cross-sections along 30 m of step-pool stream, and water quality samples were retrieved from 48 pairs of riparian and stream piezometers and monitoring wells. We computed vertical hydraulic gradients, zones of hyporheic upwelling and downwelling, and nutrient patterns, and their change with streamflow. Streamflow ranged from 30 L/s in the wet-season high flow to about 2 L/s in the dry-season low flow, and were dewatered to about 1 L/s. A HEC- RAS water-surface profile model was calibrated to observed stages to establish gradients along the entire reach, and river head was then input as a boundary condition into a MODFLOW groundwater model to examine patterns of hyporheic exchange. Changes in hydraulic gradients and fluxes are compared with baseline conditions during the dry season low flow without dewatering. Noticeable changes in hydraulic gradient occurred between high and low flows, but changes in low flow to dewatered flow were negligible. Lengths and location of hyporheic upwelling and downwelling zones shifted slightly with changes in flow, but again the dewatering had a minor impact. Concentrations of nitrate, sulfate, chloride, fluoride and dissolved oxygen were detected in the hyporheic zone, the stream water, and adjacent ground water. We are exploring mixing models to assess the extent to which hyporheic exchange migrated to and from the creek to adjacent

  6. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    SciTech Connect

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  7. Enhanced stabilization of digested sludge during long-term storage in anaerobic lagoons.

    PubMed

    Lukicheva, Irina; Pagilla, Krishna; Tian, Guanglong; Cox, Albert; Granato, Thomas

    2014-04-01

    The goal of this work was to study changes in anaerobically stored digested sludge under different lengths of storage time to evaluate the quality of final product biosolids. The analyses of collected data suggest the organic matter degradation occurrence in the anaerobic environment of the lagoon approximately within the first year. After that, the degradation becomes very slow, which is likely caused by unfavorable environmental conditions. The performance of lagoon aging of digested sludge was also compared to the performance of lagoon aging of anaerobically digested and dewatered sludge. It was concluded that both of these processes result in biosolids of comparative quality and that the former provides more economical solution to biosolids handling by eliminating the need for mechanical dewatering. PMID:24851324

  8. Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage.

    PubMed

    Hidaka, Taira; Inoue, Kenichiro; Suzuki, Yutaka; Tsumori, Jun

    2014-10-01

    Microalgal cultivation combined with anaerobic digestion at wastewater treatment plants is promising to recover energy. This study investigated the growth and anaerobic digestion characteristics of microalgae cultivated using nutrients in sewage. Microalgae were cultivated using primary effluent, secondary effluent, and dewatering filtrate. Microscopic observation indicated that Chlorella was cultivated using dewatering filtrate of anaerobic digestion without controlling the type of species. Batch anaerobic digestion experiments with digested sludge showed that the methane conversion ratio of the cultivated mixture was approximately 40-65%. Different cultivation time did not affect the microalgal contents. Methane recovery mass was 0.13NL-methane/L-cultivation liquor. The C/N ratio of the cultivated mixture was approximately 3-5, but the apparent ammonia release ratio was smaller than that of sewage sludge during digestion. These results proved the applicability of methane recovery from microalgae cultivated using nutrients included in anaerobically digested sludge.

  9. Topographic influence of longwall mining on ground-water supplies

    SciTech Connect

    Elsworth, D.; Liu, J.

    1995-09-01

    The extent of potential aquifer dewatering resulting from underground longwall mining is determined through application of a nonlinear finite-element model. The model represents the form of the body strain field that accompanies mining-induced subsidence, and uses strain magnitudes to define the modified hydraulic conductivity field. The model is applied to test the sensitivity of the induced strain field to ground surface topography. The location and extent of three characteristic zones of conductivity enhancement are defined, representing gravitational detachment above the panel, shear failure above the abutment, and extensile deformation at the ground surface. Correspondingly, well completion locations are ranked with their potential for dewatering representing relatively high potential in upland areas and relatively low potential in valley base locations. These results amplify and offer a phenomenological explanation of observational data. Modeling results are compared with several documented studies in the Appalachian coal fields and favorable agreement achieved.

  10. Leachate tests with sewage sludge contaminated by radioactive cesium.

    PubMed

    Tsushima, Ikuo; Ogoshi, Masashi; Harada, Ichiro

    2013-01-01

    The sewer systems of eastern Japan have transported radioactive fallout from the Fukushima Dai-ichi nuclear power plant accident to wastewater treatment plants, where the radioisotopes have accumulated. To better understand the potential problems associated with the disposal of contaminated sewage sludge in landfills, leachate tests were conducted with radioactive incinerator ash, cement solidification incinerator ash, and dewatered sludge cake. Radioactivity was undetectable in the eluate from incinerator ash and dewatered sludge cake, but about 30% of the radioactivity initially in cement solidification incinerator ash appeared in the eluate during the leaching experiments. Moreover, modification of test conditions revealed that the presence of Ca(2+) ions and strong alkali in the water that contacted the incinerator ash enhanced leaching of cesium. Lastly, the capacity of pit soil to absorb radioactive cesium was estimated to be at least 3.0 Bq/g (dry).

  11. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  12. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  13. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort.

  14. Ethanol extraction of phytosterols from corn fiber

    DOEpatents

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  15. FGD system capital and operating cost reductions based on improved thiosorbic scrubber system design and latest process innovations

    SciTech Connect

    Smith, K.; Tseng, S.; Babu, M.

    1994-12-31

    Dravo Lime Company has operated the Miami Fort wet scrubber FGD pilot test unit since late 1989 and has continued in-house R&D to improve the economics of the magnesium-enhanced scrubbing process. Areas investigated include the scrubber configuration, flue gas velocity, spray nozzle type, droplet size, mist eliminator design, additives to inhibit oxidation, improved solids dewatering, etc. Also tested was the forced oxidation Thioclear process. The data gathered from the pilot plant and in-house programs were used to evaluate the capital and operating costs for the improved systems. These evaluations were made with eye towards the choices electric utilities will need to make in the near future to meet the Phase II emission limits mandated by the 1990 Clean Air Act. Some of the process modifications investigated, for example, the dewatering improvements apply to potential beneficial retrofit of existing FGD systems today.

  16. Application of a hollow-fiber, tangential-flow device for sampling suspended bacteria and particles from natural waters

    USGS Publications Warehouse

    Kuwabara, J.S.; Harvey, R.W.

    1990-01-01

    The design and application of a hollow-fiber tangential-flow filtration device has been used to concentrate bacteria and suspended particles from large volume surface water and groundwater samples (i.e., hundreds of liters). Filtrate tlux rates (4–8 L min−1) are equal to or faster than those of other devices that are based on continuous flow centrifugation and plate and frame filtration. Particle recovery efficiencies for inorganic particles (approximately 90%) were similar to other dewatering devices, but microbial cell recoveries (30–90%) were greatly improved by this technique relative to other currently available methods. Although requirements for operation and maintenance of the device are minimal, its size, as with other dewatering devices, limits its applicability at remote sample sites. Nevertheless, it has proven useful for sample collection in studies involving microbial transport and analysis of particle-associated trace inorganic solutes.

  17. Coal mine subsidence - western United States

    SciTech Connect

    Dunrud, C.R.

    1984-01-01

    Subsidence processes above underground mines consist of a gradual down-warping of the overburden into coal extraction panels, causing depressions, or a sudden collapse into individual mine openings, causing pits. Subsidence in surface mining areas is caused by compaction of rehandled overburden material, dewatering of aquifers or stress and strain readjustments. The time between mining and complete subsidence above underground mines in the western US commonly ranges from a few months to a few years, where down-warping occurs above extraction panels, to many years or decades where pillars are not mined. The duration between mining and the occurrence of sinkholes, however, can vary from a few decades to as long as centuries. The time necessary for depressions and pits in surface mining areas apparently depends on such factors as methods of emplacing and grading and rate of wetting the rehandled material, rate of dewatering of aquifers near the mine, and stress-strain readjustments.

  18. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  19. Emissions of metals, chromium and nickel species, and organics from municipal waste-water-sludge incinerators. Volume 7. Site 8 emission-test report: Appendices. Final report, 1989-91

    SciTech Connect

    Segall, R.R.; DeWees, W.G.

    1992-03-01

    The Site 8 facility is a 24.1 million gallons per day (MGD) secondary biological treatment plant with a 0.1 MGD septage handling facility. The wastewater influent comes from predominantly (90 percent) domestic sources. The treatment facility serves a population of approximately 175,000. All 22 tons per day of sludge solids are dewatered by two belt presses to a concentration of 22 to 25 percent solids. Approximately 15 to 17 tons of solids are dewatered by one press and fed to the fluidized bed incinerator. The air pollution control system associated with this incinerator consists of a water injection venturi, and an impingement tray scrubber. A pilot-scale wet eletrostatic precipitator had been installed and was tested. Volume 7 contains the appendices for volume 6. These are (1) Incinerator and Scrubber Operating Data; (2) Sampling and Analytical Methods; (3) Sample Calculations; (4) Analytical Data and Reports, and (5) Continuous Emission Monitoring Data Calibrations/One-min averages.

  20. New system reduces sludge management costs

    SciTech Connect

    Roll, R.R. ); Koser, M.R. )

    1993-06-01

    This article describes a recently completed a $2.7-million project to upgrade the sludge dewatering and stabilizing system at a 48-mgd wastewater treatment facility in Niagara Fall, New York. The work was necessitated by the deteriorated condition of the plant's original vacuum filters and increasing costs to landfill the dewatered sludge. The new equipment has restored sludge production capacity while reducing the final material's moisture content. The Niagara Falls plant is one of the few municipal physical-chemical treatment plants built in this country, and is the largest still functioning. Constructed in the mid-1970s, it was designed to treat a combination of domestic sewage and industrial wastes. One third of the flow and one half of the solids are industrial in nature. The changes made reduced electrical power consumption and sanitary landfill costs.

  1. Enhanced stabilization of digested sludge during long-term storage in anaerobic lagoons.

    PubMed

    Lukicheva, Irina; Pagilla, Krishna; Tian, Guanglong; Cox, Albert; Granato, Thomas

    2014-04-01

    The goal of this work was to study changes in anaerobically stored digested sludge under different lengths of storage time to evaluate the quality of final product biosolids. The analyses of collected data suggest the organic matter degradation occurrence in the anaerobic environment of the lagoon approximately within the first year. After that, the degradation becomes very slow, which is likely caused by unfavorable environmental conditions. The performance of lagoon aging of digested sludge was also compared to the performance of lagoon aging of anaerobically digested and dewatered sludge. It was concluded that both of these processes result in biosolids of comparative quality and that the former provides more economical solution to biosolids handling by eliminating the need for mechanical dewatering.

  2. Microencapsulated Bioactive Agents and Method of Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    The invention is directed to microcapsules encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane. The microcapsules are formed by interfacial coacervation where shear forces are limited to 0-100 dynes per square centimeter. The resulting uniform microcapsules can then be subjected to dewatering in order to cause the internal solution to become supersaturated with the dissolved substance. This dewatering allows controlled nucleation and crystallization of the dissolved substance. The crystal-filled microcapsules can be stored, keeping the encapsulated crystals in good condition for further direct use in x-ray crystallography or as injectable formulations of the dissolved drug, protein or other bioactive substance.

  3. Modelling flow to leachate wells in landfills

    SciTech Connect

    Al-Thani, A.A.; Beaven, R.P.; White, J.K

    2004-07-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  4. Generation pattern of sulfur containing gases from anaerobically digested sludge cakes.

    PubMed

    Novak, John T; Adams, Gregory; Chen, Yen-Chih; Erdal, Zeynep; Forbes, Robert H; Glindemann, Dietmar; Hargreaves, J Ronald; Hentz, Lawrence; Higgins, Matthew J; Murthy, Sudhir N; Witherspoon, Jay

    2006-08-01

    Eleven dewatered sludge cakes collected from anaerobic digesters at different treatment plants were evaluated for the amount, type, and pattern of odorous gas production. All but one of the sludge cakes were from mesophilic anaerobic digesters. One was from a thermophilic digester. The pattern and quantities of sulfur gases were found to be unique for each of the samples with regard to the products produced, magnitude, and subsequent decline. The main odor-causing chemicals were volatile sulfur compounds, which included hydrogen sulfide, methanethiol, and dimethyl sulfide. Volatile sulfur compound production peaked in 3 to 8 days and then declined. The decline was a result of conversion of organic sulfur compounds to sulfide. In one side-by-side test, a high-solids centrifuge cake generated more odorous compounds than the low-solids centrifuge cake. The data show that anaerobic digestion does not eliminate the odor potential of anaerobically digested dewatered cakes.

  5. The occurrence and fate of phenolic compounds in a coking wastewater treatment plant.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Feng, Chunhua; Ren, Yuan; Hu, Yun; Yan, Bo; Wu, Chaofei

    2013-01-01

    The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L(-1), and that chlorophenols and nitrophenols were in the level of μg L(-1). Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89-98% of phenols and 83-89% of nitrophenols were biodegraded, and that 44-69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical-chemical property. PMID:23863439

  6. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1984-11-01

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the

  7. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.

    2006-01-01

    Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.

  8. A Family Physician's Guide to Sewage Sludge

    PubMed Central

    Connop, Peter J.

    1983-01-01

    The potential environmental and personal health effects from the agricultural uses of domestic sewage sludge may increasingly require the guidance of the family physician, especially in farming communities. This article summarizes the potential health hazards and outlines the tripartite risk phenomenon—hazard identification, risk assessment, and social evaluation. For the agricultural use of dewatered sewage sludge, strict adherence to regulated procedures should not increase risk beyond that of agriculture generally. Confirmation by prospective epidemiological studies is recommended. PMID:21283298

  9. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L.

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  10. DETAIL OF FILTER DISCS ON DENVER FILTER IN CO91107. AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF FILTER DISCS ON DENVER FILTER IN CO-91-107. AS DISCS SLOWLY ROTATE, VACUUM INSIDE DISCS ATTRACT SLURRY IN THE SUMP AND DEWATERS CONCENTRATE AS DISCS MOVE THROUGH AIR. FURTHER ROTATION PASSES A BAR TO SCRAPE OFF DRIED METAL CONCENTRATE, ASSISTED BY BLASTS OF COMPRESSED AIR. METAL CONCENTRATE READY FOR SHIPMENT TO SMELTER FALLS INTO BIN BELOW. EIMCO FILTERS OPERATE SIMILARLY. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  11. Results of the GCMS Effluent Gas Analysis for the Brine Processing Test

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Lee, Jeffrey; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Harris, Linden

    2015-01-01

    The effluent gas for the Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB) were analyzed using Headspace GCMS Analysis in the recent AES FY14 Brine Processing Test. The results from the analysis describe the number and general chemical species of the chemicals produced. Comparisons were also made between the different chromatograms for each system, and an explanation of the differences in the results is reported.

  12. The Sanford Laboratory at Homestake: Progress and Opportunities

    NASA Astrophysics Data System (ADS)

    Alonso, Jose

    2009-12-01

    The Homestake mine in Lead, South Dakota has been selected as the site for DUSEL. With private and State funds, re-entry activities have begun, and have achieved the de-watering and accessibility of the important 4850 level. Early science programs in geology, hydrology, and biology have been ongoing for over a year. LUX and MAJORANA, two large physics experiments, will be deployed in the Davis campus at 4850 when rehabilitation of this area is complete.

  13. Coefficient indicates if rod pump can unload water from gas well

    SciTech Connect

    Hu Yongquan; Wu Zhijun

    1995-09-11

    A sucker rod pump can efficiently dewater gas wells if the separation coefficient is sufficiently high. To determine this separation coefficient, it is not sufficient to only know if the system meets the criteria of rod string stress, horsehead load, and crankshaft torque. This paper reviews water production and gas locking problems at the Sichuan gas field and identifies the methodologies used to optimize the pumping efficiency of the area wells.

  14. Cold vacuum drying proof of performance (first article testing) test results

    SciTech Connect

    MCCRACKEN, K.J.

    1999-06-23

    This report presents and details the test results of the first of a kind process referred to as Cold Vacuum Drying (CVD). The test results are compiled from several months of testing of the first process equipment skid and ancillary components to de-water and dry Multi-Canister Overpacks (MCO) filled with Spent Nuclear Fuel (SNF). The tests results provide design verifications, equipment validations, model validation data, and establish process parameters.

  15. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace

    SciTech Connect

    Lewis, F.M.

    1983-07-05

    The present invention relates to a method for efficiently incinerating waste material, particularly dewatered sludge, in a multiple hearth furnace by controlling the temperature of the individual hearths of the furnace within certain prescribed limits by modulating the amount of combustion air, and controlling the temperature of the afterburner or combustion hearths to within certain prescribed limits by splitting the feed sludge between the first two upper waste material handling hearths.

  16. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  17. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Nielsen, Steen; Laugen, Maria Mølmer; Brix, Hans

    2012-08-01

    The Sludge Treatment Reed Bed (STRB) technology is a cost-efficient and environmentally friendly technology to dewater and mineralize surplus sludge from conventional wastewater treatment systems. Primary and secondary liquid sludge is loaded onto the surface of the bed over several years, where it is dewatered, mineralized and turned into a biosolid with a high dry matter content for use as an organic fertilizer on agricultural land. We analysed the concentrations of five organic micropollutants (galaxolide, tonalide, cashmeran, celestolide and DEHP) and six heavy metals (Pb, Ni, Cu, Cd, Zn and Cr) in the accumulated sludge in a 20-year old STRB in Denmark in order to assess the degradation and fate of these contaminants in a STRB and the relation to sludge composition. The results showed that the deposited sludge was dewatered to reach a dry matter content of 29%, and that up to a third of the organic content of the sludge was mineralized. The concentrations of heavy metals generally increased with depth in the vertical sludge profile due to the dewatering and mineralization of organic matter, but in all cases the concentrations were below the European Union legal limits for agricultural land disposal. The concentrations of fragrances and DEHP ranged from 10 to 9000 ng g(-1) dry mass. The attenuation of hydrophobic micropollutants from the top to the bottom layer of the reed bed ranged from 40 to 98%, except for tonalide which increased significantly with sludge depth, and consequently showed an unusual depth distribution of the galaxolide/tonalide ratio. This unexpected pattern may reflect changes imposed by a long storage time and/or different composition of the fresh sludge in the past. The lack of a significant decreasing DEHP concentration with sludge age might indicate that this compound is very persistent in STRBs. In conclusion the STRB was a feasible technology for sludge treatment before its land disposal.

  18. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 250 citations and includes a subject term index and title list.)

  19. The effects of water-level fluctuations on vegetation in a Lake Huron wetland

    USGS Publications Warehouse

    Wilcox, D.A.; Nichols, S.J.

    2008-01-01

    The diversity and resultant habitat value of wetland plant communities in the Laurentian Great Lake's are dependent on water-level fluctuations of varying frequency and amplitude. Conceptual models have described the response of vegetation to alternating high and low lake levels, but few quantitative studies have documented the changes that occur. In response to recent concerns over shoreline management activities during an ongoing period of low lake levels in lakes Superior, Michigan, and Huron that began in 1999, we analyzed a quantitative data set from Saginaw Bay of Lake Huron collected from 1988 to 1993 during a previous lake-level decline to provide the needed information on vegetation responses. Transects were established that followed topographic contours with water-level histories that differed across a six-year period, ranging from barely flooded to dewatered for varying numbers of years to never dewatered. Percent cover data from randomly placed quadrats along those transects were analyzed to assess floristic changes over time, document development of distinct plant assemblages, and relate the results to lake-level changes. Ordinations showed that plant assemblages sorted out by transects that reflect differing water-level histories. Distinction of assemblages was maintained for at least three years, although the composition and positioning of those assemblages changed as lake levels changed. We present a model that uses orthogonal axes to plot transects by years out of water against distance above water and sorted those transects in a manner that matched ordination results. The model suggests that vegetation response following dewatering is dependent on both position along the water level/soil moisture gradient and length of time since dewatering. This study provided quantitative evidence that lake-level fluctuations drive vegetative change in Great Lakes wetlands, and it may assist in making decisions regarding shoreline management in areas that

  20. 2. View east at north end of west facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east at north end of west facade of culvert outlet headwall with part of canal bank removed. Foreground to background: dewatered streambed with pump intake (left) and coffer dam (right); outlet headwall with partially intact voussoirs; partially removed canal bank revealing horizontal masonry cutoff wall (exposed in trenches to left and right); towpath at top of canal bank. - Delaware & Raritan Canal, Six Mile Run Culvert, .2 mile South of Blackwells Mills Road, East Millstone, Somerset County, NJ

  1. Temporal and spatial contamination of polybrominated diphenyl ethers (PBDEs) in wastewater treatment plants in Hong Kong.

    PubMed

    Deng, Dan; Chen, Hexiang; Tam, Nora F Y

    2015-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants which cause adverse effects to human health and environments. Wastewater treatment plants (WWTPs) receive PBDEs from various discharges but also release them back to the environment via treated effluent and sludge, depending on the removal efficiency of WWTPs. This study investigated the contamination of PBDEs in primary influent, final effluent and dewatered sludge in four WWTPs in Hong Kong from October 2011 to January 2013. Results showed that the concentrations and composition profiles of eight PBDE congeners (BDE-28, -47, -99, -100, -153, -154,-183 and -209) differed among WWTPs and fluctuated during the study period. Higher concentrations of PBDEs were detected in the influent and dewatered sludge from the two WWTPs receiving both domestic and industrial wastewaters than the two serve mainly residential and commercial districts. However, the PBDE concentrations in the effluent were comparable among WWTPs. The concentrations of Σ8PBDEs (total of eight congeners) in the influent of all WWTPs ranged from 1 to 254 ng L(-1) but decreased to 12-27 ng L(-1) in effluent, with removal efficiency ranged from 20 to 53%. High concentrations of PBDEs, ranging from 9 to 307 ng g(-1) dry weights, were detected in dewatered sludge. The predominated congeners in influent were BDE-47 and -209 but shifted to BDE-47 and -99 in effluent and BDE-209 in dewatered sludge. Every day, it is estimated 0.66-73 g PBDEs entered the four WWTPs, while 0.38-38 g and 0.17-17 g PBDEs were discharged to the surrounding waters via effluent and disposed to landfill sites in sludge form, respectively. These results indicated that the four WWTPs in Hong Kong were not designed for effectively removal of PBDEs, 52-80% of the incoming PBDEs were still remained in effluent and 21-45% was precipitated in sludge, both outputs became significant contamination sources. PMID:25247482

  2. Reverse osmosis application for butanol-acetone fermentation

    SciTech Connect

    Garcia, A.; Iannotti, E.L.; Fischer, J.R.

    1984-01-01

    The problems of dilute solvent concentration in butanol-acetone fermentation can be solved by using reverse osmosis to dewater the fermentation liquor. Polyamide membranes exhibited butanol rejection rates as high as 85%. Optimum rejection of butanol occurs at a pressure of approximately 5.5 to 6.5 MPa and hydraulic recoveries of 50-70%. Flux ranged from 0.5 to 1.8 l.

  3. Closed-water circuitry of a coal preparation plant with jig-flotation process

    SciTech Connect

    Shao Peizao; Guo Baoxin

    1993-12-31

    Typical flowsheet of coal preparation Plants for metallurgical coal in China is shown in Figure 1: (a) Crushed raw coal, 50{times}0 mm in size, treated in jig circuit, giving reject, middling and overflow; (b) The jig overflow directed to a spitzkasten, in which the granular concentrate settles and is dug up by a dewatering bucket elevator and discharged onto a sizing-dewatering screen; the +13 mm fraction from the screen, together with that of -13+0.5 mm after going through the dewatering centrifuge, contributing the main portion of the plant concentrate; (c) The screen underflow directed back to the spitzkasten, the overflow from which is the main stream of slime water to be treated by a thickener; the clearified overflow is the circulating wash water and its thickened underflow directed to flotation circuit; (d) In the flotation circuit, the froth concentrate is dewatered by vacuum filter and the tailing, after thickened, by press filter; vacuum filtrate directed back to the preceding spitzkaten and the clear filtrate joining with the circulating water. The specific features of such a coal preparation process is its simplicity, both in circuitry and equipment layout, and full treatment of coal down to 0 mm. On the other hand, much problems arise with slime water treatment in that: (a) Large quantity of slime water to be processed, large volume of holding vessels required and consequently large quantity of coal fines kept circulated; (b) Long contact time of fine particles with water, leading to their poorer floatability; (c) Time lag between jig circuit and flotation circuit unavoidable for their normal operation; (d) Closed-water circuit difficult to be maintained, leading to high solid content in circulating water and blackwater discharge.

  4. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Nielsen, Steen; Laugen, Maria Mølmer; Brix, Hans

    2012-08-01

    The Sludge Treatment Reed Bed (STRB) technology is a cost-efficient and environmentally friendly technology to dewater and mineralize surplus sludge from conventional wastewater treatment systems. Primary and secondary liquid sludge is loaded onto the surface of the bed over several years, where it is dewatered, mineralized and turned into a biosolid with a high dry matter content for use as an organic fertilizer on agricultural land. We analysed the concentrations of five organic micropollutants (galaxolide, tonalide, cashmeran, celestolide and DEHP) and six heavy metals (Pb, Ni, Cu, Cd, Zn and Cr) in the accumulated sludge in a 20-year old STRB in Denmark in order to assess the degradation and fate of these contaminants in a STRB and the relation to sludge composition. The results showed that the deposited sludge was dewatered to reach a dry matter content of 29%, and that up to a third of the organic content of the sludge was mineralized. The concentrations of heavy metals generally increased with depth in the vertical sludge profile due to the dewatering and mineralization of organic matter, but in all cases the concentrations were below the European Union legal limits for agricultural land disposal. The concentrations of fragrances and DEHP ranged from 10 to 9000 ng g(-1) dry mass. The attenuation of hydrophobic micropollutants from the top to the bottom layer of the reed bed ranged from 40 to 98%, except for tonalide which increased significantly with sludge depth, and consequently showed an unusual depth distribution of the galaxolide/tonalide ratio. This unexpected pattern may reflect changes imposed by a long storage time and/or different composition of the fresh sludge in the past. The lack of a significant decreasing DEHP concentration with sludge age might indicate that this compound is very persistent in STRBs. In conclusion the STRB was a feasible technology for sludge treatment before its land disposal. PMID:22608611

  5. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  6. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  7. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, January-March 1984

    SciTech Connect

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.; Fayer, M.J.; Wogman, N.A.; Nelson, R.W.

    1984-05-01

    Progress is reported on the following studies dealing with mill tailings: long-term stabilizaton; interim stabilization of mill tailings piles; tailings dewatering techniques; tailings neutralization and other alternatives in immobilizing toxic materials in tailings; evaluation of seepage and leachate transport from tailings disposal facilities; effluent and environmental monitoring methods and equipment and instrument testing; attenuation of radon emissions; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground water contamination in in-situ leach uranium mining.

  8. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Except as provided in... fluoride .006 .003 pH (1) (1) 1 Within the range 6.0 to 9.0. (4) Mine dewatering discharges shall not... Average of daily values for 30 consecutive days shall not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1...

  9. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Except as provided in... fluoride .006 .003 pH (1) (1) 1 Within the range 6.0 to 9.0. (4) Mine dewatering discharges shall not... Average of daily values for 30 consecutive days shall not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1...

  10. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Except as provided in... fluoride .006 .003 pH (1) (1) 1 Within the range 6.0 to 9.0. (4) Mine dewatering discharges shall not... Average of daily values for 30 consecutive days shall not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1...

  11. Investigation on effects of aggregate structure in water and wastewater treatment.

    PubMed

    Chau, K W

    2004-01-01

    The fractal structure and particle size of flocs are generally recognized as the two most crucial physical properties having impact on the efficiency of operation of several unit processes in water and wastewater treatment. In this study, an experimental investigation is undertaken on the effect of aggregate structure in water and wastewater treatment in Hong Kong. The fractal dimension of the resulting aggregate is employed as a measure of the aggregate structure. Small angle light scattering technique is used here. Different amounts of polymers are mixed to bacterial suspensions and the resulting structures are examined. The addition of polymer may foster aggregate formation by neutralization of the bacterial surface charge and enhance inter-particle bridging. The aggregation behavior may affect the efficiency of certain water and wastewater treatment processes such as dewatering and coagulation. The impacts of aggregate structure on two representative processes, namely, ultra-filtration membrane fouling and pressure filter dewatering efficiency, are studied. It is found that the looser flocs yield a more porous cake and less tendency to foul whilst more porous filter cakes yield more ready biosolids dewatering.

  12. Influence of the free water content on the dewaterability of sewage sludges.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    Dewaterabilty of sewage depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by type and intensity of their physical bonding to the solids. In a sewage sludge suspension different types of water can be distinguished. These are free water, which is not bound to the particles, interstitial water, which is bound by capillary forces between the sludge flocs, surface water, which is bound by adhesive forces and intracellular water. Only free water can be separated during mechanical dewatering. It can be shown, that thermo-gravimteric measurement of the free water content leads to an exact prediction of full-scale dewatering results. Maximum dewatering results are reached by separating all free water during centrifugation. Furthermore on the basis of the drying curve an estimation of water binding energies can be achieved. The binding energy for free water is less than 0,28 kJ/kg water. The binding energy for bound water (sum of surface and intracellular water) is higher than 5 kJ/kg water.

  13. Treatment of 14 sludge types from wastewater treatment plants using bench and pilot thermal hydrolysis.

    PubMed

    Qiao, Wei; Sun, Yifei; Wang, Wei

    2012-01-01

    A total of 14 types of sludge from household sewage, mixture of domestic and industrial wastewater, and industrial and oil wastewater treatment plants were selected to evaluate the effectiveness and adaptability of thermal hydrolysis pre-treatment. Organic solubilization, dewatering improvement, volume reduction, high-strength filtrate biodegradation, and dewatered sludge incineration were investigated using bench and pilot thermal hydrolysis experiments (170 °C/60 min). Results showed that sludge types significantly affected the treatment effects. Organic content has a primary influence on thermal effects. The relationship between suspended solid (SS) solubilization and raw sludge organic content was linear with an R(2) of 0.73. The relationship between raw sludge organic content and treated sludge dewatering was linear with an R(2) of 0.86 and 0.65 for pilot and bench pre-treatments, respectively. Household and oil sludge possessed incineration possibilities with high heat value. Industrial and oil sludge filtrate was unsuitable for digestion to recover bioenergy.

  14. A less energy intensive process for dehydrating onion.

    PubMed

    Grewal, Manpreet Kaur; Jha, S N; Patil, R T; Dhatt, A S; Kaur, Amandeep; Jaiswal, P

    2015-02-01

    Onion powder has an extensive demand and wide application worldwide as flavour additive in convenience foods and medicinal products. Conventionally onion powder is prepared by hot air drying of onion slices followed by grinding. Convective air drying when used alone demands longer drying time and thus has a high expense of energy. As bulk of onion is water (82-87 %), removal of moisture prior to drying can reduce moisture loading on dryer and hence the energy consumption. Keeping this in view, onions were partially dewatered using centrifugal force before convective drying. The effect of partial mechanical dewatering and drying air temperature was studied on drying time, specific energy consumption and onion powder quality (colour and flavour). The combination process was also optimized to achieve increased drying rate and product quality comparable to products obtained using convective drying alone. Onions subjected to 60 % partial mechanical dewatering and hot air drying at 70 °C exhibited significantly (p ≤ 0.5) shortened drying time, decreased energy consumption and maintained colour and flavour of the dried product.

  15. The application of electrical resistance measurements to water transport in lime-masonry systems

    NASA Astrophysics Data System (ADS)

    Ball, R. J.; Allen, G. C.; Carter, M. A.; Wilson, M. A.; Ince, C.; El-Turki, A.

    2012-03-01

    The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime-masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann's distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.

  16. Biosolids composting in Davenport, Iowa

    SciTech Connect

    Boyette, R.A.; Williams, T.; Plett, S.

    1996-09-01

    The City of Davenport, Iowa constructed an aerated static pile composting facility to process 28 dry tons per day of dewatered biosolids and 25,000 cubic yards per year of yard wastes. This is the first large totally enclosed aerated static pile biosolids composting facility to be built in several years in the US. Design of the facility was completed in March 1994, construction began in July 1994, with substantial completion of the facility in August 1995. This paper outlines the major operating systems and describes the major components of the facility. The facility processes all of the City`s anaerobically digested biosolids which is currently dewatered by belt filter presses to 20% solids. Yard wastes are used as the primary bulking agent supplemented by wood chips and shredded rubber tires to minimize O and M costs. A mechanized continuous feed mixing system consisting of hoppers, conveyors, and pugmill mixers is used to combine bulk agents with the dewatered biosolids to the desired ratio for composting. Composting and drying of these materials occurs in a totally enclosed pre-fabricated metal building for maximum environmental control and odor control. Multiple aeration stations provide both positive and negative aeration through pre-cast aeration trenches beneath compost piles.

  17. Methodology to remediate a mixed waste site

    SciTech Connect

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  18. Burrowing, byssus, and biomarkers: behavioral and physiological indicators of sublethal thermal stress in freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2013-01-01

    Recent research has elucidated the acute lethal effects of elevated water temperatures to glochidia (larvae), juvenile, and adult life stages of freshwater mussels (Order Unionida), but few studies have focused on sublethal effects of thermal stress. We evaluated the sublethal effects of elevated temperature on burrowing behavior and byssus production in juveniles, and on enzymatic biomarkers of stress in adults in acute (96 h) laboratory experiments in sediment, with two acclimation temperatures (22 and 27 °C) and two experimental water levels (watered and dewatered) as proxies for flow regime. Increasing temperature significantly reduced burrowing in all five species tested, and the dewatered treatment (a proxy for drought conditions) reduced burrowing in all but Amblema plicata. Production of byssal threads was affected most drastically by flow regime, with the probability of byssus presence reduced by 93–99% in the dewatered treatment, compared to the watered treatment (a proxy for low flow conditions); increasing temperature alone reduced byssus by 18–35%. Alanine aminotransferase and aspartate aminotransferase were significantly affected by treatment temperature in the 27 °C acclimation, watered test (p = 0.04 and 0.02, respectively). Our results are important in the context of climate change, because stream temperature and flow are expected to change with increasing air temperature and altered precipitation patterns.

  19. Feedstock characteristics and preparation for peat gasification. Volume II: task 9. Final report Jul 80-Jul 81

    SciTech Connect

    Punwani, D.V.; Aspinall, F.; Lofton, S.M.

    1982-07-01

    This report describes the work conducted by the Institute of Gas Technology, Dravo Corporation, and Williams Brothers Engineering Company during Phase II of the two-phase program. The objective of Phase I was to review the literature and identify needs in the areas of resources, harvesting, dewatering, beneficiation, gasification, and environmental studies. The results of Phase I have been previously reported (PB81-222275). The objective of Phase II are to prepare updated peat resource maps and to conduct quantitative economic and environmental assessments of a few selected peat harvesting, dewatering, and beneficiation alternatives. In the task on peat resources, maps of fourteen states have been completed. A number of peat harvesting system designs have been ranked according to their technical merits and a preliminary economic assessment has been made of a wet harvesting method. A preliminary economic comparison of four peat dewatering systems has been made. A description of a beneficiation (wet-carbonization) process and a preliminary economic estimate for producing beneficiated peat is presented. Recent developments in both thermal and biological conversion of peat to SNG are described. The major air and water pollution emission rates from a peat gasification plant producing 250 billion Btu/day of SNG have been estimated. Detailed environmental scenarios have been prepared for three peat bogs typical of those in the Upper Midwest, Northeast, and Southeast United States. Preliminary cost estimates for harvested peatland reclamation options have been made.

  20. Feedstock characteristics and preparation for peat gasification. Volume I: tasks 8, 10, 11, and 12. Final report Jul 80-Jul 81

    SciTech Connect

    Punwani, D.V.; Aspinall, F.; Lofton, S.M.

    1982-07-01

    This report describes the work conducted by the Institute of Gas Technology, Dravo Corporation, and Williams Brothers Engineering Company during Phase II of the two-phase program. The objective of Phase I was to review the literature and identify needs in the areas of resources, harvesting, dewatering, beneficiation, gasification, and environmental studies. The results of Phase I have been previously reported (PB81-222275). The objectives of Phase II are to prepare updated peat resource maps and to conduct quantitative economic and environmental assessments of a few selected peat harvesting, dewatering, and beneficiation alternatives. In the task on peat resources, maps of fourteen states have been completed. A number of peat harvesting system designs have been ranked according to their technical merits and a preliminary economic assessment has been made of a wet harvesting method. A preliminary economic comparison of four peat dewatering systems has been made. A description of a beneficiation (wet-carbonization) process and a preliminary economic estimate for producing beneficiated peat is presented. Recent developments in both thermal and biological conversion of peat to SNG are described. The major air and water pollution emission rates from a peat gasification plant producing 250 billion Btu/day of SNG have been estimated. Detailed environmental scenarios have been prepared for three peat bogs typical of those in the Upper Midwest, Northeast, and Southeast United States. Preliminary cost estimates for harvested peatland reclamation options have been made.

  1. Feedstock characteristics and preparation for peat gasification. Volume III: task 13. Final report Jul 80-Jul 81

    SciTech Connect

    Punwani, D.V.; Aspinall, F.; Lofton, S.M.

    1982-07-01

    This report describes the work conducted by the Institute of Gas Technology, Dravo Corporation, and Williams Brothers Engineering Company during Phase II of the two-phase program. The objective of Phase I was to review the literature and identify needs in the areas of resources, harvesting, dewatering, beneficiation, gasification, and environmental studies. The results of Phase I have been previously reported (PB81-222275). The objectives of Phase II are to prepare updated peat resource maps and to conduct quantitative economic and environmental assessments of a few selected peat harvesting, dewatering, and beneficiation alternatives. In the task on peat resources, maps of fourteen states have been completed. A number of peat harvesting system designs have been ranked according to their technical merits and a preliminary economic assessment has been made of a wet harvesting method. A preliminary economic comparison of four peat dewatering systems has been made. A description of a beneficiation (wet-carbonization) process and a preliminary economic estimate for producing beneficiated peat is presented. Recent developments in both thermal and biological conversion of peat to SNG are described. The major air and water pollution emission rates from a peat gasification plant producing 250 billion Btu/day of SNG have been estimated. Detailed environmental scenarios have been prepared for three peat bogs typical of those in the Upper Midwest, Northeast, and Southeast United States. Preliminary cost estimates for harvested peatland reclamation options have been made.

  2. Optimizing settling conditions for treatment of liquid hog manure.

    PubMed

    Trias, M; Mortula, M M; Hu, Z; Gagnon, G A

    2004-08-01

    Sedimentation is a widely used separation method for treating agricultural waste. There are several chemical and biological characteristics, which can affect the settling behavior and liquid waste. The optimization of cation balances and potential for nitrification are among these processes. In addition to sedimentation, it can also affect the dewaterability of the samples. Liquid hog manure was used during the laboratory based experiments to investigate the effects of Ca2+ and Mg2+ ions and nitrification inhibition on the overall settling and dewatering characteristics. The results indicated that settling and dewatering characteristics improved during the course of the experiments. However, the improvement in settling and dewatering characteristics was inconsistent and not statistically significant. Cation addition in aerated reactor increased the highest settling velocity (94%). The improvement in dewaterability, as quantified by capillary suction time, was also not consistent. The greatest filterability observed in the supernatant was a capillary suction time of 40 s for a M:D ratio of 2:1. Initial NH 4 + concentration was more important than the nitrification inhibitor, as the presence of nitrification inhibitor increased the nitrification rate by over 300% because of the high initial NH 4 + concentration and low volatile suspended solid. The results from these experiments provide the basis for further field evaluation of cation optimization. PMID:15366563

  3. The effect of wastewater cations on activated sludge characteristics: effects of aluminum and iron in floc.

    PubMed

    Park, Chul; Muller, Christopher D; Abu-Orf, Mohammad M; Novak, John T

    2006-01-01

    Wastewater samples collected from seven wastewater treatment plants (WWTPs) were characterized to assess the impacts of wastewater cations on the activated sludge process. The cations included in this study were sodium (Na+), potassium, ammonium, calcium, magnesium, aluminum (Al), and iron (Fe). Among the selected cations, Al and Fe were of most interest to this study because their role in bioflocculation has not been extensively studied and remains largely unknown. The data showed that WWTPs contained highly varying concentrations of Na+, Al, and Fe in the wastewater and that these cations were responsible for differences between WWTPs as to sludge dewatering rates and effluent quality. In general, a high influent Na+ concentration caused poor sludge dewatering and effluent characteristics. However, when sufficient Al and Fe were present in floc, the deleterious effects of Na+ were offset. The data associated with Al further revealed that waste activated sludge with low Al contained high concentrations of soluble and colloidal biopolymer (protein + polysaccharide), resulting in a high effluent chemical oxygen demand, high conditioning chemical requirements, and poor sludge dewatering properties. These results suggest that Al will improve activated sludge effluent quality by scavenging organic compounds from solution and binding them to floc. PMID:16553164

  4. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.

    1996-07-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies will be conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model is developed by West Virginia University. The research to be performed by the University of Kentucky has recently been determined to be: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Acoomplishments to date are reported.

  5. Appalachian clean coal technology consortium. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect

    1995-11-20

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are being conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The most promising approach to improving spiral separation efficiency is through extensive computer modeling of fluid and solids flow in the various operating regions of the spiral. Accomplishments for these two tasks are described.

  6. Effects of summer drawdown on the fishes and larval chironomids in Beulah Reservoir, Oregon

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Matthew G.

    2013-01-01

    Summer drawdown of Beulah Reservoir, Oregon, could adversely affect fish and invertebrate production, limit sport fishing opportunities, and hinder the recovery of threatened species. To assess the impacts of drawdown, we sampled fish and Chironomidae larvae in Beulah Reservoir in the springs of 2006 to 2008. The reservoir was reduced to 68% of full pool in 2006 and to run-of-river level in 2007. From spring 2006 to spring 2007, the catch per unit effort (CPUE) of fyke nets decreased significantly for dace [Rhinichthys spp.] and northern pikeminnow [Ptychocheilus oregonensis], increased significantly for suckers [Catastomus spp.] and white crappies [Pomoxis nigromaculatus], and was similar for redside shiners [Richardsonius balteatus]. CPUE of gillnets either increased significantly or remained similar depending on genera, and the size structure of redside shiners, suckers, and white crappies changed appreciably. From 2007 to 2008, the CPUE of northern pikeminnow, redside shiners, suckers, and white crappies decreased significantly depending on gear and the size structure of most fishes changed. Springtime densities of chironomid larvae in the water column were significantly higher in 2006 than in 2008, but other comparisons were similar. The densities of benthic chironomids were significantly lower in substrates that were frequently dewatered compared to areas that were partially or usually not dewatered. Individuals from frequently dewatered areas were significantly smaller than those from other areas and the densities of benthic chironomids in 2008 were significantly lower than other years. Summer drawdown can reduce the catch and alter the size structure of fishes and chironomid larvae in Beulah Reservoir.

  7. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration.

  8. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants.

  9. Parameterization, sensitivity analysis, and inversion: an investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy)

    NASA Astrophysics Data System (ADS)

    La Vigna, Francesco; Hill, Mary C.; Rossetto, Rudy; Mazza, Roberto

    2016-04-01

    With respect to model parameterization and sensitivity analysis, this work uses a practical example to suggest that methods that start with simple models and use computationally frugal model analysis methods remain valuable in any toolbox of model development methods. In this work, groundwater model calibration starts with a simple parameterization that evolves into a moderately complex model. The model is developed for a water management study of the Tivoli-Guidonia basin (Rome, Italy) where surface mining has been conducted in conjunction with substantial dewatering. The approach to model development used in this work employs repeated analysis using sensitivity and inverse methods, including use of a new observation-stacked parameter importance graph. The methods are highly parallelizable and require few model runs, which make the repeated analyses and attendant insights possible. The success of a model development design can be measured by insights attained and demonstrated model accuracy relevant to predictions. Example insights were obtained: (1) A long-held belief that, except for a few distinct fractures, the travertine is homogeneous was found to be inadequate, and (2) The dewatering pumping rate is more critical to model accuracy than expected. The latter insight motivated additional data collection and improved pumpage estimates. Validation tests using three other recharge and pumpage conditions suggest good accuracy for the predictions considered. The model was used to evaluate management scenarios and showed that similar dewatering results could be achieved using 20 % less pumped water, but would require installing newly positioned wells and cooperation between mine owners.

  10. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-08-01

    Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants. PMID:27521931

  11. Optimizing settling conditions for treatment of liquid hog manure.

    PubMed

    Trias, M; Mortula, M M; Hu, Z; Gagnon, G A

    2004-08-01

    Sedimentation is a widely used separation method for treating agricultural waste. There are several chemical and biological characteristics, which can affect the settling behavior and liquid waste. The optimization of cation balances and potential for nitrification are among these processes. In addition to sedimentation, it can also affect the dewaterability of the samples. Liquid hog manure was used during the laboratory based experiments to investigate the effects of Ca2+ and Mg2+ ions and nitrification inhibition on the overall settling and dewatering characteristics. The results indicated that settling and dewatering characteristics improved during the course of the experiments. However, the improvement in settling and dewatering characteristics was inconsistent and not statistically significant. Cation addition in aerated reactor increased the highest settling velocity (94%). The improvement in dewaterability, as quantified by capillary suction time, was also not consistent. The greatest filterability observed in the supernatant was a capillary suction time of 40 s for a M:D ratio of 2:1. Initial NH 4 + concentration was more important than the nitrification inhibitor, as the presence of nitrification inhibitor increased the nitrification rate by over 300% because of the high initial NH 4 + concentration and low volatile suspended solid. The results from these experiments provide the basis for further field evaluation of cation optimization.

  12. Parameterization, sensitivity analysis, and inversion: an investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy)

    NASA Astrophysics Data System (ADS)

    La Vigna, Francesco; Hill, Mary C.; Rossetto, Rudy; Mazza, Roberto

    2016-09-01

    With respect to model parameterization and sensitivity analysis, this work uses a practical example to suggest that methods that start with simple models and use computationally frugal model analysis methods remain valuable in any toolbox of model development methods. In this work, groundwater model calibration starts with a simple parameterization that evolves into a moderately complex model. The model is developed for a water management study of the Tivoli-Guidonia basin (Rome, Italy) where surface mining has been conducted in conjunction with substantial dewatering. The approach to model development used in this work employs repeated analysis using sensitivity and inverse methods, including use of a new observation-stacked parameter importance graph. The methods are highly parallelizable and require few model runs, which make the repeated analyses and attendant insights possible. The success of a model development design can be measured by insights attained and demonstrated model accuracy relevant to predictions. Example insights were obtained: (1) A long-held belief that, except for a few distinct fractures, the travertine is homogeneous was found to be inadequate, and (2) The dewatering pumping rate is more critical to model accuracy than expected. The latter insight motivated additional data collection and improved pumpage estimates. Validation tests using three other recharge and pumpage conditions suggest good accuracy for the predictions considered. The model was used to evaluate management scenarios and showed that similar dewatering results could be achieved using 20 % less pumped water, but would require installing newly positioned wells and cooperation between mine owners.

  13. Experimental infection of rainbow trout with Saprolegnia parasitica

    USGS Publications Warehouse

    Howe, George E.; Stehly, Guy R.

    1998-01-01

    A method was developed to experimentally induce saprolegniasis in rainbow trout Oncorhynchus mykiss. The development of a reliable method to produce infected fish is essential to efforts to determine the efficacy of various antifungal treatments. Three methods for inducing saprolegniasis were evaluated in waters containing known concentrations of Saprolegnia parasitica zoospores. These methods included application of the following stressors to fish: (1) abrasion and dewatering, (2) water temperature increase, and (3) a combination of abrasion, dewatering, and temperature increase. Neither physical abrasion nor temperature increase stress alone was effective for inducing saprolegniasis. Only 25.9% of fish stressed by abrasion and dewatering alone became infected. Application of both abrasion and temperature stress, however, induced saprolegniasis in 77.8% of fish tested. Most of these fish became infected after 5 d of stress treatments. No fish became infected or died in the positive control group (not stressed but exposed to S. parasitica zoospores) or the negative control group (not stressed or challenged). This method should enable researchers to induce saprolegniasis in rainbow trout to study its pathogenesis or to test the efficacy of antifungal treatments. In conducting efficacy studies, it is important that therapeutic treatments begin promptly after the first signs of saprolegniasis are observed because the disease can progress very quickly and often results in mortality.

  14. Bull Trout Forage Investigations in Beulah Reservoir, Oregon - Annual Report for 2006

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Mathew G.

    2009-01-01

    Beulah Reservoir on the north fork of the Malheur River in northeastern Oregon provides irrigation water to nearby farms and ranches and supports an adfluvial population of bull trout (Salvelinus confluentus), which are listed as threatened under the Endangered Species Act. Water management in Beulah Reservoir results in seasonal and annual fluctuations of water volume that may affect forage availability for bull trout. Because no minimum pool requirements currently exist, the reservoir is occasionally reduced to run-of-river levels, which may decimate forage fish populations and ultimately affect bull trout. We sampled fish and aquatic insects in Beulah Reservoir in the spring, before the annual drawdown of 2006, and afterward, in the late fall. We also collected samples 1.5 years after the reservoir was dewatered for three consecutive summers. Overall, the moderate drawdown of 2006 (32 percent of full pool) did not drastically alter the fish community in Beulah Reservoir. We did document, however, decreases in abundance and sizes of chironomids in areas of the reservoir that were frequently dewatered, increased catch rates of fish with gillnets, and decreases in population estimates for smaller fishes after drawdown. In 2006, after the dewaterings of 2002-04, species composition was similar to that prior to the dewaterings, but the size distributions of most species were biased toward small juvenile or subyearling fishes and larger fishes were rare. Our results indicate that repeated reservoir drawdown reduces aquatic insect forage for bull trout and probably affects forage fish populations at least temporarily. The high catch rates of juvenile fishes 1.5 years after consecutive dewaterings suggests good reproductive success for any remaining adult fish, and shows that the fish community in Beulah Reservoir is resilient to such disturbances. There is, however, a period of time after serious drawdowns before significant numbers of juvenile fishes start to appear

  15. Case study I: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-direct addition of divalent cations.

    PubMed

    Higgins, Matthew J; Tom, Lou Ann; Sobeck, David C

    2004-01-01

    The objectives of this study were to examine the application of the divalent cation bridging theory (DCBT) to improve settling, dewatering, and effluent quality in pilot-scale reactors and a full-scale system treating an industrial wastewater. This was accomplished by lowering the monovalent-to-divalent (M/D) cation ratio by direct divalent cation addition. Research has shown that the M/D ratio is a potential indicator for settling and dewatering problems at wastewater treatment plants, and M/D ratios above 2 have been associated with poor settling, dewatering, and effluent quality. The M/D ratio of the wastewater in this study ranged from 6 to 20. The cations studied were calcium and magnesium. Results showed that the addition of calcium improved floc properties compared to control reactors with no calcium addition. The reductions in sludge volume index, effluent chemical oxygen demand (COD), and effluent total suspended solids (TSS) were approximately 35, 34, and 55%, respectively, when the M/D ratio was decreased to approximately 2:1. In addition, the cake solids from a belt filter press simulator increased by 72% and the optimum polymer dose required for conditioning was reduced by 70% in the reactor fed the highest calcium concentration when compared to control reactors with no calcium addition. The addition of calcium also decreased the negative effect of high filamentous organism numbers. In general, the addition of magnesium (Mg2+) had similar effects on effluent quality and dewatering properties, although some differences were measured. A full-scale test using calcium addition was performed. Measurements of effluent quality and floc properties were performed before, during, and after the calcium (Ca2+) addition period. The average M/D ratio during these periods was 6.2, 4.6, and 14.0, respectively. The addition of Ca2+ decreased the effluent five-day biochemical oxygen demand, effluent TSS, and effluent COD. The increased Ca2+ concentration also improved

  16. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1985-01-01

    The ground-water system was studied in the Trail Mountain area in order to provide hydrologic information needed to assess the hydrologic effects of underground coal mining. Well testing and spring data indicate that water occurs in several aquifers. The coal-bearing Blackhawk-Star Point aquifer is regional in nature and is the source of most water in underground mines in the region. One or more perched aquifers overlie the Blackhawk-Star Point aquifer in most areas of Trail Mountain. Aquifer tests indicate that the transmissivity of the Blackhawk-Star Point aquifer, which consists mainly of sandstone, siltstone, and shale, ranges from about 20 to 200 feet squared per day in most areas of Trail Mountain. The specific yield of the aquifer was estimated at 0.05, and the storage coefficient is about 1x10 -6 per foot of aquifer where confined. The main sources of recharge to the multiaquifer system are snowmelt and rain, and water is discharged mainly by springs and by leakage along streams. Springs that issue from perched aquifers are sources of water for livestock and wildlife on Trail Mountain. Water in all aquifers is suitable for most uses. Dissolved-solids concentrations range from about 250 to 700 milligrams per liter, and the predominant dissolved constituents generally are calcium, magnesium, and bicarbonate. Future underground coal mines will require dewatering when they penetrate the Blackhawk-Star Point aquifer. A finite-difference, three-dimensional computer model was used to estimate the inflow of water to various lengths and widths of a hypothetical dewatered mine and to estimate drawdowns of potentiometric surfaces in the partly dewatered aquifer. The estimates were made for a range of aquifer properties and premining hydraulic gradients that were similar to those on Trail Mountain. The computer simulations indicate that mine inflows could be several hundred gallons per minute and that potentiometric surfaces of the partly dewatered aquifer could be

  17. [Spectral Characteristics of Dissolved Organic Matters in Reject Water from Wastewater Treatment Plants].

    PubMed

    Niu, Tian-hao; Zhou, Zhen; Hu, Da-long; Wei, Hai-juan; Li, Jing; Dou, Wei-xiao; Ge, Hong-hua

    2016-04-15

    Reject water generated from sludge thickening, dewatering and stabilization process contains high-content and complex dissolved organic matters (DOM). The spectral characteristics of DOM in the reject water were investigated by three-dimensional excitation-emission matrix and Fourier transform infrared spectroscopy. Fluorescent DOM (FDOM) from reject water were decomposed into six components by parallel factor analysis, the protein-like C1 (275/355 nm), C4 (235/350 nm) and C6 (275/305 nm) and the humic-like C2 (250, 340/440 nm) , C3 (320/380 nm) and CS (250/465 nm). Soluble COD in the sludge thickening reject water was positively correlated with all the three humic-like substances at P < 0.01 level, and was insignificantly influenced by protein-like substances. The tryptophan-like C1, C4 and humic-like CS increased in the centrifugal dewatering reject water (CDRW). FDOM in the advanced dewatering reject water (ADRW) were significantly different from those of other reject water in fluorescence peak locations and intensities, and humic-like C3 and tyrosine-like C6 in the DOM were 15.63 and 7.30 times higher than those in CDRW. Compared to sludge thickening reject water, infrared peaks related to polysaccharide and humic substances in CDRW were enhanced and massive proteins were released into ADRW. DOM structures in ADRW were changed owing to the complexation between metals and both humic substances and proteins. PMID:27548969

  18. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    PubMed

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process.

  19. Numerical and experimental evaluation of continuous ultrasonic sludge treatment system.

    PubMed

    Zhou, Cuihong; Huang, Xintong; Jin, Yanping; Li, Ge

    2016-09-01

    Ultrasonic disintegration is a very promising sludge pretreatment method that leverages the cavitation effect to produce extreme physical environments characterized by high temperatures and high pressures. This process disintegrates sludge structure features, promotes sludge dewatering, and aides resource recovery. This paper presents a newly designed continuous ultrasonic sludge treatment device. The characteristics of the ultrasonic wave propagated in the activated sludge were simulated, with the results showing that at lower frequencies, the acoustic pressure energy distribution exhibits more local concentrations, whereas at 80kHz, the energy distribution is relatively uniform as a result of the interference of standing waves. Subsequently, activated sludge was ultrasonically treated with different exposure times and frequencies. The sludge's capillary suction time, particle size, and moisture content were measured. The results showed different trends for each of the investigated parameters. The dewatering performance was best when the exposure time was 5-10s. Finally, different substances were added to the ultrasonically treated sludge to analyze the effects of ultrasonic treatment on anaerobic digestion. The gas production rate was higher when glucose was the added substance than it was for yeast. The highest total concentration of produced gas, including both hydrogen and methane, was 34% for an ultrasonic input power of 200W at a 25kHz frequency, an exposure time of 20s, and with 30g of added glucose. The gas production rate was found to be higher at the lower frequency when frequency was the only variable. These experiments demonstrate that ultrasonic treatment can change the structure of sludge particles and the moisture content of the sludge, improving sludge dewatering performance. Furthermore, after ultrasonic treatment can improve gas production. PMID:27344606

  20. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.