Mobil lube dewaxing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, C.L.; McGuiness, M.P.
1995-09-01
Currently, the lube refining industry is in a period of transition, with both hydroprocessing and catalytic dewaxing gathering momentum as replacements for solvent extraction and solvent dewaxing. In addition, lube product quality requirements have been increasing, both in the US and abroad. Mobil has developed a broad array of dewaxing catalytic technologies which can serve refiners throughout the stages of this transition. In the future, lube feedstocks which vary in source and wax content will become increasingly important, requiring an optimized system for highest performance. The Mobil Lube Dewaxing (MLDW) process is the work-horse of the catalytic dewaxing technologies, beingmore » a robust, low cost technology suitable for both solvent extracted and hydrocracked feeds. The Mobil Selective Dewaxing (MSDW) process has been recently introduced in response to the growth of hydroprocessing. MSDW requires either severely hydrotreated or hydrocracked feeds and provides improved lube yields and VI. For refiners with hydrocrackers and solvent dewaxing units, Mobil Wax Isomerization (MWI) technology can make higher VI base stocks to meet the growing demand for very high quality lube products. A review of these three technologies is presented in this paper.« less
Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice
INAGAWA, HIROYUKI; SAIKA, TOSHIYUKI; NISHIYAMA, NAOKI; NISIZAWA, TAKASHI; KOHCHI, CHIE; UENOBE, MAYA; SOMA, GEN-ICHIRO
2017-01-01
Background/Aim: A decrease in gastrointestinal motility causing weakened lipopolysaccharide (LPS) – toll-like receptor (TLR)4 signaling along with a decline in the number of enteric bacteria is known to be a cause of constipation due to the administration of antibiotics. A new type of brown rice with its wax layer removed, resulting in quick-cooking and tasty product, contains 100-times more LPS than polished white rice. In this study, the improvement effect on constipation due to intake of dewaxed brown rice was examined. Materials and Methods: Dewaxed brown rice was prepared at Toyo Rice from brown rice. Mice were given powdered feed to which powdered rice containing 0-50% of dewaxed brown rice was added. Antibiotics were administered for 10 or 27 days in drinking water containing vancomycin, metronidazole and neomycin. LPS, used as a control, was freely provided in drinking water. The defecation frequency, stool weight per hour and body weight were determined on the last day. Results: Although the 10-day administration of antibiotics reduced the stool weight per hour to half, the dewaxed brown rice and LPS groups showed a trend towards improvement at a level comparable to the group receiving no antibiotics. The body weight significantly decreased after the 27-day administration of antibiotics but was improved in the 50% dewaxed brown rice group at a level comparable to the group receiving no antibiotics. Though the defecation frequency and wet and dry stool weights per hour were reduced by as much as 50% in the group receiving antibiotics, a significant improvement in constipation was observed in the 50% dewaxed brown rice group. Conclusion: As the improvement effect of dewaxed brown rice on body weight loss and constipation caused by the long-term administration of antibiotics has been confirmed in animal experimentation, the introduction of dewaxed brown rice as a staple food to patients under long-term antibiotic treatment may improve constipation. PMID:28652422
Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice.
Inagawa, Hiroyuki; Saika, Toshiyuki; Nishiyama, Naoki; Nisizawa, Takashi; Kohchi, Chie; Uenobe, Maya; Soma, Gen-Ichiro
2017-01-01
A decrease in gastrointestinal motility causing weakened lipopolysaccharide (LPS) - toll-like receptor (TLR)4 signaling along with a decline in the number of enteric bacteria is known to be a cause of constipation due to the administration of antibiotics. A new type of brown rice with its wax layer removed, resulting in quick-cooking and tasty product, contains 100-times more LPS than polished white rice. In this study, the improvement effect on constipation due to intake of dewaxed brown rice was examined. Dewaxed brown rice was prepared at Toyo Rice from brown rice. Mice were given powdered feed to which powdered rice containing 0-50% of dewaxed brown rice was added. Antibiotics were administered for 10 or 27 days in drinking water containing vancomycin, metronidazole and neomycin. LPS, used as a control, was freely provided in drinking water. The defecation frequency, stool weight per hour and body weight were determined on the last day. Although the 10-day administration of antibiotics reduced the stool weight per hour to half, the dewaxed brown rice and LPS groups showed a trend towards improvement at a level comparable to the group receiving no antibiotics. The body weight significantly decreased after the 27-day administration of antibiotics but was improved in the 50% dewaxed brown rice group at a level comparable to the group receiving no antibiotics. Though the defecation frequency and wet and dry stool weights per hour were reduced by as much as 50% in the group receiving antibiotics, a significant improvement in constipation was observed in the 50% dewaxed brown rice group. As the improvement effect of dewaxed brown rice on body weight loss and constipation caused by the long-term administration of antibiotics has been confirmed in animal experimentation, the introduction of dewaxed brown rice as a staple food to patients under long-term antibiotic treatment may improve constipation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Temel, S G; Noyan, S; Cavusoglu, I; Kahveci, Z
2005-01-01
The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.
SSME Main Combustion Chamber (MCC) hot oil dewaxing
NASA Technical Reports Server (NTRS)
Akpati, Anthony U.
1995-01-01
In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax (R) casting compound. Rigidax (R) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.
SSME Main Combustion Chamber (MCC) 'Hot Oil' Dewaxing
NASA Technical Reports Server (NTRS)
Akpati, Anthony U.
1994-01-01
In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax(registered mark) casting compound. Rigidax(registered mark) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.
Prevention of unorganized emissions of ammonia in installations of dewaxing of oils
NASA Astrophysics Data System (ADS)
Rehovskaya, E. O.; Nagibina, I. Yu; Ivanov, A. Yu
2018-01-01
The problem of lack of automation devices in oil dewaxing units is considered in this work. As a result, fugitive ammonia emissions that exceed the maximum permissible concentration, which adversely affect the health of personnel and the environment, can occur in the atmospheric air. The device and the operating principle of the automatic air separator are shown.
Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J
2014-01-21
Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.
NASA Astrophysics Data System (ADS)
Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.
2013-06-01
Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.
Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation
Ruiz, Newton; de Abreu, Leonardo Araujo; Parizi, Luís Fernando; Kim, Tae Kwon; Mulenga, Albert; Braz, Gloria Regina Cardoso; Vaz, Itabajara da Silva; Logullo, Carlos
2015-01-01
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis. PMID:26091260
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Winschel, R.A.; Burke, F.P.
In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less
The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.
1987-01-01
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.
Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues
NASA Astrophysics Data System (ADS)
Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.
2009-03-01
Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.
1987-08-04
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.
Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg
2007-01-01
Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993
NASA Astrophysics Data System (ADS)
Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.
2016-07-01
The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.
NASA Astrophysics Data System (ADS)
Colazza, Stefano; Lo Bue, Mauro; Lo Giudice, Daniela; Peri, Ezio
2009-08-01
Chemical footprints left behind by true bugs are perceived as contact kairomones by scelionid egg parasitoids. Female wasps encountering a contaminated artificial substrate display a characteristic arrestment posture, holding the body motionless and antennating the surface. In the system Nezara viridula (L.) and its egg parasitoid Trissolcus basalis (Wollaston), previous studies have shown that the kairomone mediating such behavior is part of N. viridula’s cuticular hydrocarbons (CHC) and furthermore that the wasp’s ability to discriminate host male and female footprints is mainly based on the presence/absence of nonadecane ( nC19). In this study, the effect of epicuticular waxes of leaves of broad bean, Vicia faba, on wasp responses to footprints of N. viridula females were investigated. Approximately 20% of T. basalis females displayed an arrestment posture when released on the adaxial leaf surfaces of broad bean plants with intact wax layer and without host chemical contamination; whereas ˜70% of wasps displayed the arrestment posture when intact leaves were contaminated by host female footprints. Adaxial leaf surfaces of broad bean plants dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females induced arrestment responses in about 10% of female wasps; the same percentage of arrestment (10%) was observed when the wasps were released on leaves contaminated by host females and subsequently dewaxed. The side of the polymer film that was appressed to the leaf surface, peeled from the contaminated leaves, induced an arrestment posture in about 95% of observed wasps. Scanning electron microscopy (SEM) revealed that the epicuticular waxes occurred as a film densely crystallized as irregularly shaped platelets with spherical granules randomly distributed. These findings demonstrated that epicuticular waxes of broad bean leaves can mediate the foraging behavior of T. basalis females by absorbing contact kairomones of the host.
Fabrication of photonic amorphous diamonds for terahertz-wave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi
2016-05-09
A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated atmore » the band edges were close to the Ioffe-Regel threshold value for wave localization.« less
Differential Partitioning of Triterpenes and Triterpene Esters in Apple Peel.
Poirier, Brenton C; Buchanan, David A; Rudell, David R; Mattheis, James P
2018-02-28
Apple peel is a rich source of secondary metabolites, and several studies have outlined the dietary health benefits of ursane-type triterpenes in apple. Changes in triterpene metabolism have also been associated with the development of superficial scald, a postharvest apple peel browning disorder, and postharvest applications of diphenylamine and 1-methylcyclopropene. Previously, studies have generated metabolite profiles for whole apple peel or apple wax. In this study, we report separate metabolic analyses of isolated wax fractions and peel epidermis to investigate the spatial distribution of secondary metabolites in peel. In addition to examining previously reported triterpenes, we identified several unreported fatty acid esters of ursane-type triterpenes (C14-C22). All free pentacyclic triterpenes and triterpenic acids, with the exception of β-amyrin, were localized in the wax layer, along with esters of ursolic acid and uvaol. All sterols, sterol derivatives and α-amyrin esters were localized in the dewaxed peel epidermis.
FLUIDS, LUBRICANTS, FUELS AND RELATED MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaus, E.E.; Fenske, M.R.; Tewksbury, E.J.
1961-01-01
Work was carried out on a continuing program to characterize the capabilities of hydraulic fluids, lubricants, and functional fluids for aeronautic and astronautic applications under extreme environmental conditions. The effects of solvent type and solvent to oil ratio on the deep dewaxing process are shown. The yield and viscosity-temperature properties of the deep dewaxed oil are related to the type and degree of refining of the mineral oil fraction. The preparation of large volumes of super-refined mineral oil formulations for ""mock-up'' testing is reponted. Extensive technical liaison on processing, properties, and application is discussed. Physical and chemical stability of basemore » stocks, additives, and finished hydraulic fluid and lubricant formulations after 5 to 17 years in storage is described. A sample of hydraulic fluid taken from the "Lady Be Good" B-25 Bomber after 16 years in the North African desert is discussed. The design, construction, and preliminary testing of a versatile capillary pressure viscometer is reported. The use of this viscometer to measure the effect of gas solubility on viscosity and the analysis of flow profile in a capillary viscometer are discussed. The use of the pressure unit with a modified Lipkin pycnometer for the measure of bulk modulus is suggested. The thermal stability of esters is contrasted and compared as a function of chemical structure. Quantitative evaluations of the gas produced and the liquid phase are used to illustrate the effect of metal catalysts. The effects of fluid type, viscosity, vapor pressure, oxidation mechanism, oxidation inhibitor, and gaseous environment on evaporation are presented. The use of evaporation tests in studying the mechanism of oxidation is suggested. The relative lubricity properties of a series of high-temperature-bearing materials are reported. The relative effects of fluid volatility on lubricity are discussed. The similarities between high-temperature and the lowtemperatare lubricity properties of the residual fluids after high-temperature oxidation and thermal tests are pointed out. The wear properties of mineral oils and esters with and without lubricity additives are compared and contrasted with silicons and silicate fluids at 167 to 700 deg F. A simple, versatile, quantitative oxidation test is described for use with a variety of high-temperature oxidation tests. (auth)« less
Effect of Pineapple Leaf Fibers (PALF) concentration on nanofibers formation by electrospinning
NASA Astrophysics Data System (ADS)
Surip, S. N.; Aziz, F. M. Abdul; Bonnia, N. N.; Sekak, K. A.
2018-01-01
Electrospinning method has been studied widely in producing nanofibers due to its straightforward and versatile method. In this study, Pineapple Leaf Fibers (PALF) solution were electrospinning to obtain mat of PALF electrospun. PALF were diluted in Trifluoacetic Acid (TFA) into five different concentrations to study the effect of concentration to the nanofibers formation. Raw sample of PALF (PALFraw), PALF after dewax (PALFdewax) and PALF after dilute with TFA (PALFTFA) were analyzed and compared using FTIR to study the structural change occur. TFA solvent has removed and recreated some of the functional group in PALF thus disrupt strong hydrogen bonds that hold hemicellulose, cellulose and lignin together. All the PALF sample has been proceed to electrospinning process. Low concentration of solution cause the solution jet to break up even before reach the collector however high concentration of solution made the solvent volatile faster and the solution dried easily. Therefore, PALF with optimum concentration of 0.02 gml-1 had favors the formation of nanofibers and succeed in forming membrane at the collector.
Prediction of wax buildup in 24 inch cold, deep sea oil loading line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.
1981-10-01
When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100more » F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.« less
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Mangels, J. A.
1986-01-01
The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.
Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito
2018-05-18
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.
Thyroid gland development in Rachycentron canadum during early life stages.
Otero, Adriana P S; Rodrigues, Ricardo V; Sampaio, Luís A; Romano, Luis A; Tesser, Marcelo B
2014-09-01
The aim of this study was to describe the ontogeny of thyroid follicles in cobia Rachycentron canadum. Larvae were sampled daily (n=15 - 20) from hatching until 15 dah (days after hatching). Following, larvae were sampled every two days by 28 dah; a new sample was taken at 53 dah. The samples were dehydrated, embedded in Paraplast, and sections of 3 µm were dewaxed, rehydrated and stained with HE and PAS. A single follicle was already present 1 dah and three follicles were found 8 dah. The number of follicles increased up to 19 on 53 dah. The diameter of follicles and follicular cell height were lower 1 dah (6.83 ± 1.00 and 4.6 ± 0.01 µm), but increased from 8 dah (24.03 ± 0.46 µm e 6.43 ± 0.46 µm). From 8 dah, the presence of reabsorption vesicles was observed in the colloid and from the 19 dah some follicles did not present colloid. The early thyroid follicle appearance in cobia larvae as well as the high quantity of follicles without colloid and/or with vesicles even after the metamorphosis, might be the explanation of the fast growth of the cobia.
Shellac/nanoparticles dispersions as protective materials for wood
NASA Astrophysics Data System (ADS)
Weththimuni, Maduka L.; Capsoni, Doretta; Malagodi, Marco; Milanese, Chiara; Licchelli, Maurizio
2016-12-01
Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.
Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle[C][W
Girard, Anne-Laure; Mounet, Fabien; Lemaire-Chamley, Martine; Gaillard, Cédric; Elmorjani, Khalil; Vivancos, Julien; Runavot, Jean-Luc; Quemener, Bernard; Petit, Johann; Germain, Véronique; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte
2012-01-01
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle. PMID:22805434
Tomato GDSL1 is required for cutin deposition in the fruit cuticle.
Girard, Anne-Laure; Mounet, Fabien; Lemaire-Chamley, Martine; Gaillard, Cédric; Elmorjani, Khalil; Vivancos, Julien; Runavot, Jean-Luc; Quemener, Bernard; Petit, Johann; Germain, Véronique; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte
2012-07-01
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.
Chaudhari, Sandeep A; Singhal, Rekha S
2015-08-01
Cutin a polymeric biological macromolecule made up of esterified polyacids which acts as an inducer of cutinase. The present work was based on screening and characterization of newer cutin source from the agro industrial wastes as inducers of cutinase production by Fusarium oxysporum MTCC 2480. Cutin isolated from peels of multi green colored watermelon (WMC) yielded 6.77 U/mL as compared to that 9.64 U/mL of cutinase using apple cutin. The FTIR and (13)C CP-MAS solid state NMR studies indicated the nature of WMC to be an aliphatic polyester of polyhydroxy fatty acids. A further FTIR spectroscopic study on dewaxed cutin confirmed that the ester linkages in WMC were completely hydrolyzed during submerged fermentation. GC-MS data clearly indicated the critical structural feature of WMC viz. hydroxyl groups at ω-position and middle of the fatty acid chain. The amorphous nature of WMC was confirmed by XRD. DSC of WMC showed two endothermic transition peaks, one broad appearing at 30-60 °C and other at 145 °C. Thermogravimetric analysis of WMC suggested it to be thermally stable up to 200 °C. This study warrants further work on using WMC as a substrate for fermentative production of cutinase. Copyright © 2015 Elsevier B.V. All rights reserved.
γ-Oryzanol and tocopherol contents in residues of rice bran oil refining.
Pestana-Bauer, Vanessa Ribeiro; Zambiazi, Rui C; Mendonça, Carla R B; Beneito-Cambra, Miriam; Ramis-Ramos, Guillermo
2012-10-01
Rice bran oil (RBO) contains significant amounts of the natural antioxidants γ-oryzanol and tocopherols, which are lost to a large degree during oil refining. This results in a number of industrial residues with high contents of these phytochemicals. With the aim of supporting the development of profitable industrial procedures for γ-oryzanol and tocopherol recovery, the contents of these phytochemicals in all the residues produced during RBO refining were evaluated. The samples included residues from the degumming, soap precipitation, bleaching earth filtering, dewaxing and deodorisation distillation steps. The highest phytochemical concentrations were found in the precipitated soap for γ-oryzanol (14.2 mg g(-1), representing 95.3% of total γ-oryzanol in crude RBO), and in the deodorisation distillate for tocopherols (576 mg 100 g(-1), representing 6.7% of total tocopherols in crude RBO). Therefore, among the residues of RBO processing, the deodorisation distillate was the best source of tocopherols. As the soap is further processed for the recovery of fatty acids, samples taken from every step of this secondary process, including hydrosoluble fraction, hydrolysed soap, distillation residue and purified fatty acid fraction, were also analyzed. The distillation residue left after fatty acid recovery from soap was found to be the best source of γ-oryzanol (43.1 mg g(-1), representing 11.5% of total γ-oryzanol in crude RBO). Copyright © 2012 Elsevier Ltd. All rights reserved.
Hauff, Simone; Chefetz, Benny; Shechter, Michal; Vetter, Walter
2010-01-01
The plant cuticle is a thin, predominantly lipid layer that covers all primary aerial surfaces of vascular plants. The monomeric building blocks of the cutin biopolymer are mainly ω-hydroxy fatty acids. Analysis of ω-hydroxy fatty acids from cutin isolated from tomato fruits at different stages of decomposition in soil. Different derivatives and mass spectrometric techniques were used for peak identification and evaluation. Preparation of purified cutin involving dewaxing and HCl treatment. Incubation of purified cutin for 20 months in soil. Pentafluorobenzoyl derivatives were used for GC/MS operated in the electron capture negative ion (ECNI) mode and trimethylsilyl ethers for GC/MS operated in the electron ionisation (EI) mode for analysis of ω-hydroxy fatty acids. Six ω-hydroxy fatty acids were detected in the purified cutin, three of which were identified as degradation products of 9,16-dihydroxyhexadecanoic acid as a consequence of the HCl treatment involved in the purification step. Incubation of the isolated cutin in soil was accompanied with decrease in concentration of all hydroxyl fatty acids. We produced evidence that the HCl treatment only affected free hydroxyl groups and thus could be used for proportioning free and bound OH-groups on cutin fatty acids. The method enabled a direct quantification of the ω-hydroxy fatty acids throughout the incubation phase. Copyright © 2010 John Wiley & Sons, Ltd.
Di, Junhua; Ma, Cuiluan; Qian, Jianghao; Liao, Xiaolong; Peng, Bo; He, Yucai
2018-08-01
In this study, chemo-enzymatic synthesis of furfuralcohol from biomass-derived xylose was successfully demonstrated by a sequential acid-catalyzed dehydration under microwave and whole-cells reduction. After dry dewaxed chestnut shells (CNS, 75 g/L) was acid-hydrolyzed with dilute oxalic acid (0.5 wt%) at 140 °C for 40 min, the obtained CNS-derived xylose (17.9 g/L xylose) could be converted to furfural at 78.8% yield with solid acid SO 4 2- /SnO 2 -Attapulgite (2.0 wt% catalyst loading) in the dibutyl phthalate-water (1:1, v:v) under microwave (600 W) at 180 °C for 10 min. In the dibutyl phthalate-water (1:1, v/v) media at 30 °C and pH 6.5, the furfural liquor (47.0 mM furfural) was biologically converted to furfuralcohol by recombinant Escherichia coli CCZU-Y10 whole-cells harboring an NADH-dependent reductase (PgCR) without extra addition of NAD + and glucose, and furfural was completely converted to furfuralcohol after 2.5 h. Clearly, this one-pot synthesis strategy can be effectively used for furfuralcohol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gajjar, Ketan; Heppenstall, Lara D.; Pang, Weiyi; Ashton, Katherine M.; Trevisan, Júlio; Patel, Imran I.; Llabjani, Valon; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Dawson, Timothy; Martin, Francis L.
2013-01-01
The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral “fingerprints” of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis. PMID:24098310
Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal
2006-09-30
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mark Hunt
2007-07-31
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
NASA Astrophysics Data System (ADS)
Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui
2017-02-01
Fiber structure changes in the various pathological processes, such as the increase of fibrosis in liver diseases, the derangement of fiber in cervical cancer and so on. Currently, clinical pathologic diagnosis is regarded as the golden criterion, but different doctors with discrepancy in knowledge and experience may obtain different conclusions. Up to a point, quantitative evaluation of the fiber structure in the pathological tissue can be of great service to quantitative diagnosis. Mueller matrix measurement is capable of probing comprehensive microstructural information of samples and different wavelength of lights can provide more information. In this paper, we use a Mueller matrix microscope with light sources in six different wavelength. We use unstained, dewaxing liver tissue slices in four stages and the pathological biopsy of the filtration channels from rabbit eyes as samples. We apply the Mueller matrix polar decomposition (MMPD) parameter δ which corresponds to retardance to liver slices. The mean value of abnormal region get bigger when the level of fibrosis get higher and light in short wavelength is more sensitive to the microstructure of fiber. On the other hand, we use the Mueller matrix transformation (MMT) parameter Φ which is associated to the angel of fast axis in the analysis of the slices of the filtration channels from rabbit eyes. The value of kurtosis and the value of skewness shows big difference between new born region and normal region and can reveal the arrangement of fiber. These results indicate that the Mueller matrix microscope has great potential in auxiliary diagnosis.
NASA Astrophysics Data System (ADS)
Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter
2014-03-01
Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.
Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.
Nallala, Jayakrupakar; Lloyd, Gavin Rhys; Stone, Nicholas
2015-04-07
In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.
Safer, Abdel-Majeed A; Hanafy, Nomany A; Bharali, Dhruba J; Cui, Huadong; Mousa, Shaker A
2015-09-01
The present study examined the effect of Green Tea Extract (GTE) encapsulated into Chitosan Nanoparticles (CS-NPs) on hepatic fibrosis in rat model as determined by atomic force microscopy (AFM). The bioactive compounds in GTE encapsulated into CS-NPs were determined using LC-MS/MS method. Additionally, the uptake of GTE-CS NPs in HepG2 cells showed enhanced uptake. In experimental fibrosis model, AFM was used as a high resolution microscopic tool to investigate collagen fibers as an indicator of hepatic fibrosis induced by treatment with CCl4. Paraffin sections of fibrotic liver tissues caused by CC4 treatment of rats and the effect of GTE-CS NPs treatment with or without CCl4 on hepatic fibrosis were examined. Liver tissues from the different groups of animals were de-waxed and processed as for normal H/E staining and Masson's trichrome staining to locate the proper area of ECM collagen in the CCl4 group versus collagen in liver tissues treated with the GTE-CS NPs with or without CCl4. Selected areas of paraffin sections were trimmed off and fixed flat on top of mica and inserted in the AFM stage. H/E staining, Masson's trichrome stained slides, and AFM images revealed that collagen fibers of 250 to 300 nm widths were abundant in the fibrotic liver samples while those of GTE-CS NPs were clear as in the control group. Data confirmed the hypothesis that GTE-CS NPs are effective in removing all the extracellular collagen caused by CCl4 in the hepatic fibrosis rat liver.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, T. J.; Winterbottom, W. L.
1986-01-01
Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.
IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mahlon Dennis
2005-03-01
The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less
Palekar, Umesh; Awinashe, Vaibav; Mishra, Sunil Kumar; Kawadkar, Abhishek; Rahangdale, Tripti
2014-01-01
Background: The development of better cross linked acrylic resin teeth has solved the problems related to wearing and discoloration of acrylic teeth. The same cross linking at ridge lap region acts as a double edge sword as it weakens the bond between denture base and tooth. Aim of Study: The purpose of study was to evaluate the effect of surface treatment on the bond strength of resin teeth to denture base resin using monomethyl methacrylate monomer and dichloromethane with no surface treatment acting as control. Settings and Design:Denture base cylinder samples in wax (n=180) were made with maxillary central incisor attached at 450 (JIST 6506). These samples were randomly and equally divided into three groups of 60 each. These specimens were then flasked, dewaxed as per the standard protocol. Materials and Methods: Before acrylization, ridge lap area was treated as follows: Group A- no surface treatment act as control, Group B treated with monomethyl methacrylate monomer, Group C treated with dichloromethane. Digitally controlled acryliser was used for acrylization as per manufacturer’s instructions and shear bond strength was tested on Universal Testing Machine (Servo Hydraulic, 50kN High Strain, BISS Research). Statistical Analysis used: Result was statistically analyzed with One-way analysis of variance (ANOVA) and Post-hoc ANOVA Tukey’s HSD test at 5% level of significance. Results: The application of dichloromethane showed increased bond strength between cross linked acrylic resin teeth and heat cure denture base resin followed by monomethyl methacrylate monomer and control group. Conclusion: The application of dichloromethane on the ridge lap surface of the resin teeth before packing of the dough into the mold significantly increased the bond strength between cross linked acrylic resin teeth and heat cure denture base resin. PMID:25121057
NASA Astrophysics Data System (ADS)
Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik
2018-07-01
Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.
Clegg, A J; Loveman, E; Gospodarevskaya, E; Harris, P; Bird, A; Bryant, J; Scott, D A; Davidson, P; Little, P; Coppin, R
2010-06-01
Build-up of earwax is a common reason for attendance in primary care. Current practice for earwax removal generally involves the use of a softening agent, followed by irrigation of the ear if required. However, the safety and benefits of the different methods of removal are not known for certain. To conduct evidence synthesis of the clinical effectiveness and cost-effectiveness of the interventions currently available for softening and/or removing earwax and any adverse events (AEs) associated with the interventions. Eleven electronic resources were searched from inception to November 2008, including: The Cochrane Library; MEDLINE (OVID), PREMEDLINE In-Process & Other Non-Indexed Citations (OVID), EMBASE (OVID); and CINAHL. Two reviewers screened titles and abstracts for eligibility. Inclusion criteria were applied to the full text or retrieved papers and data were extracted by two reviewers using data extraction forms developed a priori. Any differences were resolved by discussion or by a third reviewer. Study criteria included: interventions - all methods of earwax removal available and combinations of these methods; participants - adults/children presenting requiring earwax removal; outcomes - measures of hearing, adequacy of clearance of wax, quality of life, time to recurrence or further treatment, AEs and measures of cost-effectiveness; design - randomised controlled trials (RCTs) and controlled clinical trials (CCTs) for clinical effectiveness, cohort studies for AEs and cost-effectiveness, and costing studies for cost-effectiveness. For the economic evaluation, a deterministic decision tree model was developed to evaluate three options: (1) the use of softeners followed by irrigation in primary care; (2) softeners followed by self-irrigation; and (3) a 'no treatment' option. Outcomes were assessed in terms of benefits to patients and costs incurred, with costs presented by exploratory cost-utility analysis. Twenty-six clinical trials conducted in primary care (14 studies), secondary care (8 studies) or other care settings (4 studies), met the inclusion criteria for the review - 22 RCTs and 4 CCTs. The range of interventions included 16 different softeners, with or without irrigation, and in various different comparisons. Participants, outcomes, timing of intervention, follow-up and methodological quality varied between studies. On measures of wax clearance Cerumol, sodium bicarbonate, olive oil and water are all more effective than no treatment; triethanolamine polypeptide (TP) is better than olive oil; wet irrigation is better than dry irrigation; sodium bicarbonate drops followed by irrigation by nurse is more effective than sodium bicarbonate drops followed by self-irrigation; softening with TP and self-irrigation is more effective than self-irrigation only; and endoscopic de-waxing is better than microscopic de-waxing. AEs appeared to be minor and of limited extent. Resuts of the exploratory economic model found that softeners followed by self-irrigation were more likely to be cost-effective [24,433 pounds per quality-adjusted life-year (QALY)] than softeners followed by irrigation at primary care (32,130 pounds per QALY) when compared with no treatment. Comparison of the two active treatments showed that the additional gain associated with softeners followed by irrigation at primary care over softeners followed by self-irrigation was at a cost of 340,000 pounds per QALY. When compared over a lifetime horizon to the 'no treatment' option, the ICERs for softeners followed by self-irrigation and of softeners followed by irrigation at primary care were 24,450 pounds per QALY and 32,136 pounds per QALY, respectively. The systematic review found limited good-quality evidence of the safety, benefits and costs of the different strategies, making it difficult to differentiate between the various methods for removing earwax and rendering the economic evaluation as speculative. Although softeners are effective, which specific softeners are most effective remains uncertain. Evidence on the effectiveness of methods of irrigation or mechanical removal was equivocal. Further research is required to improve the evidence base, such as a RCT incorporating an economic evaluation to assess the different ways of providing the service, the effectiveness of the different methods of removal and the acceptability of the different approaches to patients and practitioners.
Huang, Ju-qing; Qi, Rui-ting; Pang, Mei-rong; Liu, Cong; Li, Guang-yu; Zhang, Ying
2017-01-01
Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (M w) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D (1H and 13C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity. PMID:28124842
Molecular Simulation of Adsorption in Zeolites
NASA Astrophysics Data System (ADS)
Bai, Peng
Zeolites are a class of crystalline nanoporous materials that are widely used as catalysts, sorbents, and ion-exchangers. Zeolites have revolutionized the petroleum industry and have fueled the 20th-century automobile culture, by enabling numerous highly-efficient transformations and separations in oil refineries. They are also posed to play an important role in many processes of biomass conversion. One of the fundamental principles in the field of zeolites involves the understanding and tuning of the selectivity for different guest molecules that results from the wide variety of pore architectures. The primary goal of my dissertation research is to gain such understanding via computer simulations and eventually to reach the level of predictive modeling. The dissertation starts with a brief introduction of the applications of zeolites and computer modeling techniques useful for the study of zeolitic systems. Chapter 2 then describes an effort to improve simulation efficiency, which is essential for many challenging adsorption systems. Chapter 3 studies a model system to demonstrate the applicability and capability of the method used for the majority of this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble (CBMC-GE). After these methodological developments, Chapter 4 and 5 report a systematic parametrization of a new transferable force field for all-silica zeolites, TraPPE-zeo, and a subsequent, relatively ad-hoc extension to cation-exchanged aluminosilicates. The CBMC-GE method and the TraPPE-zeo force field are then combined to investigate some complex adsorption systems, such as linear and branched C6-C 9 alkanes in a hierarchical microporous/mesoporous material (Chapter 6), the multi-component adsorption of aqueous alcohol solutions (Chapter 7) and glucose solutions (Chapter 8). Finally, Chapter 9 describes an endeavor to screen a large number of zeolites with the purpose of finding better materials for two energy-related applications, ethanol/water separation and hydrocarbon iso-dewaxing.
Huang, Ju-Qing; Qi, Rui-Ting; Pang, Mei-Rong; Liu, Cong; Li, Guang-Yu; Zhang, Ying
Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (M w ) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D ( 1 H and 13 C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Kristt, Don; Gal, Rivka
2000-03-01
Recent technological advances lead to an increase in the options for the treatment of the periodontal diseases. Lasers utilized for gingival soft tissue resurfacing mainly for esthetics purposes, require careful histopathological evaluation of the effects on tissue. Up to date no comparative clinical or histological studies have been performed, aiming at demonstration of the effects of laser irradiation on connective tissue, especially its most important component -- the collagen fibers. The alteration in the structures of this tissue plays the most important role in the healing process. The aim of the present study is to evaluate the influence of Erbium: YAG - Kesler's hand piece on gingival tissue. This handpiece is designed for gingival resurfacing, in cases of 'Gummy smile' and gingival pigmentation. The following irradiation parameters were used: energy per pulse -- 500 mJ, repetition rate 10 pps, spot size 3 mm. Gingival biopsies specimens of 10 patients, 6 with 'Gummy smile' and 4 with gingival pigmentation were examined before laser treatment, and at 7 and 14 days after laser treatment. The tissues were fixed in LNRS, embedded in paraffin, and sectioned into 5 micrometer thickness, dewaxed in xylol and stained with H&E and Picrosirius Red (PSR). The sections were examined by polarization microscopy. PSR is a collagen stain that differentiates collagen fiber density by the range of colors from green through yellow to red, and/or fiber size. This was utilized in the present study to evaluate the hypothesis that Erbium -- YAG (Er: YAG) laser energy is capable of remodeling the collagen fibers in the gingival connective tissue through a photothermal process. We found a significant difference between the structures of collagen fibers at the first week and at 14 days post treatment. In the normal gingiva the predominant polarization colors were in the red-orange range, signifying tightly packed, mature collagen. During the first postoperative week, collagen fibers exhibit mainly polarization colors in the green to green-yellow range implying less packed intermediate collagen fibers. After two weeks, collagen fibers required their preoperative polarizing texture. These findings strongly suggest that the 'quality' rather than the quantity of gingival collagen fibers play an important role in order for collagen shrinkage and reproduction to occur.
Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S
2008-04-01
Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessarymore » for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).« less
NASA Astrophysics Data System (ADS)
Ping, Eric Wayne
2011-12-01
The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and EXAFS ruled out morphological alterations in the supported nanoparticles. Significant decreases in pore volume and surface area via N2 physisorption put deposition under suspicion and TGA confirmed the presence of organic species in the material. Initial attempts to remove the deposits via calcination were successful, but at the expense of severe nanoparticle growth. GC-MS, NMR and FT-IR helped speciate the deposition, mainly confirming the presence of residual reactant acid. A regeneration scheme was developed to remove these compounds, and subsequent catalyst reuses exhibited high decarboxylation activity. Finally, the Pd-MCF catalyst was applied to a real feedstock: a wastewater-derived brown grease from a poultry rendering facility. Attempts at decarboxylating the raw material failed, so efforts to polish the material via dewaxing and degumming were undertaken. The treatments were able to optimize a three-phase separation, and the resultant polished brown grease was successfully decarboxylated to diesel-length hydrocarbons with high conversions and selectivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nick Cannell; Adrian S. Sabau
The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phasemore » were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in the shell mold. A model for thermal radiation within the shell mold was developed, and the thermal model was successfully validated using ProCAST. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The prefiring of the empty shell mold was considered in the model, and the shell mold was limited to a pure elastic material. The alloy dimensions were obtained from numerical simulations only with coupled shell-alloy systems. The alloy dimensions were in excellent quantitative agreement with experimental data, validating the deformation module. For actual parts, however, the creep properties of the shell molds must also be obtained, modeled, and validated.« less
Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Von L. Richards
2011-09-30
This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspectionmore » procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.« less