NASA Astrophysics Data System (ADS)
Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen
2018-06-01
In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.
On dewetting of thin films due to crystallization (crystallization dewetting).
Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza
2016-03-01
Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.
A Fundamental Classification of Atomization Processes
2007-10-12
spontaneous dewetting [41, 42], the extra surface tension created by the wall contact would slow any breakdown of perforations into droplets thus...important role in the type and size of the disturbance formed. Small defects can lead to spontaneous dewetting where a perforation is formed [41, 42...Films also may ―spontaneously‖ rupture or dewet due to microscopic surface imperfections or forces on a molecular level [41, 42]. Films are
The competition between the liquid-liquid dewetting and the liquid-solid dewetting.
Xu, Lin; Shi, Tongfei; An, Lijia
2009-05-14
We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.
Molecular insight into nanoscale water films dewetting on modified silica surfaces.
Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang
2015-01-07
In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.
Water-induced ethanol dewetting transition.
Ren, Xiuping; Zhou, Bo; Wang, Chunlei
2012-07-14
The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.
Energy driven self-organization in nanoscale metallic liquid films.
Krishna, H; Shirato, N; Favazza, C; Kalyanaraman, R
2009-10-01
Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.
Active properties of living tissues lead to size-dependent dewetting
NASA Astrophysics Data System (ADS)
Perez-Gonzalez, Carlos; Alert, Ricard; Blanch-Mercader, Carles; Gomez-Gonzalez, Manuel; Casademunt, Jaume; Trepat, Xavier
Key biological processes such as cancer and development are characterized by drastic transitions from 2D to a 3D geometry. These rearrangements have been classically studied as a wetting problem. According to this theory, wettability of a substrate by an epithelium is determined by the competition between cell-cell and cell-substrate adhesion energies. In contrast, we found that, far from a passive process, tissue dewetting is an active process driven by tissue internal forces. Experimentally, we reproduced epithelial dewetting by promoting a progressive formation of intercellular junctions in a monolayer of epithelial cells. Interestingly, the formation of intercellular junctions produces an increase in cell contractility, with the subsequent increase in traction and intercellular stress. At a certain time, tissue tension overcomes cell-substrate maximum adhesion and the monolayer spontaneously dewets the substrate. We developed an active polar fluid model, finding both theoretically and experimentally that critical contractility to promote wetting-dewetting transition depends on cell-substrate adhesion and, unexpectedly, on tissue size. As a whole, this work generalizes wetting theory to living tissues, unveiling unprecedented properties due to their unique active nature.
Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei
2016-12-06
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 10 7 ). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.
Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei
2016-01-01
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules. PMID:27922062
Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale
NASA Astrophysics Data System (ADS)
Hihath, Sahar
Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the experimental observations. Second, the fundamental mechanisms that govern the onset of dewetting of thin metal films in both liquid and solid state are investigated. Dewetting processes are used in numerous technological applications. For instance, the dewetting of thin films on substrates is used for making spatially ordered nanoparticle arrays for use in plasmonics, nanophotonics, and magnetics. [1] In addition to dewetting applications in industry and research, dewetting processes have adverse impact on the reliability of semiconductor devices as it can limit the functionality of metal contacts utilized in transistors at elevated temperatures. The morphological changes during dewetting have been studied previously in plan-view by Scanning Electron Microscopy (SEM) after the annealing is completed, and in some cases in cross-section via real-time Transmission Electron Microscopy (TEM). However, due to temporal limitations of image acquisition in TEM, which is in the range of milliseconds, it has not been possible thus far to investigate the dynamics of the dewetting process with high-speed time resolution from nano- to micro-seconds. To gain insights into the fundamental mechanisms involved in dewetting, the early stages of the dewetting process were investigated via Dynamic Transmission Electron Microscopy (DTEM) with nanosecond time and nanometer spatial resolution. The experiments were performed on plan-view TEM samples consisting of nickel thin-films on (100) silicon substrates with a 2-3 nm thick native oxide. The laser ablation dynamics were captured, which involved liquid phase dewetting of the nickel film followed by substrate fracture and nanoscale particle expulsion. Finally, to capture the full dynamics of the dewetting process the experiments were performed on a system of nickel thin-films on (100) Strontium Titanate (STO) substrates. Samples of nickel thin-films on STO substrates have lower thermal expansion coefficient mismatch compared to the system discussed above. Thus, the STO substrates did not fracture after laser irradiation and enabled us to capture the progress of hole growth with time. Valence Electron Energy Loss spectroscopy was used to find the thickness of the TEM sample in order to calculate the geometry and simulate the temperature fields via finite element analysis with COMSOL Multiphysics package. Spatio-temporal temperature plots acquired from finite element modeling suggests that both liquid and solid-state dewetting processes were observed depending upon the magnitude of the laser energy used.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
Applications of dewetting in micro and nanotechnology.
Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio
2012-06-21
Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.
Spontaneous recovery of superhydrophobicity on nanotextured surfaces
Prakash, Suruchi; Xi, Erte; Patel, Amish J.
2016-01-01
Rough or textured hydrophobic surfaces are dubbed “superhydrophobic” due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic “Cassie state” contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the “Wenzel state” under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications. PMID:27140619
Rowthu, Sriharitha; Hoffmann, Patrik
2018-03-28
Conventional omniphobic surfaces suffer from wear-sensitivity due to soft apolar coatings or substrates and protruding surface features that are eroded even for mild abrasion treatments, leading to the loss of dewetting properties after wear. Evidently, there was a trade-off between dewetting and tribological properties. Here, we show the establishment of self-healing slippery properties post severe abrasion by utilizing perfluoropolyether-impregnated mesoporous Al 2 O 3 (MPA) composites. The hard polar alumina matrix provides the optimal tribological properties, and the liquid lubricant in the porous network contributes to both tribological and self-healing dewetting properties. These composites sustained normal pressures up to 350 MPa during reciprocating sliding contacts. The severely abraded surfaces are capable of self-replenishing in ambient environment, driven by capillarity and surface diffusion processes, and regained their slippery properties toward water and hexadecane after 15 h of self-healing. Eventually, a dewetting-tribology diagram has been introduced to show different regimes, namely-optimal slippery properties, optimal tribological properties, and a mixed regime). We found out that the microstructural expression [Formula: see text] is a robust guiding tool to predict the regime of interest. This dewetting-tribological diagram may be marked as an inception to designing abrasion-resistant slippery liquid impregnated composites for overcoming the dewetting tribological properties trade-off. Such surfaces may potentially find applications in paint industries and as anti-icing surfaces.
Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.
Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati
2017-05-04
An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.
Not spreading in reverse: The dewetting of a liquid film into a single drop
Edwards, Andrew M. J.; Ledesma-Aguilar, Rodrigo; Newton, Michael I.; Brown, Carl V.; McHale, Glen
2016-01-01
Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet—a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction. PMID:27704042
Not spreading in reverse: The dewetting of a liquid film into a single drop.
Edwards, Andrew M J; Ledesma-Aguilar, Rodrigo; Newton, Michael I; Brown, Carl V; McHale, Glen
2016-09-01
Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet-a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction.
Interplay between dewetting and layer inversion in poly(4-vinylpyridine)/polystyrene bilayers.
Thickett, Stuart C; Harris, Andrew; Neto, Chiara
2010-10-19
We investigated the morphology and dynamics of the dewetting of metastable poly(4-vinylpyridine) (P4VP) thin films situated on top of polystyrene (PS) thin films as a function of the molecular weight and thickness of both films. We focused on the competition between the dewetting process, occurring as a result of unfavorable intermolecular interactions at the P4VP/PS interface, and layer inversion due to the lower surface energy of PS. By means of optical and atomic force microscopy (AFM), we observed how both the dynamics of the instability and the morphology of the emerging patterns depend on the ratio of the molecular weights of the polymer films. When the bottom PS layer was less viscous than the top P4VP layer (liquid-liquid dewetting), nucleated holes in the P4VP film typically stopped growing at long annealing times because of a combination of viscous dissipation in the bottom layer and partial layer inversion. Full layer inversion was achieved when the viscosity of the top P4VP layer was significantly greater (>10⁴) than the viscosity of the PS layer underneath, which is attributed to strongly different mobilities of the two layers. The density of holes produced by nucleation dewetting was observed for the first time to depend on the thickness of the top film as well as the polymer molecular weight. The final (completely dewetted) morphology of isolated droplets could be achieved only if the time frame of layer inversion was significantly slower than that of dewetting, which was characteristic of high-viscosity PS underlayers that allowed dewetting to fall into a liquid-solid regime. Assuming a simple reptation model for layer inversion occurring at the dewetting front, the observed surface morphologies could be predicted on the basis of the relative rates of dewetting and layer inversion.
Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)
Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; ...
2014-08-01
Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less
Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang
2012-12-01
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.
2010-02-17
Dewetting Using Fluorinated Silsesquioxanes as Drop-In Modifiers (Preprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Scott T... Dewetting Using Fluorinated Silsesquioxanes as Drop-In Modifiers (Preprint) Scott T. Iacono, a,b Stephen M. Budy, a,c Dennis W. Smith, a and...nanometer-sized surface roughness due to POSS aggregation. 23 Likewise, similar dewetting behavior, 90 albeit modest, was observed utilizing partially
NASA Astrophysics Data System (ADS)
Lu, Gui; Lin, Lin; Hui, Sheng; Wang, Shuo-Lin; Wang, Xiao-Dong; Lee, Duu-Jong
2017-11-01
Dewetting kinetics of Al and NiAl metallic liquid films on NiAl (1 0 0) substrates was studied using molecular dynamics simulations. A new dewetting-spreading transitional behavior was observed for high temperature dewetting. The dewetting-spreading transition comes from the competition between unbalanced Young's force and dissolutive reaction. Without dissolutive reaction, liquid films keep dewetting, but immediately turn into spreading when the dissolutive reaction involved. The dissolutive reaction depends on the initial Ni atom contents rather than the contact areas of dewetting films. The far-away-from saturated Ni content is the main mechanism which accelerates the wetting and reverses the dewetting process at high temperatures.
Surface De-Wetting Based Critical Heat Flux Model Development and Validation
2013-02-05
the onset of CHF. When the process of dewetting occurs at contact line and micro region, the temperature of dry spots increases, hence dryout areas...increase and the CHF occurs. Finally, we proposed the CHF mechanism based on the surface dewetting and experimental data. 15. SUBJECT TERMS spray...determines the overall heat transfer, contact line heat transfer wall is critically important to trigger the onset of CHF. When the process of dewetting
Mechanism of solid-state plasma-induced dewetting for formation of copper and gold nanoparticles.
Kwon, Soon-Ho; Choe, Han Joo; Lee, Hyo-Chang; Chung, Chin-Wook; Lee, Jung-Joong
2013-09-01
Cu and Au nanoparticles were fabricated by plasma treatment on Cu and Au films at 653 K. The nanoparticles were formed by dewetting the metallic films using plasma. Scanning electron microscopy and transmission electron microscopy investigations showed that the plasma-induced dewetting of the Cu and Au films proceeded through heterogeneous hole nucleation and growth along the grain boundaries to lower the surface energy. The amount of energy transferred to surface atoms by one Ar ion was calculated to be 16.1 eV, which was sufficient for displacing Cu and Au atoms. Compared to thermally activated dewetting, more uniform particles could be obtained by plasma-induced dewetting because a much larger number of holes with smaller sizes was generated. The plasma dewetting process is less sensitive to the oxidation of metallic films compared to the annealing process. As a result, Cu nanoparticles could be fabricated at 653 K, whereas the thermally activated dewetting was not possible.
Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia
2017-05-03
The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.
Dewetting-mediated pattern formation in nanoparticle assemblies
NASA Astrophysics Data System (ADS)
Stannard, Andrew
2011-03-01
The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.
Dewetting-mediated pattern formation in nanoparticle assemblies.
Stannard, Andrew
2011-03-02
The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.
Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films
NASA Astrophysics Data System (ADS)
Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh
2014-01-01
We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.
Preventing Thin Film Dewetting via Graphene Capping.
Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting
2017-09-01
A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara
2011-12-06
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society
Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A
2013-01-07
Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.
High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting
Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K. W.
2015-01-01
We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (<400°C) thermal dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries. PMID:25858792
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-10-06
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-01-01
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744
High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.
Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W
2015-04-10
We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (<400°C) thermal dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.
Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun
2011-10-04
We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society
2014-12-01
premature dewetting of crystal surfaces. This is a similar phenomenon to that described by Gocmez, et al. [7] for coarse/fine ratios of AP. That is...they postulated that a greater force is required to dewet fine AP crystals due to a larger surface area/volume ratio and therefore a larger overall...tensile strength. Dewetting of AP crystals from binder during the application of stress creates vacuoles which contribute to total specimen elongation
Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero
2018-06-18
Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dewetting process of Au films on SiO2 nanowires: Activation energy evaluation
NASA Astrophysics Data System (ADS)
Ruffino, F.; Grimaldi, M. G.
2015-05-01
SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects. In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.
Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco
2016-02-07
We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.
Templated dewetting: designing entirely self-organized platforms for photocatalysis.
Altomare, Marco; Nguyen, Nhat Truong; Schmuki, Patrik
2016-12-01
Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO 2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO 2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO 2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices.
Templated dewetting: designing entirely self-organized platforms for photocatalysis
Altomare, Marco; Nguyen, Nhat Truong
2016-01-01
Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices. PMID:28567258
Dewetting and Segregation of Zn-Doped InSb in Microgravity Experiments
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Marin, C.; Duffar, T.; Volz, M.
2009-01-01
In directional solidification, dewetting is characterized by the lack of contact between the crystal and the crucible walls, due to the existence of a liquid meniscus at the level of the solid-liquid interface. This creates a gap of a few tens of micrometers between the crystal and the crucible. One of the immediate consequences of this phenomenon is the dramatic improvement of the quality of the crystal. This improvement is partly due to the modification of the solid-liquid interface curvature and partly to the absence of sticking and spurious nucleation at the crystal-crucible interface. Dewetting has been, commonly observed during the growth of semiconductors in crucibles under microgravity conditions where it appears to be very stable: the gap between the crystal and the crucible remains constant along several centimetres of growth. The physical models of the phenomenon are well established and they predict that dewetting should not occur in microgravity, if sufficient static pressure is imposed on the melt, pushing it towards the crucible. We present the results of InSb(Zn) solidification experiments conducted at the International Space Station (ISS) where, in spite of a spring exerting a pressure on the liquid, partial dewetting did occur. This surprising result is discussed in terms of force exerted .by the spring on the liquid and of possibility that the spring did not work properly. Furthermore, it appears that the segregation of the Zn was not affected by the occurrence of the dewetting. The data suggest that there was no significant interference of convection with segregation of Zn in InSb.
Various Silver Nanostructures on Sapphire Using Plasmon Self-Assembly and Dewetting of Thin Films
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Sui, Mao; Zhang, Quanzhen; Pandey, Puran; Li, Ming-Yu; Lee, Jihoon
2017-04-01
Silver (Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices. The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire (0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles (between 2 and 20 nm), irregular nanoclusters (between 30 and 60 nm), and nanocluster networks (between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting, surface diffusion, Volmer-Weber growth model, coalescence, and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature (750 °C) due to the sublimation and temperature-dependent characteristic of dewetting process. In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.
Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai
2018-04-18
We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei
2016-06-28
On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.
Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.
2017-03-01
Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.
A study on the correlation between the dewetting temperature of Ag film and SERS intensity.
Quan, Jiamin; Zhang, Jie; Qi, Xueqiang; Li, Junying; Wang, Ning; Zhu, Yong
2017-11-07
The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO 2 planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.
NASA Astrophysics Data System (ADS)
Che, Justin; Jawaid, Ali; Grabowski, Christopher; Yi, Yoon-Jae; Vaia, Richard; AFRL Collaboration
Rapid formation of ordered monolayers of polymer grafted nanoparticles (PGN) directly onto solid surfaces has spurred interest in using these materials for additive manufacturing of optical devices and energy storage. Herein, we discuss dewetting of polystyrene grafted Au nanoparticles (PS@Au) with an increased thermal (10-25oC) and energetic (5-15 mN/m) stability relative to linear polymer films of comparable thickness. Analogous to star macromolecules, the enhanced stability is related to the conformations of chains in the grafted canopy. Mechanistically, dewetting of PS@Au is similar to linear PS, however, the thickness transition from spinodal to heterogeneous nucleation is at least 5-6x larger. Time resolved optical microscopy during dewetting at 160oC revealed that the zero shear viscosity for linear PS scaled as η0 Mn3. 3 , consistent with reptation of entangled polymers. In contrast, PS@Au showed η0 Mn2. 2 where Mn reflects the molecular weight of the grafted chains. Overall, PS@Au exhibited significantly slower dewetting rates, consistent with a 100x increase in viscosity relative to the linear chain analogues. Quantification of the relationship between PGN architecture (e.g. nanoparticle size, graft density, polymer molecular weight) and dewetting processes is crucial to optimize the order of these assemblies via post-processing, as well as design the PGN canopy to maximize stability for devices.
Processing Benefits of Resonance Acoustic Mixing on High Performance Propellants and Explosives
2012-02-01
slightly greater stress Modulus similar Dewetting Distribution Statement A: Approved for Public Release Tensile Comparison File: NAVAIR Brief 18...greater stress Modulus similar Dewetting Distribution Statement A: Approved for Public Release Resodyn Mixed Explosive 19 File: NAVAIR Brief
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-10-15
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-01-01
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768
Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang
2016-02-21
A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.
Dewetting induced Au-Ge composite nanodot evolution in SiO2
NASA Astrophysics Data System (ADS)
Datta, D. P.; Chettah, A.; Siva, V.; Kanjilal, D.; Sahoo, P. K.
2018-01-01
A composite nanostructure comprising of Au and Ge gradually evolves on SiO2 surface when a bilayer of Au and Ge is irradiated by medium keV Xe-ion beam. The morphology progresses through different stages from nucleating patches to extended islands and finally a Au-Ge composite nanodot array develops on the insulator surface. While ion energy and fluence are found to determine dimensions of the nanostructures, existence of a characteristic lateral length scale is also detected at every stage of evolution. Through morphological and compositional analysis, the observed evolution is understood as an effect of ion beam induced dewetting of Au top layer. Numerical estimation based on the unified thermal spike model using the present experimental condition demonstrates formation of molten zones around the ion track due to nuclear and electronic energy deposition in the target. Dewetting results from mass flow onto the surface driven by local melting along the ion track and combines with sputter erosion of the bilayer film to lead to composite nanodot evolution. The generality of the ion induced processes provides possible route towards metal-semiconductor hybrid nanostructure synthesis on insulator surface.
Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.
Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L
2017-06-14
Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.
Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei
2016-09-15
Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun
2018-05-01
The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.
Roughness evolution in dewetted Ag and Pt nanoscale films
NASA Astrophysics Data System (ADS)
Ruffino, F.; Grimaldi, M. G.
2018-01-01
The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.
Transient Cooperative Processes in Dewetting Polymer Melts.
Chandran, Sivasurender; Reiter, Günter
2016-02-26
We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10 kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.
Dewetting in immiscible polymer bilayer films
Lal, J.; Malkova, S.; Mukhopadhyay, M. K.; ...
2017-06-19
We have measured in situ the progression of dewetting from a large number of holes in immiscible polymer bilayer films. Using x-ray photon correlation spectroscopy (XPCS) in grazing incidence we probe independently the evolving dewetting process both at the top surface and the buried interface of the bilayer. At an early stage, differences in the evolution of the velocities measured by XPCS between the surface and buried interface indicate that the holes do not penetrate the bottom layer. The rim velocity at late stages decays according to a wave-vector-dependent power law, which indicates inhomogeneous flows in the film. The changesmore » in the static scattering show that observed slow-down of the dewetting velocity is correlated with the changing roughness at the buried interface of the polymer bilayer.« less
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-03-01
Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.
Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata
2016-01-14
We report the dewetting of a thin bilayer of polystyrene (PS) and poly(methylmethacrylate) (PMMA) on a topographically patterned nonwettable substrate comprising an array of pillars, arranged in a square lattice. With a gradual increase in the concentration of the PMMA solution (Cn-PMMA), the morphology of the bottom layer changes to: (1) an aligned array of spin dewetted droplets arranged along substrate grooves at very low Cn-PMMA; (2) an interconnected network of threads surrounding each pillar at intermediate Cn-PMMA; and (3) a continuous bottom layer at higher Cn-PMMA. On the other hand the morphology of the PS top layer depends largely on the nature of the pre-existing bottom layer, in addition to Cn-PS. An ordered array of PMMA core-PS shell droplets forms right after spin coating when both Cn-PMMA and Cn-PS are very low. Bilayers with all other initial configurations evolve during thermal annealing, resulting in a variety of ordered structures. Unique morphologies realized include laterally coexisting structures of the two polymers confined within the substrate grooves due to initial rupture of the bottom layer on the substrate followed by a squeezing flow of the top layer; an array of core-shell and single polymer droplets arranged in an alternating order etc., to highlight a few. Such structures cannot be fabricated by any stand-alone lithography technique. On the other hand, in some cases the partially dewetted bottom layer imparts stability to an intact top PS layer against dewetting. Apart from ordering, under certain specific conditions significant miniaturization and downsizing of dewetted feature periodicity and dimension as compared to dewetting of a single layer on a flat substrate is observed. With the help of a morphology phase diagram we show that ordering is achieved over a wide combination of Cn-PMMA and Cn-PS, though the morphology and dewetting pathway differs significantly with variation in the thickness of the individual layers.
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the cluster coalescence plays a minor role, both in solid and in fluid films.
The evolution of spatial ordering of oil drops fast spreading on a water surface
Yamamoto, Daigo; Nakajima, Chika; Shioi, Akihisa; Krafft, Marie Pierre; Yoshikawa, Kenichi
2015-01-01
The design of dynamically self-assembled systems is of high interest in science and technology. Here, we report a unique cascade in the self-ordering of droplets accompanied by a dewetting transition. The dynamic self-emergent droplets are observed when a thin liquid layer of an immiscible fluorocarbon oil (perfluorooctyl bromide, PFOB) is placed on a water surface. Due to the gradual evaporation of PFOB, a circular PFOB-free domain appears as a result of a local dewetting transition. A circular pearling structure is generated at the rim with the growth of the dewetting hole. As the next stage, linear arrays of droplets are generated in a radial manner from the centre of the hole. These one-dimensional arrangements then evolve into two-dimensional hexagonal arrays of microdroplets through collective rhythmical shrinking/expanding motions. The emergence of such dynamic patterns is discussed in terms of the nonlinear kinetics of the dewetting transition under thermodynamically dissipative conditions. PMID:25998157
Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting
Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee
2017-01-01
We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications. PMID:28546899
Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting.
Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee; Oh, Yong-Jun
2017-01-01
We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.
Auto-optimization of dewetting rates by rim instabilities in slipping polymer films.
Reiter, G; Sharma, A
2001-10-15
We investigated the instability of the moving rim in dewetting of slipping polymer films. Small fluctuations of the width of the rim get spontaneously amplified since narrower sections of the rim move faster than wider ones due to frictional forces being proportional to the width of the rim. Instability leads eventually to an autocontrol of the rim width by the continuous formation of droplets with a mean size proportional to the initial film thickness. Surprisingly, the mean dewetting velocity at late stages, averaged over the length of the rim, was found to be constant. Thus, the instability of the rim enabled a more efficient, i.e., faster, "drying" of the substrate. Nonslipping films did not show this instability.
Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films
NASA Astrophysics Data System (ADS)
Reiter, Günter; Sharma, Ashutosh
2001-10-01
We investigated the instability of the moving rim in dewetting of slipping polymer films. Small fluctuations of the width of the rim get spontaneously amplified since narrower sections of the rim move faster than wider ones due to frictional forces being proportional to the width of the rim. Instability leads eventually to an autocontrol of the rim width by the continuous formation of droplets with a mean size proportional to the initial film thickness. Surprisingly, the mean dewetting velocity at late stages, averaged over the length of the rim, was found to be constant. Thus, the instability of the rim enabled a more efficient, i.e., faster, ``drying'' of the substrate. Nonslipping films did not show this instability.
Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik
2015-05-27
Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ordered alternating binary polymer nanodroplet array by sequential spin dewetting.
Bhandaru, Nandini; Das, Anuja; Salunke, Namrata; Mukherjee, Rabibrata
2014-12-10
We report a facile technique for fabricating an ordered array of nearly equal-sized mesoscale polymer droplets of two constituent polymers (polystyrene, PS and poly(methyl methacrylate), PMMA) arranged in an alternating manner on a topographically patterned substrate. The self-organized array of binary polymers is realized by sequential spin dewetting. First, a dilute solution of PMMA is spin-dewetted on a patterned substrate, resulting in an array of isolated PMMA droplets arranged along the substrate grooves due to self-organization during spin coating itself. The sample is then silanized with octadecyltrichlorosilane (OTS), and subsequently, a dilute solution of PS is spin-coated on to it, which also undergoes spin dewetting. The spin-dewetted PS drops having a size nearly equal to the pre-existing PMMA droplets position themselves between two adjacent PMMA drops under appropriate conditions, forming an alternating binary polymer droplet array. The alternating array formation takes place for a narrow range of solution concentration for both the polymers and depends on the geometry of the substrate. The size of the droplets depends on the extent of confinement, and droplets as small as 100 nm can be obtained by this method, on a suitable template. The findings open up the possibility of creating novel surfaces having ordered multimaterial domains with a potential multifunctional capability.
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting.
Benkouider, A; Ronda, A; David, T; Favre, L; Abbarchi, M; Naffouti, M; Osmond, J; Delobbe, A; Sudraud, P; Berbezier, I
2015-12-18
Synthesizing Au0.8Si0.2 nanocatalysts that are homogeneous in size and have controlled position is becoming a challenging and crucial prequisite for the fabrication of ordered semiconductor nanowires. In this study, Au0.8Si0.2 nanocatalysts are synthesized via dewetting of Au layers on Si(111) during thermal annealing in an ultra-high vacuum. In the first part of the paper, the mechanism of homogeneous dewetting is analyzed as a function of the Au-deposited thickness (h Au). We distinguish three different dewetting regimes: (I) for a low thickness ([Formula: see text]), a submonolyer coverage of Au is stabilized and there is no dewetting. (II) For an intermediate thickness ([Formula: see text]), there is both dewetting and Au0.8Si0.2 phase formation. The size and density of the Au0.8Si0.2 clusters are directly related to h Au. When cooling down to room temperature, the clusters decompose and reject the Si at the Au/Si substrate interface. (III) For a large thickness ([Formula: see text]), only dewetting takes place, without forming AuSi clusters. In this regime, the dewetting is kinetically controlled by the self-diffusion of Au (activation energy ∼0.43 eV) without evidence of an Si-alloying effect. As a practical consequence, when relying solely on the homogeneous dewetting of Au/Si(111) to form the Au0.8Si0.2 catalysts (without a supply of Si atoms from vapor), regime II should be used to obtain good size and density control. In the second part of the paper, a process for ordering the catalysts using focused ion beam-(FIB) assisted dewetting (heterogeneous dewetting) is developed. We show that no matter what the FIB milling conditions and the Au nominal thickness are, dewetting is promoted by ion beam irradiation and is accompanied by the formation of Au0.8Si0.2 droplets. The droplets preferentially form on the patterned areas, while in similar annealing conditions, they do not form on the unpatterned areas. This behavior is attributed to the larger Au-Si interdiffusion in the patterned areas, which results from the Si amorphization induced by the FIB. A systematic analysis of the position of the nanodroplets shows their preferential nucleation inside the patterns, while thicker platelets of almost pure Au are observed between the patterns. The evolutions of the size homogeneity and the occupancy rate of the patterns are quantified as a function of the FIB dose and annealing temperature. Nice arrays of perfectly ordered AuSi catalysts are obtained after optimizing the FIB and dewetting conditions.
Baglioni, M; Montis, C; Brandi, F; Guaragnone, T; Meazzini, I; Baglioni, P; Berti, D
2017-09-13
The removal of hydrophobic polymer films from surfaces is one of the top priorities of modern conservation science. Nanostructured fluids containing water, good solvents for polymers, either immiscible or partially miscible with water, and surfactants have been used in the last decade to achieve controlled removal. The dewetting of the polymer film is often an essential step to achieve efficient removal; however, the role of the surfactant throughout the process is yet to be fully understood. We report on the dewetting of a methacrylate/acrylate copolymer film induced by a ternary mixture of water, propylene carbonate (PC) and C 9-11 E 6 , a nonionic alcohol ethoxylate surfactant. The fluid microstructure was characterised through small angle X-ray scattering and the interactions between the film and water, water/PC and water/PC/C 9-11 E 6 , were monitored through confocal laser-scanning microscopy (CLSM) and analised both from a thermodynamic and a kinetic point of view. The presence of a surfactant is a prerequisite to induce dewetting of μm-thick films at room temperature, but it is not a thermodynamic driver. The amphiphile lowers the interfacial energy between the phases and favors the loss of adhesion of the polymer on glass, decreasing, in turn, the activation energy barrier, which can be overcome by the thermal fluctuations of polymer film stability, initiating the dewetting process.
Self-assembled three-dimensional nanocrown array.
Hong, Soongweon; Kang, Taewook; Choi, Dukhyun; Choi, Yeonho; Lee, Luke P
2012-07-24
Although an ordered nanoplasmonic probe array will have a huge impact on light harvesting, selective frequency response (i.e., nanoantenna), and quantitative molecular/cellular imaging, the realization of such an array is still limited by conventional techniques due to the serial processing or resolution limit by light diffraction. Here, we demonstrate a thermodynamically driven, self-assembled three-dimensional nanocrown array that consists of a core and six satellite gold nanoparticles (GNPs). Our ordered nanoprobe array is fabricated over a large area by thermal dewetting of thin gold film on hexagonally ordered porous anodic alumina (PAA). During thermal dewetting, the structural order of the PAA template dictates the periodic arrangement of gold nanoparticles, rendering the array of gold nanocrown. Because of its tunable size (i.e., 50 nm core and 20 nm satellite GNPs), arrangement, and periodicity, the nanocrown array shows multiple optical resonance frequencies at visible wavelengths as well as angle-dependent optical properties.
Nanoscale View of Dewetting and Coating on Partially Wetted Solids.
Deng, Yajun; Chen, Lei; Liu, Qiao; Yu, Jiapeng; Wang, Hao
2016-05-19
There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.
Abbarchi, Marco; Naffouti, Meher; Vial, Benjamin; Benkouider, Abdelmalek; Lermusiaux, Laurent; Favre, Luc; Ronda, Antoine; Bidault, Sébastien; Berbezier, Isabelle; Bonod, Nicolas
2014-11-25
Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, position, and organization in complex multimers.
Formation of organized nanostructures from unstable bilayers of thin metallic liquids
NASA Astrophysics Data System (ADS)
Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki
2011-12-01
Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.
Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates.
Meshot, Eric R; Zhao, Zhouzhou; Lu, Wei; Hart, A John
2014-09-07
Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
Spontaneous dewetting of a perfluoropolyether
NASA Technical Reports Server (NTRS)
Shogrin, Bradley; Jones, William R., Jr.; Herrera-Fierro, Pilar
1995-01-01
Eight different production lots of a commercial perfluoropolyether (PFPE) based on hexafluoropropene oxide (HFPO) were applied to polished metal surfaces by spinning. One of the lots repeatedly dewetted from a clean 440C steel surface, forming droplets on the surface, whereas the other seven did not dewet. This dewetting phenomenon also repeatedly occurred on 2024 aluminum and 1018 steel, but not on copper or gold. Fourier transform infrared microspectroscopy (mu-FTIR) was used to determine thickness and uniformity of the PFPE films. The dewetting lot was found to dewet from 440C steel at a film thickness greater than 520 A. A portion of the dewetting lot was heated at 316 C for 12 days in the presence of oxygen and M-50 steel. This fluid did not dewet. Sequentially, samples of the dewetting lot were filtered either with an alumina or a silica cartridge which can remove polar impurities. Neither of the filtered samples dewetted from 440C steel. It was concluded that an unknown impurity, both thermally labile and polar, present at very low concentration and undetected by our analytical techniques (FTIR, proton NMR, or F-19 NMR), was responsible for the dewetting phenomenon.
The dewetting properties of lotus leaves.
Zhang, Jihua; Sheng, Xianliang; Jiang, Lei
2009-02-03
The high dewetting abilities of lotus leaves can be transited to a complete wetting state by soaking the leaves in water at a depth of 50 cm for 2 h. However, after being dried by N2 gas, the high dewetting behavior of lotus leaves may be mostly restored. This indicates that experimental procedure might considerably affect the dewetting abilities of lotus leaves. To discover the mechanism underlying this interesting dewetting phenomena, the dewetting force was used to characterize the dewetting abilities of surfaces, and model studies to mimic the papillae were done. Surface hydrophobicity, sizes, rise angles, and secondary structures of the models' sides affected their dewetting force with water. So we suggested that the dewetting states, Cassie or Wenzel's state, of lotus surfaces depend much on the depth of water, i.e., the hydraulic pressure. On the other hand, the primary structures of papillae in Cassie's state led to a high receding angle with respect to the plane of the leaf during the dewetting measurement. The secondary structures and micro/nano arrays of papillae increased the dewetting abilities of lotus leaves, since no water intruded between papillae. However, the structures of papillae in Wenzle's state significantly reduced the dewetting abilities of lotus leaves after being soaked at a depth of 50 cm for 2 h. Therefore, as for novel designs of microdevices floating on water, including the use of the high dewetting properties of suphydrophobic materials, surface (primary or secondary) microstructure and external pressure, such as static hydraulic pressure, must be taken into account.
Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells
NASA Astrophysics Data System (ADS)
Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua
2015-12-01
Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.
Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K
2016-01-26
Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.
Cheng, Dalton F; Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi
2013-09-10
The effects of surface chemistry and the mobility of surface-tethered functional groups of various perfluorinated surfaces on their dewetting behavior toward polar (water) and nonpolar (n-hexadecane, n-dodecane, and n-decane) liquids were investigated. In this study, three types of common smooth perfluorinated surfaces, that is, a perfluoroalkylsilane (heptadecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane, FAS17) monomeric layer, an amorphous fluoropolymer film (Teflon AF 1600), and a perfluorinated polyether (PFPE)-terminated polymer brush film (Optool DSX), were prepared and their static/dynamic dewetting characteristics were compared. Although the apparent static contact angles (CAs) of these surfaces with all probe liquids were almost identical to each other, the ease of movement of liquid drops critically depended on the physical (solidlike or liquidlike) natures of the substrate surface. CA hysteresis and substrate tilt angles (TAs) of all probe liquids on the Optool DSX surface were found to be much lower than those of Teflon AF1600 and FAS17 surfaces due to its physical polymer chain mobility at room temperature and the resulting liquidlike nature. Only 6.0° of substrate incline was required to initiate movement for a small drop (5 μL) of n-decane, which was comparable to the reported substrate TA value (5.3°) for a superoleophobic surface (θ(S) > 160°, textured perfluorinated surface). Such unusual dynamic dewetting behavior of the Optool DSX surface was also markedly enhanced due to the significant increase in the chain mobility of PFPE by moderate heating (70 °C) of the surface, with substrate TA reducing to 3.0°. CA hysteresis and substrate TAs rather than static CAs were therefore determined to be of greater consequence for the estimation of the actual dynamic dewetting behavior of alkane probe liquids on these smooth perfluorinated surfaces. Their dynamic dewettability toward alkane liquids is in the order of Optool DSX > Teflon AF1600 ≈ FAS17.
Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi
2015-08-26
Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.
Microscale Self-Assembled Electrical Contacts
2007-09-01
silicon dioxide (SiO2) prevents the alloy from wetting the rest of the substrate, causing it to “ dewet .” We performed dip coating for the higher...The templates in figures 11 and 12 had a 150 nm Pt layer instead of Ni, because the alloy dewetted from Ni after a few minutes. Such dewetting ...respect to the alloy, which drives dewetting . In another study (38), dewetting of pure Sn on a Cu/Cr metal layer was observed, indicating that similar
Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.
You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia
2010-09-21
Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.
Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Fauler, Alex; Fiederle, Michael; Duffar, Thierry; Dieguez, Ernesto; Zanotti, Lucio; Zappettini, Andrea; Roosen, GÉrald
2009-08-01
The phenomenon of ldquodewettingrdquo associated with the Vertical Bridgman (VB) crystal growth technique leads to the growth of a crystal without contact with the crucible. One dramatic consequence of this modified VB process is the reduction of structural defects within the crystal. It has been observed in several microgravity experiments for different semiconductor crystals. This work is concentrated on the growth of high resistivity (Cd,Zn)Te:In (CZT) crystals by achieving the phenomenon of dewetting under microgravity condition and its application in the processing of CZT detectors. Two Cd0.9Zn0.1Te:In crystals were grown in space on the Russian FOTON satellite in the POLIZON-M facility in September 2007 (mission M3). At the end of the preliminary melting phase of one crystal, a Rotating Magnetic Field (RMF) was applied in order to reduce the typical tellurium clusters within the melt before the pulling. The other crystal was superheated with 20 K above the melting point before the pulling. A third reference crystal has been grown on the ground in similar thermal conditions. Profiles measurements of the space grown crystals surface gave the evidence of a successful dewetting during the crystal growth. Characterization methods such as IR microscopy and CoReMa have been performed on the three crystals. CZT detectors have been processed from the grown part of the different crystals. The influence of the dewetting on the material quality and the detector properties completes the study.
Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh
2010-07-27
We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.
Bhandaru, Nandini; Karim, Alamgir; Mukherjee, Rabibrata
2017-07-21
Substrate pattern guided self-organization of ultrathin and confined polymeric films on a topographically patterned substrate is a useful approach for obtaining ordered meso and nano structures over large areas, particularly if the ordering is achieved during film preparation itself, eliminating any post-processing such as thermal or solvent vapor annealing. By casting a dilute solution of two immiscible polymers, polystyrene (PS) and polymethylmethacrylate (PMMA), from a common solvent (toluene) on a topographically patterned substrate with a grating geometry, we show the formation of self-organized meso patterns with various degrees of ordering. The morphology depends on both the concentration of the dispensed solution (C n ) and the blend composition (R B ). Depending on the extent of dewetting during spin coating, the final morphologies can be classified into three distinct categories. At a very low C n the solution dewets fully, resulting in isolated polymer droplets aligned along substrate grooves (Type 1). Type 2 structures comprising isolated threads with aligned phase separated domains along each substrate groove are observed at intermediate C n . A continuous film (Type 3) is obtained above a critical concentration (C n *) that depends on R B . While the extent of ordering of the domains gradually diminishes with an increase in film thickness for Type 3 patterns, the size of the domains remains much smaller than that on a flat substrate, resulting in significant downsizing of the features due to the lateral confinement imposed on the phase separation process by the topographic patterns. Finally, we show that some of these structures exhibit excellent broadband anti-reflection (AR) properties.
Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.
Namsani, Sadanandam; Singh, Jayant K
2016-01-01
The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.
Dewetting of thin polymer films: an X-ray scattering study
NASA Astrophysics Data System (ADS)
Müller-Buschbaum, P.; Stamm, M.
1998-06-01
The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.
Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films.
Geldmeier, Jeffrey; Rile, Lexy; Yoon, Young Jun; Jung, Jaehan; Lin, Zhiqun; Tsukruk, Vladimir V
2017-12-19
A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.
Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells
Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua
2015-01-01
Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504
Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh
2015-03-17
Ultrathin (<100 nm) unstable polymer films exposed to a solvent vapor dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with the same hf.
Liu, Shizhao; Plawsky, Joel L
2017-12-12
A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.
A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.
2015-05-18
Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation timesmore » (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.« less
Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina
2017-12-01
We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.
Dewetting of patterned solid films: Towards a predictive modelling approach
NASA Astrophysics Data System (ADS)
Trautmann, M.; Cheynis, F.; Leroy, F.; Curiotto, S.; Pierre-Louis, O.; Müller, P.
2017-06-01
Owing to its ability to produce an assembly of nanoislands with controllable size and locations, the solid state dewetting of patterned films has recently received great attention. A simple Kinetic Monte Carlo model based on two reduced energetic parameters allows one to reproduce experimental observations of the dewetting morphological evolution of patterned films of Si(001) on SiO2 (or SOI for Silicon-on-Insulator) with various pattern designs. Thus, it is now possible to use KMC to drive further experiments and to optimize the pattern shapes to reach a desired dewetted structure. Comparisons between KMC simulations and dewetting experiments, at least for wire-shaped patterns, show that the prevailing dewetting mechanism depends on the wire width.
2009-02-27
films: Inhibition of dewetting in thin polymer films”, Carroll, Gregory T., Sojka, Melissa E., Lei, Xuegong, Turro, Nicholas J., Koberstein, Jeffrey T...at Sandia was that the polymer films, designed to have specific interactions with particular warfare agents, would dewet the surface of a surface...crosslinking or dewetting . Patterned dewetting constitutes a completely new way of generating micro thin film structures that might be useful in
NASA Astrophysics Data System (ADS)
White, Benjamin C.; Behbahanian, Amir; Stoker, T. McKay; Fowlkes, Jason D.; Hartnett, Chris; Rack, Phillip D.; Roberts, Nicholas A.
2018-03-01
Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.
NASA Astrophysics Data System (ADS)
Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.
2008-05-01
A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J
2017-11-01
Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.
On sub-T(g) dewetting of nanoconfined liquids and autophobic dewetting of crystallites.
Souda, Ryutaro
2012-03-28
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.
Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh
2015-11-17
Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.
Dewetting of low-viscosity films at solid/liquid interfaces.
Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé
2012-11-13
We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) < η(B)*, the regime is inertial. The velocity of dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.
Indentation-induced solid-state dewetting of thin Au(Fe) films
NASA Astrophysics Data System (ADS)
Kosinova, Anna; Schwaiger, Ruth; Klinger, Leonid; Rabkin, Eugen
2017-07-01
We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700 °C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.
Templated Solid-State Dewetting of Thin Silicon Films.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco
2016-11-01
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C
2017-01-27
Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .
Design of free patterns of nanocrystals with ad hoc features via templated dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aouassa, M.; Berbezier, I.; Favre, L.
Design of monodisperse ultra-small nanocrystals (NCs) into large scale patterns with ad hoc features is demonstrated. The process makes use of solid state dewetting of a thin film templated through alloy liquid metal ion source focused ion beam (LMIS-FIB) nanopatterning. The solid state dewetting initiated at the edges of the patterns controllably creates the ordering of NCs with ad hoc placement and periodicity. The NC size is tuned by varying the nominal thickness of the film while their position results from the association of film retraction from the edges of the lay out and Rayleigh-like instability. The use of ultra-highmore » resolution LMIS-FIB enables to produce monocrystalline NCs with size, periodicity, and placement tunable as well. It provides routes for the free design of nanostructures for generic applications in nanoelectronics.« less
Water dynamics during the association of hiv capsid proteins studied by all-atom simulations
NASA Astrophysics Data System (ADS)
Yu, Naiyin; Hagan, Michael
2012-02-01
The C-terminal domain of the HIV-1 capsid protein (CA-C) plays an important role in the assembly of the mature capsid. We have used molecular dynamics simulations combined with enhanced sampling methods to study the association of two CA-C proteins in atomistic detail. In this talk we will discuss the dynamics of water during the association process. In particular, we will show that that water in the interfacial region does not undergo a liquid-vapor transition (de-wetting) during association of wild type CA-C. However, mutation of some hydrophilic residues does lead to a dewetting transition. We discuss the relationship between the arrangement of hydrophilic and hydrophobic residues and dewetting during protein association. For the HIV capsid protein, the arrangement of hydrophilic residues contributes to maintaining weak interactions, which are crucial for successful assembly.
Solid-state dewetting of magnetic binary multilayer thin films
NASA Astrophysics Data System (ADS)
Esterina, Ria; Liu, X. M.; Adeyeye, A. O.; Ross, C. A.; Choi, W. K.
2015-10-01
We examined solid-state dewetting behavior of magnetic multilayer thin film in both miscible (CoPd) and immiscible (CoAu) systems and found that CoPd and CoAu dewetting stages follow that of elemental materials. We established that CoPd alloy morphology and dewetting rate lie in between that of the elemental materials. Johnson-Mehl-Avrami analysis was utilized to extract the dewetting activation energy of CoPd. For CoAu, Au-rich particles and Co-rich particles are distinguishable and we are able to predict the interparticle spacings and particle densities for the particles that agree well with the experimental results. We also characterized the magnetic properties of CoPd and CoAu nanoparticles.
Molecular dewetting on insulators.
Burke, S A; Topple, J M; Grütter, P
2009-10-21
Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.
Accelerating dewetting on deformable substrates by adding a liquid underlayer.
Xu, Lin; Reiter, Günter; Shi, Tongfei; An, Lijia
2010-05-18
We investigated the dependence of the dewetting velocity of a thin, low-viscosity polystyrene (PS) top film on a poly(methyl methacrylate) (PMMA) double layer consisting of a low-viscosity underlayer of thickness h(L) coated with a high-viscosity middle layer of thickness h(M). The addition of the liquid underlayer generated complex nonmonotonic behavior of the dewetting velocity as a function of increasing h(M). In particular, we observed an acceleration of dewetting for an intermediate range of h(M). This phenomenon has been interpreted by a combination deformation of the middle elastic layer and a concurrent change in the contact angle. On one hand, deformation led to the formation of a trench that dissipated energy during its movement through the liquid underlayer and thus caused a slowing down of dewetting. However, with an increase in the thickness of the elastic middle layer, the size of the trench decreased and its influence on the dewetting velocity also decreased. On the other hand, the deformation of the elastic layer also led to an increase in the contact angle. This increase in the driving capillary forces caused an increase in the dewetting velocity.
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael C; Hottle, John R; Esker, Alan R
2008-05-06
Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.
Marx, Sebastian; Sickenberger, Wolfgang
2017-12-01
This study was designed to develop a novel technique called non-invasive keratograph dry-up time (NIK-DUT), which used an adapted corneal topographer, to analyse in-vitro contact lens surface dewetting and the effects of combinations of lenses and lens care solutions on dewetting. Variables were assessed to optimise sensitivity and reproducibility. To validate the method, in-vitro dewetting of silicone hydrogel contact lenses (balafilcon A, comfilcon A, lotrafilcon A, lotrafilcon B and senofilcon A) was tested. All lens types were soaked in OPTI-FREE ® PureMoist ® Multipurpose Disinfecting Solution (OFPM) and Sensitive Eyes ® Saline Solution. The mean NIK-DUT, defined as drying of 25% of the placido ring measurement segments (NIK-DUT_S25), was calculated for each lens/lens solution combination and a visual map constructed representing the time and location of the dry-up event. Optimal conditions for NIK-DUT measurement included mounting onto a glass stage with a surface geometry of r=8.5mm, e=0, and measuring with high intensity red or white illumination. This method detected significant differences in contact lens dewetting with different lens soaking solutions. NIK-DUT_S25 for all lenses was longer when pre-soaked in OFPM versus saline. Visual analysis showed that dewetting of contact lenses was not uniform across surfaces and differed between test solutions. NIK-DUT is suitable for detecting differences in dewetting among various contact lenses and lens-care combinations. NIK-DUT can quantify the dewetting of large areas of lens surfaces with little subjective influence. Lens care solutions containing surface-active wetting agents were found to delay surface dewetting of silicone hydrogel lenses. Copyright © 2017. Published by Elsevier Ltd.
Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
Naffouti, Meher; Backofen, Rainer; Salvalaglio, Marco; Bottein, Thomas; Lodari, Mario; Voigt, Axel; David, Thomas; Benkouider, Abdelmalek; Fraj, Ibtissem; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Abbarchi, Marco; Bollani, Monica
2017-01-01
Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications. PMID:29296680
Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing
2016-11-28
The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.
Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures.
Naffouti, Meher; Backofen, Rainer; Salvalaglio, Marco; Bottein, Thomas; Lodari, Mario; Voigt, Axel; David, Thomas; Benkouider, Abdelmalek; Fraj, Ibtissem; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Abbarchi, Marco; Bollani, Monica
2017-11-01
Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.
Nanoscale Dewetting Transition in Protein Complex Folding
Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.
2011-01-01
In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515
Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O
2017-03-22
Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.
Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G
2015-07-01
We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.
Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.
Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata
2018-05-08
Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.
You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin
2013-06-28
The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.
In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the ironmore » oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.« less
Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.; ...
2016-05-23
In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the ironmore » oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi
2014-07-29
The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.
Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C
2015-09-30
Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.
Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.
2018-01-01
High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
El-Sayed, Hany A; Horwood, Corie A; Owusu-Ansah, Ebenezer; Shi, Yujun J; Birss, Viola I
2015-04-28
Here we show that pulsed laser-induced dewetting (PLiD) of a thin Au metallic film on a nano-scale ordered dimpled tantalum (DT) surface results in the formation of a high quality Au nanoparticle (NP) array. In contrast to thermal dewetting, PLiD does not result in deformation of the substrate, even when the Au film is heated to above its melting point. PLiD causes local heating of only the metal film and thus thermal oxidation of the Ta substrate can be avoided, also because of the high vacuum (low pO2) environment employed. Therefore, this technique can potentially be used to fabricate NP arrays composed of high melting point metals, such as Pt, not previously possible using conventional thermal annealing methods. We also show that the Au NPs formed by PLiD are more spherical in shape than those formed by thermal dewetting, likely demonstrating a different dewetting mechanism in the two cases. As the metallic NPs formed on DT templates are electrochemically addressable, a longer-term objective of this work is to determine the effect of NP size and shape (formed by laser vs. thermal dewetting) on their electrocatalytic properties.
Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung
2016-01-01
Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. PMID:27095674
Patterned assembly of colloidal particles by confined dewetting lithography.
Celio, Hugo; Barton, Emily; Stevenson, Keith J
2006-12-19
We report the assembly of colloidal particles into confined arrangements and patterns on various cleaned and chemically modified solid substrates using a method which we term "confined dewetting lithography" or CDL for short. The experimental setup for CDL is a simple deposition cell where an aqueous suspension of colloidal particles (e.g., polystyrene spheres) is placed between a floating deposition template (i.e., metal microgrid) and the solid substrate. The voids of the deposition template serve as an array of micrometer-sized reservoirs where several hydrodynamic processes are confined. These processes include water evaporation, meniscus formation, convective flow, rupturing, dewetting, and capillary-bridge formation. We discuss the optimal conditions where the CDL has a high efficiency to deposit intricate patterns of colloidal particles using polystyrene spheres (PS; 4.5, 2.0, 1.7, 0.11, 0.064 microm diameter) and square and hexagonal deposition templates as model systems. We find that the optimization conditions of the CDL method, when using submicrometer, sulfate-functionalized PS particles, are primarily dependent on minimizing attractive particle-substrate interactions. The CDL methodology described herein presents a relatively simple and rapid method to assemble virtually any geometric pattern, including more complex patterns assembled using PS particles with different diameters, from aqueous suspensions by choosing suitable conditions and materials.
Dynamics of solid thin-film dewetting in the silicon-on-insulator system
NASA Astrophysics Data System (ADS)
Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.
2011-04-01
Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.
Kim, Tae-Ho; Kim, Hyeri; Choi, Ki-In; Yoo, Jeseung; Seo, Young-Soo; Lee, Jeong-Soo; Koo, Jaseung
2016-12-06
We investigate the effect of adding graphene oxide (GO) sheets at the polymer-polymer interface on the dewetting dynamics and compatibility of immiscible polymer bilayer films. GO monolayers are deposited at the poly(methyl methacrylate) (PMMA)-polystyrene (PS) interface by the Langmuir-Schaefer technique. GO monolayers are found to significantly inhibit the dewetting behavior of both PMMA films (on PS substrates) and PS films (on PMMA substrates). This can be interpreted in terms of an interfacial interaction between the GO sheets and these polymers, which is evidenced by the reduced contact angle of the dewet droplets. The favorable interaction of GO with both PS and PMMA facilitates compatibilization of the immiscible polymer bilayer films, thereby stabilizing their bilayer films against dewetting. This compatibilization effect is verified by neutron reflectivity measurements, which reveal that the addition of GO monolayers broadens the interface between PS and the deuterated PMMA films by 2.2 times over that of the bilayer in the absence of GO.
Lemichez, Emmanuel; Gonzalez-Rodriguez, David; Bassereau, Patricia; Brochard-Wyart, Françoise
2013-03-01
Dewetting is the spontaneous withdrawal of a liquid film from a non-wettable surface by nucleation and growth of dry patches. Two recent reports now propose that the principles of dewetting explain the physical phenomena underpinning the opening of transendothelial cell macroaperture (TEM) tunnels, referred to as cellular dewetting. This was discovered by studying a group of bacterial toxins endowed with the property of corrupting actomyosin cytoskeleton contractility. For both liquid and cellular dewetting, the growth of holes is governed by a competition between surface forces and line tension. We also discuss how the dynamics of TEM opening and closure represent remarkable systems to investigate actin cytoskeleton regulation by sensors of plasma membrane curvature and investigate the impact on membrane tension and the role of TEM in vascular dysfunctions. Copyright © 2013 Soçiété Française des Microscopies and Soçiété de Biologie Cellulaire de France.
Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.
Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P
2015-04-24
Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.
Roy, Sudeshna; Sharma, Ashutosh
2015-07-01
Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hihath, Sahar; Department of Physics, University of California, Davis, 1 Shields Ave., Davis, California 95616; Santala, Melissa K.
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO{sub 3} substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisitionmore » during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.« less
Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting
NASA Astrophysics Data System (ADS)
Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun
2018-03-01
We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.
Roy, Sudeshna; Mukherjee, Rabibrata
2012-10-24
Controlled dewetting of a thin polymer film on a topographically patterned substrate is an interesting approach for aligning isotropic dewetted structures. In this article, we investigate the influence of substrate feature height (H(S)) on the dewetting pathway and final pattern morphology by studying the dewetting of polystyrene (PS) thin films on grating substrates with identical periodicity (λ(P) = 1.5 μm), but H(S) varying between 10 nm and 120 nm. We identify four distinct categories of final dewetted morphology, with different extent of ordering: (1) array of aligned droplets (H(S) ≈ 120 nm); (2) aligned undulating ribbons (H(S) ≈ 70-100 nm); (3) multilength scale structures with coexisting large droplets uncorrelated to the substrate and smaller droplets/ribbons aligned along the stripes (H(S) ≈ 40-60 nm); and (4) large droplets completely uncorrelated to the substrate (H(S) < 25 nm). The distinct morphologies across the categories are attributed to two major factors: (a) whether the as-cast film is continuous (H(S)≤ 80 nm) or discontinuous (H(S)≥ 100 nm) and (b) in case of a continuous film, whether the film ruptures along each substrate stripe (H(S)≥ 70 nm) or with nucleation of random holes that are not correlated to the substrate features (H(S)≤ 60 nm). While the ranges of H(S) values indicated in the parentheses are valid for PS films with an equivalent thickness (h(E)) ≈ 50.3 nm on a flat substrate, a change in h(E) merely alters the cut-off values of H(S), as the final dewetted morphologies and transition across categories remain generically unaltered. We finally show that the structures obtained by dewetting on different H(S) substrates exhibits different levels of hydrophobicity because of combined spatial variation of chemical and topographic contrast along the surface. Thus, the work reported in this article can find potential application in fabricating surfaces with controlled wettability.
Mean-Field Models of Structure and Dispersion of Polymer-nanoparticle Mixtures
2010-07-29
out of the seminal descriptions of the wetting and dewetting of polymer melts on polymer brushes advanced by Leibler and coworkers.118,119 Explicitly...using scaling ideas and strong segregation theory calculations they delineated the regions where the matrix polymer wets or dewets the brush. In the...Explicitly, when dewetting of the melt chains is expected ( dry brush). In other words, situations involving long matrix polymers and/or densely grafted
Braun, Hans-Georg; Meyer, Evelyn
2013-01-01
The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233
Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.
Sun, Wei; Yang, Fuqian
2015-04-07
The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.
Wetting-dewetting films: the role of structural forces.
Nikolov, Alex; Wasan, Darsh
2014-04-01
The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.
Photoluminescent Au-Ge composite nanodots formation on SiO2 surface by ion induced dewetting
NASA Astrophysics Data System (ADS)
Datta, D. P.; Siva, V.; Singh, A.; Kanjilal, D.; Sahoo, P. K.
2017-09-01
Medium energy ion irradiation on a bilayer of Au and Ge on SiO2 is observed to result in gradual morphological evolution from an interconnected network to a nanodot array on the insulator surface. Structural and compositional analyses reveal composite nature of the nanodots, comprising of both Au and Ge. The growing nanostructures are found to be photoluminescent at room temperature where the emission intensity and wavelengths vary with morphology. The growth of such nanostructures can be understood in terms of dewetting of the metal layer under ion irradiation due to ion-induced melting along the ion tracks. The visible PL emission is found to be related with evolution of the Au-Ge nanodots. The study indicates a route towards single step synthesis of metal-semiconductor nanodots on insulator surface.
Dewetting of Thin Polymer Films
NASA Astrophysics Data System (ADS)
Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.
2001-03-01
DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.
Solid state dewetting of thin plasmonic films under focused cw-laser irradiation
Abbott, William M.; Corbett, Simon; Cunningham, Graeme; ...
2017-12-21
Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less
Solid state dewetting of thin plasmonic films under focused cw-laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, William M.; Corbett, Simon; Cunningham, Graeme
Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less
NASA Astrophysics Data System (ADS)
Ward, Thomas
2017-11-01
The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei
2016-09-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.
Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew
2016-01-01
Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of fluctuations into the VISM and understanding the impact of interfacial fluctuations on biomolecular solvation with an implicit-solvent approach. PMID:27497546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu; Sun, Hui; Cheng, Li-Tien
Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. Wemore » also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of fluctuations into the VISM and understanding the impact of interfacial fluctuations on biomolecular solvation with an implicit-solvent approach.« less
Meso-Scale Self-Assembly Pilot Study
2007-04-17
alloy dewetted Part fabrication: same binding - rol, sites on parts, which are parts’ 0.1 mM released in BOE eat to 215HC Fig. 5: Schematic diagrams...eutectic Bi-Sn solder melting at 138°C, was dewetted onto the metallization features by first evaporating 100 nm of Au, and then dipping the Au-coated...the Au quickly dissolved allowing the alloy to react with the Pt layer. When the substrate was retracted, the alloy dewets from all Si and Cr areas
Size Dependent Mechanical Behavior of Free-Standing Glassy Polymer Thin Films
2014-08-31
thickness is less than 20 ( ) 1 ( / ) bulk film E EE h hδ = + 14 nm using the liquid dewetting method. Additionally, earlier studies by McKenna’s group and...coated substrates: Rupture, dewetting , and drop formation. J. Colloid Interface Sci. 178(2), 383 (1996). 8. C.B. Roth and J.R. Dutcher: Glass transition...Phys. J. E. 20(2), 143 (2006). 31. J. Wang and G.B. McKenna: Viscoelastic and Glass Transition Properties of Ultrathin Polystyrene Films by Dewetting
Optimizing Grain Boundary Complexions to Produce Dense Pressure-Less Sintered Boron Carbide (B4C)
2008-11-14
discontinuous distribution of the yttria. At this stage it is difficult to determine if the discontinuity is genuine or results from dewetting upon cooling...sample. However, the tendency of the film to form beads indicates a dewetting behavior. The weak interface between the yttria and the boron carbide...conform to the dewetting behavior. There is a possibility of a complexion transition as the sample is cooled down in the furnace. At high temperature the
Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume
2015-11-11
In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.
Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.
Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A
2018-05-22
Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.
Charlot, B.; Bardin, F.; Sanchez, N.; Roux, P.; Teixeira, S.; Schwob, E.
2014-01-01
Ordered deposition of elongated DNA molecules was achieved by the forced dewetting of a DNA solution droplet over a microstructured substrate. This technique allows trapping, uncoiling, and deposition of DNA fragments without the need of a physicochemical anchoring of the molecule and results in the combing of double stranded DNA from the edge of microwells on a polydimethylsiloxane (PDMS) substrate. The technique involves scanning a droplet of DNA solution caught between a movable blade and a PDMS substrate containing an array of microwells. The deposition and elongation appears when the receding meniscus dewets microwells, the latter acting here as a perturbation in the dewetting line forcing the water film to break locally. Thus, DNA molecules can be deposited in an ordered manner and elongated conformation based solely on a physical phenomenon, allowing uncoiled DNA molecules to be observed in all their length. However, the exact mechanism that governs the deposition of DNA strands is not well understood. This paper is an analysis of the physical phenomenon occurring in the deposition process and is based on observations made with the use of high frame/second rate video microscopy. PMID:24753724
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K. W.; Zhang, Yong-Wei
2016-01-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures. PMID:27580943
Robust nanopatterning by laser-induced dewetting of metal nanofilms.
Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
2006-08-28
We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO(2) was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.
Pathways to dewetting in hydrophobic confinement
Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.
2015-01-01
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866
Pathways to dewetting in hydrophobic confinement.
Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J
2015-07-07
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.
Hens, Abhiram; Mondal, Kartick; Biswas, Gautam; Bandyopadhyay, Dipankar
2016-03-01
Transitions from spinodal to pattern-guided dewetting of a bilayer of ultrathin films (<10nm) confined between a pair of patterned surfaces have been explored employing molecular dynamic (MD) simulations. The physical or chemical defects of different sizes and shapes are decorated on the confining substrates by either removal or addition of multiple layers of similar or dissimilar atoms. The simulations are performed to identify the transition from spinodal pathway to the heterogeneous nucleation route, with the variation in the size of the substrate patterns. The MD simulations reveal the limits beyond which the defects can guide the dewetting to generate ordered patterns of nanoscopic size and periodicity. Comparing the results obtained from the MD simulations with the more widely employed continuum dynamics approach highlights the importance of the MD approach in quantitatively analyzing the dynamics of the dewetting of ultrathin films. The study demonstrates that the pattern-guided dewetting of confined bilayers can lead to ordered holes, droplets, and stripes with size and periodicity less than 10nm, which are yet to be realized experimentally and can be of significance for a number of future applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Viscous dewetting of metastable liquid films on substrates with microgrooves.
Kim, Taehong; Kim, Wonjung
2018-06-15
We present a combined experimental and theoretical investigation of dewetting on substrates with parallel microgrooves. A thin, static liquid film has an equilibrium thickness so as to minimize the sum of the surface free energy and the gravitational potential energy. When the thickness of a liquid film is less than the equilibrium thickness, the film seeks the equilibrium through contraction of the wetted area, which is referred to as dewetting. We experimentally observed the dewetting of thin, metastable liquid films on substrates with parallel microgrooves. The experiments revealed that the films retract in the direction along the grooves and leaves liquid residues with various morphologies. We classify the residue morphologies into three modes and elucidate the dependence of the mode selection on the groove geometry and the equilibrium contact angle of the liquid. We also experimentally examined the dynamic motion of the receding contact lines of the dewetting films, and developed a mechanical model for the receding speed. Our results provide a basis for controlling liquid films using microstructures, which is useful for lubricant-impregnated surface production, painting, spray cooling, and surface cleaning. Copyright © 2018 Elsevier Inc. All rights reserved.
Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing
NASA Astrophysics Data System (ADS)
Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.
2013-03-01
It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.
Dewetting behavior of polystyrene film filled with (C6H5C2H4NH3)2PbI4
NASA Astrophysics Data System (ADS)
Xue, Longjian; Cheng, Ziyong; Fu, Jun; Han, Yanchun
2008-08-01
The dewetting behavior of thin (about 30 nm) polystyrene (PS) films filled with different amount of (C6H5C2H4NH3)2PbI4 (PhE-PbI4) on the silicon substrate with a native oxide layer was investigated. For different additive concentrations, PhE-PbI4 showed different spatial distributions in the PS films, which had a strong influence on the film wettability, dewetting dynamics, and mechanism. With 0.5 wt % additive, PhE-PbI4 formed a noncontinuous diffusion layer, which caused a continuous hole nucleation in the film. With about 1 wt % additive, a continuous gradient distribution layer of PhE-PbI4 formed in the film, which inhibited the dewetting. When the concentration is higher (2 wt %), large PhE-PbI4 aggregates, in addition to the PhE-PbI4 continuous layer, formed in the film. These large aggregates (larger than radius of gyration of PS) migrated to the interface, resulting in the hole nucleation and eventually the complete dewetting of the film.
Interaction of alkanes with an amorphous methanol film at 15-180 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souda, Ryutaro
2005-09-15
The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms amore » surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.« less
Method of drying passivated micromachines by dewetting from a liquid-based process
Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara
2000-01-01
A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.
Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene
Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui
2014-01-01
In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279
Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging.
Gao, Aiqin; Xu, Wenjing; Ponce de León, Yenisey; Bai, Yaocai; Gong, Mingfu; Xie, Kongliang; Park, Boris Hyle; Yin, Yadong
2017-07-01
Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer Thin Film Stabilization.
NASA Astrophysics Data System (ADS)
Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.
1998-03-01
We study the dewetting dynamics of thin polystyrene (PS) films deposited on silicon oxide surfaces using optical (OM) and atomic force (AFM) microscopes. Quantitative analysis of the hole diameter as a function of annealing time at 175^oC shows that blending poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) with PS acts to dramatically slow down the dewetting rate and even stops holes growth before they impinge. AFM studies show that the hole floor is smooth for a pure PS film but contains residual polymer for the blend. At 5% vol., a PS-b-PMMA with high molar mass and low PMMA is a more effective stabilizing agent than a low molar mass/high PMMA additive. The optimum copolymer concentration is 3% vol. beyond which film stability doesn't improve. Although dewetting is slowed down relative to pure PS, PS/PS-b-PMMA bilayers dewet at a faster rate than blends having the same overall additive concentration.
Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong
2017-01-10
The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.
Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R
2010-04-16
We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.
Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
NASA Astrophysics Data System (ADS)
Chalmers, C.; Smith, R.; Archer, A. J.
2017-07-01
We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.
Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N
2017-12-13
Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon
2018-05-01
As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.
Dewetting Based Fabrication of Fibrous Micro-Scaffolds as Potential Injectable Cell Carriers
Song, Hokyung; Yin, Liya; Chilian, William M.; Newby, Bi-min Zhang
2014-01-01
Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of “wounds” that are deep within tissues, e.g., stroke, myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths < 100 μm) were made by dewetting of poly (lactic-coglycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential for forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. PMID:25579969
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands
Vasconcelos, Helena
2018-01-01
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108
Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.
de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis
2018-04-20
It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.
McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios
2017-09-20
The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.
Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.
Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun
2017-10-25
Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.
Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Bisio, F.; Canepa, M.
2017-11-01
We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.
Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments
2013-03-01
prior to dewetting ). Also, it is often impractical to measure compressibility. Current rocket laboratory methods measure strains in propellants...distribution unlimited. Public Affairs Clearance Number XXXXX. Damage Characterization of Propellants 16 Dewetting Results 0 2 4 6 8 10 0 5 10 15 20
Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.
Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei
2014-12-16
We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.
A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.
Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang
2015-12-21
Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications.
Stability of Polymer Ultrathin Films (<7 nm) Made by a Top-Down Approach.
Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain
2015-08-25
In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (<2.9 nm) and metastable (>2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr
We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.
NASA Astrophysics Data System (ADS)
Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan
2016-10-01
In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.
Theory Of Dewetting In A Filled Elastomer Under Stress
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.
1993-01-01
Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.
Molecular Design of Multilayer Composites from Carbon Nanotubes
2008-03-31
approaches that will enable large scale and 5-30 times faster manufacturing of the LBL composites than traditional LBL: (1) dewetting method and (2...Films made by Dewetting Method Of Layer-By-Layer Assembly, Nano Letters 2007, 7(11), 3266-3273. Loh, K. J.; Lynch, J. P.; Shim, B. S.; Kotov, N. An
Synthesis and Manipulation of Biofunctional Magnetic Particles
2007-06-18
G. M., J Am. Chem. Soc., 2003, 125, 12704-12705. 6. "Asymmetric Dimers Can be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of...Be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of Spherical Silica Colloids", Lu, Y., Xiong, H. Jing, X., Xia, Y., Prentiss, M
Novel Cell-Based Assays for Detecting Low Levels of Active Ricin Following Decontamination
2011-12-01
fluorescent protein, are powerful tools, which have been used for detection assays for ricin protein ( DeWet , 1987). Zhao et al. (2005) have reported a...toxic Type 2 Ribosome-Inactivating Proteins. FEBS Lett. 2004, 563, pp 219–222. DeWet , J.R. et al. Firefly Luciferase Gene: Structure and
Dewetting of thin films on flexible substrates via direct-write laser exposure
NASA Astrophysics Data System (ADS)
Ferrer, Anthony Jesus
Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.
Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth
2016-06-29
Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.
Dewetting based fabrication of fibrous micro-scaffolds as potential injectable cell carriers.
Song, Hokyung; Yin, Liya; Chilian, William M; Zhang Newby, Bi-Min
2015-03-01
Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths<100μm) were made by dewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan
2010-11-01
Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-16
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.
Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures
NASA Astrophysics Data System (ADS)
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-05-01
In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.
Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G
2016-03-14
Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.
Thin liquid film in polymer tubing : dynamics and dewetting in partial wetting condition
NASA Astrophysics Data System (ADS)
Hayoun, Pascaline; Letailleur, Alban; Teisseire, Jérémie; Verneuil, Emilie; Lequeux, François; Barthel, Etienne
2015-11-01
Polymers such as PVC and Silicone are low cost materials widely used in industry to produce tubing for fluid transport. Most of these applications involve repeated, intermittent flow of liquids which can lead to unwanted contamination. This study aims at better understanding contamination mechanisms during intermittent flow in polymer tubing, and at elucidating the relation between flow, wetting and contamination. We experimentally and theoretically investigate, flow regimes as well as dewetting process at the triple line induced by gravity flow of a vertical liquid slug in a cylindrical geometry. Our results for Newtonian fluids evidence a succession of thick film formation, hydraulic jump creation in the thickness profile, oscillatory regime and destabilization leading to substrate contamination. In order to understand theoretically the flow, one crucial quantity to assess is the film thickness in the inside of the tube. Based on an absorption measurement method, we provide explanations for behaviors and flow regimes observed experimentally.
Dewetting-mediated pattern formation inside the coffee ring
NASA Astrophysics Data System (ADS)
Li, Weibin; Lan, Ding; Wang, Yuren
2017-04-01
The rearrangement of particles in the final stage of droplet evaporation has been investigated by utilizing differential interference contrast microscopy and the formation mechanism of a network pattern inside a coffee ring has been revealed. A tailored substrate with a circular hydrophilic domain is prepared to obtain thin liquid film containing monolayer particles. Real-time bottom-view images show that the evolution of a dry patch could be divided into three stages: rupture initiation, dry patch expansion, and drying of the residual liquid. A growing number of dry patches will repeat these stages to form the network patterns inside the ringlike stain. It can be shown that the suction effect promotes the rupture of the liquid film and the formation of the dry patch. The particle-assembling process is totally controlled by the liquid film dewetting and dominated by the surface tension of the liquid film, which eventually determine the ultimate deposition patterns.
Growth and evolution of nickel germanide nanostructures on Ge(001).
Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T
2015-09-25
Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).
Dewetting and spreading transitions for active matter on random pinning substrates.
Sándor, Cs; Libál, A; Reichhardt, C; Olson Reichhardt, C J
2017-05-28
We show that sterically interacting self-propelled disks in the presence of random pinning substrates exhibit transitions among a variety of different states. In particular, from a phase separated cluster state, the disks can spread out and homogeneously cover the substrate in what can be viewed as an example of an active matter wetting transition. We map the location of this transition as a function of activity, disk density, and substrate strength, and we also identify other phases including a cluster state, coexistence between a cluster and a labyrinth wetted phase, and a pinned liquid. Convenient measures of these phases include the cluster size, which dips at the wetting-dewetting transition, and the fraction of sixfold coordinated particles, which drops when dewetting occurs.
Research on Liquid Lubricants for Space Mechanisms
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Shogrin, Bradley A.; Jansen, Mark J.
1999-01-01
Four research areas at the NASA Glenn Research Center involving the tribology of space mechanisms are highlighted. These areas include: soluble boundary lubrication additives for perfluoropolyether liquid lubricants, a Pennzane dewetting phenomenon, the effect of ODC-free bearing cleaning processes on bearing lifetimes and the development of a new class of liquid lubricants based on silahydrocarbons.
Research on liquid lubricants for space mechanisms
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Shogrin, Bradley A.; Jansen, Mark J.
1998-01-01
Four research areas at the NASA Lewis Research Center involving the tribology of space mechanisms are highlighted. These areas include: soluble boundary lubrication additives for perfluoropolyether liquid lubricants, a Pennzane dewetting phenomenon, the effect of ODC-free bearing cleaning processes on bearing lifetimes, and the development of a new class of liquid lubricants based on silahydrocarbons.
Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei
2016-03-16
Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen
2017-11-15
A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.
Ye, Jongpil
2015-05-08
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.
Ye, Jongpil
2015-01-01
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816
Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.
Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin
2018-06-06
Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.
Crucible de-wetting during bridgman growth of semiconductors in microgravity
NASA Astrophysics Data System (ADS)
Duffar, T.; Paret-Harter, I.; Dusserre, P.
1990-02-01
After a literature survey and observations made during a space experiment, the phenomenon of crucible de-wetting by the crystal during Bridgman solidification in microgravity is explained by a model involving composite wetting of the crucible by the liquid, crystal angle of growth and interface advance. A ground experiment was run in order to validate this model which also explains why a crystal detaches from the crucible surface when a sand blasted crucible is used in Bridgman solidification on the ground. It is shown that de-wetting leads to enhanced quality of the crystal produced and that capillary-induced convection effects are not to be feared in this case. Consequently, it is highly advisable to use rough-surface crucibles for crystal growth both in microgravity and on the ground.
In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.
Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus
2014-02-01
Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.
2014-07-31
growth. Annealing of the catalyst film in an H2 ambient induces dewetting and leads to the formation of iron nanoparticles on top of the engineered...flow) at 585 °C for 10 min to dewet the catalyst layer into discrete nanoparticles. The samples were then rapidly cooled down to room temperature in a
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2017-01-01
Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.
Ravi, Bolleddu; Chakraborty, Snigdha; Bhattacharjee, Mitradip; Mitra, Shirsendu; Ghosh, Abir; Gooh Pattader, Partho Sarathi; Bandyopadhyay, Dipankar
2017-01-11
Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.
NASA Astrophysics Data System (ADS)
Cheynis, F.; Leroy, F.; Passanante, T.; Müller, P.
2013-04-01
Grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction techniques are used to characterise the thermally induced solid-state dewetting of Ge(001) thin films leading to the formation of 3D Ge islands. A quantitative analysis based on the Kolmogorov-Johnson-Mehl-Avrami model is derived. The main physical parameters controlling the dewetting (activation energy and kinetic pre-factors) are determined. Assuming that the dewetting is driven by surface/interface minimisation and limited by surface diffusion, the Ge surface self-diffusion reads as Ds ,0c0 e-Ea/(kBT) ˜3×1018 e-2.6±0.3eV/(kBT) nm2/s. GISAXS technique enables to reconstruct the mean Ge-island shape, including facets.
Ji, Ran
2011-01-01
Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445
NASA Astrophysics Data System (ADS)
Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel
2017-07-01
We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).
Spontaneous formation of nanoparticle stripe patterns through dewetting
NASA Astrophysics Data System (ADS)
Huang, Jiaxing; Kim, Franklin; Tao, Andrea R.; Connor, Stephen; Yang, Peidong
2005-12-01
Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top-down approaches. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.
Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su
2011-11-01
We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.
Moving contact lines in partial wetting: bridging the gap across the scales
NASA Astrophysics Data System (ADS)
Pahlavan, Amir; Cueto-Felgueroso, Luis; McKinley, Gareth; Juanes, Ruben
2017-11-01
The spreading and dewetting of liquid films on solid substrates is a common phenomenon in nature and industry from a snail secreting a mucosal film to printing and coating processes. A quantitative description of these phenomena, however, requires a detailed understanding of the flow physics at the nanoscale as the intermolecular interactions become important close to the contact line. Classical hydrodynamic theory describes wetting as an interplay between viscous and interfacial forces, neglecting the intermolecular interactions, leading to a paradox known as the moving contact line singularity. By contrast, molecular kinetic theory describes wetting as an activated process, neglecting the bulk hydrodynamics in the spreading viscous fluid film altogether. Here, we show that our recently developed model for thin liquid films in partial wetting, which properly incorporates the role of van der Waals interactions in a thin spreading fluid layer into a height-dependent surface tension, bridges the gap between these two approaches and leads to a unified framework for the description of wetting phenomena. We further use our model to investigate the instability and dewetting of nanometric liquid films, and show that it brings theoretical predictions closer to experimental observations.
Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi
2013-10-08
From a viewpoint of reducing the burden on the environment and human health, an alternative method for preparing liquid-repellent surfaces without relying on the long perfluorocarbons (C((X-1)/2)F(X), X ≥ 17) has been strongly demanded lately. In this study, we have successfully demonstrated that dynamic dewettability toward various probe liquids (polar and nonpolar liquids with high or low surface tension) can be tuned by not only controlling surface chemistries (surface energies) but also the physical (solid-like or liquid-like) nature of the surface. We prepared smooth and transparent organic-inorganic hybrid films exhibiting unusual dynamic dewetting behavior toward various probe liquids using a simple sol-gel reaction based on the co-hydrolysis and co-condensation of a mixture including a range of perfluoroalkylsilanes (FASX, C((X-1)/2)F(X)CH2CH2Si(OR)3, where X = 3, 9, 13, and 17) and tetramethoxysilane (Si(OCH3)4, TMOS). Dynamic contact angle (CA) and substrate tilt angle (TA) measurements confirmed that our FASX-hybrid films exhibited excellent dynamic dewetting properties and were mostly independent of the length of perfluoroalkyl (Rf) groups. For example, 10 μL droplets of ultralow surface tension liquids (e.g., diethyl ether (γ = 16.26 dyn/cm) and n-pentane (γ = 15.51 dyn/cm)) could move easily on our FAS9-, FAS13-, and FAS17-hybrid film surfaces at low substrate TAs (<4°) without pinning. This is comparable or superior to the best perfluorinated textured and flat surfaces reported so far. This exceptional dynamic dewetting behavior appeared only when TMOS molecules were added to the precursor solutions; we assume this is due to co-condensed TMOS-derived silica species working as spacers between the neighboring Rf chains, enabling them to rotate freely and in doing so provide a surface with liquid-like properties. This led to the distinguished dynamic dewettability of our hybrid films, regardless of the small static CAs. Our FASX-hybrid films also displayed excellent chemical and physical durability against thermal stress (~250 °C), high-temperature (150 °C) oil vapor, and various other media (perfluoro liquid, boiling water, and weak acid) without degrading their dynamic dewettability. Such exceptional durability has been rarely seen on conventional perfluorinated surfaces reported so far.
Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting.
Bennett, Roger A; Etman, Haitham A; Hicks, Hannah; Richards, Leah; Wu, Chen; Castell, Martin R; Dhesi, Sarnjeet S; Maccherozzi, Francesco
2018-04-11
The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe 3 O 4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
Laser-induced dewetting of silver-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Douaud, Alexandre; Messaddeq, Sandra Helena; Boily, Olivier; Messaddeq, Younès
2018-07-01
We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thin-films. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement.
Conformation-dependent DNA attraction
NASA Astrophysics Data System (ADS)
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-05-01
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03235c
Role of amphiphilic molecule on liquid crystal phases
NASA Astrophysics Data System (ADS)
Dan, Kaustabh; Roy, Madhusudan; Datta, Alokmay
2013-02-01
We have studied the effect of an amphiphilic fatty acid, Stearic Acid (StA), on the phases, wetting and polarization properties of the liquid crystalline substance N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), through Differential Scanning Calorimetry and Optical Polarization Microscopy. Metastable and mesophases disappear for a MBBA:StA = 1:5 mixture. This mixture wets Si(111) and dewets Si(100) surfaces while pure MBBA dewets both. Films of this mixture also show better polarization than the pure sample.
Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals
NASA Astrophysics Data System (ADS)
Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.
2017-10-01
We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.
Imaging prototypical aromatic molecules on insulating surfaces: a review
NASA Astrophysics Data System (ADS)
Hoffmann-Vogel, R.
2018-01-01
Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule–molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, C60 and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. C60 nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of C60 islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules ‘climb’ to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.
Sponge-like nanoporous single crystals of gold
Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz
2015-01-01
Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856
NASA Astrophysics Data System (ADS)
Sundar, Aarthi
The ability to fabricate structures and engineer materials on the nanoscale leads to the development of new devices and the study of exciting phenomena. Nanostructures attached to the surface of a substrate, in a manner that renders them immobile, have numerous potential applications in a diverse number of areas. Substrate-supported nanostructures can be fabricated using numerous modalities; however the easiest and most inexpensive technique to create a large area of randomly distributed particles is by the technique of thermal dewetting. In this process a metastable thin film is deposited at room temperature and heated, causing the film to lower its surface energy by agglomerating into droplet-like nanostructures. The main drawbacks of nanostructure fabrication via this technique are the substantial size distributions realized and the lack of control over nanostructure placement. In this doctoral dissertation, a new pathway for imposing order onto the thermal dewetting process and for manipulating the size, placement, shape and composition of preformed templates is described. It sees the confinement of substrate-supported thin films or nanostructure templates by the free surface of a metal film or a second substrate surface. Confining the templates in this manner and heating them to elevated temperatures leads to changes in the characteristics of the nanostructures formed. Three different modalities are demonstrated which alters the preformed structures by: (i) subtracting atoms from the templates, (ii) adding atoms to the template or (iii) simultaneously adding and subtracting atoms. The ability to carry out such processes depends on the choice of the confining surface and the nanostructured templates used. A subtractive process occurs when an electroformed nickel mesh is placed in conformal contact with a continuous gold film while it dewets, resulting in the formation of a periodic array of gold microstructures on an oxide substrate surface. When heated the gold beneath the grid selectively attaches to it due to the surface energy gradient which drives gold from the low surface energy oxide surface to the higher surface energy nickel mesh. With this process being confined to areas adjacent to and in contact with the grid surface the film ruptures at well-defined locations to form isolated islands of gold and subsequently, a periodic array of microstructures. The process can be carried out on substrates of different crystallographic orientations leading to nanostructures which are formed epitaxially and have orientations based on underlying substrate orientations. The process can be extended by placing a metallic foil of Pt or Ni over preformed templates, in which case a reduction in the size of the initial structures is observed. Placing a foil on structures with random placement and a wide size distribution results, not only in a size reduction, but also a narrowed size distribution. Additive processes are carried out by using materials which possess high vapor pressures much below the sublimation temperature of the template materials. In this case a germanium substrate was used as a source of germanium adatoms while gold or silver nanostructures were used as heterogeneous nucleation sites. At elevated temperatures the adatoms collect in sufficient quantities to transform each site into a liquid alloy which, upon cooling, phase separates into elemental components sharing a common interface and, hence, resulting in the formation of heterodimers and hollowed metal nanocrescents upon etching away the Ge. A process which combined aspects of the additive and subtractive process was carried out by using a metallic foil with a high vapor pressure and higher surface energy than the substrate surface (in this case Pd foil). This process resulted in the initial preformed gold templates being annihilated and replaced by nanostructures of palladium, thereby altering their chemical composition. The assembly process relies on the concurrent sublimation of palladium and gold which results in the complete transfer of the templated gold from the substrate to the foil, but not before the templates act as heterogeneous nucleation sites for palladium adatoms arriving to the substrate surface. Thus, the process is not only subtractive, but also additive due to the addition of palladium and removal of gold.
Arscott, Steve
2016-12-06
A chemically driven dewetting effect is demonstrated using sessile droplets of dilute hydrofluoric acid on chemically oxidized silicon wafers. The dewetting occurs as the thin oxide is slowly etched by the droplet and replaced by a hydrogen-terminated surface; the result of this is a gradual increase in the contact angle of the droplet with time. The time-varying work of adhesion is calculated from the time-varying contact angle; this corresponds to the changing chemical nature of the surface during dewetting and can be modeled by the well-known logistic (sigmoid) function often used for the modeling of restricted growth, in this case, the transition from an oxidized surface to a hydrogen-terminated silicon surface. The observation of the time-varying contact angle allows one to both measure the etch rate of the silicon oxide and estimate the hydrogenation rate as a function of HF concentration and wafer type. In addition to this, at a certain HF concentration, a self-running droplet effect is observed. In contrast, on hydrogen-terminated silicon wafers, a chemically induced spreading effect is observed using sessile droplets of nitric acid. The droplet spreading can also be modeled using a logistical function, where the restricted growth is the transition from hydrogen-terminated to a chemically induced oxidized silicon surface. The chemically driven dewetting and spreading observed here add to the methods available to study dynamic wetting (e.g., the moving three-phase contact line) of sessile droplets on surfaces. By slowing down chemical kinetics of the wetting, one is able to record the changing profile of the sessile droplet with time and gather information concerning the time-varying surface chemistry. The data also indicates a chemical interface hysteresis (CIH) that is compared to contact angle hysteresis (CAH). The approach can also be used to study the chemical etching and deposition behavior of thin films using liquids by monitoring the macroscopic droplet profile and relating this to the time-varying physical and chemical interface phenomena.
Nanostructuring of thin Au films deposited on ordered Ti templates for applications in SERS
NASA Astrophysics Data System (ADS)
Grochowska, Katarzyna; Siuzdak, Katarzyna; Macewicz, Łukasz; Skiba, Franciszek; Szkoda, Mariusz; Karczewski, Jakub; Burczyk, Łukasz; Śliwiński, Gerard
2017-10-01
In this work the results on thermal nanostructuring of the Au films on Ti templates as well as morphology and optical properties of the obtained structures are reported. The bimetal nanostructures are fabricated in a multi-step process. First, the titania nanotubes are produced on the surface of Ti foil by anodization in an ethylene glycol-water solution containing fluoride ions. This is followed by chemical etching in oxalic acid and results in a highly ordered dimpled surface. Subsequently, thin gold films (5-20 nm) are deposited onto prepared Ti substrates by magnetron sputtering. The as-prepared layers are then dewetted by the UV nanosecond laser pulses or alternatively in the furnace (temperature < 500 °C). The SEM inspection reveals formation of honeycomb nanostructures (cavity diameter: ∼100 nm) covered with Au nanoparticles (NPs). It is observed that both the laser annealing and continuous thermal treatment in furnace can lead to the creation of NPs inside every Ti dimple and result in uniform coating of the whole area of structured templates. The size and localization of NPs obtained via both dewetting processes as well as their shape can be tuned by the annealing time and the laser processing parameters and also by initial thickness of Au layer and presence of the dimples themselves in the substrate. Results confirm that the prepared material can be used as substrate for SERS (Surface Enhanced Raman Spectroscopy).
Initial Transient in Zn-doped InSb Grown in Microgravity
NASA Technical Reports Server (NTRS)
Ostrogorsky, A G.; Marin, C.; Volz, M.; Duffar, T.
2009-01-01
Three Zn-doped InSb crystals were directionally solidified under microgravity conditions at the International Space Station (ISS) Alpha. The distribution of the Zn was measured using SIMS. A short diffusion-controlled transient, typical for systems with k greater than 1 was demonstrated. Static pressure of approximately 4000 N/m2 was imposed on the melt, to prevent bubble formation and dewetting. Still, partial de-wetting has occurred in one experiment, and apparently has disturbed the diffusive transport of Zn in the melt.
Meltwater Evolution during Defrosting on Superhydrophobic Surfaces.
Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli
2018-01-10
Defrosting is essential for removing frost from engineering surfaces, but some fundamental issues are still unclear, especially for defrosting on superhydrophobic surfaces. Here, defrosting experiments on prepared superhydrophobic surfaces were conducted along with the investigation on meltwater evolution characteristics. According to the experiments, the typical meltwater evolution process on superhydrophobic surfaces can be divided into two stages: dewetting by edge curling and dewetting by shrinkage. The edge curling of a meltwater film is a distinct phenomenon and has been first reported in this work. Profiting from the ultralow adhesion of the superhydrophobic surface, edge curling is mainly attributed to two unbalanced forces (one at the interface between the ice slurry layer and pure water layer and the other in the triple phase line area) acting on the layered meltwater film. During the multi-meltwater evolution process, the nonbreaking of chained droplets on superhydrophobic surfaces is also an interesting phenomenon, which is controlled by the interaction between the surface tension and the retentive force because of contact angle hysteresis. An approximate criterion was then developed to explain and determine the status of chained droplets, and experimental data from various surfaces have validated the effectiveness of this criterion. This work may deepen the understanding of defrosting on superhydrophobic surfaces and promote antifrosting/icing applications in engineering.
Dynamics and stability of thin liquid films
NASA Astrophysics Data System (ADS)
Craster, R. V.; Matar, O. K.
2009-07-01
The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows down a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets, tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable attention in the literature, which have resulted in many significant developments in experimental, analytical, and numerical research in this area. These include advances in understanding dewetting, thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant, and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric fields to produce nanoscale patterns. These developments are reviewed in this paper and open problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.
Drop dynamics on a thin film: Thin film rupture
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Kim, Pilnam; Stone, Howard A.
2011-11-01
The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...
2017-09-26
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-01-01
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications. PMID:26965073
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; ...
2016-03-11
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combinationmore » of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Ultimately, our results allow for improved safety during laser ablation in manufacturing and medical applications.« less
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-03-01
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.
Hihath, Sahar; Santala, Melissa K; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-03-11
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil
2017-01-01
Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa. PMID:29253017
Dewetting and Hydrophobic Interaction in Physical and Biological Systems
Berne, Bruce J.; Weeks, John D.; Zhou, Ruhong
2013-01-01
Hydrophobicity manifests itself differently on large and small length scales. This review focuses on large length scale hydrophobicity, particularly on dewetting at single hydrophobic surfaces and drying in regions bounded on two or more sides by hydrophobic surfaces. We review applicable theories, simulations and experiments pertaining to large scale hydrophobicity in physical and biomoleclar systems and clarify some of the critical issues pertaining to this subject. Given space constraints, we could not review all of the significant and interesting work in this very active field. PMID:18928403
Solution-processed flexible NiO resistive random access memory device
NASA Astrophysics Data System (ADS)
Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon
2018-04-01
Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).
Cross-sectional characterization of the dewetting of a Au/Ni bilayer film.
Cen, Xi; Thron, Andrew M; Zhang, Xinming; van Benthem, Klaus
2017-07-01
The solid state dewetting of Au/Ni bilayer films was investigated by cross-sectional transmission electron microscopy techniques, including energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and precession electron diffraction. After annealing under high vacuum conditions the early stage of film agglomeration revealed significant changes in film morphology and chemical distribution. Both Au and Ni showed texturing. Despite the initial deposition sequence of the as-deposited Au/Ni/SiO 2 /Si interface structure, the majority of the metal/SiO 2 interface was Au/SiO 2 after annealing at 675°C for 1h. Void nucleation was predominantly observed at Au/Ni/SiO 2 triple junctions, rather than grain boundary grooving at free surface of the metal film. Detailed cross-sectional characterization reveals that the Au/Ni interface in addition to small amounts of metal alloying strongly affects film break-up and agglomeration kinetics. The formation of Au/SiO 2 interface sections is found to be energetically preferred over Ni/SiO 2 due to compressive stress in the as-deposited Ni layer. Void nucleation is observed at the film/substrate interface, while the formation of voids at Ni/Au phase boundaries inside the metal film is caused by the Kirkendall effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Nucleation type instabilities in partially wetting nanoscale nematic liquid films
NASA Astrophysics Data System (ADS)
Lam, Michael; Cummings, Linda; Kondic, Lou
2016-11-01
Nucleation type instabilities are studied in nematic liquid crystal (NLC) films with thicknesses less than a micrometer. Within the framework of the long wave approximation, a 4th order nonlinear partial differential equation is proposed for the free surface height. Unlike simple fluids, NLC molecules have a dipole moment which induces an elastic response due to deformation in the bulk of the fluid. The model includes the balance between the bulk elasticity energy and the anchoring (boundary) energy at the substrate and free surface, and van der Waals' intermolecular forces, by means of a structural disjoining pressure. In this presentation, we focus on two-dimensional flow and present simulation results for a flat film with a localized perturbation. We are interested in the morphology of the dewetted film as a function of the initial film thickness. We will show that there exists a range of film thicknesses within the linearly unstable flat film regime where stability analysis does not explain the morphology of the dewetted film. Marginal stability criterion (MSC) is used to derive an analytical expression for the velocity at which a perturbation propagates into the unstable flat film. Finally, we discuss the degree to which MSC can be used to explain the observed morphology.
CVD growth of large-grain graphene on Cu(111) thin films
NASA Astrophysics Data System (ADS)
Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.
2013-03-01
Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).
Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-filmmore » boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid phase instabilities is rapidly quenched-in during the cooling phase. This deformed state is further evolved by subsequent laser pulses. These results have implications to developing accurate computer simulations of thin-film dewetting by energetic beams aimed at the manufacturing of optically active nanoscale materials for applications including information processing, optical devices, and solar energy harvesting.« less
Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing
NASA Astrophysics Data System (ADS)
Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
2007-11-01
A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid phase instabilities is rapidly quenched-in during the cooling phase. This deformed state is further evolved by subsequent laser pulses. These results have implications to developing accurate computer simulations of thin-film dewetting by energetic beams aimed at the manufacturing of optically active nanoscale materials for applications including information processing, optical devices, and solar energy harvesting.
2009-12-07
intensity increase that may go as high as 20 fold. Almost identical behavior was observed in the dewetting processes induced by solvent vapor...conjugated polymer coating thickness and material systems were explored. 87 Experimental Section MWCNT acid treatment The MWCNT which was...deionized (DI) water by filtration until the solution become neutral, and then dried in the oven with 80. MWCNT grafting 2-(3-thienylethanol
Conformation-dependent DNA attraction.
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-06-21
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Duffar, Thierry
2007-05-01
A global thermal modelling of a cadmium telluride (CdTe) space experiment has been performed to determine the temperature field within the sample cartridge assembly of the Material Science Laboratory-low gradient furnace (MSL-LGF) apparatus. Heat transfer and phase change have been treated with a commercial CFD software based on a control volume technique. This work underlines the difficult compromise between enhancing the crystal quality and the occurrence of the dewetting phenomenon when using a Cd overpressure or inert gas in the ampoule.
Influence of surfactants in forced dynamic dewetting.
Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen
2016-09-20
In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.
Numerical Optimization of the Thermal Field in Bridgman Detached Growth
NASA Technical Reports Server (NTRS)
Stelian, C.; Volz, M. P.; Derby, J. J.
2009-01-01
The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen
During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less
Kim, Yongman; Wan, Jiamin; Kneafsey, Timothy J; Tokunaga, Tetsu K
2012-04-03
Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.
NASA Astrophysics Data System (ADS)
Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter
2018-06-01
In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.
Instability mechanisms in microfluidics and nanomaterials
NASA Astrophysics Data System (ADS)
Thamida, Sunil Kumar
Recent scientific advances in chemical engineering are leading to synthesis of micro-scale and nano-scale functional devices and materials. However, optimal design and performance of these devices and materials requires a fundamental under standing of the interfacial phenomena at micro-scale and nano-scale. Due to new physical forces unique to small scales, new phenomena appear that are unexpected at large scales. A study of new interfacial patterns that arise from various interfacial instabilities at these scales is carried out in this dissertation. Nevertheless, interfacial patterns ranging from micro to macro scale are ubiquitous in multiphase systems and material synthesis involving a surface reaction. Fractal break up of a thin viscous oil film dewetting between two separating plates is studied experimentally. Unlike the classical patterns of pores and dendrites, it forms a fractal pattern like a branching tree with its origin at the center of the circular film. Lubrication theory is extended to such a fractal geometry, which is unlike the circular geometry of a classical dewetting problem. A power law scaling is obtained for the radial air finger length distribution to construct an idealized Cayley fractal structure. Our theory yields a result that the plate detach time decreases by half in the limit of a fully fractal pattern that is confirmed experimentally. Nanopore formation in anodized alumina is also found to bear similarities to the interfacial pattern formation of the dewetting film between two separating plates. The oxide layer formed on the aluminum during the initial stages of anodizing is found to be unstable to perturbations on the scale of a few nanometers and hence it leads to the nanopore formation. A linear stability analysis of the dual interfacial dynamics followed by a leading mode projection produces a single evolution equation for the pores. Numerical simulations of the nonlinear model reveals the hexagonal packing and self-organization dynamics of the pores. In microfluidic devices, electrokinetic flow produces spiral vortices and corner aggregation of particles and proteins at an inner corner of a channel turn that is unexplained by the short ranged DLVO forces. Field leakage effect due to the non perfectly insulating wall reveals a nonlinear singular and ejecting slip velocity condition at an acute angled sharp corner. The complete flow streamlines, vortices and the corner entrainment are revealed by conformal mapping, harmonic analysis and numerical simulation using Lattice-Boltzmann-Method (LBM). The method of hodograph transform developed for the earlier projects to solve the Laplace equation is also applied to find optimum shapes of dispersion free turns for electro-osmotic microfluidic channels.
Capillary droplet propulsion on a fibre.
Haefner, Sabrina; Bäumchen, Oliver; Jacobs, Karin
2015-09-21
A viscous liquid film coating a fibre becomes unstable and decays into droplets due to the Rayleigh-Plateau instability (RPI). Here, we report on the generation of uniform droplets on a hydrophobized fibre by taking advantage of this effect. In the late stages of liquid column breakup, a three-phase contact line can be formed at one side of the droplet by spontaneous rupture of the thinning film. The resulting capillary imbalance leads to droplet propulsion along the fibre. We study the dynamics and the dewetting speed of the droplet as a function of molecular weight as well as temperature and compare to a force balance model based on purely viscous dissipation.
NASA Astrophysics Data System (ADS)
Poborchii, Vladimir; Shklyaev, Alexander; Bolotov, Leonid; Uchida, Noriyuki; Tada, Tetsuya; Utegulov, Zhandos N.
2017-12-01
Metasurfaces consisting of arrays of high-index Mie resonators concentrating/redirecting light are important for integrated optics, photodetectors, and solar cells. Herein, we report the optical properties of low-Ge-content SiGe lens-like Mie resonator island arrays fabricated via dewetting during Ge deposition on a Si(100) surface at approximately 900 °C. We observe enhancement of the Si interaction with light owing to the efficient island-induced light concentration in the submicron-depth Si layer, which is mediated by both near-field Mie resonance leaking into the substrate and far-field light focusing. Such metasurfaces can improve the Si photodetector and solar-cell performance.
NASA Astrophysics Data System (ADS)
Houweling, Z. S.
2011-10-01
The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to nanocrystallites to closed crystallite films. The crystallinity, chemical structure, atomic composition, optical band gap and internal and external morphology of the WO3-x is studied. Second, the oxygen content of the WO3-x is lowered by the addition of hydrogen during the deposition. Heterogeneous films consisting of layers of various oxygen content result, corresponding to W/WO3-x, WO3/WO3-x configurations. When the air flow is continued upon cooling of the films, additionally WO3-x nanorods are formed on the external surfaces after the deposition. The reduction proceeds more effectively at both low water vapour pressures and at higher temperatures. Third, after synthesising WO3-x nanostructured depositions, atomic hydrogen is used with substrate temperatures of about 730°C to perform reduction. Nanostructured metallic tungsten depositions result consisting of nanofibers, nanocrystallites and closed crystallite films. Furthermore, ultrafine tungsten powder is obtained with particle sizes of 11 nm and very high specific surface areas of 21.5±2 m2·g-1. A novel method for the two-step synthesis of metallic nanostructured tungsten is additionally presented. Fourth, hexagonally ordered arrays of exotic homogeneous hierarchical WO3-x/WO3-x nanocacti are deposited. A novel method for the synthesis of exotic heterogeneous hierarchical WO3-x/WO3-y nanocacti is also presented. Such complex structures are a new foundation of novel applications and enhancements in the field of chromogenics.
NASA Astrophysics Data System (ADS)
Sui, Mao; Li, Ming-Yu; Pandey, Puran; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon
2018-03-01
Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer-Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Cabie, Martiane; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco
2016-07-29
We report on a novel method for the implementation of core-shell SiGe-based nanocrystals combining silicon on insulator dewetting in a molecular beam epitaxy reactor with an ex situ Ge condensation process. With an in situ two-step process (annealing and Ge deposition) we produce two families of islands on the same sample: Si-rich, formed during the first step and, all around them, Ge-rich formed after Ge deposition. By increasing the amount of Ge deposited on the annealed samples from 0 to 18 monolayers, the islands' shape in the Si-rich zones can be tuned from elongated and flat to more symmetric and with a larger vertical aspect ratio. At the same time, the spatial extension of the Ge-rich zones is progressively increased as well as the Ge content in the islands. Further processing by ex situ rapid thermal oxidation results in the formation of a core-shell composition profile in both Si and Ge-rich zones with atomically sharp heterointerfaces. The Ge condensation induces a Ge enrichment of the islands' shell of up to 50% while keeping a pure Si core in the Si-rich zones and a ∼25% SiGe alloy in the Ge-rich ones. The large lattice mismatch between core and shell, the absence of dislocations and the islands' monocrystalline nature render this novel class of nanostructures a promising device platform for strain-based band-gap engineering. Finally, this method can be used for the implementation of ultralarge scale meta-surfaces with dielectric Mie resonators for light manipulation at the nanoscale.
Martín-Fabiani, I; Rebollar, E; Pérez, S; Rueda, D R; García-Gutiérrez, M C; Szymczyk, A; Roslaniec, Z; Castillejo, M; Ezquerra, T A
2012-05-22
Here we present a precise morphological description of laser-induced periodic surface structures (LIPSS) nanofabricated on spin-coated poly(trimethylene terephthalate) (PTT) films by irradiation with 266 nm, 6 ns laser pulses and by using a broad range of fluences and number of pulses. By accomplishing real and reciprocal space measurements by means of atomic force microscopy and grazing incidence wide- and small-angle X-ray scattering respectively on LIPSS samples, the range of optimum structural order has been established. For a given fluence, an increase in the number of pulses tends to improve LIPSS in PTT. However, as the pulse doses increase above a certain limit, a distortion of the structures is observed and a droplet-like morphology appears. It is proposed that this effect could be related to a plausible decrease of the molecular weight of PTT due to laser-induced chain photo-oxidation by irradiation with a high number of pulses. A concurrent decrease in viscosity enables destabilization of LIPSS by the formation of droplets in a process similar to surface-limited dewetting.
Functional patterned coatings by thin polymer film dewetting.
Telford, Andrew M; Thickett, Stuart C; Neto, Chiara
2017-12-01
An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.
Formation of controllable polymer micropatterns through liquid film electro-dewetting
NASA Astrophysics Data System (ADS)
Zhou, Shangru; Zheng, Huai; Li, Guoliang; Liu, Jie; Liu, Sheng
2018-04-01
Controllable polymer micropatterns, served as indispensable function structures, are extensively required in many micro/nano scientific areas and engineering applications. Exploring advanced methods of fabricating micropatterns is always a research hotspot. In this article, we introduce a novel method of patterning polymer by the electro-dewetting induced by corona discharge. For the first time, it is observed experimentally that liquid polymer on conductive/non-conductive patterned substrates, spontaneously converges from non-conductive areas to conductive areas under the action of ion wind. Taking advantage of such a flow phenomenon, controllable polymer micropatterns including microbump arrays and microwell arrays are fabricated successfully. Their sizes range from hundreds of microns to millimeters. Micropattern surfaces present an ultra-smooth characteristic, with roughness in the nanometer range.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-06-01
In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.
INTRODUCTION: Wetting and dewetting in bio-related systems
NASA Astrophysics Data System (ADS)
Herminghaus, S.
2005-03-01
Research on such genuinely soft-matter related phenomena as wetting and dewetting would not be complete without reminiscence to biological systems. The recent stir around what has been known as the lotus effect, the amazing ultra-hydrophobic properties of many plants, has highlighted the interconnections of wetting with bio-systems. In the first paper of this section (Mock et al), a `biomimetic' system is conceived which imitates the properties of plant leaves with elastic hairs. The synthesis of such a system turns out to be tricky, but the progress is encouraging. The next three papers deal with surfactant layers, as they occur in many biological systems, such as the plasma membrane. Various experimental techniques, such as fluorescence microscopy (Tanaka et al), neutron reflectivity (Steitz et al), and x-ray scattering (Ahrens et al), are demonstrated as powerful tools for their investigation. The last paper (Heim et al) takes us back to where we started: the morphologies emerging upon dewetting of a liquid. This time, the full diversity of patterns is shown which appears in the deposited solute, once the liquid has evaporated. The motivation of this work is the morphology of deposition of DNA on bio-chips, which may affect the readout results of such devices. It is shown that although much can already be understood, a lot of work has still to be done, and many beautiful mechanisms may still be discovered.
Growth mechanism changes in pseudo-dewetted monolayer poly(ethylene oxide) crystallization
NASA Astrophysics Data System (ADS)
Zhu, Dun-Shen; Chen, Er-Qiang; Shi, An-Chang; Cheng, Stephen
2006-03-01
Crystal growth mechanism changes have been observed in pseudo-dewetted monolayers of low molecular weight (LMW) (PEO) on freshly cleaved hydrophilic mica surfaces [HPEO(4250) which have -OH groups at both ends and MHPEO(4700) which has one -OH and one -OCH3 as end groups]. X-ray scattering reflectivity measurements show a wetted monolayer of molten PEO with a thickness of ˜ 4.5 nm on the mica surface. Non-adsorbed PEO droplets sit on top of the wetted monolayer. A two-step process for PEO single crystal growth under isothermal conditions was identified utilizing in-situ atomic force microscopy at different crystallization temperatures (Tx). In the first step, the crystal grows within the droplet which supplies the molten PEO that participates in the crystal formation. In this second-step, the wetted monolayer at the growth front is depleted by about 1.5 - 2.5 nm. The growing crystal lateral sizes obey a power law of t^α (t: time). At a high Tx of 63 C for MHPEO(4700), the growth behavior obeys r t (α = 1). While in the case of HPEO(4250), its growth behavior follows r t^0.5 (α = 0.5) in the whole Tx range. With decreasing Tx, the growth of MHPEO(4700) falls into a scaling law of r t^α (0.5 < α < 1).
Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness
NASA Astrophysics Data System (ADS)
Kchaou, Marwa; Alcouffe, Pierre; Chandran, Sivasurender; Cassagnau, Philippe; Reiter, Günter; Al Akhrass, Samer
2018-03-01
Using dewetting as a characterization tool, we demonstrate that physical properties of thin polymer films can be regulated and tuned by employing variable processing conditions. For different molecular weights, the variable behavior of polystyrene films of identical thickness, prepared along systematically altered pathways, became predictable through a single parameter P , defined as the ratio of time required over time available for the equilibration of polymers. In particular, preparation-induced residual stresses, the corresponding relaxation times as well as the rupture probability of such films (of identical thickness) varied by orders of magnitude following scaling relations with P . Our experimental findings suggest that we can predictably enhance properties and hence maximize the performance of thin polymer films via appropriately chosen processing conditions.
Nave, Maryana I.; Gu, Yu; Karen Chen-Wiegart, Yu-Chen; ...
2017-01-05
We developed a special electrochemical cell enabling quantitative analysis andin situX-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. Finally, the discoveredmore » effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.« less
Yu, Naiyin; Hagan, Michael F.
2012-01-01
Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509
NASA Astrophysics Data System (ADS)
Sudheer, Mondal, Puspen; Rai, V. N.; Srivastava, A. K.
2017-07-01
The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm) deposited on the formvar film (substrate) by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs) change with an increase in the film thickness (0.7 to 2.8 nm). Nearly spherical Au NPs are obtained for <3 nm thickness films whereas percolated nanostructures are observed for ≥3 nm thickness films as a consequence of the interfacial interaction of Au and formvar film. The covered area fraction (CAF) increases from ˜13 to 75 % with the change in film thickness from 0.7 to 8.4 nm. In-situ annealing of ≤3 nm film produces comparatively bigger size and better sphericity Au NPs along with their narrow distributions, whereas just percolated film produces broad distribution in size having spherical as well as elongated Au NPs. The films with thickness ≤3 nm show excellent thermal stability. The films having thickness >6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ˜0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm) during solid-state dewetting and recrystallization of the grains.
NASA Astrophysics Data System (ADS)
Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger
2017-02-01
Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.
Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.
Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao
2016-08-03
Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner.
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Sahoo, R K; Jacob, C
2014-06-01
The dewetting of a low melting point metal thin film deposited on silicon substrates was studied. The experimental results suggest that the change in the growth temperature affects the nanostructures that form. Based on the experimental results, the temperature which yielded the smallest features for the growth of nanotubes is determined. The mechanism by which these nano-templates become an efficient seeds for the growth of the carbon nanotubes is discussed. The partial bismuth filling inside the CNTs was optimized. Based on the results, a schematic growth model for better understanding of the process parameters has also been proposed.
Slip-mediated dewetting of polymer microdroplets
McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin
2016-01-01
Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903
Shape-shifting colloids via stimulated dewetting
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-01-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418
Shape-shifting colloids via stimulated dewetting
NASA Astrophysics Data System (ADS)
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-07-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.
Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films
NASA Astrophysics Data System (ADS)
Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu
2018-03-01
We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.
A fabrication guide for planar silicon quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.
2018-04-01
We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.
Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung
2015-02-15
There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaporation of Particle-Stabilized Emulsion Sunscreen Films.
Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A
2016-08-24
We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.
Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo
2016-08-16
Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.
Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers
NASA Astrophysics Data System (ADS)
Koo, Jaseung
We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.
Antireflective glass nanoholes on optical lenses.
Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun
2018-05-28
Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.
NASA Astrophysics Data System (ADS)
Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.
2017-07-01
The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.
Dereshgi, Sina Abedini; Okyay, Ali Kemal
2016-08-08
Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.
NASA Astrophysics Data System (ADS)
Morse, Clinton; Latuga, Brian M.; Delfaus, Stephen; Devore, Thomas C.; Augustine, Brian H.; Hughes, W. Christopher; Warne, Paul G.
2003-11-01
Using the liquid cell capability of the atomic force microscope (AFM), we report the determination of the activation energy of the biodegradation process of the enzymatic biodegradation of poly 3-hydroxybutyrate / poly 3-hydroxyvalerate [P(3HB-HV)] thin films. We have prepared P(3HB-3HV) copolymer microstructures by the selective dewetting of soft lithographically patterned gold substrates with features sizes down to 10 mm. These have been then used as an internal height standard to measure the volume of material as a function of biodegradation time. Biodegradation is measured in-situ and real time using contact mode AFM in an enzymatic solution produced from Streptomyces sp. bacteria. The temperature dependent biodegradation has been measured over a temperature range from 23oC to 40oC. We will discuss the calculation of the activation energy of this process as well as a physical model to describe three distinct regions in the biodegradation process that have been observed.
Insight into the wetting of a graphene-mica slit pore with a monolayer of water
NASA Astrophysics Data System (ADS)
Lin, Hu; Schilo, Andre; Kamoka, A. Rauf; Severin, Nikolai; Sokolov, Igor M.; Rabe, Jürgen P.
2017-05-01
Scanning force microscopy (SFM) and Raman spectroscopy allow the unraveling of charge doping and strain effects upon wetting and dewetting of a graphene-mica slit pore with water. SFM reveals a wetting monolayer of water, slightly thinner than a single layer of graphene. The Raman spectrum of the dry pore exhibits the D' peak of graphene, which practically disappears upon wetting, and recurs when the water layer dewets the pore. Based on the 2 D - and G -peak positions, the corresponding peak intensities, and the widths, we conclude that graphene on dry mica is charge-doped and variably strained. A monolayer of water in between graphene and mica removes the doping and reduces the strain. We attribute the D' peak to direct contact of the graphene with the ionic mica surface in dry conditions, and we conclude that a complete monolayer of water wetting the slit pore decouples the graphene from the mica substrate both mechanically and electronically.
Mn-doped Ge self-assembled quantum dots via dewetting of thin films
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Bandyopadhyay, Anup; Kim, Sung Kyu; Karaman, Ibrahim; Lee, Jeong Yong
2017-03-01
In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO2 thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO2 thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.
NASA Astrophysics Data System (ADS)
Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David
2018-02-01
We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.
NASA Astrophysics Data System (ADS)
Stefani, Caroline; Gonzalez-Rodriguez, David; Senju, Yosuke; Doye, Anne; Efimova, Nadia; Janel, Sébastien; Lipuma, Justine; Tsai, Meng Chen; Hamaoui, Daniel; Maddugoda, Madhavi P.; Cochet-Escartin, Olivier; Prévost, Coline; Lafont, Frank; Svitkina, Tatyana; Lappalainen, Pekka; Bassereau, Patricia; Lemichez, Emmanuel
2017-06-01
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.
Stefani, Caroline; Gonzalez-Rodriguez, David; Senju, Yosuke; Doye, Anne; Efimova, Nadia; Janel, Sébastien; Lipuma, Justine; Tsai, Meng Chen; Hamaoui, Daniel; Maddugoda, Madhavi P.; Cochet-Escartin, Olivier; Prévost, Coline; Lafont, Frank; Svitkina, Tatyana; Lappalainen, Pekka; Bassereau, Patricia; Lemichez, Emmanuel
2017-01-01
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring. PMID:28643776
Stefani, Caroline; Gonzalez-Rodriguez, David; Senju, Yosuke; Doye, Anne; Efimova, Nadia; Janel, Sébastien; Lipuma, Justine; Tsai, Meng Chen; Hamaoui, Daniel; Maddugoda, Madhavi P; Cochet-Escartin, Olivier; Prévost, Coline; Lafont, Frank; Svitkina, Tatyana; Lappalainen, Pekka; Bassereau, Patricia; Lemichez, Emmanuel
2017-06-23
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.
Novel mechanisms for self-assembled pattern formation in nanoscopic metal films
NASA Astrophysics Data System (ADS)
Kalyanaraman, R.; Trice, J.; Favazza, C.; Thomas, D.; Sureshkumar, R.
2007-03-01
Classical hydrodynamic theory of dewetting of spinodally unstable thin films (Vrij, Disc. farad. Soc. 1966) predicts a monotonic increase in patterning length scales with increasing film thickness. We verified this effect for nanoscopic Co metal films following melting by ns laser pulses for thickness regime h<=hc˜8,m (Favazza et al. Nanotechnology, 2006). However, a dramatic change is observed beyond this thickness hc, with length scales decreasing with increasing h. This novel behavior arises from strong thickness dependence of heating by ultrafast laser light resulting in thermocapillary effects, whose magnitude and sign are thickness dependent. We modified the classical theory, according to which the instability occurs when the stabilizing capillary force is overcome by destabilizing attractive long-range interactions, to include thermocapillary effects. The modified theory accurately predicts the experimentally observed trend. This result suggests that a variety of new length scales can be accessed by robust self-assembly via dewetting of metal films under ultrafast light.
Growth and characterization of Pt-Si droplets for silicon nanowires synthesis
NASA Astrophysics Data System (ADS)
Khumalo, Z. M.; Topić, M.; Mtshali, C. B.; Blumenthal, M.
2018-02-01
The formation of platinum silicide phases as a function of the annealing temperature was investigated using in-situ real-time Rutherford backscattering spectrometry. The in-situ real-time RBS revealed the reaction of platinum and silicon to start at about 220 °C to form platinum silicide phases, Pt2Si and PtSi in sequence. Scanning electron microscope revealed the morphological change in the platinum layer (formation of droplets) at 800 °C. The particle induced X-ray emission analysis showed the variation of platinum intensity, in the droplets areas, between 1600 and 2000 counts. The surrounding areas are left almost uncovered due to platinum film dewetting. In-plane as well as out-of-plane silicon nanowires were observed to form at 800 °C and 1000 °C using pulsed laser ablation and thermal annealing techniques, respectively.
Laser-induced hydrodynamic instability and pattern formation in metallic nanofilms
NASA Astrophysics Data System (ADS)
Sureshkumar, R.; Trice, J.; Favazza, C.; Kalyanaraman, R.
2007-11-01
Cost effective methodologies for the robust generation of nanoscale patterns in thin films and at interfaces are crucial in photonic, opto-electronic and solar energy harvesting applications. When ultrathin metal films are exposed to a series of short (ns) laser pulses, spontaneous pattern formation results with spatio-temporal scales that depend on the film height and thermo-physical properties of the film/substrate bilayer. Various self-organization mechanisms have been identified, including a dewetting instability due to a competition between surface tension and dispersion forces, and intrinsic and/or extrinsic thermocapillary effects. We will discuss these mechanisms as well as the evolution of surface perturbations which have been explored using experiments, linear stability analysis and nonlinear dynamical simulations (Trice et al. Phys. Rev. B, 75, 235439 (2007); Favazza et al. Appl. Phys. Lett., 91, 043105 (2007); 88, 153118 (2006)).
Density patterns in metal films produced by laser interference.
Peláez, R J; Afonso, C N; Škereň, M; Bulíř, J
2015-01-26
Fringed periodic patterns have been produced by laser interference at 193 nm in an almost continuous 9.5 nm-thick Ag film that exhibits a number density of ≈189 μm(-2) holes. Patterns with four periods in the range of 1.8-10.2 μm were produced by changing the projection optics. At high fluences, the film breaks up into nanostructures around the regions exposed to intensity maxima due to laser-induced melting. At low fluences, a new process is observed that is triggered at the initial holes of the film by solid-state dewetting. Once the fluence is high enough to prevent the temperature balance across the pattern, mass transport from cold to hot regions is observed, leading to film densification in regions around intensity maxima sites. The novel patterns are thus formed by fringes of material that is more/less dense than the as-grown film, each of which is located at intensity maxima/minima sites, and have negligible topography. Comparing the present results to earlier reports in the literature shows that the thermal gradient across the pattern is influenced by the initial film microstructure, rather than by the thickness. The existence of a minimum period, which is achievable depending on the thermal continuity of the film, is also discussed.
Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength
NASA Astrophysics Data System (ADS)
Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.
2014-05-01
Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.
Formation of Nanoparticles by Thin Film Dewetting
ERIC Educational Resources Information Center
Swaminathan, Parasuraman
2009-01-01
The synthesis and assembly of nanostructures has been extensively researched because of the potential for developing new device arrays and the myriad applications they might entail. Fundamental physical laws, however, dictate the combinations of materials/substrates that provide the requisite conditions, especially in physical vapor deposition. To…
Zhang, Jing; Liang, Wensheng; Yu, Wei; Yu, Shuwen; Wu, Yiliang; Guo, Xin; Liu, Shengzhong Frank; Li, Can
2018-05-28
The solvent-engineering method is widely used to fabricate top-performing perovskite solar cells, which, however, usually exhibit inferior reproducibility. Herein, a two-stage annealing (TSA) strategy is demonstrated for processing of perovskite films, namely, annealing the intermediate phase at 60 °C for the first stage then at 100 °C for the second stage. Compared to conventional direct annealing temperature (DHA) at 100 °C, using this strategy, MAPbI 3 films become more controllable, leading to superior film uniformity and device reproducibility with the champion device efficiency reaching 19.8%. More specifically, the coefficient of variation of efficiency for 49 cells is reduced to 5.9%, compared to 9.8% for that using DHA. The TSA process is carefully studied using Fourier transform infrared spectroscopy, X-ray diffraction, and UV-vis absorption spectroscopy. It is found that in comparison with DHA the formation of hydrogen bonding and crystallization of perovskite are much slower and can be better controlled when using TSA. The improvements in film uniformity and device reproducibility are attributed to: 1) controllable MAPbI 3 crystal growth stemming from the progressive formation of hydrogen bonding between methylammonium and halide; 2) suppression of intermediate phase film dewetting, which is believed to be due to its decreased mobility at the initial low-temperature annealing stage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape Evolution of Detached Bridgman Crystals Grown in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2015-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Huang, Xiaohua
2013-01-01
The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862
Effect of tethering on the surface dynamics of a thin polymer melt layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
Effect of tethering on the surface dynamics of a thin polymer melt layer
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; ...
2016-05-13
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
2017-01-01
Polymer solar cells based on PDPP5T and PCBM as donor and acceptor materials, respectively, were processed from aqueous nanoparticle dispersions. Careful monitoring and optimization of the concentration of free and surface-bound surfactants in the dispersion, by measuring the conductivity and ζ-potential, is essential to avoid aggregation of nanoparticles at low concentration and dewetting of the film at high concentration. The surfactant concentration is crucial for creating reproducible processing conditions that aid in further developing aqueous nanoparticle processed solar cells. In addition, the effects of adding ethanol, of aging the dispersion, and of replacing [60]PCBM with [70]PCBM to enhance light absorption were studied. The highest power conversion efficiencies (PCEs) obtained are 2.0% for [60]PCBM and 2.4% for [70]PCBM-based devices. These PCEs are limited by bimolecular recombination of photogenerated charges. Cryo-TEM reveals that the two components phase separate in the nanoparticles, forming a PCBM-rich core and a PDPP5T-rich shell and causing a nonoptimal film morphology. PMID:28345859
Reactive Liftoff of Crystalline Cellulose Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.
Here, the condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shownmore » to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.« less
Reactive Liftoff of Crystalline Cellulose Particles
Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.
2015-01-01
The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors. PMID:26057818
Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers
NASA Astrophysics Data System (ADS)
Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru
2018-05-01
Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.
NASA Astrophysics Data System (ADS)
Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.
2016-05-01
The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.
Direct chemical vapor deposition of graphene on dielectric surfaces
Zhang, Yuegang; Ismach, Ariel
2014-04-29
A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.
Peláez, R J; Espinós, J P; Afonso, C N
2017-04-28
The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al 2 O 3 ) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al 2 O 3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.
Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun
2017-10-31
Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.
Hosoda, Naoe; Gorb, Stanislav N.
2012-01-01
For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties. PMID:22874756
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Force-controlled inorganic crystallization lithography.
Cheng, Chao-Min; LeDuc, Philip R
2006-09-20
Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.
Low-order modelling of a drop on a highly-hydrophobic substrate: statics and dynamics
NASA Astrophysics Data System (ADS)
Wray, Alexander W.; Matar, Omar K.; Davis, Stephen H.
2017-11-01
We analyse the behaviour of droplets resting on highly-hydrophobic substrates. This problem is of practical interest due to its appearance in many physical contexts involving the spreading, wetting, and dewetting of fluids on solid substrates. In mathematical terms, it exhibits an interesting challenge as the interface is multi-valued as a function of the natural Cartesian co-ordinates, presenting a stumbling block to typical low-order modelling techniques. Nonetheless, we show that in the static case, the interfacial shape is governed by the Young-Laplace equation, which may be solved explicitly in terms of elliptic functions. We present simple low-order expressions that faithfully reproduce the shapes. We then consider the dynamic case, showing that the predictions of our low-order model compare favourably with those obtained from direct numerical simulations. We also examine the characteristic flow regimes of interest. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
Desorption Kinetics of Methanol, Ethanol, and Water from Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.
2014-09-18
The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignmentmore » throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.« less
Desorption kinetics of methanol, ethanol, and water from graphene.
Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D
2014-09-18
The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.
Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G
2018-04-24
In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.
Fabrication Development and Flow Testing of Underwater Superhydrophobic Films for Drag Reduction
2017-03-21
form a large area Sidewall improved by using a chisel-edge blade 3/20/17 9 17/52 Task 3: Flow testing and characterization 18/52 Task 3.1 Develop shear...Before data collection for each run , the water tunnel was run at Re= 1.45x107 for a 3-5 minutes to de-wet SHPo sample, but improvement was not
Anisotropic instability of a stretching film
NASA Astrophysics Data System (ADS)
Xu, Bingrui; Li, Minhao; Deng, Daosheng
2017-11-01
Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.
Formation of curved micrometer-sized single crystals.
Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz
2014-05-27
Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.
Thermal-capillary analysis of small-scale floating zones Steady-state calculations
NASA Technical Reports Server (NTRS)
Duranceau, J. L.; Brown, R. A.
1986-01-01
Galerkin finite element analysis of a thermal-capillary model of the floating zone crystal growth process is used to predict the dependence of molten zone shape on operating conditions for the growth of small silicon boules. The model accounts for conduction-dominated heat transport in the melt, feed rod and growing crystal and for radiation between these phases, the ambient and a heater. Surface tension acting on the shape of the melt/gas meniscus counteracts gravity to set the shape of the molten zone. The maximum diameter of the growing crystal is set by the dewetting of the melt from the feed rod when the crystal radius is large. Calculations with small Bond number show the increased zone lengths possible for growth in a microgravity environment. The sensitivity of the method to the shape and intensity of the applied heating distribution is demonstrated. The calculations are compared with experimental observations.
On Favorable Thermal Fields for Detached Bridgman Growth
NASA Technical Reports Server (NTRS)
Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.
2009-01-01
The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analyses [14] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.
Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting.
Kumar, Abinash; Kundu, Subhajit; Samantaray, Debadarshini; Kundu, Paromita; Zanaga, Daniele; Bals, Sara; Ravishankar, N
2017-12-13
Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.
Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films
Cho, Joon Hyong; Gorman, Jason J.; Na, Seung Ryul; Cullinan, Michael
2017-01-01
Growth of high quality and monolayer graphene on copper thin films on silicon wafers is a promising approach to massive and direct graphene device fabrication in spite of the presence of potential dewetting issues in the copper film during graphene growth. Current work demonstrates roles of a nickel adhesion coupled with the copper film resulting in mitigation of dewetting problem as well as uniform monolayer graphene growth over 97 % coverage on films. The feasibility of monolayer graphene growth on Cu-Ni alloy films as thin as 150 nm in total is also demonstrated. During the graphene growth on Cu-Ni films, the nickel adhesion layer uniformly diffuses into the copper thin film resulting in a Cu-Ni alloy, helping to promote graphene nucleation and large area surface coverage. Furthermore, it was found that the use of extremely thin metal catalyst films also constraint the total amount of carbon that can be absorbed into the film during growth, which helps to eliminate adlayer formation and promote monolayer growth regardless of alloying content, thus improving the monolayer fraction of graphene coverage on the thinner films. These results suggest a path forward for the large scale integration of high quality, monolayer graphene into nanoelectronic and nanomechanical devices. PMID:28669999
Evaporation of Sunscreen Films: How the UV Protection Properties Change.
Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A
2016-06-01
We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.
Influence of interfacial rheology on stabilization of the tear film
NASA Astrophysics Data System (ADS)
Bhamla, M. Saad; Fuller, Gerald G.
2014-11-01
The tear film that protecting the ocular surface is a complex, thin film comprised of a collection of proteins and lipids that come together to provide a number of important functions. Of particular interest in this presentation is meibum, an insoluble layer that is spread from glands lining our eyelids. Past work has focussed on the role of this layer in reducing evaporation, although conflicting evidence on its ability to reduce evaporative loss has been published. We present here the beneficial effects that are derived through the interfacial viscoelasticity of the meibomian lipid film. This is a duplex film is comprised of a rich mixture of phospholipids, long chain fatty esters, and cholesterol esters. Using interfacial rheology measurements, meibum has been shown to be highly viscoelastic. By measuring the drainage and dewetting dynamics of thin aqueous films from hemispherical surfaces where those films are laden with insoluble layers of lipids at controlled surface pressure, we offer evidence that these layers strongly stabilize the films because of their ability to support surface shearing stresses. This alternative view of the role of meibum can help explain the origin of meibomian gland dysfunction, or dry eye disease, where improper compositions of this lipid mixture do not offer the proper mechanical resistance to breakage and dewetting of the tear film.
Initial Steps of Rubicene Film Growth on Silicon Dioxide.
Scherwitzl, Boris; Lukesch, Walter; Hirzer, Andreas; Albering, Jörg; Leising, Günther; Resel, Roland; Winkler, Adolf
2013-02-28
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV.
Initial Steps of Rubicene Film Growth on Silicon Dioxide
2013-01-01
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV. PMID:23476720
Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R
2015-11-20
This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48 nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.
Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules
NASA Astrophysics Data System (ADS)
Anna, Shelley
2014-03-01
Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.
Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.; Landel, Robert F.
1990-01-01
A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.
Rubber contact mechanics: adhesion, friction and leakage of seals.
Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J
2017-12-13
We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.
The glass-liquid transition of water on hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2008-09-01
Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF6] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF6]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF6] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.
Cobalt stabilization of silver extraordinary optical transmission sensing platforms
Farah, Annette E.; Davidson, Roderick B.; Pooser, Raphael C.; ...
2016-01-25
In this study, plasmon-mediated extraordinary optical transmission (EOT) is finding increased interest for biosensing applications. While Ag nanostructures are capable of the highest plasmonic quality factor of all metals, the performance reliability of pure Ag EOT devices is limited by degradation through environmental interactions. Here we show that EOT devices consisting of nanostructured hole arrays in Ag/Co bilayers show comparable transmission with that of identical hole arrays in Agthin films as well as enhanced reliability measured by the rate of resonance peak redshift and broadening with time. The Ag/Co EOT devices showed 2.6× and 1.9× smaller red shift in shortmore » timescales (20 days) and after 100 days, respectively, while they showed a 1.7× steady-state decrease in rate of bandwidth broadening. This improvement is likely due to the Co metal stabilizing the Agfilm from morphological changes by reducing its propensity to diffuse or dewet on the underlying substrate. The improved reliability of Ag/Co bilayer EOT devices could enable the use of their superior plasmonic properties for optical detection of trace chemicals.« less
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
Kawasaki, S; Tada, T; Persson, B N J
2018-06-27
We study the contact mechanics between 3 different tire tread compounds and a smooth glass surface in water. We study both adhesion and sliding friction at low-sliding speeds. For 2 of the compounds the rubber-glass contact in water is hydrophobic and we observe adhesion, and slip-stick sliding friction dynamics. For one compound the contact is hydrophilic, resulting in vanishing adhesion, and steady-state (or smooth) sliding dynamics. We also show the importance of dynamical scrape, both on the macroscopic level and at the asperity level, which reduces the water film thickness between the solids during slip. The experiments show that the fluid is removed much faster from the rubber-glass asperity contact regions for a hydrophobic contact than for a hydrophilic contact. We also study friction on sandblasted glass in water. In this case all the compounds behave similarly and we conclude that no dewetting occur in the asperity contact regions. We propose that this is due to the increased surface roughness which reduces the rubber-glass binding energy.
Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-02-25
Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.
Phaechamud, Thawatchai; Tuntarawongsa, Sarun
2016-01-01
Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064
Phaechamud, Thawatchai; Tuntarawongsa, Sarun
2016-01-01
Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Li, Ming-Yu; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Lee, Jihoon
2016-12-01
Silver (Ag) nanoparticles (NPs) have been widely adapted in various optoelectronic and sensing applications due to the size, shape and density dependent tunable properties. In this work, the systematic control of the size, configuration and density of self-assembled Ag nanostructures on c-plane sapphire (0001) is demonstrated through the solid state dewetting process by the variation of deposition amount (DA) at two distinctive temperature of 400 °C and 650 °C. The corresponding morphological evolution of Ag nanostructures is systematically discussed based on the diffusion, Volmer-Weber and coalescence growth model. In specific, at the relatively lower temperature of 400 °C, the Ag nanostructures evolve in three distinctive regimes based on the DA control: i.e. the dome-shaped Ag NPs between 2 and 14 nm (regime I), the irregular nano-mounds (NMs) between 20 and 40 nm (regime II), and the coalescence of Ag NMs into a layer between 60 and 200 nm (regime III). Meanwhile, at the relatively higher temperature of 650 °C, due to growth regime shift induced by the enhanced surface diffusion based on the increased thermal energy, the connected Ag NMs are resulted even at higher DAs and evolve along with the gradually increased DAs. The evolution of optical properties such as average reflectivity, plasmonic absorption band and the reflectance maxima (peaks) very sensitively respond to the evolution of size, shape and spacing of Ag nanostructures and discussed based on the surface plasmon, reflection and scattering. Specifically, the dome-shaped configuration exhibits strong absorption in the NIR region and weak absorption in visible region while the elongated NMs show the enhanced absorption in visible region. Furthermore, the Raman spectra (A 1g vibrational mode) of the Ag nanostructures demonstrate the strong correlation with the evolution of size, density and surface coverage of the nanostructures.
Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube-3
2017-12-14
however, several universal and intrinsic problems remain. First, since the dewetting of a thin catalyst film into particles upon heating is a... heated to 800 °C in 15 minutes under Ar atmosphere, maintained for various times, and cooled down to room temperature. - Annealing of Fe-implanted...located 12 cm downstream from the middle of the tube reactor. Then the reactor was heated to 820 °C over 15 min with flowing Ar gas. During the ramping
Giri, Gaurav; Park, Steve; Vosgueritchian, Michael; Shulaker, Max Marcel; Bao, Zhenan
2014-01-22
Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution-sheared and lattice-strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 μm wide solvent wetting regions promotes formation of highly strained, aligned, and single-crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.
Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert
2013-06-25
Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325
Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement
NASA Astrophysics Data System (ADS)
Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.
2018-05-01
Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.
The physics of lipid droplet nucleation, growth and budding.
Thiam, Abdou Rachid; Forêt, Lionel
2016-08-01
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.
2017-10-01
In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.
CVD Polymers for Devices and Device Fabrication.
Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K
2017-03-01
Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon
2017-12-01
Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon
2017-05-01
Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.
Cook, Kevin M; Nissley, Daniel A; Ferguson, Gregory S
2013-06-11
A protection-deprotection strategy, using gold oxide as a passivating layer, was used to direct the self-assembly of monolayers (SAMs) selectively at individual gold microelectrodes in an array. This approach allowed the formation of hydroxyl-terminated monolayers, without side reactions, in addition to hydrocarbon and fluorocarbon SAMs. Fluorescence microscopy was used to visualize selective dewetting of hydrophobic monolayers by an aqueous dye solution, and spatially resolved X-ray photoelectron spectroscopy was used to demonstrate a lack of cross-contamination on neighboring microelectrodes in the array.
Reconfigurable liquid metal circuits by Laplace pressure shaping
NASA Astrophysics Data System (ADS)
Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.
2012-10-01
We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
Feng, Xunda; Mei, Shilin; Jin, Zhaoxia
2011-12-06
We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society
Capsules with highly active pores and interiors: versatile platforms at the nanoscale.
Müller, Achim; Gouzerh, Pierre
2014-04-22
Spherical porous capsules offer new exciting approaches in chemistry, materials sciences, and in context of physical and biological phenomena. The underlying concepts are reported with particular emphasis on metal oxide based capsules of the {M132 } Keplerate type which display-due to their exceptional structural features and easy variation/derivatization as well as exchange of building units-an unmatched range of properties and offer unique opportunities for investigating a variety of basic aspects of nanoscience, including the discovery of some new phenomena, especially those related to hydrophobicity issues that are of significance for everyday life. This relies in particular on the existence of a large number of flexible crown ether type pores/channels and the possibility of changing the interior from completely hydrophilic to completely hydrophobic due to the presence of numerous easily exchangeable internal ligands/functionalities; the capsules can even be constructed so that they enclose a large number of highly active Lewis and Brønsted acid sites. The manifold of possible applications/uses are outlined as subtitles with reference to results as well as possible future studies. There are, among many others, options to control passing cations under different internal frames allowing also their separations, to conduct studies about hydrophobic recognitions and clustering of biological interest in water, controlled internal ion transport, nanoscale dewetting, and to carry out basic as well as new types of reactions under confined conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water Dynamics and Dewetting Transitions in the Small Mechanosensitive Channel MscS
Anishkin, Andriy; Sukharev, Sergei
2004-01-01
The dynamics of confined water in capillaries and nanotubes suggests that gating of ion channels may involve not only changes of the pore geometry, but also transitions between water-filled and empty states in certain locations. The recently solved heptameric structure of the small mechanosensitive channel of Escherichia coli, MscS, has revealed a relatively wide (7–15 Å) yet highly hydrophobic transmembrane pore. Continuum estimations based on the properties of pore surface suggest low conductance and a thermodynamic possibility of dewetting. To test the predictions we performed molecular dynamics simulations of MscS filled with flexible TIP3P water. Irrespective to the initial conditions, several independent 6-ns simulations converged to the same stable state with the pore water-filled in the wider part, but predominantly empty in the narrow hydrophobic part, displaying intermittent vapor-liquid transitions. The polar gain-of-function substitution L109S in the constriction resulted in a stable hydration of the entire pore. Steered passages of Cl− ions through the narrow part of the pore consistently produced partial ion dehydration and required a force of 200–400 pN to overcome an estimated barrier of 10–20 kcal/mole, implying negligibly low conductance. We conclude that the crystal structure of MscS does not represent an open state. We infer that MscS gate, which is similar to that of the nicotinic ACh receptor, involves a vapor-lock mechanism where limited changes of geometry or surface polarity can locally switch the regime between water-filled (conducting) and empty (nonconducting) states. PMID:15111405
Gold-Based Nanostructures for Ultrafast Dynamic Nanothermometer
NASA Astrophysics Data System (ADS)
Sun, Hongtao
Nano-scale temperature measurements are of significance for fundamental understanding of functional applications and nanosystems, requiring ultimate miniaturization of thermometers with reduced size, maintained sensitivity, simplicity and accuracy of temperature reading. Particularly, grand challenges exist for scenarios of combustion or thermal shock where materials may be subjected to drastic temperature variations and extreme thermal flux, and dynamic thermal sensors with an ultrafast response (seconds to milliseconds) are yet to be developed. Targeting the developments of advanced nano-scale thermal sensors with a fast time response and rapid readout, this thesis reports innovative designs of high surface-to-volume ratio gold nanostructures including ultrathin gold island films on transparent quartz substrates and silica-gold core-shell (SiO2 Au) nanospheres as potential dynamic thermal sensors for accurate temperature determination. The sensing mechanism is based on strong temperature dependences of the thermally-dewetting-induced morphological self-reorganization and characteristic surface plasmon (SP) absorption of the gold nanostructures. The irreversible thermally-induced morphological and optical signatures behave as characteristic "fingerprints" for temperature recording, allowing the retrieval of thermal history ex-situ. The fundamental studies of thermal-induced dewetting process and its corresponding unique optical properties were extensively investigated by high resolution scanning electron microscopy (HR-SEM), atomic force microscopy (AFM), and UV-vis-NIR spectroscopy, which illustrate temperature and time dependent variations. As compared with current nanothermometer technologies such as metal-filled nanotubes, our thermo-sensor offers positively synergistic advantages of ultrafast time response, permanent recording and fast readout of thermal history, and ex-situ capability for effective temperature measurements. In addition, SiO2 Au nanospheres display simultaneously enhanced near bandgap edge (NBE) emissions and suppress defect level emission (DLE) of poly(vinyl alcohol) (PVA) zinc oxide nanoparticles (ZnO NPs), significantly improving the UV emission of the ZnO. Maximum emission enhancement by nearly 4 times was observed using SiO2 Au nanospheres with SP band at 554 nm. The enhanced UV emission is ascribed to the transfer of the energetic electrons excited by SP from gold nanoshells to the conduction band of ZnO. As a result of their superior tunability of surface plasmon resonance (SPR), the SiO2 Au core/shell nanospheres may be very useful in tuning the photoluminescence for a wide range of optoelectronic applications.
Free-Surface and Contact Line Motion of Liquid in Microgravity
NASA Technical Reports Server (NTRS)
Schwartz, Leonard W.
1996-01-01
This project involves fundamental studies of the role of nonlinearity in determining the motion of liquid masses under the principal influences of surface tension, viscosity and inertia. Issues to be explored are relevant to aspects of terrestrial processes, as well as being immediately applicable to fluid management in a low-gravity environment. Specific issues include: (1) the mechanic's of liquid masses in large-amplitude motions, (2) the influence of bounding surfaces on the motion, and (3) the ability of such surfaces to control liquid motion by wetting forces, especially when they are augmented by various surface treatments. Mathematical techniques include asymptotic analysis of the governing equations, for problem simplification, and numerical simulation, using both boundary-element and finite-difference methods. The flow problem is divided into an 'outer' or inviscid potential-flow region and one or more inner, or viscous dominated, regions. Relevant to one inner region, the vicinity of the contact line, we discuss time-dependent simulation of slow droplet motion, on a surface of variable wettability, using the lubrication approximation. The simulation uses a disjoining pressure model and reproduces realistic wetting-dewetting behavior.
NASA Astrophysics Data System (ADS)
Paul, Abhijit
Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that grafting methods have little effect on inherent electronic properties of SWCNT. A key observation was that the behavior of polymer-SWCNT composites is analogous to polymer thin films containing two different lengths of chemically same polymers. On the other hand, semifluorinated copolymers had hydrophobic and lipophilic properties similar to homopolymers of poly(perfluoroalkyl methacrylates), but were not active in detoxification of Paraoxon. Therefore, semi-fluorinated latexes can either act as phase transfer catalysts for hydrolysis of organophosporous compounds or repel the compound, but cannot do both.
Coupled Heat Transfer and Fluid Dynamics Modeling of InSb Solidification
NASA Astrophysics Data System (ADS)
Barvinschi, Paul; Barvinschi, Floricica
2011-10-01
A method for the directional solidification of melted InSb in a silica ampoule is presented and solved with COMSOL Multiphysics. The configuration and initial boundary settings of the model resemble those used in a de-wetting vertical Bridgman configuration [1]. A slightly modified version of the method presented by Voller and Prakash [2] is used to account for solidification of the liquid phase, including convection and conduction heat transfer with mushy region phase change. Axial-symmetric numerical simulations of temperature and velocity fields, under normal gravity, are carried out using different thermal conditions.
Polymers and biopolymers at interfaces
NASA Astrophysics Data System (ADS)
Hall, A. R.; Geoghegan, M.
2018-03-01
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and ‘smart’ materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A
2014-10-14
The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.
Topography printing to locally control wettability.
Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S
2006-06-21
This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.
Novel self-organization mechanism in ultrathin liquid films: theory and experiment.
Trice, Justin; Favazza, Christopher; Thomas, Dennis; Garcia, Hernando; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
2008-07-04
When an ultrathin metal film of thickness h (<20 nm) is melted by a nanosecond pulsed laser, the film temperature is a nonmonotonic function of h and achieves its maximum at a certain thickness h*. This is a consequence of the h and time dependence of energy absorption and heat flow. Linear stability analysis and nonlinear dynamical simulations that incorporate such intrinsic interfacial thermal gradients predict a characteristic pattern length scale Lambda that decreases for h>h*, in contrast to the classical spinodal dewetting behavior where Lambda increases monotonically as h2. These predictions agree well with experimental observations for Co and Fe films on SiO2.
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing
2018-02-01
Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...
2014-11-04
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy
NASA Astrophysics Data System (ADS)
Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang
2003-03-01
CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias
2013-09-01
Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow onmore » rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.« less
Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2012-02-15
The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Chen, Ying; Mao, Jianfei; Liu, Chunhua; Yuan, Hongyan; Xiao, Dan; Choi, Martin M F
2009-01-20
In this work, solid-state tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ditetrakis(4-chlorophenyl)borate ([Ru(dpp)(3)][(4-Clph)(4)B](2)) nanoislands are assembled spontaneously and simultaneously on an indium-doped tin oxide (ITO) glass electrode surface via a facile dewetting procedure. The fabrication process is very simple and also amenable to mass production. The as-prepared ruthenium complex nanoislands exhibit useful properties. The electrode is more electrochemically active and can produce strong, stable, reproducible solid-state electrochemiluminescence (ECL) signals using oxalate as the coreactant. The self-assembled nanoislands exhibit semiconductor-like broad, red-shift ECL spectrum. More importantly, they extend the application of the ruthenium complex ECL system from the usual alkaline to acidic conditions. The pH turn-off behavior of the ECL is observed for the first time and can serve as an ultrasensitive pH sensor around physiological pH 7.0. The solid-state [Ru(dpp)(3)][(4-Clph)(4)B](2) ECL signal is efficiently inhibited by phenol even at a very low concentration (i.e., 20 nM), thus providing the potential for the determination of phenolic compounds in practical applications.
Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito
2018-05-01
In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.
NASA Astrophysics Data System (ADS)
Sudheer, Mukherjee, C.; Rai, S. K.; Rai, V. N.; Srivastava, A. K.
2018-04-01
Instability in morphological and optical properties of sputtered grown percolated gold (Au) film has been experimentally investigated during ambient aging. Optical absorbance of the film recorded at various stage of aging shows huge variation in the spectra. A schematic is drawn to explain aging-assist evolution in the morphology (dewetting) and correlated with the variation in optical properties. The validity of model is confirmed by X-ray reflectivity (XRR) techniques, performed for both as-deposited and aged samples. Furthermore, change in the color of Au thin film with aging also seen in the photographic images of the samples that also support the absorbance and XRR results.
Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method.
Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito
2018-05-11
In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.
Zhao, Yuewu; Shang, Qiuwei; Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin
2015-06-10
Surface patterns of well-defined nanostructures play important roles in fabrication of optoelectronic devices and applications in catalysis and biology. In this paper, the diporphyrin honeycomb film, composed of titanium dioxide, protoporphyrin IX, and hemin (TiO2/PPIX/Hem), was synthesized using a dewetting technique with the well-defined polystyrene (PS) monolayer as a template. The TiO2/PPIX/Hem honeycomb film exhibited a higher photoelectrochemical response than that of TiO2 or TiO2/PPIX, which implied a high photoelectric conversion efficiency and a synergistic effect between the two kinds of porphyrins. The TiO2/PPIX/Hem honeycomb film was also a good photosensitizer due to its ability to generate singlet oxygen ((1)O2) under irradiation by visible light. This led to the use of diporphyrin TiO2/PPIX/Hem honeycomb film for the photocatalytic inactivation of bacteria. In addition, the photocatalytic activities of other metal-diporphyrin-based honeycomb films, such as TiO2/MnPPIX/Hem, TiO2/CoPPIX/Hem, TiO2/NiPPIX/Hem, TiO2/CuPPIX/Hem, and TiO2/ZnPPIX/Hem, were investigated. The result demonstrated that the photoelectric properties of diporphyrin-based film could be effectively enhanced by further coupling of porphyrin with metal ions. Such enhanced performance of diporphyrin compounds opened a new way for potential applications in various photoelectrochemical devices and medical fields.
NASA Astrophysics Data System (ADS)
Krupinski, M.; Perzanowski, M.; Zabila, Y.; Zarzycki, A.; Marszałek, M.
2017-03-01
In this paper the influence of surface topography on Rutherford backscattering spectrometry (RBS) is discussed. (Cu/Fe/Pd) multilayers with total thickness of about 10 nm were deposited by physical vapor deposition on self-organized array of SiO2 nanoparticles with the size of 50 nm and 100 nm. As a reference, the multilayered systems were also prepared on flat substrates under the same conditions. After the deposition, morphology of the systems was studied by scanning electron microscopy (SEM), while chemical analysis was performed using Rutherford backscattering spectrometry. It was found that the RBS spectra and determined compositions for flat and patterned multilayers differ. The difference is discussed by taking into account the effect of additional inelastic scattering and energy straggling occurring due to developed topography of patterned systems. Then, the multilayers were annealed in 600 °C in order to obtain FePdCu alloy. The phenomenon of solid-state dewetting resulted in the formation of isolated alloy islands on the top of SiO2 nanoparticles. The SEM and RBS analysis were repeated showing correlation between the size distribution of obtained alloy islands and broadening of peaks appearing in RBS spectra. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.
NASA Astrophysics Data System (ADS)
Nelson, Chris; Anna, Shelley
2013-11-01
Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.
Moving contact lines on vibrating surfaces
NASA Astrophysics Data System (ADS)
Solomenko, Zlatko; Spelt, Peter; Scott, Julian
2017-11-01
Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.
Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao
2018-01-01
Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response
Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...
2017-07-03
Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less
Instability, rupture and fluctuations in thin liquid films: Theory and computations
NASA Astrophysics Data System (ADS)
Gvalani, Rishabh; Duran-Olivencia, Miguel; Kalliadasis, Serafim; Pavliotis, Grigorios
2017-11-01
Thin liquid films are ubiquitous in natural phenomena and technological applications. They are commonly studied via deterministic hydrodynamic equations, but thermal fluctuations often play a crucial role that still needs to be understood. An example of this is dewetting, which involves the rupture of a thin liquid film and the formation of droplets. Such a process is thermally activated and requires fluctuations to be taken into account self-consistently. Here we present an analytical and numerical study of a stochastic thin-film equation derived from first principles. We scrutinise the behaviour of the stochastic thin film equation in the limit of perfectly correlated noise along the wall-normal direction. We also perform Monte Carlo simulations of the stochastic equation by adopting a numerical scheme based on a spectral collocation method. The numerical scheme allows us to explore the fluctuating dynamics of the thin film and the behaviour of the system's free energy close to rupture. Finally, we also study the effect of the noise intensity on the rupture time, which is in good agreement with previous works. Imperial College London (ICL) President's PhD Scholarship; European Research Council Advanced Grant No. 247031; EPSRC Grants EP/L025159, EP/L020564, EP/P031587, EP/L024926, and EP/L016230/1.
Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang
2017-12-01
External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J
2014-12-02
The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.
Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei
2013-03-12
In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.
Mechanism of morphology transformation during annealing of nanostructured gold films on glass.
Karakouz, Tanya; Tesler, Alexander B; Sannomiya, Takumi; Feldman, Yishay; Vaskevich, Alexander; Rubinstein, Israel
2013-04-07
Nanostructured, just-percolated gold films were prepared by evaporation on bare glass. Annealing of the films at temperatures close to or higher than the softening temperature of the glass substrate induces morphological transformation to discrete Au islands and gradual embedding of the formed islands in the glass. The mechanism and kinetics of these processes are studied here using a combination of in situ high-temperature optical spectroscopy; ex situ characterization of the island shape by high-resolution scanning electron microscopy (HRSEM), atomic force microcopy (AFM) and cross-sectional transmission electron microscopy (TEM); and numerical simulations of transmission spectra using the Multiple Multipole Program (MMP) approach. It is shown that the morphological transformation of just-percolated, 10 nm (nominal thickness) Au films evaporated on glass and annealed at 600 °C, i.e., in the vicinity of the substrate glass transition temperature (Tg = 557 °C), proceeds via three processes exhibiting different time scales: (i) fast recrystallization and dewetting, leading to formation of single-crystalline islands (minutes); the initial spectrum characteristic of a continuous Au film is transformed to that of an island film, displaying a surface plasmon (SP) absorption band. (ii) Reshaping and faceting of the single-crystalline islands accompanied by formation of circumferential glass rims around them (first few hours); the overall optical response shows a blue shift of the SP band. (iii) Gradual island embedding in the glass substrate (tens of hours), seen as a characteristic red shift of the SP band. The influence of the annealing atmosphere (air, vacuum) on the embedding process is found to be minor. Numerical modeling of the extinction cross-section corresponding to the morphological transformations during island recrystallization and embedding is in qualitative agreement with the experimental data.
Optimization of Indium Bump Morphology for Improved Flip Chip Devices
NASA Technical Reports Server (NTRS)
Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.
2011-01-01
Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.
Welsch, Nicole; Lyon, L Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.
Lyon, L. Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648
Effect of curvature on wetting and dewetting of proboscises of butterflies and moths
Zhang, Chengqi; Beard, Charles E.; Adler, Peter H.
2018-01-01
Proboscises of butterflies are modelled as elliptical hollow fibres that can be bent into coils. The behaviour of coating films on such complex fibres is investigated to explain the remarkable ability of these insects to control liquid collection after dipping the proboscis into a flower or pressing and mopping it over a food source. By using a thin-film approximation with the air–liquid interface positioned almost parallel to the fibre surface, capillary pressure was estimated from the profile of the fibre surfaces supporting the films. The film is always unstable and the proboscis shape and movements have adaptive value in collecting fluid: coiling and bending of proboscises of butterflies and moths facilitate fluid collection. Some practical applications of this effect are discussed with regard to fibre engineering. PMID:29410834
The destabilization of an initially thick liquid sheet edge
NASA Astrophysics Data System (ADS)
Lhuissier, Henri; Villermaux, Emmanuel
2011-09-01
By forcing the sudden dewetting of a free soap film attached on one edge to a straight solid wire, we study the recession and subsequent destabilization of its free edge. The newly formed rim bordering the sheet is initially thicker than the film to which it is attached, because of the Plateau border preexisting on the wire. The initial condition is thus that of an immobile massive toroidal rim connected to a thin liquid film of thickness h. The terminal Taylor-Culick receding velocity V =√2σ/ρh , where σ and ρ are the liquid surface tension and density, respectively, is only reached after a transient acceleration period which promotes the rim destabilization. The selected wavelength and associated growth time coincide with those of an inertial instability driven by surface tension.
NASA Astrophysics Data System (ADS)
Di Mario, Lorenzo; Otomalo, Tadele Orbula; Catone, Daniele; O'Keeffe, Patrick; Tian, Lin; Turchini, Stefano; Palpant, Bruno; Martelli, Faustino
2018-03-01
We present stationary and transient absorption measurements on 3D Au nanoparticle (NP)-decorated Si O2 nanowire arrays. The 3D NP array has been produced by the dewetting of a thin Au film deposited on silica nanowires produced by oxidation of silicon nanowires. The experimental behaviors of the spectral and temporal dynamics observed in the experiment are accurately described by a two-step, three-temperature model. Using an arbitrary set of Au NPs with different aspect ratios, we demonstrate that the width of the experimental spectra, the energy shift of their position with time, and the asymmetry between the two positive wings in the dynamical variation of absorption can all be attributed to the nonuniform shape distribution of the Au NPs in the sample.
NASA Astrophysics Data System (ADS)
Chang, Te-Wei
With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material, and improved deposition technique are discussed in detail. Interesting phenomena have been found including the influence of Raman enhancement on substrate material selection and hot-spot rich bimetallic nanostructures by physical vapor deposition on metallic seed array, which are barely discussed in past literature but significantly affect the performance of SERS substrate. The optimized bimetallic backplane assisted resonating nanoantenna (BARNA) SERS substrate is demonstrated with the enhancement factor (EF) of 5.8 x 108 with 4.7 % relative standard deviation. By serial combination with optical focusing from nanojet effect, the nanojet and surface enhanced Raman scattering (NASERS) are proved to provide more than three orders of enhancement and enable us to perform stable, nearly single molecule detection. The second part of this thesis includes the development of a parallel dual functional nano Lycurgus cup array (nanoLCA) plasmonic device fabricated by nanoimprint replica technique. The unique configuration of the periodic nanoscale cup-shaped substrate enables a novel hybrid resonance coupling between SPR from extraordinary (EOT) and LSPR from dense sidewall metal nanoparticles with only single deposition process. The sub-50nm dense sidewall metal nanoparticles lead to high SERS performance in solution based detection, by which most biological and chemical analyses are typically performed. The SERS EF was calculated as 2.8 x 107 in a solution based environment with 10.2 % RSD, which is so far the highest reported SERS enhancement achieved with similar periodic EOT devices. In addition, plasmonic colorimetric sensing can be achieved in the very same device and the sensitivity was calculated as 796 nm/RIU with the FOM of 12.7. It creates a unique complementary sensing platform with both rapid on-site colorimetric screening and follow-up precise Raman analysis for point of care and resource limited environment applications. The implementations of bifunctional sensing on opto-microfluidic and smartphone platforms are proposed and examined here as well.
NASA Astrophysics Data System (ADS)
Jafari, M.; Cao, S. C.; Jung, J.
2017-12-01
Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying weaker water-wet behavior. Pore-scale CA, which realistically represents rocks wettability behavior, shows weaker water-wet behavior than conventional measurement methods, which must be considered for safety of geological storage.
Influence of Containment on the Growth of Germanium-Silicon in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.
2017-01-01
A series of Ge(sub 1-x)Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and 'detached' Bridgman methods and the ground-based float zone technique. 'Detached' or 'dewetted' Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. A meniscus bridges this gap between the top of the crystal and the crucible wall. Theoretical models indicate that an important parameter governing detachment is the pressure differential across this meniscus. An experimental method has been developed to control this pressure differential in microgravity that does not require connection of the ampoule volume to external gases or changes in the temperature profile during growth. Experiments will be conducted with positive, negative or zero pressure differential across the meniscus. Characterization results of ground-based experiments, including etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction will also be described.
Meng, Lili; Bian, Ruixin; Guo, Cheng; Xu, Bojie; Liu, Huan; Jiang, Lei
2018-06-01
Recent years have witnessed the booming development of transparent flexible electrodes (TFEs) for their applications in electronics and optoelectronic devices. Various strategies have thus been developed for preparing TFEs with higher flexibility and conductivity. However, little work has focused on TFEs with anisotropic conductivity. Here, a facile strategy of directional liquid transfer is proposed, guided by a conical fibers array (CFA), based on which silver nanowires (AgNWs) are aligned on a soft poly(ethylene terephthalate) substrate in large scale. After further coating a second thin layer of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), a TFE with notable anisotropic conductivity and excellent optical transmittance of 95.2% is prepared. It is proposed that the CFA enables fine control over the receding of the three-phase contact line during the dewetting process, where AgNWs are guided and aligned by the as-generated directional stress. Moreover, anisotropic electrochemical deposition is enabled where the Cu nanoparticles deposit only on the oriented AgNWs, leading to a surface with anisotropic wetting behavior. Importantly, the approach enables alignment of AgNWs via multiple directions at one step. It is envisioned that the as-developed approach will provide an optional approach for simple and low-cost preparation of TFE with various functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Anand, Madhu
Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide require the use of environmentally persistent fluorinated compounds as metal precursors and/or stabilizing ligands. This dissertation presents the first report of the simultaneous synthesis and stabilization of metallic nanoparticles in carbon dioxide solvent without the use of any fluorinated compounds thereby further enabling the use of CO 2 as a green solvent medium in nanomaterials synthesis and processing.
Lensless microscopy technique for static and dynamic colloidal systems.
Alvarez-Palacio, D C; Garcia-Sucerquia, J
2010-09-15
We present the application of a lensless microscopy technique known as digital in-line holographic microscopy (DIHM) to image dynamic and static colloidal systems of microspheres. DIHM has been perfected up to the point that submicrometer lateral resolution with several hundreds of micrometers depth of field is achieved with visible light; it is shown that the lateral resolution of DIHM is enough to resolve self-assembled colloidal monolayers built up from polystyrene spheres with submicrometer diameters. The time resolution of DIHM is of the order of 4 frames/s at 2048 x 2048 pixels, which represents an overall improvement of 16 times the time resolution of confocal scanning microscopy. This feature is applied to the visualization of the migration of dewetting fronts in dynamic colloidal systems and the formation of front-like arrangements of particles. Copyright 2010 Elsevier Inc. All rights reserved.
Detached Growth of Germanium by Directional Solidification
NASA Technical Reports Server (NTRS)
Palosz, W.; Volz, M.; Cobb, S.; Motakef, S.; Szofran, F. R.
2004-01-01
Detached crystal growth technique (dewetting) offers improvement in the quality of the grown crystals by preventing sticking to the walls of the crucible and thus reducing the possibility of parasitic nucleation and formation of lattice defects upon cooling. One of the factors relevant for the phenomena is the pressure differential across the meniscus at the crystal-melt interface. We investigated this effect experimentally. The growth took place in closed ampoules under the pressure of an inert gas (forming gas: 96% Ar + 4% H2). The pressure above the melt was adjustable and allowed for a control of the pressure difference between the top and bottom menisci. The crystals were characterized, particularly by taking profilometer measurements along the grown crystals surface. The effects of the experimental conditions on the detachment were compared with those predicted based on the theory of Duffar et al.
Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore
2017-01-01
We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface. PMID:28985466
Wettability of natural superhydrophobic surfaces.
Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P
2014-08-01
Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki
2014-11-11
We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.
Thermally tailored gradient topography surface on elastomeric thin films.
Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata
2014-05-14
We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.
NASA Astrophysics Data System (ADS)
Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana
2017-07-01
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens
Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; ...
2015-09-17
Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less
Numerical simulations of electrohydrodynamic evolution of thin polymer films
NASA Astrophysics Data System (ADS)
Borglum, Joshua Christopher
Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.
Unorthodox bubbles when boiling in cold water.
Parker, Scott; Granick, Steve
2014-01-01
High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boreyko, Jonathan B.; Srijanto, Bernadeta R.; Nguyen, Trung Dac
Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven bymore » the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.« less
Leem, Jung Woo; Yu, Jae Su
2012-10-01
We reported the bioinspired periodic pinecone-shaped silicon (Si) subwavelength nanostructures, which were fabricated by laser interference lithography and inductively coupled plasma etching using thermally dewetted gold (Au) nanoparticles in SiCl4 plasma, on Si substrates for broadband and wide-angle antireflective surface. For the fabricated pinecone-like Si subwavelength nanostructures, antireflection characteristics and wetting behaviors were investigated. The pinecone-shaped Si subwavelength nanostructure with a period of 320 nm for 7 nm of Au film exhibited a relatively low solar weighted reflectance value of 3.5% over a wide wavelength range of 300-1030 nm, maintaining the reflectance values of < 9.9% at a wavelength of 550 nm up to a high incident angle of theta(i) = 70 degrees for non-polarized light. This structure also showed a hydrophobic surface with a water contact angle of theta(c) approximately 102 degrees.
Initial stages of organic film growth characterized by thermal desorption spectroscopy
Winkler, Adolf
2015-01-01
In the wake of the increasing importance of organic electronics, a more in-depth understanding of the early stages of organic film growth is indispensable. In this review a survey of several rod-like and plate-like organic molecules (p-quaterphenyl, p-sexiphenyl, hexaazatriphenylene-hexacarbonitrile (HATCN), rubicene, indigo) deposited on various application relevant substrates (gold, silver, mica, silicon dioxide) is given. The focus is particularly put on the application of thermal desorption spectroscopy to shed light on the kinetics and energetics of the molecule-substrate interaction. While each adsorption system reveals a manifold of features that are specific for the individual system, one can draw some general statements on the early stages of organic film formation from the available datasets. Among the important issues in this context is the formation of wetting layers and the dewetting as a function of the substrate surface conditions, organic film thickness and temperature. PMID:26778860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnoult, G.; Belmonte, T.; Henrion, G.
Self-organization of SiO{sub 2} nanodots is obtained by chemical vapor deposition out of hexamethyldisiloxane (HMDSO) and atmospheric pressure remote Ar-O{sub 2} plasma operating at high temperature (1200-1600 K). The dewetting of the film being deposited when it is still thin enough (<500 nm) is found to be partly responsible for this self-organization. When the coating becomes thicker (approx1 mum), and for relatively high contents in HMDSO, SiO{sub 2} walls forming hexagonal cells are obtained on a SiO{sub 2} sublayer. For thicker coatings (>1 mum), droplet-shaped coatings with a Gaussian distribution in thickness over their width are deposited. The coatings aremore » submitted to high compressive stress. When it is relaxed, 'nestlike structures' made of nanoribbons are synthesized.« less
Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann
Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less
NASA Astrophysics Data System (ADS)
Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.
2006-03-01
Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.
Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.
Li, Isaac T S; Walker, Gilbert C
2010-05-12
The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.
2014-01-01
A series of Ge Si crystal growth experiments are planned to be conducted in the Low 1-x x Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.
A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2017-04-01
Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.
Adsorption of copolymers at polymer/air and polymer/solid interfaces
NASA Astrophysics Data System (ADS)
Oslanec, Robert
Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Wenbo; Li, Jinjing; Polsen, Erik S.
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less
Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L
2017-04-20
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.
Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...
2017-04-11
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less
Strong light absorption capability directed by structured profile of vertical Si nanowires
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2017-11-01
Si nanowire arrays (SiNWAs) with random fractal geometry was fabricated using fast, mask-less, non-lithographic and facile approach by incorporating metal assisted electroless etching of n-type Si (111) substrates. The FESEM images demonstrate the formation of nano-porous surfaces that provide effective path for the incoming light to get trapped into the cavity of nanowires. The length of NWs increases from ∼1 to 10 μm with increase in the etching time having a diameter in the range of ∼25-82 nm. A transformation from zero to first order kinetics after a prolonged etching has been determined. The synthesized SiNWAs show high light trapping properties, including a maximum photon absorption across the entire visible and near IR range below the band gap of Si. The SiNWAs etched for 15 min exhibit extremely low specular and total reflectance of ∼0.2% and 4.5%, respectively over a broadband of wavelength. The reduction in the reflection loss is accompanied with the gradient of refractive index from air to Si substrate as well as due to the sub-wavelength structures, which manifests the light scattering effect. The COMSOL multiphysics simulation has been performed to study the high broadband light absorption capability in terms of the strong localized light field confinement by varying the length of the nanowire. Moreover, the SiNWs induces the dewetting ability at the solid/liquid interface and enhances the superhydrophobicity. Furthermore, a maximum length scale of 100-200 nm manifests a strong heterogeneity along the planar section of the surface of SiNWs. The study thus provides an insight on the light propagation into the random fractal geometries of Si nanowires. These outstanding properties should contribute to the structural optimization of various optoelectronic and photonic devices.
NASA Astrophysics Data System (ADS)
Stephens, Jean S.
Electrospinning is a fiber formation technique that uses electrostatic forces to create continuous, nanometer diameter fibers. The work presented here focuses on the continuing efforts to build a stronger fundamental understanding of electrospinning by exploring structure/property/process relationships by investigating the effects of process protocols on fiber surface morphology and polymer chain conformation. By varying the processing parameters it has been possible to produce fibers with unique surface features, microtextured/nanoporous fibers and nanowebs. In the microtextured/nanoporous fiber studies, changing the solution concentration, solvent volatility, and relative humidity was found to alter the size, shape, and distribution of pores on the fiber surface. The mechanisms that can explain the pore formation and texturing on the surface of the fibers are phase separation (aggregation into polymer rich and polymer lean regions) and breath figures (evaporative cooling and vapor condensation). Through a judicious choice of the electrospinning processing parameters we have also been able to create "web" like structures of nanofibers (5--25 nm) from collagen, dragline silk analog, nylon, and denatured collagen. Electrostatic repulsion and thin film dewetting are thought to be responsible for the formation of the nanowebs. These unique structures were characterized using FESEM, TEM, OM, and AFM. Raman spectroscopy, initially developed as a "real time" characterization technique to study electrospun fiber formation, has also been used to investigate the effect of electrospinning on the chain conformation of bioinspired polymers. Comparing the spectrum of the bulk material to that of the electrospun material identified conformational changes in nylon 6 and dragline silk analog. The conformational change in nylon 6 (alpha-form to gamma-form) results from the stresses induced on the electrospinning jet during fiber formation, whereas the conformational change in the silk analog (beta-sheet to alpha-helical) result from electric field assembling of the charged a-helical segments of the protein polymer in solution. The investigations described here have allowed us to build a virtual database of the processing conditions needed to create materials for tissue engineering constructs. Electrospun collagen membranes have been used in preliminary cell attachment studies. From the trials it was observed that the cells migrated into the membranes indicating that the membranes are suitable for tissue engineering scaffolds.
RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry.
Pedroso, Tahisa M; Medeiros, Ana C D; Salgado, Herida R N
2016-11-01
Ertapenem sodium is a polar and ionizable compound; therefore, it has little retention on traditional C18 columns in reverse-phase high-performance liquid chromatography, even using a highly-aqueous mobile phase that can result in dewetting in the stationary phase. Thus, the most coherent process for ERTM is to develop a method for Hydrophilic Interaction Chromatography. However, for the traditional methods in HILIC, the use of a highly organic mobile phase is necessary; usually an amount exceeding 80% acetonitrile is necessary. On the other hand, the RP-HPLC mode is considered for the analysis technique, which is more often used for quantification of substances, and new columns are often introduced to analyze different groups of compounds. Two new analytical methods have been developed for routine analysis. The proposed chromatographic method was adequate and advantageous by presenting simplicity, linearity, precision, accuracy, robustness, detection limits, and satisfactory quantification. Analytical methods are constantly undergoing changes and improvements. Researchers worldwide are rapidly adopting Green Chemistry. The development of new pharmaceutical methods based in Green chemistry has been encouraged by universities and the pharmaceutical industry. Issues related to green chemistry are in evidence and they have been featured in international journals of high impact. The methods described here have economic advantages and they feature an eco-friendly focus, which is discussed in this work. This work was developed with an environmental conscience, always looking to minimize the possible generated organic waste. Therefore, discussion on this aspect is included. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croell, A.
2012-01-01
A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.
Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M
2016-06-01
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.
NASA Astrophysics Data System (ADS)
Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.
2016-06-01
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.
NASA Astrophysics Data System (ADS)
Delfaus, Stephen; Latuga, Brian M.; Morse, Clinton; McCarney, Evan R.; Rossini, Connie J.; Augustine, Brian H.; Flythe, Michael D.; Rowe, Sean; Baron, Stephen F.; Dennis, Douglas E.
2003-11-01
In-situ atomic force microscopy (AFM) allows for the real-time acquisition and analysis of materials undergoing biological and chemical alterations. A co-polymer blend of poly 3-hydroxybutyrate / poly 3-hydroxyvalerate P(3HB-3HV) were spun-cast onto glass slides to create thin films with film thickness of 40 nm. This polymer is naturally biodegradable by a variety of bacterially produced enzymes. In this study, these materials were degraded by an untyped and concentrated Strptomyces sp. enzyme produced from soil. Using liquid-cell AFM in contact mode, we were able to observe biodegradation uniformly across the surface of the P(3HB-3HV) films beginning within 2 min of introduction of the enzyme. Height standards have been developed using microcontact printing of self assembled monolayers and selective dewetting to produce P(3HB-3HV) structures with dimensions as small as 10 mm. We will discuss the use of microfabricated height standards to measure biodegradation kinetics in these polymers.
Interfacial kinetics in nanosized Au/Ge films: An in situ TEM study
NASA Astrophysics Data System (ADS)
Kryshtal, Aleksandr P.; Minenkov, Alexey A.; Ferreira, Paulo J.
2017-07-01
We investigate the morphology and crystalline structure of Au/Ge films in a wide range of temperatures by in situ TEM heating. Au/Ge films with Au mass thickness of 0.2-0.3 nm and Ge thickness of 5 nm were produced in vacuum by the sequential deposition of components on a carbon substrate at room temperature. It has been shown that particles with an average size of 4 nm, formed by Au film de-wetting, melt on the germanium substrate at temperatures 110-160 °C, which are below the eutectic temperature for the bulk. The effect of crystallization-induced capillary motion of liquid eutectic particles over Ge surface has been found in this work. Formation of metastable fcc phase of Ge has been observed at the liquid-germanium interface and behind the moving particle. Formation of a liquid phase with its subsequent crystallization at the metal-semiconductor interface seems to play a key role in the metal-induced crystallization effect.
Investigating the dominant corrections to the strong-stretching theory for dry polymeric brushes.
Matsen, M W
2004-07-22
The accuracy of strong-stretching theory (SST) is examined against a detailed comparison to self-consistent field theory (SCFT) on dry polymeric brushes with thicknesses of up to approximately 17 times the natural chain extension. The comparison provides the strongest evidence to date that SST represents the exact thick-brush limit of SCFT. More importantly, it allows us to assess the effectiveness of proposed finite-stretching corrections to SST. Including the entropy of the free ends is shown to rectify the most severe inaccuracies in SST. The proximal layer proposed by Likhtman and Semenov provides another significant improvement, and we identify one further effect of similar importance for which there is not yet an accurate treatment. Furthermore, our study provides a valuable means of rejecting mistaken refinements to SST, and indeed one such example is revealed. A proper treatment of finite-stretching corrections is vital to a wide range of phenomena that depend on a small excess free energy, such as autophobic dewetting and the interaction between opposing brushes.
Water repellency in hydrophobic nanocapsules--molecular view on dewetting.
Müller, Achim; Garai, Somenath; Schäffer, Christian; Merca, Alice; Bögge, Hartmut; Al-Karawi, Ahmed Jasim M; Prasad, Thazhe Kootteri
2014-05-26
The hydrophobic effect plays a major role in a variety of important phenomena in chemistry, materials science and biology, for instance in protein folding and protein-ligand interactions. Studies--performed within cavities of the unique metal oxide based porous capsules of the type {(pentagon)12(linker)30}≡{(W)W5}12{Mo2(ligand)}30 with different acetate/water ligand ratios--have provided unprecedented results revealing segregation/repellency of the encapsulated "water" from the internal hydrophobic ligand walls of the capsules, while the disordered water molecules, interacting strongly with each other via hydrogen bonding, form in all investigated cases the same type of spherical shell. The present results can be (formally) compared--but only regarding the repellency effect--with the amazing "action" of the (super)hydrophobic Lotus (Nelumbo) leaves, which are self-cleaning based on water repellency resulting in the formation of water droplets picking up dirt. The present results were obtained by constructing deliberately suitable hydrophobic interiors within the mentioned capsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; ...
2015-11-23
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces
NASA Astrophysics Data System (ADS)
Bouabdellaoui, Mohammed; Checcucci, Simona; Wood, Thomas; Naffouti, Meher; Sena, Robert Paria; Liu, Kailang; Ruiz, Carmen M.; Duche, David; le Rouzo, Judikael; Escoubas, Ludovic; Berginc, Gerard; Bonod, Nicolas; Zazoui, Mimoun; Favre, Luc; Metayer, Leo; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Gurioli, Massimo; Abbarchi, Marco
2018-03-01
We demonstrate a simple self-assembly method based on solid state dewetting of ultrathin silicon films and germanium deposition for the fabrication of efficient antireflection coatings on silicon for light trapping. We fabricate SiGe islands with a high surface density, randomly positioned and broadly varied in size. This allows one to reduce the reflectance to low values in a broad spectral range (from 500 nm to 2500 nm) and a broad angle (up to 55°) and to trap within the wafer a large portion of the impinging light (˜40 % ) also below the band gap, where the Si substrate is nonabsorbing. Theoretical simulations agree with the experimental results, showing that the efficient light coupling into the substrate is mediated by Mie resonances formed within the SiGe islands. This lithography-free method can be implemented on arbitrarily thick or thin SiO2 layers and its duration only depends on the sample thickness and on the annealing temperature.
Morphological evolution of thin polymer film on chemically patterned substrates
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2018-05-01
In this paper work, pattern formation in ultra thin polymer film, adsorbed on chemically patterned substrates, is reported under strong confinement. The observations indicate for the strong influence of the surface attraction over evolution of spindoal waves, leading to the flattening of the film. But, the film appears to be torn apart in strip or nano fiber like structures, because of coalescences of the monomers at the free ends of the chains. The beads at the free ends of the chain are relatively more mobile. The chain diffusion towards attractive part of the chemically patterned surfaces is clearly seen. Prewetting or crystallization like phenomena seems to appear resulting into formation of strips with coexistence of molten phase drops at the top of the ruptured film. The investigation mimics spindoal dewetting because of the fact that the rupturing occurs in case of strong attractive surface. The investigation is of technical importance as it highlights the formation of nano scale strips and fibers though in a quasi equilibrium case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Xie, Dong Yue; Majdi, Tahereh
By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis ofmore » gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl{sub 2}O{sub 4} interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.« less
Soft Nanoimprint Lithography for Direct Printing of Crystalline Metal Oxide Nanostructures
NASA Astrophysics Data System (ADS)
Kothari, Rohit; Beaulieu, Michael; Watkins, James
2015-03-01
We demonstrate a solution-based soft nanoimprint lithography technique to directly print dimensionally-stable crystalline metal oxide nanostructures. A patterned PDMS stamp is used in combination with a UV/thermal cure step to imprint a resist containing high concentrations of crystalline nanoparticles in an inorganic/organic binder phase. The as-imprinted nanostructures are highly crystalline and therefore undergo little shrinkage (less than 5% in some cases) upon thermal annealing. High aspect ratio nanostructures and sub-100 nm features are easily realized. Residual layer free direct imprinting (no etching) was achieved by choosing the resist with the appropriate surface energy to ensure dewetting at stamp-substrate interface. The technique was further extended to stack the nanostructures by deploying a layer-by-layer imprint strategy. The method is scalable and can produce large area device quality nanostructures in a rapid fashion at a low cost. CeO2, ITO and TiO2 nanopatterns are illustrated for their potential use in fuel cell electrodes, solar cell electrodes and photonic devices, respectively.
Functional Annotation of Ion Channel Structures by Molecular Simulation.
Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P
2016-12-06
Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Observation of the pressure effect in simulations of droplets splashing on a dry surface
NASA Astrophysics Data System (ADS)
Boelens, A. M. P.; Latka, A.; de Pablo, J. J.
2018-06-01
At atmospheric pressure, a drop of ethanol impacting on a solid surface produces a splash. Reducing the ambient pressure below its atmospheric value suppresses this splash. The origin of this so-called pressure effect is not well understood, and this study presents an in-depth comparison between various theoretical models that aim to predict splashing and simulations. In this paper, the pressure effect is explored numerically by resolving the Navier-Stokes equations at a 3-nm resolution. In addition to reproducing numerous experimental observations, it is found that different models all provide elements of what is observed in the simulations. The skating droplet model correctly predicts the existence and scaling of a gas film under the droplet, the lamella formation theory is able to correctly predict the scaling of the lamella ejection velocity as a function of the impact velocity for liquids with different viscosity, and lastly, the dewetting theory's hypothesis of a lift force acting on the liquid sheet after ejection is consistent with our results.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo
2017-04-01
We introduce a simple and efficient lattice Boltzmann method for immiscible multiphase flows, capable of handling large density and viscosity contrasts. The model is based on a diffuse-interface phase-field approach. Within this context we propose a new algorithm for specifying the three-phase contact angle on curved boundaries within the framework of structured Cartesian grids. The proposed method has superior computational accuracy compared with the common approach of approximating curved boundaries with stair cases. We test the model by applying it to four benchmark problems: (i) wetting and dewetting of a droplet on a flat surface and (ii) on a cylindrical surface, (iii) multiphase flow past a circular cylinder at an intermediate Reynolds number, and (iv) a droplet falling on hydrophilic and superhydrophobic circular cylinders under differing conditions. Where available, our results show good agreement with analytical solutions and/or existing experimental data, highlighting strengths of this new approach.
Thermodynamic limitations on the resolution obtainable with metal replicas.
Woodward, J T; Zasadzinski, J A
1996-12-01
The major factor limiting resolution of metal-shadowed surfaces for electron and scanning tunnelling microscopy is the granularity of the metal film. This granularity had been believed to result from a recrystallization of the evaporated film, and hence could be limited by use of higher melting point materials for replication, or inhibited by adding carbon or other impurities to the film. However, evaporated and sputtered films of amorphous metal alloys that do not crystallize also show a granularity that decreases with increasing alloy melting point. A simple thermodynamic analysis shows that the granularity results from a dewetting of the typically low surface energy sample by the high surface energy metal film, similar to the beading up of drops of spilled mercury. The metal granularity and the resulting resolution of the metal-coated surface is proportional to the mobility of the metal on the surface after evaporation, which is related to the difference in temperature between the melting point of the metal and the sample surface temperature.
Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep
2015-06-15
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.
Theory and simulation of explicit solvent effects on protein folding in vitro and in vivo
NASA Astrophysics Data System (ADS)
England, Jeremy L.
The aim of this work is to develop theoretical tools for understanding what happens to water that is confined in amphipathic cavities, and for testing the consequences of this understanding for protein folding in vitro and in vivo. We begin in the first chapter with a brief review of the theoretical and simulation literature on the hydrophobic effect and the aqueous solvation of charged species that also puts forward a simple theoretical framework within which various solvation phenomena reported in past studies may be unified. Subsequently, in the second chapter we also review past computational and theoretical work on the specific question of how chaperonin complexes assist the folding of their substrates. With the context set, we turn in Chapter 3 to the case of an open system with water trapped between hydrophobic plates that experiences a uniform electric field normal to and between the plates. Classic bulk theory of electrostriction in polarizable fluids tells us that the electric field should cause an increase in local water density as it rises, yet some simulations have suggested the opposite. We present a mean-field Potts model we have developed to explain this discrepancy, and show how such a simple, coarse-grained lattice description can capture the fundamental consequences of the fact that external electric fields can frustrate the hydrogen bond network in confined water. Chapter 4 continues to pursue the issue of solvent evacuation between hydrophobic plates, but focuses on the impact of chemical denaturants on hydrophobic effects using molecular dynamics simulations of hydrophobic dewetting. We find that while urea and guanidinium have similar qualitative effects at the bulk level, they seem to differ in the microscopic mechanism by which they denature proteins, although both inhibit the onset of dewetting. Lastly, Chapters 5 and 6 examine the potential importance of solvent-mediated forces to protein folding in vivo. Chapter 5 develops a Landau-Ginzburg-type model for solvent free energy and lays out a theoretical argument for a mechanism by which chaperonins may promote the folding of their substrates through a local enhancement of the hydrophobic effect. With this argument in hand, we show results in Chapter 6 from molecular dynamics simulations we performed of different mutants of the bacterial chaperonin GroEL, which demonstrate that the hydrophilicity of the chaperonin cavity correlates with the experimentally measured ability of the cavity to facilitate folding.
Falling drops skating on a film of air
NASA Astrophysics Data System (ADS)
Rubinstein, Shmuel
2012-02-01
When a raindrop hits a window, the surface immediately becomes wet as the water spreads. Indeed, this common observation of a drop impacting a surface is ubiquitous in our everyday experience. I will show that the impact of a drop on a surface is a much richer, more complex phenomenon than our simple experience may suggests: To completely wet the surface the drop must first expel all the air beneath it; however, this does not happened instantaneously. Instead, a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the fluid spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate laterally outward at strikingly high velocities. Simultaneously, the wetting fluid spreads inward at a much slower velocity, trapping a bubble of air within the drop. However, these events occur at diminutive length scales and fleeting time scales; therefore, to visualize them we develop new imaging modalities that are sensitive to the behavior right at the surface and that have time resolution superior to even the very fastest cameras. These imaging techniques reveal that the ultimate wetting of the surface occurs through a completely new mechanism, the breakup of the thin film of air through a spinodal like dewetting process that breaks the cylindrical symmetry of the impact and drives an anomalously rapid spreading of a wetting front. These results are in accord with recent theoretical predictions and challenge the prevailing paradigm in which contact between the liquid and solid occurs immediately, and spreading is dominated by the dynamics of a single contact line.
Film growth, adsorption and desorption kinetics of indigo on SiO2
Scherwitzl, Boris; Resel, Roland; Winkler, Adolf
2015-01-01
Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer des orption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption. PMID:24832297
Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf
2014-05-14
Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation ofmore » dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.« less
Film growth, adsorption and desorption kinetics of indigo on SiO2.
Scherwitzl, Boris; Resel, Roland; Winkler, Adolf
2014-05-14
Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.
Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage
NASA Astrophysics Data System (ADS)
Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu
2018-05-01
Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.
Nanoscale pillar arrays for separations
Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...
2015-04-01
The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less
Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension
NASA Astrophysics Data System (ADS)
Leite Pinto, Rodrigo; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud
2018-02-01
We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that the oil-water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation—located at the surfactant deposition point—decreases with the oil-layer thickness. We also observe a critical oil-layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity. We then provide an analytical modelization that explains quantitatively all these experimental features. In particular, our analysis allows us to derive an analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially resolved tensiometry technique.
Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.
Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V
2017-04-04
The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.
Zolali, Ali M; Favis, Basil D
2017-04-12
In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.
Playing with inclined circular hydraulic jumps
NASA Astrophysics Data System (ADS)
Lebon, Luc; Saget, Beryl; Durand, Marc; Limat, Laurent; Couder, Yves; Receveur, Mathieu
2008-11-01
We have investigated the structure of the circular hydraulic jump, when the jet impacts an inclined plate. At low plate slope, quasi-circular shapes, evolving towards elliptic shapes are observed. At moderate inclinations, the upper and lower jumps become markedly different, and the lower jump is even rejected to infinity when a critical inclination is reached. Above this critical inclination, the jump is coupled to an outer dewetting contact line to give a specific object (expanding impact sheet feeding a curved rim in which the liquid is flowing tangentially). In this regime, both the position and curvature of the upper jump follows unusual scalings with the flow rate that completely differ from those observed on horizontal plates. Finally we have looked to metastable drops trapped in the circular jump at very small inclinations. As reported in a previous APS, the lowest position in the jump can become unstable and the drops oscillate around the jump perimeter. We show that this behavior requires very specific conditions of surface tension and viscosity and propose simple interpretations for the instability mechanism.
Phase field kinetics of lithium electrodeposits
NASA Astrophysics Data System (ADS)
Ely, David R.; Jana, Aniruddha; García, R. Edwin
2014-12-01
A phase field description is formulated to describe the growth kinetics of an heterogeneously nucleated distribution of lithium electrodeposits. The underlying variational principle includes the bulk electrochemical contributions to the free energy of transformation of the system, the electrolyte-dendrite interfacial energy, and the substrate work of adhesion energetics. Results demonstrate that the rate of electrodeposition at the tip of an isolated dendrite is higher than the rate corresponding to the average overpotential, while the back contact is electrochemically shielded, thus favoring elongated, needle-like shapes. For large populations of electrochemically interacting deposits, two spatially distinct regions of behavior develop: one directly facing the counter-electrode where the local surficial electrodeposition dominates the local kinetics; and a second region, in the vicinity of the substrate-deposit interface, where the electrochemical shielding induced by the tip enables lateral electrochemical lithium exchange dendrite coalescence for small contact angle deposits, and dendrite dewetting and electrodissolution for large contact angle deposits. The underlying physical mechanisms through which some lithium nuclei detach from the depositing substrate, self-induce electrodissolution, while other continue to grow and coalesce are described for different contact angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, S. L. A., E-mail: smello@ufv.br; Codeço, C. F. S.; Magnani, B. F.
2016-06-15
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up tomore » 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in
2015-01-21
Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindricalmore » nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.« less
Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.
2017-09-01
The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.
Theory of Liquid Film Growth and Wetting Instabilities on Graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Nichols, Nathan S.; Del Maestro, Adrian; Kotov, Valeri N.
2018-06-01
We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.
A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires
Yadav, Kavita; Mehta, B. R.; Bhattacharya, Saswata; Singh, J. P.
2016-01-01
Here, we demonstrate a facile approach for the preparation of ZnO nanowires (NWs) with tunable surface wettability that can be manipulated reversibly in a controlled manner from a superhydrophilic state to a superhydrophobic state. The as-synthesized ZnO NWs obtained by a chemical vapor deposition method are superhydrophilic with a contact angle (CA) value of ~0°. After H2 gas annealing at 300 °C for 90 minutes, ZnO NWs display superhydrophobic behavior with a roll-off angle less than 5°. However, O2 gas annealing converts these superhydrophobic ZnO NWs into a superhydrophilic state. For switching from superhydrophobic to superhydrophilic state and vice versa in cyclic manner, H2 and O2 gas annealing treatment was used, respectively. A model based on density functional theory indicates that the oxygen-related defects are responsible for CA switching. The water resistant properties of the ZnO NWs coating is found to be durable and can be applied to a variety of substrates including glass, metals, semiconductors, paper and even flexible polymers. PMID:27713536
Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A
2017-12-01
Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of regenerative medicine and tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces
NASA Astrophysics Data System (ADS)
McHale, Glen
2017-04-01
The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid marbles: topical context within soft matter and recent progress. Soft Matter, vol. 11, pp. 2530-2546 (2015). [3] Geraldi, N. R., et al., Capillary origami and superhydrophobic membrane surfaces. Applied Physics Letters, vol. 102, art. 214104 (2013). [4] Guan, J. H. et al., Evaporation of sessile droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS). Langmuir, vol. 31, pp. 11781-11789 (2015). [5] Edwards, A. M. J., et al., Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances, vol. 2, art. e1600183-e1600183 (2016). [6] Wells, G. G., et al., A sublimation heat engine. Nature Communications, vol. 6, art. 6390 (2015). Acknowledgement: This work has been financially supported by the UK EPSRC and Reece Innovation Ltd, and developed in collaboration with co-workers at Northumbria, Nottingham Trent, Edinburgh, Swansea and Durham Universities.
Blowing bubbles in Lennard-Jonesium along the saturation curve.
Ashbaugh, Henry S
2009-05-28
Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.
Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.
2015-08-17
Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observedmore » phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.« less
Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.
Bandyopadhyay, Dibyendu; Choudhury, Niharendu
2012-06-14
We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.
Capillary Corner Flows With Partial and Nonwetting Fluids
NASA Technical Reports Server (NTRS)
Bolleddula, D. A.; Weislogel, M. M.
2009-01-01
Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
Bauer, Brad A.; Ou, Shuching; Patel, Sandeep
2014-01-01
We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated. In 1M solutions, iodide directly pushes the hydrophobes together (contributing −2.51 kcal/mol) to the PMF. Chloride, however, strengthens the water-induced contribution to the PMF by ~ −2.84 kcal/mol. These observations are enhanced in 3M solutions, consistent with the increased ion density in the vicinity of the hydrophobes. The different salt solutions influence changes in the critical hydrophobe separation distance and characteristic wetting/dewetting transitions. These differences are largely influenced by the ion-specific expulsion of iodide from bulk water. Results of this study are of general interest to the study of ions at interfaces and may lend insight to the mechanisms underlying the Hofmeister series. PMID:22231014
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Vacuum ellipsometry as a method for probing glass transition in thin polymer films.
Efremov, Mikhail Yu; Soofi, Shauheen S; Kiyanova, Anna V; Munoz, Claudio J; Burgardt, Peter; Cerrina, Franco; Nealey, Paul F
2008-04-01
A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200 nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10(-6)-10(-8) torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge--the standard accessory of any high vacuum system--can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.
Evolution of Ge nanoislands on Si(110)-'16 × 2' surface under thermal annealing studied using STM
NASA Astrophysics Data System (ADS)
Gangopadhyay, Subhashis; Yoshimura, Masamichi; Ueda, Kazuyuki
2009-11-01
The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 × 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 × 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 × 2' reconstruction) starts at approximately 300 °C, whereas the terrace structures of Si(110) are thermally stable up to 500 °C. At approximately 650 °C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena
NASA Astrophysics Data System (ADS)
Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory
2012-02-01
Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.
Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization
NASA Astrophysics Data System (ADS)
Krumm, Christoph
Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order-of-magnitude changes in the lifetime of cellulose particles are observed as a result of changing modes in heat transfer as cellulose intermediate liquid droplets wet and de-wet polished ceramic surfaces. Introduction of surface macroporosity is shown to completely inhibit the cellulose Leidenfrost effect, providing avenues for surface modification and reactor design to control particle heat transfer in industrial pyrolysis applications. Cellulosic particles on surfaces consisting of microstructured, asymmetric ratchets were observed to spontaneously move orthogonal to ratchet wells above the cellulose reactive Leidenfrost temperature (>750 °C). Evaluation of the accelerating particles supported the mechanism of propelling viscous forces (50-200 nN) from rectified pyrolysis vapors, thus providing the first example of biomass conveyors with no moving parts driven by high temperature for biofuel reactors. Combined knowledge of pyrolysis chemistry, kinetics, and heat and mass transport effects direct the design of the next generation pyrolysis reactors for tuning bio- oil quality and design of improved catalytic upgrading technology.
Driving force for hydrophobic interaction at different length scales.
Zangi, Ronen
2011-03-17
We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society
Schmitt, M; Groß, K; Grub, J; Heib, F
2015-06-01
Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration behaviour (reactive de-wetting) are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
34 CFR 300.511 - Impartial due process hearing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Impartial due process hearing. 300.511 Section 300.511... Impartial due process hearing. (a) General. Whenever a due process complaint is received under § 300.507 or... process hearing, consistent with the procedures in §§ 300.507, 300.508, and 300.510. (b) Agency...
Due Process in the Accreditation Context: A Reply.
ERIC Educational Resources Information Center
Pelesh, Mark L.
1995-01-01
A previous analysis (Prairie and Chamberlain, 1994) of college and university due process rights when accreditation is threatened, which argues that accrediting agencies are quasigovernmental bodies and should be subject to constitutional due process constraints, is criticized. Recent trends in litigation concerning due process, recent…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Due process. 732.301 Section 732.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Due process. 732.301 Section 732.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Due process. 732.301 Section 732.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Due process. 732.301 Section 732.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Due process. 732.301 Section 732.301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an...
Manipulating polymers and composites from the nanoscopic to microscopic length scales
NASA Astrophysics Data System (ADS)
Gupta, Suresh
2008-10-01
This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.
Due Process in Appraisal: A Quasi-Experiment in Procedural Justice.
ERIC Educational Resources Information Center
Taylor, M. Susan; And Others
1995-01-01
Extended research on procedural justice by examining effects of a due-process performance-appraisal system on (government) employees' and managers' reactions. Employee-management pairs were randomly assigned to either a due-process appraisal system or the existing one. Although due-process employees received lower evaluations, both employees and…
Bubbles, Gating, and Anesthetics in Ion Channels
Roth, Roland; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.
2008-01-01
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water. PMID:18234836