Sample records for dextral shear zone

  1. Strain partitioning along the Mahanadi Shear Zone: Implications for paleo-tectonics of the Eastern Ghats Province, India

    NASA Astrophysics Data System (ADS)

    Bose, Subham; Gupta, Saibal

    2018-05-01

    During Indo-Antarctic collision at c. 1.0 Ga, Eastern Ghats Province (EGP) granulites amalgamated with the Archean Indian craton. The northern boundary of the EGP was subsequently reworked, undergoing dextral strike-slip shearing at 0.5 Ga. This study documents a phase of dextral shearing within the EGP along WNW-ESE trending shear planes in c. 0.5 Ga mylonites of the Mahanadi Shear Zone. Regional structural trends in the EGP show a swing from NE-SW to the south of the shear zone, to WNW-ESE to its north. The mylonitic shear zone foliation has a sub-horizontal lineation associated with a prominent dextral shear sense in near-horizontal sections. Electron Back Scatter Diffraction (EBSD) studies on quartz confirm that mylonitisation was associated with dextral strike-slip movement in the greenschist facies. North of the Mahanadi Shear Zone, strain was partitioned into narrow dextral strike-slip shear zones along which the older granulite fabrics were transposed parallel to later WNW-ESE trending shear planes at lower grades of metamorphism. This regional-scale shearing at ∼ 500 Ma possibly resulted in a significant dextral shift of the northern EGP with respect to the south. The shear zone was reactivated in the Permian time during deposition of Gondwana sediments in the Mahanadi basin.

  2. Dextral strike-slip along the Kapıdağ shear zone (NW Turkey): evidence for Eocene westward translation of the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Türkoğlu, Ercan; Zulauf, Gernold; Linckens, Jolien; Ustaömer, Timur

    2016-10-01

    The northern part of the Kapıdağ Peninsula (Marmara Sea, NW Turkey) is affected by the E-W trending Kapıdağ shear zone, which cuts through calc-alkaline granitoids of the Ocaklar pluton resulting in mylonitic orthogneiss. Macroscopic and microscopic shear-sense indicators, such as SC fabrics, shear bands, σ-clasts and mica fish, unequivocally suggest dextral strike-slip for the Kapıdağ shear zone. Based on petrographic data, deformation microfabrics of quartz and feldspar, and the slip systems in quartz, the dextral shearing should have been active at T = 500-300 °C and P < 5 kbar. Published K-Ar and 39Ar-40Ar cooling ages of hornblende and biotite suggest that cooling below 500-300 °C occurred during the Eocene (ca. 45-ca. 35 Ma), meaning that the Kapıdağ shear zone should have been active during Middle to Late Eocene times. The differential stress related to the shearing was <50 MPa as is indicated by the size of recrystallized quartz grains. Based on the new and published data, it is concluded that the westward movement of the Anatolian plate might have been active almost continuously from the Middle Eocene until recent times.

  3. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.

  4. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  5. Quantitative kinematic analysis within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Grasemann, Bernhard; Edwards, Michael A.; Fritz, Harald

    2012-02-01

    The NNE trending Khlong Marui shear zone has a strong geomorphic signal with marked fault-strike parallel topographic ridges. The lithologies within the strike-slip zone mainly consist of vertical layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins. The pegmatitic veins concordantly intrude the mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Microstructures and mineral assemblages suggest that the rocks in the area have been metamorphosed at amphibolite facies and low to medium greenschist facies by the first deformation. The Khlong Marui shear zone was deformed under dextral simple shear flow with a small finite strain. The ductile-to-brittle deformation involves a period of exhumation of lenses of higher grade rocks together with low grade fault rocks probably associated with positive flower structures. The final stage brittle deformation is reflected by normal faulting and formation of proto-cataclasites to cataclasites of the original mylonitic meta-sedimentary host rock. Although clear age-constraints are still missing, we use regional relationships to speculate that earlier dextral strike-slip displacement of the Khlong Marui shear zone was related to the West Burma and Shan-Thai collision and subduction along the Sunda Trench in the Late Cretaceous, while the major exhumation period of the ductile lens was tectonically influenced by the early India-Asia collision. The changing stress field has responded by switching from dextral strike-slip to normal faulting in the Khlong Marui shear zone, and is associated with "escape tectonics" arising from the overall India-Asia collision.

  6. Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow

    NASA Astrophysics Data System (ADS)

    Moreira, N.; Dias, R.

    2018-05-01

    The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.

  7. Structure of Masuleh Shear Zone: Evidence for Early–Middle Jurassic Dextral Shear Along Paleo-Tethys Suture Zone in the Western Alborz, NW Iran

    NASA Astrophysics Data System (ADS)

    Moosavi, E.; Rasouli-Jamadi, F.

    2018-03-01

    The Paleo-Tethys suture zone in northern Iran was formed when the Paleo-Tethys Ocean, (between Gonwana-derived Alborz Microcontinent and the Turan Plate), closed during the Eocimmerian orogeny and after they collided together in the Mid-Late Triassic. The NW-striking Boghrov-Dagh basement Fault Zone that lies in the vicinity of Masuleh village and the southern boundary of Gasht Metamorphic Complex is a part of the Eocimmerian suture zone in the Western Alborz. Along this part of the suture zone, tourmaline leucogranites intruded in metamorphic rocks. We recognize three distinct deformation stages (D1 to D3) in the study area especially in the Masuleh Shear Zone. D1 which was synchronous with formation of the main metamorphic minerals, such as sillimanite and staurolite under medium- to high-grade metamorphic conditions probably during the Hercynian event and a NE-directed shortening. The slaty cleavage in metamorphosed Upper Paleozoic rocks and crenulation cleavage and folds in the older rocks were produced due to D2 deformation during the Eocimmerian event under greenschist facies conditions. The Masuleh Shear Zone formed as a result of a ductile strike-slip shear during the Early-Middle Jurassic Mid-Cimmerian D3 event with a pure dextral to transtension shear sense at low to locally medium-grade conditions. All of the D3 structural features agree with a NNW-directed compression and an ENE-directed extension caused by overall dextral shear parallel to the Masuleh shear zone and the Boghrov-Dagh Fault Zone. Based on the available evidence, especially cross-cutting relationships between structural fabrics and rock units, emplacement of the Gasht-Masuleh leucogranites occurred after the D2 collisional event coeval to the possible slab break-off and before the D3 event, between Eocimmerian and Mid-Cimmerian movements.

  8. From an ocean floor wrench zone origin to transpressional tectonic emplacement of the Sithonia ophiolite, eastern Vardar Suture Zone, northern Greece

    NASA Astrophysics Data System (ADS)

    Bonev, Nikolay; Filipov, Petyo

    2017-12-01

    In the Hellenides of northern Greece, the Sithonia back-arc ophiolite constitute an element of the Vardar suture zone against the Chortiatis island arc magmatic suite, the Melissochori Formation and the Serbo-Macedonian Massif further north at the Mesozoic continental margin of Eurasia. A granodiorite from the Chortiatis island arc magmatic suite crystallized at 160 Ma as derived from new U-Pb zircon geochronology and confirms the end of arc magmatic activity that started at around 173 Ma. Located southerly of the Chortiatis island arc magmatic suite, the Sithonia ophiolite had igneous life from 159 to 149 Ma, and the ophiolite interfinger with clastic-carbonate Kimmeridgian sediments. Magmatic structures (i.e., sheeted dykes) in the ophiolite witness for NE-trending rift axis, while the transform faults and fracture zones sketch NW-SE transcurrent transtension-like propagation of the rift-spreading center at Sithonia that is consistent with a dextral wrench corridor already proposed for the ophiolite origin in the eastern Vardar zone. The tectonic emplacement of the Sithonia ophiolite involved dextral ENE to SE strike-slip sense of shear and SW and NE reverse thrust sense of shear on mostly steep foliation S1, subhorizontal lineation L1 and associated variably inclined F1 fold axes. This structural grain and kinematics are shared by adjacent Chortiatis island arc magmatic suite and the Melissochori Formation. The coexistence of strike-parallel and thrust components of displacement along discrete dextral strike-slip shear zones and internal deformation of the mentioned units is interpreted to result from a bulk dextral transpressive deformation regime developed in greenschist-facies metamorphic conditions. The back-arc ocean floor previous structural architecture with faults and fracture zones where Kimmeridgian sediments deposited in troughs was used by discrete strike-slip shear zones in which these sediments involved, and the shear zones become the sites for strain partitioning of transpressional deformation. Available biostratigraphic and radiometric age constraints define latest Jurassic-earliest Cretaceous (Tithonian-Berriasian to early Valanginian) time frame for the Sithonia ophiolite northeastward tectonic emplacement accomodated by dextral transpression that led to the ophiolite accretion to the Chortiatis island arc magmatic suite and its trench-fill exposed in the Melissochori Formation and further north toward the Serbo-Macedonian margin of Eurasia.

  9. Significant Shear Preceded Rupture in the Oblique Gulf of California Rift

    NASA Astrophysics Data System (ADS)

    Bennett, S. E.; Oskin, M. E.

    2011-12-01

    Significant shear deformation during the early history of a rift may profoundly affect the efficiency and success of lithospheric rupture and formation of a new ocean basin. The active Gulf of California (GOC) rift is well suited to study the role of rift obliquity in continental rupture. Transtensional strain in the GOC is accommodated along en-echelon pull-apart basins bounded by dip-slip and oblique-slip faults and linked by strike-slip faults and accommodation zones. Lithospheric rupture is well documented at ca. 6 Ma when >90% of Pacific-North American relative plate motion localized into the GOC. In the northern GOC, the eastern rift margin of the Upper Delfín-Upper Tiburón rift segment preserves an onshore record of the earliest phase of this localization process. Two NW-striking shear zones bound this rift segment, spaced ~37 km apart. Our geologic mapping, paleomagnetic measurements, and geochronology of pre-rift and syn-rift volcanic and sedimentary rocks provide timing and displacement constraints for these shear zones. The Coastal Sonora Fault Zone, exposed on northeast Isla Tiburón and in adjacent coastal Sonora, helped form and then truncate transtensional non-marine basins beginning ca. 7 Ma. On northeast Isla Tiburón, Tertiary units do not match across the ~10 km long Yawassag fault, providing a minimum estimate for total dextral displacement. In coastal Sonora, we document ~12 km of discrete dextral displacement, clockwise block rotations up to 53°, and up to 75% extension that together accommodated 15.7 km of transtensional strain towards azimuth 294° over a 1 Myr period. These estimates do not include tens of kilometers of dextral displacement on the Sacrificio fault that bounds the NE side of this shear zone. The southern of the two shear zones is the La Cruz fault, which transects southern Isla Tiburón. Associated dextral transpression and transtension formed the elongate Southwest Isla Tiburón-Sauzal basin. This basin transitions from non-marine in the SE to marine in the NW where fossil-rich marine sandstone and conglomerate is underlain by a 6.7 ± 0.8 Ma tuff. The base of the marine basin displays ~1 km of dextral displacement, while Early Miocene volcanic and sedimentary rocks are offset tens of kilometers. This displacement history supports significant proto-Gulf shear along the La Cruz fault. Overall, our results suggest that significant shearing along strike-slip faults initiated by ca. 7 Ma, at least 1 Myr prior and proximal to the locus of continental rupture in the GOC. Thus far, this documents the easternmost and earliest phase of rift-related shear at this latitude. We hypothesize that progressive localization of dextral shear into a broader region of extension may act as a catalyst for lithospheric rupture. Such a configuration would resemble how the dextral Walker Lane has become embedded within the extensional Basin and Range Province. We envision that normal faults kinematically linked to strike-slip faults are able to localize crustal thinning and overcome negative feedback processes that otherwise lead to formation of wide rifts. Thus, shearing on strike-slip faults may have been a critical mechanism for strain localization and efficient lithospheric thinning that preceded and eventually led to continental rupture in the Gulf of California.

  10. Deformation ages within the Klong Marui continental wrench fault, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, P.; Grasemann, B.; Edwards, M. A.

    2009-04-01

    The Klong Marui Fault is a ductile to brittle dextral strike-slip shear zone characterized by strong NNE-SSW geomorphic ridges trending up to 150 km. from Thai Gulf to Andaman Sea. At it southern part in the Phung Nga region, the ductile core forms a 40km long ridge. The geology within this wrench zone consisted of steep strongly deformed layers of migmatitic gneisses, mylonitic granites/pegmatites and phyllonitic metapelites. Brittle cataclasitc zones were localized in the eastern and western margin of this ductile core zone. The first deformation stage was dextral ductile strike-slip movement at mid to upper crustal levels and formed the main mylonitic foliation (c), secondary synthetic foliations (c'), and lineation in the migmatitic gneisses, mylonitic granites and metapelites. Locally sillimanite-clasts in high-temperature recrystallization quartz fabric fabric suggest deformation at amphibolite facies condition. More typically, quartz dynamically recrystallize by subgrain rotation and grain boundary migration under greenschist facies conditions. Microstructure of myrmekite and "V"-pull-apart clearly indicates dextral sense of shear. Pegmatites cross-cut the main mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Dynamically recrystallizing quartz mainly by basal gliding, bulging and low-temperature subgrain rotation record the latest stage of ductile dextral strike-slip deformation during decreasing temperature conditions. The NNE-SSW trending dextral strike-slip deformation accommodated the E-W transpression as a result of the differential movement of the northward drifting Indian craton and Asia. The brittle/ductile deformation produced cataclasites and minor faults which overprint the higher temperature fabric causing exhumation and juxtaposition of fault rocks developed under different metamorphic conditions in a positive flower structure.

  11. Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.

    2012-08-01

    In southern Thailand, the Khlong Marui shear zone is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip zone consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear zone indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear zone in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.

  12. Translation vs. Rotation: The Battle for Accommodation of Dextral Shear at the Northern Terminus of the Central Walker Lane, Western Nevada

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Faulds, J. E.

    2014-12-01

    Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left-stepping system of dextral fault. The left steps are analogous to Riedel shears developing above a more through-going shear zone at depth. However, a site directly adjacent to the Benton Springs fault is rotated ~30° CW, likely due to fault drag. These results show the complex and important contribution of vertical-axis rotations in accommodation of dextral shear.

  13. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengshi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-04-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of 500-650 C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  14. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengsi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-05-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of ∼500-650 °C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  15. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy?

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Becker, T. W.

    2013-09-01

    Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.

  16. Oppositely dipping thrusts and transpressional imbricate zone in the Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El-Wahed, Mohamed A.

    2014-12-01

    This paper documents the 40-60 km wide ENE-WSW trending Mubarak-Barramiya shear belt (MBSB) in the Central Eastern Desert of Egypt by examining its structural styles, kinematics and geometry. Our study revealed the existence of prevalent dextral and minor sinistral conjugate shear zones. The MBSB is metamorphic belt (greenschist-amphibolite) characterized by at least three post-collisional (740-540 Ma) ductile Neoproterozoic deformation events (D1, D2 and D3) followed by a brittle neotectonic deformation (D4). D1 event produced early top-to-the-northwest thrust displacements due to NW-SE shortening. D2 produced discrete zones of NNW-trending upright folds and culminated in initiation of major NW-trending sinistral shear zones of the Najd Fault System (NFS, at c. 640-540 Ma ago) as well as steeply dipping S2 foliation, and shallowly plunging L2 lineation. NW-to NNW-trending F2 folds are open to steep and vary in plunge from horizontal to vertical. D2 deformational fabrics are strongly overprinted by D3 penetrative structures. D3 is characterized by a penetrative S3 foliation, steeply SE- to NW-plunging and shallowly NE-plunging stretching lineations (L3), asymmetric and sheath folds (F3) consistent with dextral sense of movement exhibited by delta- and sigma-type porphyroclast systems and asymmetric boudinage fabrics. D2-D3 represent a non-coaxial progressive event formed in a dextral NE- over NW-sinistral shear zone during a partitioned transpression in response to E-W-directed compression during oblique convergence between East and West Gondwana developed due to closure of the Mozambique Ocean and amalgamation of the Arabian-Nubian Shield in Cryogenian-early Ediacaran time.

  17. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  18. Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: A case study from the Torcal de Antequera massif, external Betics, southern Spain

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, M.; Barcos, L.; Balanyá, J. C.; Fernández, C.; Expósito, I.; Czeck, D. M.

    2014-11-01

    Oblique convergence and subsequent transpression kinematics can be considered as the general situation in most convergent and strike-slip tectonic boundaries. To better understand such settings, progressively more complex kinematic models have been proposed, which need to be tested against natural shear zones using standardized procedures that minimise subjectivism. In this work, a protocol to test a general triclinic transpression model is applied to the Torcal de Antequera massif (TAM), an essentially brittle shear zone. Our results, given as kinematic parameters of the transpressive flow (transpression obliquity, ϕ; extrusion obliquity, υ; and kinematic vorticity number, Wk), suggest that the bulk triclinic transpressive flow imposed on the TAM was partitioned into two different flow fields, following a general partitioning type. As such, one flow field produced narrow structural domains located at the limits of the TAM, where mainly dextral strike-slip simple-shear-dominated transpression took place (Outer domains, ODs). In contrast, the remaining part of the bulk flow produced pure-shear-dominated dextral triclinic transpression at the inner part of the TAM (Inner domain, ID). A graphical method relating internal (ϕ, Wk) to far-field (dip of the shear zone boundary, δ; angle of oblique convergence, α) transpression parameters is proposed to obtain the theoretical horizontal velocity vector (V→), which in the case of the TAM, ranges between 099 and 118. These results support the applicability of kinematic models of triclinic transpression to brittle-ductile shear zones and the potential utility of the proposed protocol.

  19. Kinematics of the Torcal Shear Zone: transpressional tectonics shaping orogenic curves in the northern Gibraltar Arc.

    NASA Astrophysics Data System (ADS)

    Barcos, Leticia; Balanyá, Juan Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada; Jiménez-Bonilla, Alejandro

    2014-05-01

    Structural trend line patterns of orogenic arcs depict diverse geometries resulting from multiple factors such as indenter geometry, thickness of pre-deformational sequences and rheology of major decollement surfaces. Within them, salient-recess transitions often result in transpressive deformation bands. The Gibraltar Arc results from the Neogene collision of a composite metamorphic terrane (Alboran Domain, acting as a relative backstop) against two foreland margins (Southiberian and Maghrebian Domains). Within it, the Western Gibraltar Arc (WGA) is a protruded salient, 200 km in length cord, closely coinciding with the apex zone of the major arc. The WGA terminates at two transpressional zones. The main structure in the northern (Betic) end zone is a 70 km long and 4-5 km wide brittle deformation band, the so-called Torcal Shear Zone (TSZ). The TSZ forms a W-E topographic alignment along which the kinematic data show an overall dextral transpression. Within the TSZ strain is highly partitioned into mainly shortening, extensional and strike-slip structures. The strain partitioning is heterogeneous along the band and, accordingly, four distinct sectors can be identified. i) The Peñarrubia-Almargen Transverse Zone (PATZ), located at the W-end of the TSZ presents WNW-ESE folds and dextral faults, together with normal faults that accommodate extension parallel to the dominant structural trend. WNW ESE dextral faults might be related with synthetic splays at the lateral end of the TSZ. ii) The Sierra del Valle de Abdalajís (SVA) is characterized by WSW-ENE trending folds and dextral-reverse faults dipping to SSE, and NW-SE normal faults. The southern boundary of the SVA is a dextral fault zone. iii) The Torcal de Antequera Massif (TAM) presents two types of structural domains. Two outer domains located at both margins characterized by E-W trending, dextral strike-slip structures, and an inner domain, characterized by en echelon SE-vergent open folds and reverse shear zones as well as normal faults accommodating fold axis parallel extension. iiii) The Sierra de las Cabras-Camorolos sector, located at the E-end of the TSZ, is divided into two structural domains: a western domain, dominated by N120ºE dextral strike-slip faults, and an eastern domain structured by a WSW-ENE thrust system and normal faults with extension subparallel to the direction of the shortening structures. TSZ displacement at the lateral tip of this sector seems to be mainly accommodated by NNE trending thrusts in the northern TSZ block. The TSZ induces the near vertical extrusion of paleomargin rock units within the deformation band and the dextral deflection of the structural trend shaping the lateral end of the WGA salient. Our results suggest the TSZ started in the Upper Miocene and is still active. Moreover, the TSZ trends oblique to regional transport direction assessed both by field data and modelling. The estimated WNW-ESE far-field velocity vector in the TAM and the SVA points to the importance of the westward drift of the Internal Zones relative to the external wedge and fits well with the overall WGA kinematic frame. Nor the WGA salient neither the TSZ can be fully explained by the single Europe-Africa plate convergence.

  20. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  1. Shear zones bounding the central zone of the Limpopo Mobile Belt, southern Africa

    NASA Astrophysics Data System (ADS)

    McCouri, Stephen; Vearncombe, Julian R.

    Contrary to previously suggested north-directed thrust emplacement of the central zone of the Limpopo mobile belt, we present evidence indicating west-directed emplacement. The central zone differs from the marginal zones in rock types, structural style and isotopic signature and is an allochthonous thrust sheet. It is bounded in the north by the dextral Tuli-Sabi shear zone and in the south by the sinistral Palala shear zone which are crustal-scale lateral ramps. Published gravity data suggest that the lateral ramps are linked at depth and they probably link at the surface, in a convex westward frontal ramp, in the vicinity of longitude 26°30'E in eastern Botswana. Two phases of movement, the first between 2.7 and 2.6 Ga and the second between 2.0 and 1.8 Ga. occurred on both the Tuli-Sabi and the Palala shear zones.

  2. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  3. Microstructures and kinematic vorticity analysis from the mylonites along the Karakoram Shear Zone, Pangong Mountains, Karakoram

    NASA Astrophysics Data System (ADS)

    Roy, P.

    2012-04-01

    The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading upto orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C' and C" antithetic shear bands, Type A σ-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300° C and 500° C in the upper greenschist facies. The mylonitic rocks of the KSZ provide an opportunity for the possible utilization of the deformational structures namely that of quartz and feldspar porphyroclast as well as, well developed shear bands for kinematic vorticity studies. Well developed quartz and feldspar porphyroclasts and synthetic and antithetic shear bands from six different mylonitic samples of the mylonitic Tangste granite has been used to estimate the bulk kinematic vorticity (Wk) involved in the overall deformation of the KSZ using the Porphyroclast Hyperbolic Distribution (PHD) method and Shear band (SB) analysis. The PHD method yields Wk values that range from Wk = 0.29 to Wk =0.43, where as the Shear bands yields values ranging from Wk = 0.45 to Wk =0.93, thus indicating distinct pure and simple shear regimes at different stages of the evolution of the KSZ.

  4. Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance

    NASA Astrophysics Data System (ADS)

    Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.

    2015-10-01

    The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.

  5. A LATE BRITTLE COMPONENT OF MOTION WITHIN THE DUCTILE EASTERN SIERRA CREST SHEAR ZONE (ESCSZ) ALONG THE EASTERN BOUNDARY OF THE TOLUMNE BATHOLITH IN THE SADDLEBAG LAKE, CA AREA. WHITESIDES, Andrew1, ENRIQUEZ, Marcus2 , HARDY, Jill1 , EHRET, Philip1, IANNONE, Monika1, CULBERT, Kristan1 GROSS, Ben3, LODEWYK, Jessica3, CAO, Wenrong1 , ZHANG, Tao1, MEMETI, Valbone3, PATERSON, Scott1 SCHMIDT, Keegan4. (1) Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, awhitesi@usc.edu , (2) Department of Geological Sciences, Cal State L.A., 5151 State University Drive, Los Angeles, CA 90032, (3) Department of Earth and Planetary Sciences, Washington University, Campus Box 1169, 1 Brookings Dr, Saint Louis, MO, 63130, (4) Division of Natural Science and Mathematics, Lewis-Clark State College, 500 8th Ave., Lewiston, ID 83501

    NASA Astrophysics Data System (ADS)

    Whitesides, A. S.; Enriquez, M.; Hardy, J.; Ehret, P.; Iannone, M.; Culbert, K. N.; Gross, M. B.; Lodewyk, J.; Cao, W.; Zhang, T.; Memeti, V.; Paterson, S. R.; Schmidt, K. L.

    2009-12-01

    During mapping (by the Undergraduate Team Research program, University of Southern California) in the Saddlebag Lake pendant just along the eastern margin of the Tuolumne batholith we have discovered a brittle slip component in the ESCSZ that juxtaposes largely metasedimentary and metavolcanic rock packages. The metasedimentary package is dominated by bedded sandstones and siltstones and local conglomerates whereas the metavolcanics show a large range of volcanic and volcaniclastic units. All of the units dip steeply and have an average N-NW strike. Dextral oblique ductile shear is distributed in domains in both rock packages with varying width from ~2 km in the South to ~1 km in the North. Shear sense in planes at high angles to a steep to SW plunging mineral lineation include S-C structures, shear bands, asymmetrical folding, sigma and delta clasts, and asymmetrical boudins. Partitioning of shear is common with the metarhyolites and metasediments showing higher non-coaxial strain than in the metaandesite and metadacite units. Map-scale “z-shaped” asymmetrical folds within the shear zone are also consistent with dextral shearing. Folded and sheared dikes of the 88-85 Ma Cathedral Peak phase of the Tuolumne batholith are common in the shear zone. A newly discovered brittle slip surface with breccias, gouge, and local pseudotachylite and large quartz veins was also mapped in the center of the ductile shear zone typically along the contact between the western metasedimentary and eastern metavolcanics (often a metarhyolite at the contact) on the east. Local slickenlines, steps, and offset dikes indicate that the brittle fault also had oblique dextral movement, similar to the ductile shear zone. In the mapped area no dikes originating from the TB cross the brittle fault and some are terminated at the brittle fault surface We interpret these observations to indicate northward displacement of the metasedimentary package by first ductile then brittle faulting during cooling and possibly uplift of this region with the youngest motion post 82 Ma.

  6. Fammenian Tournaisian dextral ductile shear in the French Variscan belt

    NASA Astrophysics Data System (ADS)

    Cartannaz, Charles; Rolin, Patrick; Le Métour, Joël; Fabbri, Olivier

    2006-02-01

    The South Armorican Shear Zone consists of a set of faults that runs across the southern Armorican Massif and extends eastwards to the Massif Central. One of its branches, the Cholet Shear Zone of South Brittany, can be correlated with the North-Millevaches-La Courtine Shear Zone in the Massif Central. It was active immediately after the regional Frasnian anatexis (372-368 Ma) as a right-lateral strike-slip fault. The horizontal offset, which can be estimated between 110 and 170 km, was achieved before the emplacement of non-deformed Late Tournaisian calc-alkaline and peraluminous granites (355-350 Ma). This newly established age of activity (Fammenian-Tournaisian) of the Cholet-La Courtine Shear Zone (CCSZ) has to be taken into account in geodynamical reconstructions of the Variscan belt of western Europe. To cite this article: C. Cartannaz et al., C. R. Geoscience 338 (2006).

  7. Deformation in Neogene sediments of the Sorbas and Vera Basins (SE Spain): constraints on simple-shear deformation and rigid body rotation along major strike-slip faults

    NASA Astrophysics Data System (ADS)

    Jonk, R.; Biermann, C.

    2002-05-01

    Detailed structural analyses are presented of the Neogene Sorbas Basin adjacent to the E-W striking Gafarillos fault zone and the Vera Basin adjacent to the 020° striking Palomares fault zone in southeastern Spain. A stress regime with an E-W oriented subhorizontal maximum principal stress ( σ1) existed in pre-Tortonian (>11.3 Ma) time. A strike-slip regime with NW-SE oriented compression during Tortonian and earliest Messinian time caused dextral displacement along the E-W trending Gafarillos fault of approximately 10 km. Structural analysis indicates that most displacement took place in the Early Tortonian. Deformational patterns within the adjacent pull-apart basin reflect a dextral simple shear-zone of at least 500 m width. Kinematical analysis of folds in the Sorbas Basin suggests, however, that rotational effects are largely caused by rigid-body rotation without much internal deformation. Sinistral strike-slip displacements occurred along the Palomares fault zone under the influence of the same stress-regime. An abrupt change in the orientation of the stress field to N-S directed compression in earliest Messinian time (6.5 Ma) caused the termination of displacements along the Gafarillos fault zone, whereas the 020° trending Palomares fault zone continued to accumulate sinistral strike-slip displacements of about 25 km. Volcanism occurred along splays of the fault zone. A wider shear-zone of a few kilometers width evolved, in which considerable anti-clockwise rotation of folds occurred. Kinematic analysis of these folds shows that these rotational effects are again dominantly rigid-body rotations. Assuming rotations are merely caused by simple-shear deformation overestimates the amounts of strain. A better way to deal with simple-shear deformation is to compare observed shortening caused by folding with the magnitude of rotation of fold-hinges.

  8. The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India

    NASA Astrophysics Data System (ADS)

    Plavsa, Diana; Collins, Alan S.; Foden, John D.; Clark, Chris

    2015-05-01

    Gondwana amalgamated along a suite of Himalayan-scale collisional orogens, the roots of which lace the continents of Africa, South America, and Antarctica. The Southern Granulite Terrane of India is a generally well-exposed, exhumed, Gondwana-forming orogen that preserves a record of the tectonic evolution of the eastern margin of the East African Orogen during the Ediacaran-Cambrian (circa 600-500 Ma) as central Gondwana formed. The deformation associated with the closure of the Mozambique Ocean and collision of the Indian and East African/Madagascan cratonic domains is believed to have taken place along the southern margin of the Salem Block (the Palghat-Cauvery Shear System, PCSS) in the Southern Granulite Terrane. Investigation of the structural fabrics and the geochronology of the high-grade shear zones within the PCSS system shows that the Moyar-Salem-Attur shear zone to the north of the PCSS system is early Paleoproterozoic in age and associated with dextral strike-slip motion, while the Cauvery shear zone (CSZ) to the south of the PCSS system can be loosely constrained to circa 740-550 Ma and is associated with dip-slip dextral transpression and north side-up motion. To the south of the proposed suture zone (the Cauvery shear zone), the structural fabrics of the Northern Madurai Block suggest four deformational events (D1-D4), some of which are likely to be contemporaneous. The timing of high pressure-ultrahigh temperature metamorphism and deformation (D1-D3) in the Madurai Block (here interpreted as the southern extension of Azania) is constrained to circa 550-500 Ma and interpreted as representing collisional orogeny and subsequent orogenic collapse of the eastern margin of the East African Orogen. The disparity in the nature of the structural fabrics and the timing of the deformation in the Salem and the Madurai Blocks suggest that the two experienced distinct tectonothermal events prior to their amalgamation along the Cauvery shear zone during the Ediacaran/Cambrian.

  9. Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California

    USGS Publications Warehouse

    Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen

    2014-01-01

    The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.

  10. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  11. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    PubMed

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  12. Cretaceous oblique detachment tectonics in the Fosdick Mountains, Marie Byrd Land, Antarctica

    USGS Publications Warehouse

    McFadden, R.; Siddoway, C.S.; Teyssier, C.; Fanning, C.M.; Kruckenberg, S.C.

    2007-01-01

    The Fosdick Mountains form an E-W trending migmatite dome in the northern Ford Ranges of Marie Byrd Land, Antarctica. Pervasively folded migmatites derived from lower Paleozoic greywacke and middle Paleozoic plutonic rocks constitute the dome. New field research documents a transition from melt-present to solid-state deformation across the south flank of the dome, and a mylonitic shear zone mapped for 30 km between Mt. Iphigene and Mt Richardson. Kinematic shear sense is dextral normal oblique, with top-to-the-SW and -WSW transport. A U-Pb age of 107 Ma, from a leucosome-filled extensional shear band, provides a meltpresent deformation age, and a U-Pb age of 96 Ma, from a crosscutting granitic dike, gives a lower age limit for deformation. The shear zone, here named the South Fosdick detachment zone, forms the south flank of the migmatite dome and was in part responsible for the exhumation of mid-crustal rocks.

  13. New thermochronological constraints on the timing of shear from the Khlong Marui and Ranong faults, Peninsular Thailand: implications for Himalayan lateral extrusion.

    NASA Astrophysics Data System (ADS)

    Watkinson, I.; Elders, C.; Hall, R.

    2009-04-01

    New Ar-Ar data from the strike-slip faults of Peninsular Thailand indicate rapid uplift of mid-crustal ductile shear zones during the Eocene. The cooling ages are consistent with a northwards younging pattern of Ar-Ar cooling ages from the NW-trending Three Pagodas and Mae Ping faults in Northern Thailand, to the Ailao Shan-Red River fault in Vietnam and Yunnan, taken to reflect the northwards movement of India during the Cenozoic. The peninsular structures: the Khlong Marui fault (KMF) and Ranong fault (RF), are major NNE trending strike-slip faults of respectively 220 km and 420 km length. Exposed mylonitic rocks bear consistently dextral kinematic indicators, unlike the sinistral mylonites of the NW-trending structures to the north. Brittle strike-slip and dip-slip faults overprint all the shear zones. Rocks ranging from low grade mylonites to syn-kinematic amphibolite facies migmatites from the RF and KMF yield similar biotite Ar-Ar cooling ages, suggesting that uplift from all depths in the shear zone was rapid. Retrograde shear fabrics in places show that dextral shear may have continued during uplift. While the new thermochronological data show that the peninsular mylonites cooled during the Eocene, constraint from pre- and post-kinematic granitoids strongly suggests that ductile shear occurred during the Late-Cretaceous to Paleocene. Since this is well before the onset of India-Eurasia collision, much of the ductile shear must pre-date that orogeny, and therefore cannot be related to Himalayan lateral extrusion, as has been speculated. The regional cooling pattern, however, shows that Indian indentation may have triggered progressive northward exhumation of mylonitic rocks. If the model of the peninsular faults is applied to the NW-trending faults in northern Thailand, then a pre-Himalayan history may also be recorded by those mylonites, rather than a simple, lateral extrusion-related history.

  14. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    NASA Astrophysics Data System (ADS)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  15. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    NASA Astrophysics Data System (ADS)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  16. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    USGS Publications Warehouse

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  17. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and storage of voluminous rhyolitic magma bodies at upper crustal levels may cause the extensional stress to supercede the dextral shear rate in the Ruapehu area, facilitating ascent of larger andesitic magma bodies at depth, and changing the volcano's eruptive behaviour from dominantly vulcanian to violently subplinian/plinian.

  18. Upper Neogene stratigraphy and tectonics of Death Valley - A review

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.

    2005-01-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.

  19. The Main Shear Zone in Sør Rondane, East Antarctica: Implications for the late-Pan-African tectonic evolution of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Ruppel, Antonia S.; Läufer, Andreas; Jacobs, Joachim; Elburg, Marlina; Krohne, Nicole; Damaske, Detlef; Lisker, Frank

    2015-06-01

    Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with "East African" affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with "Indo-Antarctic" affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.

  20. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Shafiei Bafti, Shahram; Mohajjel, Mohammad

    2015-04-01

    The structural evolution of the Sanandaj-Sirjan zone is the result of the convergence of the Iranian microcontinent and the Afro-Arabian continent. The study area at Khabr in the SE Sanandaj-Sirjan zone, in the hinterland of the Zagros orogen, consists of Paleozoic, Mesozoic and Cenozoic rocks. In this area, deformation phases were distinguished in different rock units based on structural and stratigraphical evidence, and the deformational events are divided into two stages: (1) a Late Triassic event and (2) a Late Cretaceous to Miocene event. The Late Triassic deformation event caused regional metamorphism in the Paleozoic units. These units are overlain by unmetamorphosed Jurassic clastic sequences. Fabrics and structural evidence confirm that the F1 folding recumbent and refolded folds were synchronous with the metamorphism of the Paleozoic units and terminated in the Early Jurassic. The time table of the orogenic phases shows that this deformation event is related to the Cimmerian orogenic phase. From a geodynamic point of view, the early Cimmerian deformation in the southeastern Iranian margin suggests that the SE Sanandaj-Sirjan zone was an active margin at that time. The early Cimmerian discordance recorded the onset of a contractional component related to the oblique subduction of Neo-Tethys beneath the central Iranian microcontinent. Structures related to the Late Cretaceous to Miocene deformation phase are observed in Jurassic to Oligocene units, which contain moderately inclined and plunging folds. Comparing these folds with domains of deformation generated in models of transpression shows that the folding was caused by a combination of contractional and dip-slip components of movement, eventually resulting in the formation of a thrust system. The Khabr thrust systems consist of five sheets of oblique thrusts, duplex structures and shear zones. The shear zones generally strike E-W and dip moderately N (30°-40°). The occurrence of asymmetric folds with hinges that are either parallel to strike or plunge down dip demonstrates an oblique-slip component in these thrust shear zones. The stretching lineation in the mylonites within the shear zones is defined by the long axes of ellipsoidal grains of quartz, calcite, plagioclase and garnet. In general, stretching lineations trend from N40°W to N80°W with an intermediate (35°) plunge. The geometry of foliation and lineation within these shear zones shows the effect of dip- and oblique-slip shearing. Deformation continued with strike-slip faulting becoming important during the last stages of deformation from the Miocene to the present day. The results of this study demonstrate that the evolution of the SE Sanandaj-Sirjan zone, from Late Triassic to Miocene, is compatible with an inclined dextral transpression along this zone.

  1. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.

  2. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.

  3. Pluton emplacement in a releasing bend in a transpressive regime: the arrozal granite in the Paraíba do Sul shear belt, Rio de Janeiro.

    PubMed

    Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M

    2007-06-01

    The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.

  4. Dating the Duration and Termination of Sinistral Shear in the Western Tauern Window: Implications for Indentation and Exhumation in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Schneider, Susanne; Hammerschmidt, Konrad; Rosenberg, Claudio Luca

    2010-05-01

    The internal structure of the Tauern Window (TW) consists of parallel sets of upright antiforms, striking ENE in the west and ESE in the east. The long axes of the upright folds are parallel to shear zones (SZ), which are generally sinistral in the west and dextral in the east. The formation of these structures has been interpreted as the result of a coeval, conjugate system, forming in response to south-Alpine indentation (Rosenberg et al., 2004), or as a change in the regional shortening direction through time (Polinski and Eisbacher, 1992; Neubauer et al., 2000; Mancktelow et al., 2001). The latter models suggested an Oligocene age for sinistral displacements, followed by Miocene dextral ones. Therefore, determining the timing of these different shear zones is a key to understand the tectonic significance of the structures described above. We analysed the kinematics and determined the formation age of the mylonitic foliation of two sinistral shear zones in the western TW (Ahorn SZ, Olperer SZ). In addition to left lateral displacements, kinematic indicators in the YZ plane for both shear zones point to differential vertical displacements, namely S-side up. We performed absolute age determinations of deformation by dating syn- and on post-kinematically grown minerals, the latter overprinting the former ones microstructurally on the microscopic scale. For this purpose we selected syn-kinematic phengites of mylonites and ultra-mylonites from shear bands, strain caps and also from overprinting statically grown phengites overprinting the mylonitic foliation. The Ar/Ar In-situ UV-laser ablation method was applied using a noble gas mass spectrometer. For comparison micas of an undeformed host rock were also dated using the same method. The obtained age values of syn-kinematic phengites vary between 12-24 Ma. This age variation is commonly found within single grains. Postkinematic, phengites overgrowing the syn-kinematic grains yield the youngest age values, namely 5-12 Ma. We observe a systematic relationship between the ages of the postkinematic grains and the age spread of the syn-kinematic ones. The age of the post-kinematic grains always coincides with the youngest age determined within the syn-kinematic grains. We interpret this relationship as indicating that the growth of post-kinematic minerals followed almost instantaneously the termination of deformation. As a consequence, the age of phengites overprinting the mylonitic foliation yields a precise age for the termination of deformation. The spread in age variation of phengites goes together with a spread in Si content, consequently the postkinematic phengites have a higher Si content compared to the overprinted syn-kinematic ones. Therefore the metamorphic pressure conditions of the post-kinematic phengites were lower, indicating continuous deformation during exhumation within a time interval of approximately 12 Ma. We interpret these ages as formation ages during or after shearing, respectively. Muscovite blasts of the undeformed sample yield age values varying between 22 and 34 Ma. We interpret these ages as cooling ages, following the metamorphic peak temperatures. To conclude, sinistral shear in the western TW started at least 24 Ma ago and terminated at 12 Ma. Therefore, these shear zones do not predate dextral displacements or lateral extrusion within the eastern Tauern sub-dome, which are also Miocene (Inger & Cliff, 1994, Frisch et al., 1998, Glodny et al., 2008). This conclusion suggests that they formed as part of an orogen-scale conjugate system, accommodating Miocene shortening due to South-Alpine indentation. Since these shear zones are transpressive, showing a component of vertical displacement, their age may also constrain exhumation of the Tauern dome.

  5. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  6. Deciphering the Influence of Crustal Flexure and Shear Along the Margins of the Eastern Snake River Plain

    NASA Astrophysics Data System (ADS)

    Parker, S. D.

    2016-12-01

    The kinematic evolution of the eastern Snake River Plain (ESRP) remains highly contested. A lack of strike-slip faults bounding the ESRP serves as a primary assumption in many leading kinematic models. Recent GPS geodesy has highlighted possible shear zones along the ESRP yet regional strike-slip faults remain unidentified. Oblique movement within dense arrays of high-angle conjugate normal faults, paralleling the ESRP, occur within a discrete zone of 50 km on both margins of the ESRP. These features have long been attributed to progressive crustal flexure and subsidence within the ESRP, but are capable of accommodating the observed strain without necessitating large scale strike-slip faults. Deformation features within an extensive Neogene conglomerate provide field evidence for dextral shear in a transtensional system along the northern margin of the ESRP. Pressure-solution pits and cobble striations provide evidence for a horizontal ENE/WSW maximum principal stress orientation, consistent with the hypothesis of a dextral Centennial shear zone. Fold hinges, erosional surfaces and stratigraphic datums plunging perpendicular into the ESRP have been attributed to crustal flexure and subsidence of the ESRP. Similar Quaternary folds plunge obliquely into the ESRP along its margins where diminishing offset along active normal faults trends into linear volcanic features. In all cases, orientations and distributions of plunging fold structures display a correlation to the terminus of active Basin and Range faults and linear volcanic features of the ESRP. An alternative kinematic model, rooted in kinematic disparities between Basin and Range faults and parallelling volcanic features may explain the observed downwarping as well as provide a mechanism for the observed shear along the margins of the ESRP. By integrating field observations with seismic, geodetic and geomorphic observations this study attempts to decipher the signatures of crustal flexure and shear along the margins of the ESRP. Decoupling the influence of these distinct processes on deformation features bounding the ESRP will aid in our understanding of the kinematic evolution of this highly complex region.

  7. Role of the Precambrian Mughese Shear Zone on Cenozoic faulting along the Rukwa-Malawi Rift segment of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.

    2017-12-01

    We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.

  8. The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand

    NASA Astrophysics Data System (ADS)

    Watkinson, Ian; Elders, Chris; Batt, Geoff; Jourdan, Fred; Hall, Robert; McNaughton, Neal J.

    2011-09-01

    The timing of shear along many important strike-slip faults in Southeast Asia, such as the Ailao Shan-Red River, Mae Ping and Three Pagodas faults, is poorly understood. We present 40Ar/39Ar, U-Pb SHRIMP and microstructural data from the Ranong and Khlong Marui faults of Thailand to show that they experienced a major period of ductile dextral shear during the middle Eocene (48-40 Ma, centered on 44 Ma) which followed two phases of dextral shear along the Ranong Fault, before the Late Cretaceous (>81 Ma) and between the late Paleocene and early Eocene (59-49 Ma). Many of the sheared rocks were part of a pre-kinematic crystalline basement complex, which partially melted and was intruded by Late Cretaceous (81-71 Ma) and early Eocene (48 Ma) tin-bearing granites. Middle Eocene dextral shear at temperatures of ˜300-500°C formed extensive mylonite belts through these rocks and was synchronous with granitoid vein emplacement. Dextral shear along the Ranong and Khlong Marui faults occurred at the same time as sinistral shear along the Mae Ping and Three Pagodas faults of northern Thailand, a result of India-Burma coupling in advance of India-Asia collision. In the late Eocene (<37 Ma) the Ranong and Khlong Marui faults were reactivated as curved sinistral branches of the Mae Ping and Three Pagodas faults, which were accommodating lateral extrusion during India-Asia collision and Himalayan orogenesis.

  9. Fault block kinematics at a releasing stepover of the Eastern California shear zone: Partitioning of rotation style in and around the Coso geothermal area and nascent metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.

    2006-10-01

    Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent metamorphic core complex, Geol. Soc. Amer. Bull. 117 (2005) 1534-1553.] characterize as a nascent metamorphic core complex. Consistent with upper plate disruption above a detachment, surface rocks (i.e. the upper plate of the detachment system) at the Coso geothermal area are tilted westward. However they appear to exhibit no detectable rotation. Thus, the style of block rotation may be partitioned: with clockwise vertical-axis rotation dominating in the Wild Horse Mesa and horizontal axis rotation (tilting) in the geothermal area.

  10. Strain localization on different scales and the importance of brittle precursors during deformation in the lower crust (Davenport Shear Zone, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio

    2014-05-01

    High strain rocks in the Musgrave Ranges (Central Australia) provide a rather unique insight into the development of lower crustal shear zones during the 550 Ma Petermann Orogeny, allowing common models for lower crustal deformation to be critically evaluated. The observed structures in the study area are, from south to north: (1) The Mann Fault, which is poorly exposed but evident on airborne geomagnetic maps. This regional scale fault with a component of dextral shear shows a step-over resulting in the formation of a pull-apart basin. (2) The Davenport Shear Zone, accommodating the horizontal extension in a 7 km wide WNW-ESE-trending mylonitic zone developed under subeclogitic, lower crustal conditions. This high strain zone is bounded to the north by a more than 50 km long, continuous, sheared dolerite dyke. North of this dyke, the ~1200 Ma Musgravian fabric is still preserved, only slightly rotated and typically N-S trending. (3) The Woodroffe Thrust, marking the northern boundary of the Musgrave Ranges, brings these lower crustal rocks on top of amphibolite facies units, with a top-to-north sense of movement. Strain in the Davenport Shear Zone is very heterogeneously distributed, with localization and partitioning from the kilometre down to the millimetre scale. Pseudotachylyte is commonly associated with dykes, especially on the boundaries, and is often sheared. The orientation of sheared dykes and localized shear zones is typically at a high angle to either side of the shortening direction, resulting in a variable sense of shear and a major component of flattening, with a nearly horizontal extension direction. Detailed outcrop-scale mapping shows that compositional inhomogeneities, such as quartz veins, are generally not exploited, even when favourably oriented for shear reactivation. Ultramylonitic shear zones are sometimes only a few millimetres wide but extend for several metres and are generally oblique to the background foliation. Pseudotachylyte often predates or is coeval with localized shearing and fracturing clearly played a major role in the nucleation of mesoscale discrete shear zones. In order to constrain the conditions of pseudotachylyte formation, and to establish whether they developed under lower crustal subeclogitic conditions, garnet-bearing sheared pseudotachylytes were sampled for geothermobarometric analysis.

  11. Valemount strain zone: A dextral oblique-slip thrust system linking the Rocky Mountain and Omineca belts of the southeastern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    McDonough, Michael R.; Simony, Philip S.

    1989-03-01

    The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.

  12. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  13. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  14. Pluton emplacement within an extensional transfer zone during dextral strike-slip faulting: an example from the late Archaean Abitibi Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Lacroix, S.; Sawyer, E. W.; Chown, E. H.

    1998-01-01

    The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.

  15. Metamorphic and structural evidence for significant vertical displacement along the Ross Lake fault zone, a major orogen-parallel shear zone in the Cordillera of western North America

    USGS Publications Warehouse

    Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.

    1997-01-01

    Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand of the RLFZ that now separates the two structural blocks. High-angle faults in the study area are dextral-reverse mylonitic shear zones that experienced later brittle normal slip. Vertical motion on these shear zones before intrusion of Skymo gabbro can account for metamorphic discontinuities indicated by P-T results. The terranes have also been internally deformed by nonintersecting but coeval dextral and sinistral shear zones that formed after the terranes were brought together in the RLFZ and intruded by Eocene dikes. These results show that the RLFZ has accommodated significant vertical displacement but perhaps no more than tens of kilometers of early Tertiary lateral movement. Structural evidence for earlier, large-magnitude strike-slip displacement is not preserved.

  16. Deriving strain from crystallographic preferred orientation for a ductile shear zone in north western Turkey.

    NASA Astrophysics Data System (ADS)

    Farrell, K.; Lloyd, G. E. E.; Wallis, D.; Phillips, R. J.

    2015-12-01

    Understanding the behaviour of active continental-scale fault zones at depth, and in particular how displacements observed at the Earth's surface are accommodated through the crust, is crucial to improving understanding of the earthquake cycle. This behaviour can be inferred by study of exhumed portions of ductile shear zones using methods such as recording strain profile(s) across the fault zone. However, due to the nature of mid-crustal rocks, strain markers tend to be rare and/or discontinuously distributed. The intensity (I) of crystallographic preferred orientation (CPO) of deformed minerals provides a proxy for strain that is continuous across fault zones. CPO are collected via electron back scattered diffraction in the scanning electron microscope. The strength of the CPO can be quantified using eigenvalue-based intensity parameters. Calibration of intensity with strain is achieved via comparison with visco-plastic self-consistency models of CPO evolution, although the temperature-dependent critical resolved shear stresses of potential crystal slip systems must be known. As an example, we consider the dextral strike-slip Eskişehir shear zone, NW Turkey, which was active during the Oligocene and accommodated ~100km of displacement, including a component of late oblique-normal slip. An exhumed mid-crustal section of this fault zone is exposed in the Uludağ Massif, comprising of high-grade metamorphic rocks of the Uludağ Group, intruded by the Central and South Uludağ granites. Sample transects focussed on the pure calcic marbles that dominate the stratigraphy. Fortunately, the availability of experimental data for calcite crystal slip behaviour at different temperatures makes the application of the CPO intensity strain proxy method relatively straightforward. The Uludağ Massif and Eskişehir shear zone provide a field based analogue for the ductile shear zone beneath the currently active North Anatolian Fault. The results of our CPO intensity-based strain profiles allow us to speculate on the current behaviour of the North Anatolian Fault, a major seismogenic feature, at depth.

  17. The active structure of the Dead Sea depression

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2003-04-01

    The ~220km long gravitational and structural Dead Sea Depression (DSD), situated along the southern section of the Dead Sea Transform (DST), is centered by the Dead Sea basin sensu strictu (DSB), which has been described since the 1960?s as a pull-apart basin over a presumed left-hand fault step. However, several observations, or their lack thereof, question this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v); It is apparently inconsistent with the symmetrical structure of the DSD; (vi) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. Integration of newly acquired and analyzed data (high resolution and petroleum seismic reflection data, earthquake relocation and fault plane solutions) with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments) now shows that the active upper crustal manifestation of the DSD is a broad shear zone dominated by internal fault systems oriented NNE and NNW. These fault systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. Motion on the NNE system is normal-dextral, suggesting that counterclockwise rotation may have taken place within the shear zone. The overall sinistral motion between the Arabian and Israel-Sinai plates along the DSD is thus accommodated by distributed shear across the N-S extending DSD. The three-dimensionality of this motion at the DSD may be related to the rate of convergence between the two plates.

  18. Transpression as the main deformational event in an Archaean greenstone belt, northeastern Minnesota

    NASA Technical Reports Server (NTRS)

    Hudleston, P. J.; Schultz-Ela, D.; Bauer, R. L.; Southwick, D. L.

    1986-01-01

    Deformed and metamorphosed sedimentary and volcanic rocks of the Vermilion district constitute an Archean greenstone belt trending east-west between higher grade rocks of the Vermilion Granitic Complex to the north and the Giants Range batholith to the south. Metamorphic grade is low throughout, being lowest in the center of the belt (chlorite zone of the greenschist facies). All the measured strain, a cleavage or schistosity, and a mineral lineation in this belt are attributed to the main phase of deformation D sub 2 that followed an earlier nappe-forming event D sub 1, which left little evidence of penetrative fabric. Previous work assumed that the D sub 2 deformation resulted from north-south compression across the district. It is now believed that a significant component of this deformation resulted from dextral shear across the whole region. Thus the Vermilion fault, a late-state largely strike-slip structure that bounds the Vermilion district to the north, may simply be the latest, most brittle expression of a shear regime that was much more widespread in space and time. Features that are indicative of shear include ductile shear zones with sigmoidal foliation patterns, highly schistose zones with the development of shear bands, feldspar clasts or pyrite cubes with asymmetric pressure shadows, and the fact that the asymmetry of the F sub 2 folds is predominantly Z for at least 15 km south of the Vermilion fault.

  19. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    USGS Publications Warehouse

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  20. Evolution of Continental Lower Crust Recorded By an Exhumed Deep Crustal Intracontinental Shear Zone

    NASA Astrophysics Data System (ADS)

    Dumond, G.; Mahan, K. H.; Regan, S. P.; Williams, M. L.; Goncalves, P.; Wood, V. R.

    2014-12-01

    Exposures of deep crustal shear zones are fundamental records of strain localization and the temporal evolution of ductile to brittle behavior as these tectonites were exhumed to the surface. We present results from a decade of field-based research on a deeply exhumed (~35 km-paleodepths) strike-slip shear zone in the western Churchill province of the Canadian Shield. The Grease River shear zone is a >400 km-long and 7 km-thick structure that cuts the Athabasca granulite terrane, North America's largest exposure of continental lower crust (>20,000 km2). The shear zone is dominated by granulite- to amphibolite-grade L-S and L>S tectonites characterized by penetrative NE-striking steeply-dipping foliations with gently-plunging to sub-horizontal stretching and intersection lineations. These fabrics are locally overprinted by pseudotachylyte and narrow (<500 m-thick) greenschist-grade zones of cataclasite. Dextral kinematics are defined by deflected foliation trajectories, C' shear bands, and well-developed σ- and δ-type porphyroclasts of Kfs + Pl + Opx + Grt + Hb in felsic to intermediate granulite paragneisses and orthogneisses. Data collected along a well-exposed, nearly 150 km-long segment of the shear zone documents a >100 m.y. episodic record of transpressive to strike-slip intracontinental strain accumulation that coincided with two oppositely convergent orogenies: the east-vergent arc-continent collision of the 1.94-1.90 Ga Taltson orogen and the west-vergent continent-continent collision of the 1.9-1.8 Ga Trans-Hudson orogen. Deformation mechanisms evolved from distributed ductile dynamic recrystallization and grain-size reduction to localized pseudotachylyte development, cataclastic flow, and brittle faulting. Lower crustal behavior during strain localization was dynamic. Melt-weakened mono-cyclic crust was juxtaposed against strong isobarically-cooled poly-cyclic crust along the shear zone at 1.92-1.90 Ga. Brittle-ductile reactivation of the structure during exhumation to middle crustal levels was coincident with fluid-mediated retrograde reactions that facilitated crustal-scale segmentation and transpressive uplift of lower crustal granulites at 1.85 Ga. This study illustrates that lower crustal rheology is spatially and temporally heterogeneous.

  1. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  2. Succession of structural events in the Goren greenstone belt (Burkina Faso): Implications for West African tectonics

    NASA Astrophysics Data System (ADS)

    Hein, Kim A. A.

    2010-02-01

    Ten years after field investigations in the SE Goren greenstone belt (GGB) of Burkina Faso by the Sanmatenga J.V., sponsored field studies conducted in 2007 have significantly enhanced structural datasets. The studies in 2007 were conducted across an expanded area of the GGB that included both southwestern and northeastern domains, and portions of the Pissila batholith to the west of the GGB. A revision of tectonic models proposed by Hein et al. [Hein, K.A.A., Morel, V., Kagoné, O., Kiemde, F., Mayes, K., 2004. Birimian lithological succession and structural evolution in the Goren Segment of the Boromo-Goren Greenstone Belt, Burkina Faso. Journal of African Earth Sciences 39, 1-23] is now possible. Three deformation events characterise the Goren greenstone belt. The deformation, D1 (previously D3) resulted in the formation of NW to NNW-trending steeply-dipping dextral-reverse shear zones folds and a penetrative S1-C schistosity that formed during a period of NE-SW shortening. The event is termed the Tangaean Event because it can be correlated across NE Burkina Faso in the Boromo, Bouroum, Yalago and Oudalan-Gorouol greenstone belts. The deformation, D2 (previously D2) resulted in the progressive development of NNE to NE-trending macroscopic to mesoscopic folds and a penetrative axial planar cleavage (S2), which was followed by the formation of dextral- and sinistral-reverse shears and a pervasive schistosity (S2-C). The first-order crustal-scale Sabce Shear Zone, which traverses the northern portion of the study area, is associated with macroscopic anticlockwise drag rotation of NW to NNW-trending D1 shears and folds: (the macroscopic fold was previously classified as D1). D2 in the GGB corresponds with the Eburnean Orogeny at 2130-1980 Ma, as described by [Feybesse, J.-L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.-L, Milesi, J.-P., Bouchot, V., 2006, The paleoproterozoic Ghanian province: geodynamic model and ore controls, including regional stress modelling. Precambrian Research, 149-196]. The deformation D3 (previously D4) is recognised throughout the GGB. It is characterised by the formation of kinks and chevron folds (F3), or crenulation cleavage (S3) that are hosted by narrow WNW-trending shear zones. These formed during a period of north-south shortening termed the Wabo-Tampelse Event that post-dates the Eburnean Orogeny.

  3. Active crustal deformation across the Basin and Range province, western United States, measured with the Global Positioning System, 1992-2002

    NASA Astrophysics Data System (ADS)

    Hammond, W.; Thatcher, W.

    2003-04-01

    The Basin and Range province of the western United States is a region of active tectonic extension and dextral shear, accommodating roughly 25% of the motion between non-deforming North America (NA) and the Pacific Plate (PA). The orientation of dextral shear is consistent with that of NA/PA relative plate motion, suggesting that this high elevation interior province is an important part of the plate boundary system. We present an analysis of Global Positioning System (GPS) data collected from 1992 to 2002. An 800 km long network of campaign-style geodetic benchmarks extends from east of the Wasatch fault zone (WFZ) in central Utah to west of the Genoa fault zone and Lake Tahoe in the northern Sierra Nevada mountains. From the new data collected in September 2002 and from data collected in 1992, 1996, and 1998, velocities have been estimated at 92 GPS sites, nearly double the number previously presented by Thatcher et al. [1999]. This new data reduces the uncertainty in site velocities and increases the spatial detail compared to earlier results, and now allows resolution of distinct domains in the tensor strain rate field. To process the data we use the GIPSY/OASIS and Quasi-Observation Combination Analysis (Dong et al. [1998]) software packages and incorporate data from continuously recording GPS stations in California and Nevada. The results show that most of the approximately 12 mm/yr of Sierra Nevada block motion is accommodated by right lateral shear and extensional deformation concentrated in the westernmost 200 km of Nevada, in the vicinity of the Walker Lane (WL). A lesser amount of velocity variation (roughly 3 mm/yr) is localized at the easternmost edge of the network, in the vicinity of the Wasatch Fault Zone (WFZ). Estimates of tensor strain rates show transitions in the style of deformation. Near the WFZ only uniaxial, roughly east-west extension can be resolved. Between longitude -112 and -117.5 no deformation is resolvable. Near longitude -118, in the vicinity of the historic ruptures of the Fairview Peak, Dixie Valley, and Rainbow Mountain earthquakes in the Central Nevada Seismic Zone, the deformation is mostly uniaxial extension oriented roughly NW/SE, in agreement with the roughly NE/SW strike of the normal faults. At the WL between longitude -118.5 and -119.5, deformation is best characterized by right lateral simple shear, which transitions westward to a blend of right lateral shear and uniaxial extension at the westernmost end of our network.

  4. Deformation sequences of the Day Nui Con Voi metamorphic belt, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Yeh, M. W.; Lee, T. Y.; Lo, C. H.; Chung, S. L.; Lan, C. Y.; Lee, J. C.; Lin, T. S.; Lin, Y. J.

    2003-04-01

    The correlation of structure, microstructure and metamorphic assemblages is of fundamental importance to the understanding of the complex tectonic history and kinematics of the Day Nui Con Voi (DNCV) metamorphic belt in Vietnam along the Ailao Shan-Red River (ASRR) shear zone as it provides constraints on the relative timing of the deformation, kinematics and metamorphism. High-grade metamorphic rocks of amphibolite faces showed consistent deformation sequences of three folding events followed by one brittle deformation through all four cross sections from Lao Cai to Viet Tri indicated the DNCV belt experienced similar deformation condition throughout its length. The first deformation event, D1, produced up-right folds (locally preserved) with sub-vertical, NE-SW striking axial planes with dextral sense of shear probably formed during the early phase of the lowermost Triassic Indosinian orogeny. Followed by this compressional event is a gravitational collapsing event, D2, which is the major deformation and metamorphic event characterized by kyanite grade metamorphism and large scale horizontal folds with NW-SE (320) striking sub-horizontal axial pane showing sinsistral sense of shear most likely formed during the Oligocene-Miocene SE extrusion of Indochina peninsula. The 3rd folding event, D3, is a post-metamorphism doming event with NW-SE (310) striking sub-vertical axial plane that folded/tilted the once sub-horizontal D2 axial planes into shallowly (<30 degrees) NE dipping on the NE limb, and SW dipping on the SW limb possibly due to left-lateral movement of the N-S trending Xian Shui He fault system in Mid-Miocene. The outward decreasing of the metamorphic grade from kyanite to garnet then biotite indicated the D3 occurred post metamorphism. Reactivation of the sub-horizontal D2 fold axial planes showed dextral sense of shear possibly due to Late Miocene-Pliocene right-lateral movement of the ASRR shear zone. This right lateral movement continuously deformed the DNCV with brittle fractures such as joints and normal faults (D4) striking NE-SW to E-W and NW-SE.

  5. Structural evolution of the Irtysh Shear Zone: implication for the Late Paleozoic amalgamation of multiple arc systems in Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2015-04-01

    The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.

  6. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia)

    NASA Astrophysics Data System (ADS)

    Nukman, M.; Moeck, I.

    2012-04-01

    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.

  7. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.

  8. Lithologic and structural mapping of the Abiete-Toko gold district in southern Cameroon, using Landsat 7 ETM+/SRTM

    NASA Astrophysics Data System (ADS)

    Binam Mandeng, Eugène Pascal; Bondjè Bidjeck, Louise Marie; Takodjou Wambo, Jonas Didero; Taku, Agbor; Bineli Betsi, Thierry; Solange Ipan, Antoinette; Tchami Nfada, Lionel; Bitom Dieudonné, Lucien

    2018-03-01

    The geology of the Abiete-Toko gold district in South Cameroon is investigated using a combination of Landsat 7 ETM+/SRTM image processing techniques, conventional geologic field mapping and geostatistical analysis. The satellite images were treated using Principal Component Analysis and Sobel filters to separate the background noise from lithotectonic structures which were matched with field data. The results show that this area has been affected by a polyphase deformation represented by S1 foliation, Sc1 schistosity, L1 lineation, S2 foliation, F2 folds, and F3 shear zones and faults. A detailed analysis of all the structures led to the identification of two major networks of dextral and sinistral shear zones oriented WNW-ESE and NE-SW, respectively. These results may serve in mining prospection, especially in the search for tectonically controlled primary mineralization and so may significantly guide the exploration of primary gold mineralization in the Abiete-Toko area subjected to years of artisanal gold mining.

  9. Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto-Gulf of California oblique rift

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Bennett, S. E. K.; Dorsey, R. J.; Oskin, M. E.; Iriondo, A.

    2016-12-01

    The timing, kinematics, and processes responsible for the rapid transition from subduction to oblique rifting and the localization of the Pacific-North America plate boundary in the Gulf of California are not well understood. Well exposed volcanic rocks deposited between 15 and 10 Ma in the Sierra Bacha (coastal Sonora, México) preserve a record of late Miocene deformation on the eastern rifted margin of the Gulf of California and offer new insights into the timing and kinematic evolution of oblique rifting. Detailed geologic mapping, fault kinematic analysis, U-Pb and 40Ar/39Ar geochronology, and paleomagnetic data reveal that the > 2 km-thick composite volcanic section is cut by a series of southwest-dipping, domino-style normal faults and uniformly tilted down-to-the-northeast. Palinspastic cross-section restoration suggests that the region experienced ca. 55-60% northeast-southwest-directed extension between 11.7 and 10-9 Ma. Fault kinematic data reflect relatively minor dextral transtension either following or during the later stages of extension. Paleomagnetic results indicating modest clockwise vertical-axis block rotation suggest that dextral shear was concentrated in the southwest of the study area near the modern coastline. These results support an emerging model in which dextral strain was not ubiquitous across Sonora and did not initiate immediately following the 12.5 Ma transition from subduction to oblique rifting. Instead, strain east of the Baja California microplate at this latitude evolved from extension-dominated transtension prior to 8 Ma to dextral shear-dominated transtension by 7-6 Ma. The onset of dextral shear in coastal Sonora likely resulted from an increase in rift obliquity due to a change in relative plate motion direction at 8 Ma. The increase in rift obliquity and resultant onset of significant strike-slip faulting played a crucial role in facilitating subsequent plate boundary localization and marine incursion in the northern Gulf of California by 6 Ma and continental rupture at 2-1 Ma.

  10. Ductile shear in granitic gneisses adjacent to the Beaver Creek fault zone, northwest lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcoline, J.

    1993-03-01

    Greenville-age rocks are exposed in the Beaver Creek area in the Northwest Lowlands of New York State. The prominent structural grain in the area strikes approximately N40E and is defined by a series of metasedimentary and metaigneous rocks elongate parallel to the Beaver Creek Fault Zone. A series of 7 granitic augen gneiss bodies lies to the west of the fault. These bodies are elongate parallel to the Beaver Creek Fault Zone and are bordered by metasedimentary units. Structural analysis of the 7 granitic gneiss bodies shows that the bodies underwent several phases of ductile shear. These shearing events aremore » responsible for both fabric development and the overall shape of the bodies. The granitic gneiss is a well-foliated and lineated augen gneiss. The foliation is defined by biotite alignment, quartz ribbons, and feldspar augen. The foliation has a strike of N42E, with dips ranging from 85SE to vertical. Quartz ribbon lineations plunge 20--25 NE. The gneiss exhibits three distinct ductile shear fabrics showing oblique slip with a large strike-slip component. Fabric asymmetry indicates oblique slip with a large component of sinistral shear. The second shear fabric is somewhat recovered but not annealed. Quartz ribbons are dominantly monogranular and many show pronounced undulose extinction. Feldspar porphyroclasts form well-defined sigma grains showing a component of sinistral shear. The youngest ductile shear fabric is defined by quartz grain shape preferred orientation and mica fish. This third fabric exhibits a component of dextral shear, rather than sinistral shear. A late cataclastic texture crosscuts the earlier ductile fabrics. The elongate character of the 7 bodies and their NE/SE alignment is probably due to the regional shearing processes responsible for forming the fabric in the rocks.« less

  11. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly

    NASA Astrophysics Data System (ADS)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.

    2017-12-01

    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the Palmital Shear Zone separating the Luís Alves Terrane from the Paranaguá Terrane and a frontal thrust, represented by the Icapara and Serra Negra Shear Zones, separating the already amalgamated block from the Luís Alves and Curitiba Terranes of the Paranaguá Terrane.

  12. Structural setting of Fimiston- and Oroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie: 1. Shear zone systems, porphyry dykes and deposit-scale alteration zones

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas G.

    2017-07-01

    The Golden Mile in the 2.7 Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, has produced 385 million tonnes of ore at a head grade of 5.23 g/t gold (1893-2016). Gold-pyrite ore bodies (Fimiston Lodes) trace kilometre-scale shear zone systems centred on the D2 Golden Mile Fault, one of three northwest striking sinistral strike-slip faults segmenting upright D1 folds. The Fimiston shear zones formed as D2a Riedel systems in greenschist-facies (actinolite-albite) tholeiitic rocks, the 700-m-thick Golden Mile Dolerite (GMD) sill and the Paringa Basalt (PB), during left-lateral displacement of up to 12 km on the D2 master faults. Pre-mineralisation granodiorite dykes were emplaced into the D2 shear zones at 2674 ± 6 Ma, and syn-mineralisation diorite porphyries at 2663 ± 11 Ma. The widespread infiltration of hydrothermal fluid generated chlorite-calcite and muscovite-ankerite alteration in the Golden Mile, and paragonite-ankerite-chloritoid alteration southeast of the deposit. Fluid infiltration reactivated the D2 shear zones causing post-porphyry displacement of up to 30 m at principal Fimiston Lodes moving the southwest block down and southeast along lines pitching 20°SE. D3 reverse faulting at the southwest dipping GMD-PB contact of the D1 Kalgoorlie Anticline formed the 1.3-km-long Oroya Shoot during late gold-telluride mineralisation. Syn-mineralisation D3a reverse faulting alternated with periods of sinistral strike-slip (D2c) until ENE-WSW shortening prevailed and was accommodated by barren D3b thrusts. North-striking D4 strike-slip faults of up to 2 km dextral displacement crosscut the Fimiston Lodes and the barren thrusts, and control gold-pyrite quartz vein ore at Mt. Charlotte (2651 ± 9 Ma).

  13. Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia

    NASA Astrophysics Data System (ADS)

    Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.

    2006-05-01

    The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement of orthogneiss was concurrent with S2 deformation of the amphibolite gneiss. Tectonic strains calculated by the Rf-φ method using mafic enclaves in the orthogneiss vary from 4 to 10 within an area <1 km2, suggesting strong strain gradients during D2. S3 foliations strike WNW-ESE to E-W and dip shallowly to the south, suggesting NNE-SSW to N-S shortening. L3 lineations plunge shallowly to the SW and SE, and are associated low-angle shear bands with greenschist facies mineral assemblages which overprint higher temperature assemblages. Deformation phase D4 is characterized by low temperature, brittle deformation as shown by discrete fault surfaces with abundant chlorite. The following tectonic history can be determined based on structural observations. Amphibolite and immature sedimentary material formed from supracrustal (e.g. basalt flows?) and intrusive protoliths. These units were then intruded by the gabbro- diorite, which was deformed by right and left lateral shear zones sometime after crystallization. Both the amphibolite and gabbro-diorite were intruded by the orthogneiss, which was emplaced as sills during right and left lateral shearing and F2 folding. This geologic history is similar to that preserved in other parts of the Coast Plutonic Complex where dextral transpression and sinistral transtension are documented. The localization of low angle normal shear zones with greenschist facies mineral assemblages suggests extension occurred during cooling of the arc.

  14. Evidences of Silurian dextral transpression in the Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Torgersen, Espen; Viola, Giulio

    2017-04-01

    The Scandinavian Caledonides are classically interpreted as a fold and thrust belt resulting from the collision between Laurentia and Baltica during the Silurian, which involved the up-to-400 km ESE-wards translation of nappes onto the Baltoscandian platform. It has been suggested that the Caledonian fold and thrust belt formed through several distinct orogenic episodes, from early shortening in the Late Ordovician to orogenic collapse in the Devonian. The classic Caledonian, orogen-perpendicular ESE-ward nappe transport is constrained by abundant and consistently oriented stretching lineations across the entire orogen and unambiguous kinematic indicators. However, there is also a large number of NW-SE-trending and roughly orogen-parallel lineations, particularly in the upper ophiolite- and eclogite-bearing nappes, which are more challenging to interpret with the traditional orogeny evolution model. The analysis of the areal extent, spatial distribution and geometrical relationships of the Caledonian nappes in southern and central Norway, however, offers new insights and allows for new constraints on the bulk kinematic framework of the shortening history of the belt. Here we present new, first-order geological observations that demonstrate a two-fold compressional history and associated strain partitioning during Caledonian convergence. More specifically, we propose that Late Ordovician NNW-SSE shortening caused early compression, followed by WNW-ESE Early Silurian shortening, which resulted in strain partitioning along the planar fabrics and discontinuities from the earlier event. In detail, orogen-parallel dextral wrench tectonics caused significant lateral displacement along at least three, orogen-scale NE-SW striking corridors, wherein the nappes appear to be consistently displaced in a dextral fashion. We propose that the Møre-Trøndelag Fault Complex, which accommodated significant sinistral displacements during the later Devonian orogenic collapse, localized on one of these early dextral shear corridor. This is expressed by the asymptotic dragging of the nappes along it and also the significant morphological asymmetry of the central Norwegian coast line, which is not compatible with sinistral shearing. Along a southern corridor, which extends from the Hardangerfjord to the east of Folldal, the Caledonian foliation is asymptotically bent into the ENE-WSW orientation of the shear corridor, also consistent with an overall dextral kinematics. This is also confirmed by the gradual reorientation and increased strain toward these shear corridors of Ordovician to Silurian intrusive bodies, indicating that the dextral displacement is of Silurian age. Similar dextral displacements along NE-SW faults have previously been interpreted from potential field data offshore southern Norway. Large-scale dextral transpression in the Scandinavian Caledonides readily accounts for numerous geological features that are not as easily reconciled with the more classical model of only ESE-ward translation and/or sinistral transpression.

  15. Primary surface rupture associated with the Mw 7.1 16 October 1999 Hector Mine earthquake, San Bernardino County, California

    USGS Publications Warehouse

    Treiman, J.A.; Kendrick, K.J.; Bryant, W.A.; Rockwell, T.K.; McGill, S.F.

    2002-01-01

    The Mw 7.1 Hector Mine earthquake occurred within the Mojave Desert portion of the eastern California shear zone and was accompanied by 48 km of dextral surface rupture. Complex northward rupture began on two branches of the Lavic Lake fault in the northern Bullion Mountains and also propagated southward onto the Bullion fault. Lesser amounts of rupture occurred across two right steps to the south. Surface rupture was mapped using postearthquake, 1:10,000-scale aerial photography. Field mapping provided additional detail and more than 400 fault-rupture observations; of these, approximately 300 measurements were used to characterize the slip distribution. En echelon surface rupture predominated in areas of thick alluvium, whereas in the bedrock areas, rupture was more continuous and focused within a narrower zone. Measured dextral offsets were relatively symmetrical about the epicentral region, with a maximum displacement of 5.25 ?? 0.85 m. Vertical slip was a secondary component and was variable, with minor west-side-down displacements predominat.ing in the Bullion Mountains. Field and aerial photographic evidence indicates that most of the faults that ruptured in 1999 had had prior late-Quaternary displacement, although only limited sections of the rupture show evidence for prior Holocene displacement.

  16. Late Cenozoic strike-slip faulting in the NE Mojave Block: Deformation at the southwest boundary of the Walker Lane belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schermer, E.R.

    1993-04-01

    New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less

  17. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic features suggestive of late Quaternary dextral strike slip and appear to truncate or displace NW-striking reverse faults (e.g., Franklin fault) that do not displace the late Quaternary marine platform sequence. These data support an interpretation that the CCSZ accommodates regional dextral shear, and possibly represents the northern extension of the Calaveras fault. Overall, the marine terraces provide excellent strain gauges from which to evaluate the pattern and rate of late Quaternary deformation throughout the northern East Bay Hills.

  18. Transpressional regime in southern Arabian Shield: Insights from Wadi Yiba Area, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Shafei, Mohamed; Kattu, Ghazi; Matsah, Mohammed

    2013-10-01

    Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1-D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (-WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.

  19. The Maritsa strike-slip shear zone between Kostenets and Krichim towns, South Bulgaria — Structural, petrographic and isotope geochronology study

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Peytcheva, Irena; von Quadt, Albrecht; Sarov, Stoyan; Kolcheva, Krastina; Dimov, Dimo

    2013-06-01

    The present study describes the characteristics of the Maritsa Shear Zone (MSZ), a major tectonic element in the Balkanides in South Central Bulgaria. Metamorphic rocks of four lithotectonic units — Madan, Chepinska, Asenitsa and Thrace units crop out in the study area. Strike-slip ductile deformation in MSZ affects the Thrace Lithotectonic Unit (TLU) for up to 15 km. The stratigraphy of this unit is divided in two: Parvenets succession and variegated succession. U-Pb zircon dating reveals Late Jurassic protolith age for metagranitoids and metagabbros of the variegated succession. For its metasedimentary part Triassic to Upper Jurassic age is suggested based on the strontium isotope signature of the marbles. The Parvenets succession affiliates to the Variscan metamorphic basement of Europe. The metamorphic evolution of the zone is subdivided into synmetamorphic strike-slip deformations and annealing stages. The ductile shearing occurred in greenschist to lower amphibolite facies between 130 Ma (discordant U-Pb ages) and 82-78 Ma (late-syntectonic granites). This stage is connected with the oblique collision of the Rhodope Late Jurassic arc with the European platform. With the docking of the arc and the triggering of the strike-slip movements, MSZ represents an orogen-scale border between the Rhodope south-vergent thrust complex and the north-vergent deformations in the Srednogorie and Sakar-Strandzha zones. During the Late Cretaceous MSZ is the contact between the Srednogorie magmatic arc (part of the Apuseni-Banat-Timok-Srednogorie Belt) and the Rhodopean metamorphic core complexes. NW-SE dextral faulting characterized the brittle tectonics along the zone. Strike-slip faults of the southern border of the TLU are transferred into reverse faults, along which the TLU overthrusted Oligocene sediments. MSZ is an orogen-scale transpressional shear zone and an important border in the structure of the Balkanides. This multidisciplinary research emphasizes its role as a major tectonic element by presenting new structural, petrographic and isotope geochronology data.

  20. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig S.; Wells, Ray; Rohay, Alan C.

    2014-01-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic–Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE–SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  1. On the age of sinistral shearing along the southern border of the Tauern Window (Eastern Alps).

    NASA Astrophysics Data System (ADS)

    Kitzig, C.; Schneider, S.; Hammerschmidt, K.

    2009-04-01

    The first-order structure of the western Tauern Window consists of three upright, ENE-striking antiforms of large amplitude, whose flanks are overprinted by sinistral shear zones, striking parallel to the axial planes of the antiforms. Analogue modelling suggests that these shear zones accommodate part of the shortening of the South Alpine indenter (Rosenberg et al., 2004). The age of sinistral shearing in the western Tauern Window and immediately south of it is still controversial. Mancktelow et al. (2001) suggested that sinistral shearing at the southern border of the Tauern Window terminated at 30 Ma. Based on monazite spot dates ranging between 29.0-20.3 Ma (n=10) of dextral shear zones, which cross-cut the sinistral Greiner shear zone, Barnes et al. (2004) argued that the switch from sinistral to dextral shear occurred shortly after the thermal peak of the Alpine orogeny (c.~ 30 Ma). Recent dating of mica-bearing marble suggested that the activity of the southernmost sinistral shear zone of the Tauern Window (the Ahrntal shear zone) was 19.8±0.4 Ma ago (Glodny et al. 2008). Sinistral shearing is commonly interpreted as part of the 2nd Alpine phase of deformation that affected the Tauern Window. The main foliation (S1) of the Tauern Window was acquired during a first phase, which resulted in the present day nappe stack. Only along some of the later shear zones a second Alpine foliation (S2) was formed. At present no attempt has been made, to distinguish the two and directly date the S2 mylonitic foliation. In the present work we use the Rb/Sr method to date mineral pairs formed under greenschist to lower amphibolite facies conditions from the tonalitic Zentral Gneiss. We dated four samples, two from the inferred undeformed tonalite protolith, one from the strongly foliated tonalitic gneiss and one from an outcrop-scale sinistral shear zone within the foliated tonalitic gneiss. Generally biotite and feldspar define isochrones for the four samples. The undeformed tonalites yield an age of 26.4±0.1 Ma and of 11.1±0.1 Ma, the strongly foliated tonalitic gneiss yields an age of 19.8±0.1 Ma, which is close to the age of the outcrop-scale shear zone of 18.0±0.1 Ma. It is difficult to interpret the 11 Ma age of one undeformed sample, because it is significantly younger than the ages obtained from zircon fission tracks from neighbouring areas. The older age of 26 Ma for the undeformed tonalite sample is interpreted as cooling age below the closure temperature of biotite, based on the following arguments: 1) This age is consistent with the inferred regional thermochronological distribution of cooling (Luth and Willingshofer, 2008); 2) The rock fabric is undeformed; 3) The age is older than the two deformed samples collected within a distance of a few hundreds of meters. The mineral assemblage of the deformed samples (green biotite and albite crystallisation) differs from the one of the undeformed rocks (red-brown biotite and K-feldspar clasts). Therefore, the albite-biotite isochrons of the deformed samples are inferred to date the deformation event. This age of deformation is consistent with the age determination of Glodny et al. (2008) from deformed marbles of the Schieferhülle, and with previous dating of sinistral shearing along the northern border of the western Tauern Window (Schneider et al., 2007), which yielded an average (n=5) age of 21.9±1.6 Ma. Therefore, sinistral deformation appears to have affected contemporaneously both the northern and the southern margins of the Zentral Gneiss in the western Tauern Window. References: Barnes, J. D., Selverstone, J. & Sharp, Z.D., 2004. Interactions between serpentinite devolatilization, metasomatism and strike-slip strain localization during deep-crustal shearing in the Eastern Alps. Journal of Metamorphic Geology, 22, 283-300. Glodny, J., Ring, U. Kühn. A., 2008. Coeval high-pressure metamorphism, thrusting, strike slip, and extensional shearing in the Tauern Window, Eastern Alps, Tectonics, 27, TC4004, DOI:10.1029/2007TC002193. Luth, S.W., & Willingshofer, E. 2008. Mapping of the Post-Collisional Cooling History of the Eastern Alps, Birkhäuser Verlag, Basel DOI:10.1007/s00015-008-1294-9 Mancktelow, N.S., Stöckli, D., Grollimund, B., Müller, W., Fügenschuh, B., Viola, G., Seward, D. & Villa, I., 2001. The DAV and Periadriatic fault systems in the eastern Alps south of the Tauern Window. International Journal of Earth Sciences, 90, 593-622. Rosenberg, C.L., Brun, J.-P., Cagnard, F., and Gapais, D., 2007. Oblique indentation in the Eastern Alps: Insights from laboratory experiments, Tectonics, 26, TC2003, doi:10.1029/2006TC001960. Schneider, S., Hammerschmidt, K., and Rosenberg, C.L., 2007. In-situ Rb-Sr dating of the SEMP mylonites, western Tauern Window, Eastern Alps Geophysical Research Abstracts, Vol. 9, 09136. SRef-ID: 1607-7962/gra/EGU2007-A-09136

  2. Fault connectivity, distributed shortening, and impacts on geologic- geodetic slip rate discrepancies in the central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.

    2015-12-01

    Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.

  3. Oblique collision and deformation partitioning in the SW Iberian Variscides

    NASA Astrophysics Data System (ADS)

    Pérez-Cáceres, Irene; Simancas, José Fernando; Martínez Poyatos, David; Azor, Antonio; González Lodeiro, Francisco

    2016-05-01

    Different transpressional scenarios have been proposed to relate kinematics and complex deformation patterns. We apply the most suitable of them to the Variscan orogeny in SW Iberia, which is characterized by a number of successive left-lateral transpressional structures developed in the Devonian to Carboniferous period. These structures resulted from the oblique convergence between three continental terranes (Central Iberian Zone, Ossa-Morena Zone and South Portuguese Zone), whose amalgamation gave way to both intense shearing at the suture-like contacts and transpressional deformation of the continental pieces in-between, thus showing strain partitioning in space and time. We have quantified the kinematics of the collisional convergence by using the available data on folding, shearing and faulting patterns, as well as tectonic fabrics and finite strain measurements. Given the uncertainties regarding the data and the boundary conditions modeled, our results must be considered as a semi-quantitative approximation to the issue, though very significant from a regional point of view. The total collisional convergence surpasses 1000 km, most of them corresponding to left-lateral displacement parallel to terrane boundaries. The average vector of convergence is oriented E-W (present-day coordinates), thus reasserting the left-lateral oblique collision in SW Iberia, in contrast with the dextral component that prevailed elsewhere in the Variscan orogen. This particular kinematics of SW Iberia is understood in the context of an Avalonian plate salient currently represented by the South Portuguese Zone.

  4. Characterization of transpressive deformation in shear zones of the Archean North Caribou greenstone belt (NW Superior Province) and the relationship with regional metamorphism

    NASA Astrophysics Data System (ADS)

    Gagnon, Émilie; Schneider, David A.; Kalbfleisch, Tash; Habler, Gerlinde; Biczok, John

    2016-12-01

    The 2.7-3.0 Ga North Caribou greenstone belt (NCGB), host to the Musselwhite BIF-hosted gold deposit, possesses abundant shear zones on its northern margins, which appear to have formed under amphibolite facies conditions. Protracted deformation and regional metamorphism are coeval with widespread magmatism and accretion events during crustal amalgamation of the Western Superior Province, and are responsible for folding the ore-hosting BIF and channeling fluids. The importance of shear zones in behaving as conduits for fluids during the tectonic evolution of the NCGB is not well known and their relationship with metamorphism is equivocal, yet higher-grade, syn- to post-tectonic metamorphic minerals seem to correlate with loci of higher strain. Structural analyses support oblique transpressive collision that produced steeply-dipping planar and shallowly-plunging linear fabrics with dominant dextral kinematics, that trend broadly parallel to the doubly arcuate shape of the belt. Electron backscatter diffraction analyses were conducted on strategic samples across one shear zone in order to characterize crustal conditions during transpressive deformation. The Dinnick Lake shear zone cuts through mafic metavolcanics and at its core is an L-tectonite granite composed of recrystallized quartz. Whole rock geochemistry shows little variation in Ca, Na, Mg and K (often used as indicators of hydrothermal alteration) from surrounding less deformed units, suggesting deformation in a dry environment. Microstructural analysis indicates subgrain rotation recrystallization and deformation by prism a- and c-slip in quartz, as well as aligned hornblende that suggest deformation temperatures above 500 °C. Quartz in mafic rocks along the margins of the shear zone also exhibits a basal a-slip component, indicating a slight decrease in strain or temperature. Although the NCGB exhibits some first-order evidence of vertical tectonism (dome and keel geometries), the dominant strain record within shear zones is that of horizontal (oblique transpressive) displacement. This is in agreement with other greenstone belts in the Western Superior Province where vertical tectonism and horizontal tectonism were coeval. Table A1. Whole rock geochemistry of basalts. Table A2. Whole rock geochemistry of granites. Table B.1. Parameters and conditions of machine during EBSD data collection. Table D1. Table of corresponding probability and critical d values of the K-S test. Fig. E1. Feldspar pole figures. Fig. E2. Hornblende pole figures. Fig. F1. Grain boundary misorientation histograms of feldspars. Fig. F2. Grain boundary misorientation histograms of hornblende.

  5. Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.

    2017-01-01

    The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).

  6. Strike-slip brittle shear zone from coastal Deccan in and around Mumbai, India: Evidence for N-S extension

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Gourab; Ayan Misra, Achyuta; Bose, Narayan; Mukherjee, Soumyajit

    2013-04-01

    An E-W extension separated India from the Seychelles micro-continent at ~ 62 Ma. This post-dated the Deccan volcanic eruptions. However, the structures attributed to this extension lack geometrical quantification, especially in the western Indian coast. The Narmada-Tapi region, ~ 400 Km north of Mumbai, experienced a ~ N-S extension prior to and/or concurrent with the volcanism. Normal faults dip towards W. Sub-horizontal lava flows, slickensides, N-S shear zones etc. have been reported from the western part of the Deccan Large Igneous Province (DLIP). This work, for the first time, identifies and investigates a ~ 20°N strike-slip brittle shear zone, traced for ~ 100 Km along the west coast of India from Mumbai to Murud by fieldworks. The W-block moved north through a dextral-slip. Deformation is more enhanced in the south (near Murud). Field observations reveal Y-planes (~ N20°E; abundant), Riedels (~ 0-N30°E; abundant), anti-Riedels (~ N30-50°W; less abundant), asymmetric elevations (~ N15°E; locally abundant), extension and en-echelon fractures (2 sets: ~N-S and ~E-W) with a single miniature pull-apart basin (~ N-S extension). The E-W fractures reactivated locally and around Murud slipped/faulted ~ N-S dykes. Average directions of paleostress tensors were computed for the regime yielding σ1 (trend = 99°; plunge = 0°), σ2 (trend = 196°; plunge = 90°) and σ3 (trend = 10°; plunge = 0°). Associated strain results convincingly display a dominant N-S extension. It was not possible to establish which set of extensions (i.e. between N-S and E-W) occurred earlier. Alongside E-W extension, structurally weak shear zones might have channelized late-stage intrusions of ~ N-S dykes. The DLIP was not subject to any post-rifting deformations regionally, except isostatic adjustments. Hence, based on available data, we postulate that these two extensions were coevally operating in the late phases of the Deccan eruptions. As the Indian plate drifted NE, the strike-slip brittle shear zone might have been a structural adjustment in response to the E-W extension.

  7. Latest Miocene transtensional rifting of northeast Isla Tiburón, eastern margin of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander

    2017-11-01

    Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the marine incursion and continental rupture in the Gulf of California.

  8. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.

  9. Spatial evolution of Zagros collision zone in Kurdistan - NW Iran, constraints for Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Yassaghi, A.

    2015-09-01

    Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj-Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia-Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.

  10. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, Peter J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to both modeled and observed stress fields, suggesting that elevated fluid pressure may be required to trigger fault rupture. ?? 2006 Geological Society of America.

  11. Did the Malaysian Main Range record a weak hot Mega Shear?

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel

    2015-04-01

    The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected Peninsular Malaysia at a lithospheric scale, accommodated by N-S faults (C planes) such as the Bentong Raub Suture Zone, the Bukit Tinggi fault and the Kledang Fault. This lead to the formation of NW-SE fractures in already exhumed peripheral plutons (< 250°C) and deep level (> 250°C) sigmoid faults (S planes) in the Main range. Later a brittle stage of exhumation occurred in the same system, after 70Ma, leading to NNE-SSW dextral Riedel type faults reactivating pluton flanks, and offsetting older faults as well as quartz dykes. The occurrence of such a structure could be linked to the subduction of the Wharton Ridge at the western margin of Sunda Plate. As a result, a collapse of this hot and thin crust occurred accommodated by LANF's reactivating the basement fabrics including intrusive edges and folds hinges.

  12. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  13. Active strike-slip faulting in El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  14. Paleomagnetic rotations and the Cenozoic tectonics of the Cascade Arc, Washington, Oregon, and California

    USGS Publications Warehouse

    Wells, R.E.

    1990-01-01

    Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade Arc and adjacent areas indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc, Two mechanisms of rotation are suggested. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking rotation of the frontal arc block and growth of the Basin and Range in its wake. -from Author

  15. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  16. Geology of the world-class Kiaka polyphase gold deposit, West African Craton, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Fontaine, Arnaud; Eglinger, Aurélien; Ada, Koumangdiwè; André-Mayer, Anne-Sylvie; Reisberg, Laurie; Siebenaller, Luc; Le Mignot, Elodie; Ganne, Jérôme; Poujol, Marc

    2017-02-01

    The Kiaka gold deposit is a major resource in West Africa, with measured and indicated resources of 124 Mt at 1.09 g/t Au (3.9 Moz) and inferred resources of 27 Mt at 0.83 g/t Au (0.8 Moz). Located within the Manga-Fada N'Gourma greenstone and plutonic belt in south of the Burkina Faso, the deposit is hosted by a metamorphosed volcano-sedimentary sequence of lithic-, quartz-biotite metagreywackes, aluminosilicate-bearing metapelites and garnet-orthopyroxene-bearing schists and volcanic units. Structural observations indicate four local deformation events: DK1, DK2 and DK3 and DK4. Respectively, these events are linked to regional D1 E-W compression, D2 NW-SE compression and lastly, D3- and D4-related reactivations along D2 shear zones. The S2 foliation and D2 shear zones are developed during lower amphibolite facies metamorphism whereas retrogression occurs during D3-4 reactivations along these shear zones at upper greenschist facies conditions. The emplacement of a dioritic intrusion, dated at 2140 ± 7 Ma (Concordia U-Pb age on magmatic zircon), is interpreted to be contemporaneous with sinistral displacement along mineralized, NE-trending D2 shear zones. The intersection of these shears zones and the Markoye shear zone (dextral-reverse D1 and sinistral-reverse D2 reactivations) controlled the final geometry of the host rocks and the ore zones. Four subparallel elongated ore bodies are mainly hosted within D2-related shear zones and some are developed in an apparent axial plane of a F2 isoclinal fold. Detailed petrographic studies have identified two main types of hydrothermal alteration associated with two stages of gold mineralization. The stage (1) corresponds to replacement zones with biotite and clinozoisite during the D2 event associated with pyrrhotite ± pyrite, chalcopyrite (disseminated gold stage). The stage (2) occurs during reactivations of the D2-related auriferous shear zones (vein stage) and is characterized by diopside ± actinolite D3 veins and veinlets and D4 pervasive muscovite, ± chlorite, ± calcite in quartz-carbonate vein selvages and associated with pyrrhotite + arsenopyrite ± electrum, ± native gold and tellurobismuthite. The latter stage (2) could be divided into two sub-stages based on mineralogy and crosscutting relationship. A weighted average Re-Os pyrrhotite age at 2157 ± 24 Ma (Re-Os age based on 3 replicates) constraints the timing of the disseminated gold stage and represents the first absolute age for gold mineralization in the Manga Fada N'Gourma area. The timing of gold at Kiaka may be also coeval with one of the two lode gold event at ∼ ca. 2.16-2.15 Ga and occurred concomitant with tectono-thermal activity during Eo-Eburnean orogeny. The study of the Kiaka gold deposit emphasizes the importance of a multi-scale and multidisciplinary approach (field observations, petrography geothermobarometry and geochronology) to decipher the polyphase character of some Paleoproterozoic gold deposits.

  17. Tectonic evolution of the Oudalan-Gorouol greenstone belt in NE Burkina Faso and Niger, West African craton.

    NASA Astrophysics Data System (ADS)

    Tshibubudze, Asinne; Hein, Kim A. A.

    2010-05-01

    The Oudalan-Gorouol Greenstone Belt (OGGB) forms part of the Palaeoproterozoic as the Baoulé-Mossi domain of the West African Craton (WAC) and hosts gold deposits at Essakane, Gossey, Korizena, and Falagountou in NE Burkina Faso, and Kossa goldfield in Niger. The Birimian supracrustal sequences in the OGGB are dominated by meta-volcanoclastic greywacke intercalated meta-conglomerate, siltstone and shale, carbonate (dolomite) and volcanic units pillow basalts). The belt is surrounded by plutonic rocks including granite, TTG suite granitoids and granite gneiss. The sequences where subjected to two phases of deformation, and several phases of contact metamorphosed to hornblende-hornfels facies during emplacement of pyroxenite-gabbro-norite, granodiorite-tonalite and gabbro dykes and porphyritic sills. The OGGB is bounded and/or crosscut by several major NNE to NE-trending shear zones including the steeply east-dipping Markoye Shear Zone (western margin of the OGGB), Tin Takanet-Bellekcire Shear Zone, Dori Shear Zone, Kargouna Shear Zone, Takabougou Shear Zone, and Bom Kodjelé Shear Zone (transects the centre of the OGGB). The structures were readily identified using LANDSAT, Aster, aeromagnetic and RTP magnetic data, with follow-up strategic mapping, highlighting the value of interpreting geophysical and remotely sensed data in regional mapping in Burkina Faso and Niger. Structural studies completed in 2007 adjacent to the Essakane gold mine indicated that the NE-trending, first-order crustal-scale Markoye Shear Zone (MSZ) has undergone at least two phases of reactivation concomitant to two phases of regional deformation (Tshibubudze et al., 2009). The first phase of deformation, D1, resulted in the formation of NNW-NW trending folds and thrusts during dextral-reverse displacement on the MSZ. The deformation predates the Eburnean Orogeny is termed the Tangaean Event (meaning low hills in the Moré language of Burkina Faso) and is tentatively dated at ca. 2170-2130 Ma (Hein, 2009). D2 involved a period of SE-NW crustal shortening and sinistral-reverse displacement on the MSZ, and is correlated to the Eburnean Orogeny ~2.1 Ga of Feybesse et al. (2006). Deformation in D2 is characterised by NE-trending regional folds (F2) and a pervasive NE-trending foliation (S2-C to S2). Since 2007 an identical tectonic history has been established for a number of shear zones in the OGGB including the north-trending Kargouna Shear Zone, which is subtended by NW- and NE-trending shears. However the metamorphic grade and mineral assemblages vary from one shear zone to the next. Structural studies completed adjacent to the Dori batholith have indicated that the MSZ forms a shear complex that was active during pluton emplacement. However, the MSZ has two main branches that join at the location of a mylonite zone located north west of Essakane. Southwest of Essakane, a NW-trending mylonite zone crosscuts the Dori batholith and near the village of Kargouna, which is situated southeast of Essakane, the Kargouna shear crosscuts and deforms the Dori batholith. It is thus likely that the Dori batholith was emplacement prior to D1 in the OGGB. Gold mineralization in the OGGB is generally hosted in the hanging-wall of NE-trending faults and or NW-trending folds in metasiltstone-sandstone-shale sequences. Nkuna (2009) concluded that the deposits can be classified as orogenic gold deposits under the sub-class of "intrusion related" due to their proximity to plutonic masses, which concurs with geophysical studies for the OGGB. References: Feybesse, J.L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.L., Milési, J.P., Bouchot, V., 2006. The Palaeoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modelling. Precambrian Research 149, 149-196. Hein, K.A.A., 2009 (In press). Structural chronologies in the Goren Greenstone belt (Burkina Faso); Implications for West African tectonics. Journal of African Earth Sciences. Tshibubudze, A., Hein, K.A.A., Marquis, P. 2009. The Markoye Shear Zone in NE Burkina Faso. Journal of African Earth Sciences 55, 245-256. Nkuna, B., 2009 Ore genesis of the Essakane, Falagountou and Sokadie Au deposits: Oudalan-Gorouol Greenstone Belt (OGGB), Burkina Faso, West African Craton (WAC). Unpublished Honours thesis, University of the Witwatersrand Johannesburg, 60p.

  18. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.

  19. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat-Muteh-Laybid complexes, Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Shabanian, Esmaeil; Davoodi, Zeinab; Mohajjel, Mohammad

    2017-06-01

    Reactivation of long-lived basement faults has significant influences on further deformation of collision zones. Three major inherited pre-collisional NW-, N- and NE-trending basement discontinuities have played important roles on the structural and tectono-sedimentary evolution of the Iranian micro-continent in the northeastern part of the Gondwana super-continent. Sanandaj-Sirjan zone (SSZ), known as the metamorphic belt of the Zagros orogeny, marks the SW margin of the Central Iran. SSZ is formed as a result of the Arabia-Eurasia collision and its general trend of deformation coincides with the NW structural trend of the collision. The NE-trending Mahallat, Muteh and Laybid complexes in the middle part of the NW-trending SSZ are the exception and have a trend almost normal to the NW-trending Zagros. A combined methodology of remote sensing, geometric and kinematics analyses complemented by field work was used to reconstruct the history of deformation in the Zagros hinterland since the earlier stages of collision to the present-day. Our results reveal the key role of the preexisting discontinuities of the Iranian basement in both the kinematics and structural pattern of the middle part of the SSZ. These basement faults have acted as main boundary conditions changing the collisional fabric perpendicular to its overall trend. Progressive deformation and the related changes during collision have caused drastic changes in the kinematics of the boundary faults. The establishment of dextral transtension in the SSZ has had secondary influences on the pattern of deformation by local clockwise rotation and localized dextral shear in the southern parts of the area of interest. This study highlights the significance of long-lived pre-existing structures in the deformation of collision zones. Such basement faults are capable to change both the pattern and kinematics of deformation of the adjacent areas involved in a continental collision.

  20. Geology of Joshua Tree National Park geodatabase

    USGS Publications Warehouse

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges and basins in the Park exhibit an east-west physiographic grain controlled by left-lateral fault zones that form a sinistral domain within the broad zone of dextral shear along the transform boundary between the North American and Pacific plates. Geologic and geophysical evidence reveal that movement on the sinistral faults zones has resulted in left steps along the zones, resulting in the development of sub-basins beneath Pinto Basin and Shavers and Chuckwalla Valleys. The sinistral fault zones connect the Mojave Desert dextral faults of the Eastern California Shear Zone to the north and east with the Coachella Valley strands of the southern San Andreas Fault Zone to the west.Quaternary surficial deposits accumulated in alluvial washes and playas and lakes along the valley floors; in alluvial fans, washes, and sheet wash aprons along piedmonts flanking the mountain ranges; and in eolian dunes and sand sheets that span the transition from valley floor to piedmont slope. Sequences of Quaternary pediments are planed into piedmonts flanking valley-floor and upland basins, each pediment in turn overlain by successively younger residual and alluvial surficial deposits.

  1. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Bankwitz, P.; Schneider, G.; Kämpf, H.; Bankwitz, E.

    2003-03-01

    The earthquake distribution pattern of Central Europe differs systematically from the neighbouring areas of NW and southern Europe regarding the fault plane kinematics. Within a belt between the French Massif Central and the northern part of the Bohemian Massif (1000 km) sinistral faulting along N-S zones dominates on the contrary to the Alps and their foreland with common bookshelf shears. One of the prominent N-S structures is the Regensburg-Leipzig-Rostock Zone (A) with several epicentral areas, where the main seismic center occurs in the northern Cheb Basin (NW Bohemia). The study demonstrates new structural results for the swarm-quake region in NW-Bohemia, especially for the Nový Kostel area in the Cheb Basin. There the N-S-trending newly found Počatky-Plesná zone (PPZ) is identical with the main earthquake line. The PPZ is connected with a mofette line between Hartušov and Bublák with evidence for CO 2 degassing from the subcrustal mantle. The morphologically more prominent Mariánské Lázně fault (MLF) intersects the PPZ obliquely under an acuate angle. In the past the MLF was supposed to be the tectonic structure connected with the epicentral area of Nový Kostel. But evidence from the relocated hypocentres along the PPZ (at 7-12 kms depth) indicate that the MLF is seismically non-active. Asymmetric drainage patterns of the Cheb Basin are caused by fault related movement along Palaeozoic basement faults which initiate a deformation of the cover (Upper Pliocene to Holocene basin filling). The PPZ forms an escarpment in Pliocene and Pleistocene soft rock and is supposingly acting as an earthquake zone since late Pleistocene time. The uppermost Pleistocene of 0.12-0.01 Ma deposited only in front of the fault scarp dates the fault activity. The crossing faults envelope crustal wedges under different local stress conditions. Their intersection line forms a zone beginning at the surface near Nový Kostel, dipping south with increasing depth, probably down to about 12 km. The intersection zone represents a crustal anomaly. There fault movements can be blocked up and peculiar stress condition influence the behaviour of the adjacent crust. An ENE-WNW striking dextral wrench fault was detected which is to expect as kinematic counterpart to the ca. N-S striking sinistral shear zones. Nearly E-W striking fracture segments were formerly only known as remote sensing lineaments or as joint density zones. The ENE shear zone is characterized by a set of compressional m-scale folds and dm-scale faults scattered within a 20 m wide wrench zone. It is built up of different sets of cleavage-like clay plate pattern of microscopical scale. The associated shear planes fit into a Riedel shear system. One characteristic feature are tiny channels of micrometer scale. They have originated after shear plane bending and are the sites of CO 2 mantle degassing.

  2. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    NASA Astrophysics Data System (ADS)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  3. The Active Structure of the Greater Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2002-12-01

    The Greater Dead Sea Basin (GDSB) is a 220km long depression situated along the southern section of the Dead Sea Transform (DST), between two structurally and gravitationally elevated points, Wadi Malih in the north and Paran fault zone in the south. In its center is the Dead Sea basin 'sensu strictu' (DSB), which has been described since the 1970s as a pull-apart basin at a left step-over along the DST. However, several observations, or their lack thereof, contradict this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. In this study, newly acquired and analyzed data (high resolution seismic reflection and earthquake relocation and fault plane solutions) has been integrated with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments). The results show that the GDSB is dominated by two active fault systems, one trending NNE and showing normal-dextral motion, the other trending NW. These systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. As a result, the intra-basin structure is of a series of rectangular blocks. The dextral slip component along NNE trending faults, the mixed sense of lateral offset along the western boundary of the DSB and temporal change in fracture orientation in the Jericho Valley suggest that the intra-basin blocks have rotated counterclockwise since the Pleistocene. The overall sinistral motion between the Arabian and Israel-Sinai plates along the GDSB may thus be accommodated by the postulated, internally rotating shear zone. Then, the subsidence of the DSB may possibly be explained if the rate of the resulting internal E-W shortening is greater than the rate of plate convergence.

  4. Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Igel, Jan; Loewer, Markus; Tanner, David C.; Lang, Jörg; Müller, Katharina; Winsemann, Jutta

    2018-05-01

    Deformation bands in unconsolidated sediments are of great value for paleoseismological studies in sedimentary archives. Using ground-penetrating radar (GPR), we investigated an array of shear-deformation bands that developed in unconsolidated Pleistocene glacifluvial Gilbert-type delta sediments. A dense grid (spacing 0.6 m) of GPR profiles was measured on top of a 20 m-long outcrop that exposes shear-deformation bands. Features in the radargrams could be directly tied to the exposure. The shear-deformation bands are partly represented by inclined reflectors and partly by the offset of reflections at delta clinoforms. 3-D interpretation of the 2-D radar sections shows that the bands have near-planar geometries that can be traced throughout the entire sediment volume. Thin sections of sediment samples show that the analysed shear-deformation bands have a denser grain packing than the host sediment. Thus they have a lower porosity and smaller pore sizes and therefore, in the vadose zone, the deformation bands have a higher water content due to enhanced capillary forces. This, together with the partially-developed weak calcite cementation and the distinct offset along the bands, are likely the main reasons for the clear and unambiguous expression of the shear-deformation bands in the radar survey. The study shows that deformation-band arrays can clearly be detected using GPR and quickly mapped over larger sediment volumes. With the 3-D analysis, it is further possible to derive the orientation and geometry of the bands. This allows correlation of the bands with the regional fault trend. Studying deformation bands in unconsolidated sediments with GPR is therefore a powerful approach in paleoseismological studies. Based on our data, we postulate that the outcrop is part of a dextral strike-slip zone that was reactivated by glacial isostatic adjustment.

  5. Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland

    NASA Astrophysics Data System (ADS)

    Proett, J. A.; Karson, J. A.

    2014-12-01

    Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.

  6. CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracchi, K.A.; Girty, G.H.; Girty, M.S.

    1993-04-01

    The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions duringmore » deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.« less

  7. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.

  8. Steady, modest slip over multiple earthquake cycles on the Owens Valley and Little Lake fault zones

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Haddon, E. K.; Burgmann, R.; Zielke, O.; Jayko, A. S.

    2015-12-01

    A comprehensive picture of current plate-boundary deformation requires integration of short-term geodetic records with longer-term geologic strain. Comparing rates of deformation across these time intervals highlights potential time-dependencies in both geodetic and geologic records and yields critical insight into the earthquake deformation process. The southern Walker Lane Belt in eastern California represents one location where short-term strain recorded by geodesy apparently outpaces longer-term geologic fault slip measured from displaced rocks and landforms. This discrepancy persists both for individual structures and across the width of the deforming zone, where ~1 cm/yr of current dextral shear exceeds Quaternary slip rates summed across individual faults. The Owens Valley and Little Lake fault systems form the western boundary of the southern Walker Lane and host a range of published slip rate estimates from ~1 - 7 mm/yr over varying time intervals based on both geodetic and geologic measurements. New analysis of offset geomorphic piercing lines from airborne lidar and field measurements along the Owens Valley fault provides a snapshot of deformation during individual earthquakes and over many seismic cycles. Viewed in context of previously reported ages from pluvial and other landforms in Owens Valley, these offsets suggest slip rates of ~0.6 - 1.6 mm/yr over the past 103 - 105 years. Such rates agree with similar estimates immediately to the south on the Little Lake fault, where lidar measurements indicate dextral slip averaging ~0.6 - 1.3 mm/yr over comparable time intervals. Taken together, these results suggest steady, modest slip in the absence of significant variations over the Mid-to-Late Quaternary for a ~200 km span of the southwestern Walker Lane. Our findings argue against the presence of long-range fault interactions and slip-rate variations for this portion of the larger, regional fault network. This result also suggests that faster slip-rate estimates from geodetic measurements reflect transients over much shorter time scales. Additionally, the persistence of relatively faster geodetic shear in comparison with time-averaged fault slip leaves open the possibility of significant off-fault deformation or slip on subsidiary structures across the Owens Valley.

  9. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Lacassin, Robin; Tapponnier, Paul; Schärer, Urs; Zhong, Dalai; Liu, Xiaohan; Zhang, Liangshang; Ji, Shaocheng; Trinh, Phan Trong

    1995-12-01

    The Red River Fault zone (RRF) is the major geological discontinuity that separates South China from Indochina. Today it corresponds to a great right-lateral fault, following for over 900 km the edges of four narrow (< 20 km wide) high-grade gneiss ranges that together form the Ailao Shan-Red River (ASRR) metamorphic belt: the Day Nui Con Voi in Vietnam, and the Ailao, Diancang and Xuelong Shan in Yunnan. The Ailao Shan, the longest of those ranges, is fringed to the south by a strip of low-grade schists that contain ultramafic bodies. The ASRR belt has thus commonly been viewed as a suture. A detailed study of the Ailao and Diancang Shan shows that the gneiss cores of the ranges are composed of strongly foliated and lineated mylonitic gneisses. The foliation is usually steep and the lineation nearly horizontal, both being almost parallel to the local trend of the gneissic cores. Numerous shear criteria, including asymmetric tails on porphyroclasts, C-S or C'-S structures, rolling structures, asymmetric foliation boudinage and asymmetric quartz axis fabrics, indicate that the gneisses have undergone intense, progressive left-lateral shear. P-T studies show that left-lateral strain occurred under amphibolite-facies conditions (3-7 kb and 550-780°C). In both ranges high-temperature shear was coeval with emplacement of leucocratic melts. Such deformed melts yield {U}/{Pb} ages between 22.4 and 26.3 Ma in the Ailao Shan and between 22.4 and 24.2 Ma in the Diancang Shan, implying shear in the Lower Miocene. The mylonites in either range rapidly cooled to ≈ 300°C between 22 and 17 Ma, before the end of left-lateral motion. The similarity of deformation kinematics, P-T conditions, and crystallization ages in the aligned Ailao and Diancang Shan metamorphic cores, indicate that they represent two segments of the same Tertiary shear zone, the Ailao Shan-Red River (ASRR) shear zone. Our results thus confirm the idea that the ASRR belt was the site of major left-lateral motion, as Indochina was extruded toward the SE as a result of the India-Asia collision. The absence of metamorphic rocks within the 80 km long "Midu gap" between the gneissic cores of the two ranges results from sinistral dismemberment of the shear zone by large-scale boudinage followed by uplift and dextral offset of parts of that zone along the Quaternary Red River Fault. Additional field evidence suggests that the Xuelong Shan in northern Yunnan and the Day Nui Con Voi in Vietnam are the northward and southward extensions, respectively, of the ASRR shear zone, which therefore reaches a length of nearly 1000 km. Surface balance restoration of amphibolite boudins trails indicates layer parallel extension of more than 800% at places where strain can be measured, suggesting shear strains on the order of 30, compatible with a minimum offset of 300 km along the ASRR zone. Various geological markers have been sinistrally offset 500-1150 km by the shear zone. The seafloor-spreading kinematics in the South China Sea are consistent with that sea having formed as a pull apart basin at the southeast end of the ASRR zone, which yields a minimum left-lateral offset of 540 km on that zone. Comparison of Cretaceous magnetic poles for Indochina and South China suggests up to 1200 ± 500 km of left-lateral motion between them. Such concurrent evidence implies a Tertiary finite offset on the order of 700 ± 200 km on the ASRR zone, to which several tens of kilometers of post-Miocene right-lateral offset should probably be added. These results significantly improve our quantitative understanding of the finite deformation of Asia under the thrust of the Indian collision. While being consistent with a two-stage extrusion model, they demonstrate that the great geological discontinuity that separates Indochina from China results from Cenozoic strike-slip strain rather than more ancient suturing. Furthermore, they suggest that this narrow zone acted like a continental transform plate boundary in the Oligo-Miocene, governing much of the motion and tectonics of adjacent regions. 700 and 200 km of left-lateral offset on the ASRR shear zone and Wang Chao fault zone, respectively, would imply that the extrusion of Indochina alone accounted for 10-25% of the total shortening of the Asian continent. The geological youth and degree of exhumation of the ASRR zone make it a worldwide reference model for large-scale, high-temperature, strike-slip shear in the middle and lower crust. It is fair to say that this zone is to continental strike-slip faults what the Himalayas are to mountain ranges.

  10. The kinematic history of the Khlong Marui and Ranong Faults, southern Thailand

    NASA Astrophysics Data System (ADS)

    Watkinson, Ian; Elders, Chris; Hall, Robert

    2008-12-01

    The Khlong Marui Fault (KMF) and Ranong Fault (RF) are major NNE-trending strike-slip faults which dissect peninsular Thailand. They have been assumed to be conjugate to the NW-trending Three Pagodas Fault (TPF) and Mae Ping Fault (MPF) in Northern Thailand, which experienced a diachronous reversal in shear sense during India-Eurasia collision. It follows that the KMF and RF are expected to show the opposite shear sense and a slip sense reversal at a similar time to the TPF and MPF. New field data from the KMF and RF reveal two phases of ductile dextral shear separated by Campanian magmatism. Paleocene to Eocene post-kinematic granites date the end of this phase, while a brittle sinistral phase deforms the granites, and has exhumed the ductile fault rocks. The timing of these movements precludes formation of the faults in response to Himalayan extrusion tectonics. Instead, they formed near the southern margin of a Late Cretaceous-Paleocene orogen, and may have been influenced by variations in the rate of subduction ahead of India and Australia. North-south compression prior to reactivation of the subduction zone around southern Sundaland in the Eocene caused widespread deformation in the over-riding plate, including sinistral transpression on the KMF and RF.

  11. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  12. Structural record of Lower Miocene westward motion of the Alboran Domain in the Western Betics, Spain

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-08-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western end of the system shows a narrow arcuate geometry across the Gibraltar arc, the Betic-Rif belt, in which the relationship between slab dynamics and surface tectonics is not well understood. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1) the Internal/External Zone Boundary limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts in the External Zone; 2) the Ronda Peridotites Thrust allows the juxtaposition of a strongly attenuated lithosphere section with large bodies of sub-continental mantle rocks on top of upper crustal rocks. New structural data show that two major E-W strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. Olistostromic sediments of Lower Miocene age were deposited and deformed in this tectonic context and hence provide an age estimate for the inferred continuous westward translation of the Alboran Domain that is accommodated by an E-W lateral (strike-slip) ramp and a N60° frontal thrust. The crustal emplacement of large bodies of sub-continental mantle may occur at the onset of this westward thrusting in the Western Alboran domain. At lithosphere-scale, we interpret the observed deformation pattern as the subduction upper-plate expression of a lateral slab tear and its westward propagation since the Lower Miocene.

  13. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  14. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Shi, Guanzhong; Xu, Bei

    2015-09-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontal E-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests an NNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion tectonic model for Central-Eastern Asia is firstly proposed. The NNW-SSE shortening results in the eastward extrusion of the continental wedge bounded by the BCF and EGF, which is accommodated by the different kinematic patterns of the southern (XMF and BCF) and northwestern (EGF) bounding faults. This shortening-extrusion tectonic framework is tentatively interpreted as the result of the far field forces associated with three Late Triassic lithosphere-scale convergences in East Asia: i) northward intracontinental subduction between the NCB and South China Block, ii) collision of the Qiangtang Block with the Qaidam Block, and iii) southward subduction of the Mongol-Okhotsk Ocean beneath the Mongolia Block.

  15. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion tectonic model for Central-Eastern Asia is firstly proposed. The NNW-SSE shortening results in the eastward extrusion of the continental wedge bounded by the BCF and EGF, which is accommodated by the different kinematic patterns of the southern (XMF and BCF) and northwestern (EGF) bounding faults. This shortening-extrusion tectonic framework is tentatively interpreted as the result of the far field forces associated with three Late Triassic lithosphere-scale convergences in East Asia: i)northward intracontinental subduction between the NCB and South China Block, ii)collision of the Qiangtang Block with the Qaidam Block, and iii)southward subduction of the Mongol-Okhotsk Ocean beneath the Mongolia Block.

  16. Deformation of the Calabrian accretionary wedge and relative kinematics of the Calabrian and Peloritan backstops: Insights from multibeam bathymetry, high-resolution reflection and wide-angle seismics and analog modeling

    NASA Astrophysics Data System (ADS)

    Dellong, David; Gutscher, Marc-Andre; Klingelhoefer, Frauke; Graindorge, David; Kopp, Heidrun; Moretti, Milena; Marsset, Bruno; Mercier de Lepinay, Bernard; Dominguez, Stephane; Malavieille, Jacques

    2016-04-01

    Recently acquired swath bathymetric data in the Ionian Sea document in unprecedented detail the morphostructure and dynamics of the Calabrian accretionary wedge. A boundary zone between the eastern and western lobes of the accretionary wedge is examined here. Relative displacement between the Calabrian and Peloritan backstops is expected to cause dextral strike-slip deformation between the lobes. A wide-angle seismic profile was acquired in Oct. 2014 with the R/V Meteor (DIONYSUS survey) recorded by 25 Ocean-bottom seismometers (Geomar and Ifremer instruments) and 3 land-stations (INGV stations). Inversion and forward modeling of these seismic data reveal a 5-10 km deep asymmetric rift zone between the Malta Escarpment and the SW tip of Calabria. Analog modeling was performed to test if the origin of this rift could be related to the relative kinematics of the Calabrian and Peloritan backstops. Modeling, using two independently moving backstops, produces a zone of dextral transtension and subsidence in the accretionary wedge between two lobes. This corresponds well to the asymmetric rift observed in the southward prolongation of the straits of Messina faults. Paradoxically however, this dextral displacement does not appear to traverse the external Calabrian accretionary wedge, where prominent curved lineaments observed indicate a sinistral sense of motion. One possible explanation is that the dextral kinematic motion is transferred into a region of crisscrossing faults in the internal portion of the Eastern lobe. The bathymetry and high-resolution reflection seismic images indicate ongoing compression at the deformation front of both the western and eastern lobes. Together with the analog modeling results, these observations unambiguously demonstrate that the western lobe remains tectonically active.

  17. Normal block faulting in the Airport Graben, Managua pull-apart rift, Nicaragua: gravity and magnetic constraints

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.

    2012-12-01

    Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional crustal models the offset observed in the Volcanic Front around the Nicaragua Lake is associated with a weakness zone related with: 1) this N-S change in crustal structure, 2) to the subduction angle of the Cocos plate, and 3) to the distance to the Middle America Trench (i.e. the location of the mantle wedge). As mentioned above a subducted transform fault might have given rise to this crustal discontinuity.

  18. Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia kimberlite diatremes, Central Zone, Limpopo Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Creus, P. K.; Anthonissen, C. J.; Stoch, B.; Ekkerd, J.

    2016-05-01

    The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3-3.1 Ga, 2.7-2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E-W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03-2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2-1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.

  19. Geological setting of the southern termination of Western Alps

    NASA Astrophysics Data System (ADS)

    d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca

    2016-09-01

    A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that bound the Argentera Massif on its NE side.

  20. Geophysical basin structure of the Cotonou (Dahomey/Benin) basin, West African Gulf of Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1990-05-01

    The frontier Cotonou basin (or Dahomey/Benin embayment), situated west of the prolific Niger Delta basin, appears from seismic, gravity, and aeromagnetic interpretation, as a series of grabens and troughs confined on the west and east by the Romanche and the Chain fracture zones, respectively. The Keta trough of the western basin rim was formed by a 2700-m southeasterly downthrow of the Adina fault. This trough is separated by a north-northeasterly fault from the Lome-Anecho gravity high. Eastward, the arcuate Allada-Adjohon trough is abutted on its southern flank by the northwest-trending Nokue-Afowo trough and separated from the northwesterly Ikorodu trough bymore » the 50-km-wide aeromagnetically inferred ro-Otta ridge. The Ikorodu trough is adjoined on the northwest by the Aiyetoro trough and on the southeast by the Yemoja offshore graben trending east northeast as the Seme oil-field structural trend. North of the regional northeasterly axial, gravity positive, structural divide (the continental precursor of the Charcot fracture zone) a series of half-grabens (notably the Aplahoue, Bohicon, and Keiou troughs), normal faulted eastward and downthrown in the west, dominate the landward western rim of the Cotonou basin. Graben-bounding faults control the upper valleys of the basin drainage, converge toward the regional intrabasin structural trend and continue into the Fenyi-koe fault and the Charcot fracture zone. These faults resulted from brittle dextral shear of continental crust oblique to local, preexisting north-northeast structural trends. In the eastern basin rim, preexisting north-northwest structural trends influenced the shearing stress regime to generate small, shallow, structurally bounded, east-northeast- and north-northwest trending grabens.« less

  1. Microstructural study of the Mertz shear zone, East Antarctica. Implications for deformation processes and seismic anisotropy.

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Ménot, René-Pierre

    2015-04-01

    The Mertz Shear Zone (MSZ; 146°E 67°S; East Antarctica) is one major lithospheric-scale structure which outcrops on the eastern edge of the Terre Adélie Craton (Ménot et al., 2007) and that could connected with shear zones of South Australia (e.g., Kalinjala or Coorong shear zone (Kleinschmidt and Talarico, 2000; Gibson et al., 2013)) before the Cretaceous opening of the Southern Ocean. Geochronological and metamorphic studies indicated an MSZ activity at 1.7 and 1.5 Ga respectively in amphibolite and greenschists facies conditions. The deformation affects both the intermediate and lower crust levels, without associated voluminous magma injection. Granulite crop out in the area of the MSZ. They were dated at 2.4 Ga (Ménot et al., 2005) and could represent some preserved Neoarchean tectonites. These rocks show various degrees of deformation including penetrative structures that may display comparable features with that observed in amphibolite and greenschists facies rocks, i.e. NS-striking and steeply dipping foliation with weekly plunging lineation. In the field, cinematic indicators for the MSZ argue for a dominant dextral shear sense. We proceed to optical analysis and crystallographic preferred orientation (CPO) measurements using EBSD technique in order to better constrain the deformation processes. Our results highlight (1) a microstructural gradient from highly deformed rocks (mylonites), forming plurimetric large shear bands and showing evidences of plastic deformation, to slightly deformed rocks in preserved cores with no evidences of plastic deformation or with a clear strong static recrystallization; (2) CPO of minerals related with variations on deformation conditions. Feldspar and quartz CPO argue for plastic deformation at high temperature in the most deformed domains and for the absence of deformation or an important stage of static recrystallization in preserved cores; (3) uncommon CPO in orthopyroxene which are characterized by [010]-axes perpendicular to the foliation and [001]-axes parallel to the lineation. These CPO seem to be related to static recrystallization processes. Seismic properties of amphibolite and granulite rocks from the MSZ were calculated in order to evaluate the impact of deformation observed in amphibolite and granulite tectonites to seismic anisotropy. Computations were performed from measured CPO, single crystal elastic stiffness matrix, modal composition and density of characteristic samples. P- and S-waves anisotropies of the cratonic crust affected by the MSZ are small and even tend to be isotropic in the case of S-waves propagating vertically in the crust. These results permit us to better discuss seismic studies and in particular SKS analysis which were recently carried out in this area (Lamarque et al., 2015).

  2. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R.W.; Schultz, A.P.

    1992-01-01

    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain inmore » places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.« less

  3. Pre-impact tectonothermal evolution of the crystalline basement-derived rocks in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gibson, R.L.; Townsend, G.N.; Horton, J. Wright; Reimold, W.U.

    2009-01-01

    Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere they are affected by high-temperature mylonitic shear deformation, suggesting a late-D1 intrusive timing close to the metamorphic peak. The D1 event is tentatively interpreted as a thrusting event associated with westward-verging collision between Gondwana and Laurentia before or during the Permian-Carboniferous Alleghanian orogeny. It is unclear whether subsequent brittle deformation, described here as D2, could be part of regional dextral Alleghanian strike-slip faulting or younger Mesozoic normal faulting. ?? 2009 The Geological Society of America.

  4. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei

    2018-03-01

    The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward migration and initiation of the splay faults (e.g., the Great Jurassic Trough fault and the 973-pluton fault). These results indicate that there were probably two periods of faulting deformation for the Daerbute fault. By integrating our study with previous studies, we speculate that the Daerbute fault experienced a two-phase strike-slip faulting deformation, commencing with the initial dextral strike-slip faulting in mid-late Permian, and then being inversed to sinistral strike-slip faulting since the Triassic. The results of this study can provide useful insights for the regional tectonics and local hydrocarbon exploration.

  5. Imaging of Upper-Mantle Upwelling Beneath the Salton Trough, Southern California, by Joint Inversion of Ambient Noise Dispersion Curves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Barak, S.

    2016-12-01

    We present a new 2D shear-wave velocity model of the crust and upper-mantle across the Salton Trough, southern California, obtained by jointly inverting our new dataset of receiver functions and our previously published Rayleigh-wave group-velocity model (Barak et al., G-cubed, 2015), obtained from ambient-noise tomography. Our results show an upper-mantle low-velocity zone (LVZ) with Vs ≤4.2 km/s extending from the Elsinore Fault to the Sand Hills Fault, that together bracket the full width of major San Andreas dextral motion since its inception 6 Ma b.p., and underlying the full width of low topography of the Imperial Valley and Salton Trough. The lateral extent of the LVZ is coincident with the lateral extent of an upper-mantle anisotropic region interpreted as a zone of SAF-parallel melt pockets (Barak & Klemperer, Geology, 2016). The shallowest part of the LVZ is 40 km depth, coincident with S-receiver function images. The western part of the LVZ, between the Elsinore and San Jacinto faults (the region of greatest modern dextral slip), appears to continue to significantly greater depth; but a puzzling feature of our preliminary models is that the eastern part of the LVZ, from the San Jacinto Fault to the Sand Hills Fault, appears to be underlain by more-normalvelocity upper mantle (Vs ≥ 4.5 km/s) below 75 km depth. We compare our model to the current SCEC community models CVM-H and CVM-S, and to P-wave velocity models obtained by the active-source Salton Sea Imaging Project (SSIP). The hypothesized lower-crustal low-velocity zone beneath the Salton Trough in our previous model (Barak et al., G-cubed, 2015), there interpreted as a region of partial melt, is not supported by our new modeling. Melt may be largely absent from the lower crust of the Salton trough; but appears required in the upper mantle at depths as shallow as 40 km.

  6. Geologic map of the Washougal quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Tolan, Terry L.

    2013-01-01

    The Washougal 7.5’ quadrangle spans the boundary between the Portland Basin and the Columbia River Gorge, approximately 30 km east of Portland, Oregon. The map area contains the westernmost portion of the Columbia River Gorge National Scenic area as well as the rapidly growing areas surrounding the Clark County, Washington, cities of Camas and Washougal. The Columbia River transects the map area, and two major tributaries, the Washougal River in Washington and the Sandy River in Oregon, also flow through the quadrangle. The Columbia, Washougal, and Sandy Rivers have all cut deep valleys through hilly uplands, exposing Oligocene volcanic bedrock in the north part of the map area and lava flows of the Miocene Columbia River Basalt Group in the western Columbia River Gorge. Elsewhere in the map area, these older rocks are buried beneath weakly consolidated to well-consolidated Neogene and younger basin-fill sedimentary rocks and Quaternary volcanic and sedimentary deposits. The Portland Basin is part of the Coastal Lowland that separates the Cascade Range from the Oregon Coast Range. The basin has been interpreted as a pull-apart basin located in the releasing stepover between two en echelon, northwest-striking, right-lateral fault zones. These fault zones are thought to reflect regional transpression, transtension, and dextral shear within the forearc in response to oblique subduction of the Pacific plate along the Cascadia Subduction Zone. The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded on its northeast flank by the Portland Hills Fault Zone, which is probably an active structure. The nature of the corresponding northeastern margin of the basin is less clear, but a series of poorly defined and partially buried dextral extensional structures has been hypothesized from topography, microseismicity, potential-field anomalies, and reconnaissance geologic mapping. This map is a contribution to a program designed to improve the geologic database for the Portland Basin region of the Pacific Northwest urban corridor, the densely populated Cascadia forearc region of western Washington and Oregon. Updated, more detailed information on the bedrock and surficial geology of the basin and its surrounding area will facilitate improved assessments of seismic risk, and resource availability in this rapidly growing region.

  7. Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence (Pakistan)

    NASA Astrophysics Data System (ADS)

    Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C.

    2014-07-01

    On 28-29 October 2008, within 12 h, two similar Mw = 6.4 strike-slip earthquakes struck Baluchistan (Pakistan), as part of a complex seismic sequence. Interferometric Synthetic Aperture Radar (InSAR) data reveal that the peak of surface displacement is near the Ziarat anticline, a large active fold affected by Quaternary strike-slip faulting. All coseismic interferograms integrate the deformation due to both earthquakes. As their causative faults ruptured close to each other, the individual signals cannot be separated. According to their focal mechanisms, each earthquake may have activated a NE-SW sinistral or a NW-SE dextral fault segment, which leads to four possible scenarios of fault orientations. A nonlinear inversion of the InSAR data set allows rejecting two scenarios. The best slip distributions on the two fault segments for the two remaining scenarios are determined by linear inversion. Stress-change modeling favors a scenario involving two abutting conjugate strike-slip faults. Two other fault segments accommodated left-lateral strike slip during the seismic sequence. The activated fault system includes multiple fault segments with different orientations and little surface expression. This may highlight, at a smaller scale, the distributed, possibly transient character of deformation within a broader right-lateral shear zone. It suggests that the activated faults delineate a small tectonic block extruding and subtly rotating within the shear zone. It occurs in the vicinity of the local tectonic syntaxis where orogenic structures sharply turn around a vertical axis. These mechanisms could participate in the long-term migration of active tectonic structures within this kinematically unstable tectonic syntaxis.

  8. P-T-t-d History of the Lahul Valley, NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Nieblas, A.; Leech, M. L.

    2015-12-01

    The Lahul Valley of NW India is located between the Zanskar Shear zone to the northwest and the Sangla detachment to the southeast. This region contains three east-trending, laterally-continuous tectonostratigraphic units separated by two major fault zones. To the south, low-grade metasediments of the Lesser Himalayan Sequence (LHS) are separated from high-grade crystalline rocks of the Greater Himalayan Sequence (GHS) by the north dipping Main Central Thrust (MCT). The northern extent of the GHS is separated from overlying low-grade sedimentary rocks of the Tethyan Himalayan Sequence (THS) along the north dipping South Tibetan Detachment System (STDS). There is controversy over the location and type of shear motion for the STDS in the ~50 km strip running through Lahul Valley where the STD is interpreted as a discrete fault, a dextral shear zone, and is unidentified in some areas along the trend of the STDS. This study focuses on understanding the pressure-temperature-time-deformation (P-T-t-d) evolution of THS and GHS rocks in Lahul Valley to better understand regional Cenozoic deformation and the location and role of the STDS in the extrusion of the GHS. Deformed granitics, migmatites, and leucogranites from the GHS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt ± Ky ± St. Schists and phyllites from the THS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt. Isochemical phase equilibria diagrams (pseudosections) are calculated in Perple_X using whole-rock chemistry data with solution models based on these mineral assemblages. Ti-in-quartz thermometry and the Fe-Mg exchange thermometry from garnet-biotite pairs used with mineral growth relationships constrain conditions during deformation and to establish P-T paths. U-Pb SHRIMP dating of zircon constrains peak metamorphic conditions and 40Ar/39Ar thermochronology of micas provide the cooling history along the valley and across the STDS. This multi-component approach to understand the metamorphic and deformational evolution of Lahul provides a holistic understanding of the GHS, THS, and STDS in a controversial area that can be used to draw comparisons, and build on tectonic models in the NW Himalaya.

  9. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  10. Analog modeling of the deformation and kinematics of the Calabrian accretionary wedge

    NASA Astrophysics Data System (ADS)

    Dellong, David; Gutscher, Marc-Andre; Klingelhoefer, Frauke; Graindorge, David; Kopp, Heidrun; Mercier de Lepinay, Bernard; Dominguez, Stephane; Malavieille, Jacques

    2017-04-01

    The Calabrian accretionary wedge in the Ionian Sea, is the site of slow, deformation related to the overall convergence between Africa and Eurasia and the subduction zone beneath Calabria. High-resolution swath bathymetric data and seismic profiling image a complex network of compressional and strike-slip structures. Major Mesozoic rift structures (Malta Escarpment) are also present and appear to be reactivated in places by normal faulting. Ongoing normal faulting also occurs in the straits of Messina area (1908 M7.2 earthquake). We applied analog modeling using granular materials as well as ductile (silicone) in some experiments. The objective was to test the predictions of certain kinematic models regarding the location and kinematics of a major lateral slab edge tear fault. One experiment, using two independently moving backstops, demonstrates that the relative kinematics of the Calabrian and Peloritan blocks can produce a zone of dextral transtension and subsidence which corresponds well to the asymmetric rift observed in seismic data in the southward prolongation of the straits of Messina faults. However, the expected dextral offset in the deformation front of the accretionary wedge is not observed in bathymetry. In fact sinistral motion is observed along the boundary between two lobes of the accretionary wedge suggesting the dextral motion is absorbed along a network of transcurrent faults within the eastern lobe. Bathymetric and seismic observations indicate that the major dextral boundary along the western boundary of the accretionary wedge is the Alfeo fault system, whose southern termination is the focal point of a striking set of radial slip-lines. Further analog modeling experiments attempted to reproduce these structures, with mixed results.

  11. A Geologic and Geomorphic Mapping Approach to Understanding the Kinematic Role of Faulting in the Little San Bernardino Mountains in the Evolution of the San Andreas Fault System in Southern California

    NASA Astrophysics Data System (ADS)

    Powell, R. E.; Matti, J. C.

    2006-12-01

    The Little San Bernardino Mountains (LSBM) constitute a pivotal yet poorly understood structural domain along the right-lateral San Andreas Fault (SAF) in southern California. The LSBM, forming a dramatic escarpment between the eastern Transverse Ranges (ETR) and the Salton Trough, contain an array of N- to NW-trending faults that occupy the zone of intersections between the SAF and the coevolving E-trending left-slip faults of the ETR. One of the N-trending faults within the LSBM domain, the West Deception Canyon Fault, previously has been identified as the locus of the Joshua Tree earthquake (Mw 6.1) of 23 April 1992. That earthquake was the initial shock in the ensuing Landers earthquake sequence. During the evolution of the plate-margin shearing associated with the opening of the Gulf of California since about 5 Ma, the left-lateral faults of the ETR have provided the kinematic transition between the S end of the broad Eastern California Shear Zone (ECSZ) which extends northward through the Mojave Desert and along Walker Lane and the SAF proper in southern California. The long-term geologic record of cumulative displacement on the sinistral ETR faults and the dextral SAF and Mojave Desert faults indicates that these conjugate fault sets have mutually accommodated one another rather than exhibit cross-cutting relations. In contrast, the linear array of earthquakes that make up the dextral 1992 Landers sequence extends across the sinistral Pinto Mountain Fault and has been cited by some as evidence that ECSZ is coalescing southward along the N-trending dextral faults of the northern LSBM to join the ECSZ directly to southern SAF. To gain a better understanding of the array of faults in the LSBM, we are combining mapping within the crystalline basement terrane of the LSBM with mapping both of uplifted remnants of erosional surfaces developed on basement rocks and of volcanic and sedimentary rocks deposited on those surfaces. Our preliminary findings indicate the presence of both easterly and westerly dipping normal faults along the LSBM. Some of these faults offset a prominent uplifted erosion plain and overlying late Miocene basalt as well as younger strata that contain clasts of rocks not found locally, including rounded to very well rounded clasts of indurated sandstone, silicic hypabyssal, volcanic, and volcaniclastic rocks, gray- and greenschist, and quartzite. This distinctive clast assemblage is consistent with a western source subsequently displaced along the SAF. Taken together, these observations suggest that the long-term kinematic role(s) played by NW- to N- trending faults in the LSBM is more complex than that suggested by the simple transecting linear trend defined by the Landers earthquake sequence. By evaluating our findings in the context of our previously published palinspastic reconstructions of the SAF system, we are attempting to distinguish between two scenarios - not necessarily mutually exclusive - for the kinematic role of the LSBM faults, each scenario involving right-oblique extensional slip: (1) They developed initially about 5 Ma as a system of faults subparallel to the then newly forming part of the SAF associated with the opening of the Gulf of California. (2) They accommodate extension in the domains of acute intersection between the mutually developing right-lateral SAF and left-lateral ETR faults. In either of these scenarios, the LSBM faults are related to the opening of the Gulf of California since about 5 Ma and display an important history that predates their hypothesized very recent incorporation into a throughgoing dextral ECSZ.

  12. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  13. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  14. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  15. Ductile deformation history in Laibid metamorphic rocks, Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Mohajjel, Mohammad

    2010-05-01

    Sanandaj-Sirjan zone, in northeast of Zagros suture zone, is the metamorphic belt of the Zagros orogen which is metamorphosed during Late Mesozoic, as the active margin of the Neotethys subduction system. Since Late Cretaceous, oblique collision between Afro-Arabian continent and Central Iran micro continent resulted in dextral transpression and Poly-phase deformations of this zone. Laibid area, northwest of Esfahan province, is situated in complexly deformed sub zone of the Sanandaj-Sirjan zone in which structurally exposed Permian metamorphosed rocks are separated from the younger Triassic-Jurassic metamorphic rocks by faulted boundaries. Cretaceous unites do not exist in the study area, but in southern most parts un-metamorphosed Early Cretaceous rocks rest on Jurassic metamorphic units over an angular unconformity. Field observations reveal the existence of 3 folding patterns, folded dikes, semi-ductile to ductile shear zones and also sin-tectonic granite intrusion. Hassan-Robat Alkali-porphyritic-granite is exposed in the eastern part of the area with the possible ages between post-Early Cretaceous to pre-Eocene. In this research, the focus is on ductile structures and their deformation history in the Laibid area. Structural analysis of the folds reveals three deformation stages of a progressive deformation in this area. These folding patterns observed in all pre-Cretaceous metamorphosed unites, but not in Cretaceous rocks. The first stage includes tight to isoclinal folds, S0 || S1, with the aspect ratio changes respectively from tall and short. Although their axial plane and fold axis orientations change due to other two folding stages, but they mostly have moderately dipping to the NE axial plane and moderately plunging fold axis to NW or SE. In the eastern part of the area the trend of F1 foliation changes around the Hassan-Robat granite. The second folding stage includes open to close asymmetric folds which have broad aspect ratio. This folding stage resulted in a dominant axial plane foliation affected all rock units. These folds commonly have low to moderate plunge axis and NW-SE axial plane trends. Finally, the third stage includes gentle to open upright folds with wide aspect ratio, E-W axial plane trends and gently plunge axis. Superposition of these fold generations caused in coaxial interference patterns. Metamorphosed and metasomatized intermediate to basic dikes which cut thought the Permian metamorphic rocks are mostly outcropped in the central and eastern part of the Laibid area. Previous studies suggest post-Permian-pre-Late Triassic ages for them. Although these dikes have E-W to ENE-WSW trends, observation of their outcrops on the walls of Laibid marble mines indicates they are folded and boudined by the folding stages. Dikes are mostly parallel to axial plane foliations on these walls. Semi-ductile to ductile shear zones exist in central and eastern parts of the area. In the eastern part, their foliation turns around the Hassan-Robat granitic pluton. Study of the shear sense indicators on oriented thin sections such as mica fishes, stepped fragmented grains, s-c and s-c' fabrics illustrates they all have top to the northeast sense of shear. Field observation and thin sections studies indicate shear zones affected the first folding stages. It seems that during Late Jurassic, three folding stages consequently formed and passively rotated in a continuous deformation condition. Dikes are alternatively injected in to the extensional fractures and through the axial plane foliation and gradually deformed in to the folds, boudins, folded boudins, and boudined folds. Hassan-Robat granite intrusion and shearing events both must be occurred at least after first stage of folding.

  16. Kinematics of Deformation in West-Central Walker Lane; Paleomagnetic Testing of Fault-Block Rotation and Doming Models, Eastern California and Western Nevada

    NASA Astrophysics Data System (ADS)

    Fredrickson, S. M.; Pluhar, C. J.; Carlson, C. W.

    2013-12-01

    Walker Lane is a broad (~100-200 km) zone of dextral shear located between the Sierra Nevada microplate and the Basin and Range Province. We consider Bodie Hills a part of the greater Walker Lane because it has experienced clockwise, vertical-axis rotation of crustal blocks due to dextral shear accommodation. This strain is variable, resulting in rotations ranging from ~10°-70° depending on location. The Miocene Eureka Valley Tuff (EVT) is an ideal strain marker, because it is a geologically instantaneous and laterally extensive unit. We use paleomagnetic analysis of ignimbrites to improve the resolution of strain domain boundaries as well as test for doming in Bodie Hills. EVT site mean directions were compared to reference directions of the Tollhouse Flat and By Day Members collected from the stable Sierra Nevada to determine magnitudes of vertical-axis rotation. Three new sites and three previously sampled sites define a high-rotation domain including Bridgeport Valley and the East Walker River Canyon with an average clockwise rotation of ~50°-60°. We define the eastern boundary of this high-rotation domain as coinciding with a mapped fault exhibiting 11.7°×7.9° rotation of the presumed footwall. Our data corroborates and improves on Carlson's (2012) kinematic model in which the greater Bodie Hills has rotated clockwise ~30° since EVT emplacement. Eutaxitic textures, dipping up to 90°, are gross indicators of true tilt, but are also influenced by original dips in some localities, complicating interpretations. John et al. (2012) describe a simple doming model of Bodie Hills since EVT emplacement, supported by the high elevation of outflow channels compared to source areas. Our paleomagnetic data does not support simple doming, suggesting that there is either no doming of Bodie Hills, or that vertical crustal displacements have occurred without large-scale folding. John et al. (2012) dated undifferentiated EVT in Bodie Hills at ~9.4 Ma; using paleomagnetism, we show the dated outcrops to be Tollhouse Flat Member, substantially improving age constraints on EVT.

  17. Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Hemmati, O.; Tabatabaei Manesh, S. M.; Nadimi, A. R.

    2018-03-01

    The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275-375, 375-500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.

  18. Geomorphic expression of strike-slip faults: field observations vs. analog experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Genser, J.

    2012-04-01

    The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally accumulate to a several 100 m wide fault core, which is in part exposed at surface to arid climate and a km wide damage zone. The basic structures of analog experiments can be well transferred to nature, although along strike changes are common due to fault bending and fracture failure of country rocks.

  19. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beanland, S.; Clark, M.M.

    1993-04-01

    The right-lateral Owens Valley fault zone (OVFZ) in eastern California extends north about 100 km from near the northwest shore of Owens Lake to beyond Big Pine. It passes through Lone Pine near the eastern base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. Data from one site suggest an average net slip rate for the OVFZ of 1.5 [+-] 1 mm/yr for the past 300 ky. Several other sites yield an average Holocenemore » net slip rate of 2 [+-] 1 mm/yr. The OVFZ apparently has experienced three major Holocene earthquakes. The minimum average recurrence interval is 5,000 years at the subsidiary Lone Pine fault, whereas it is 3,300 to 5,000 years elsewhere along the OVFZ. The prehistoric earthquakes are not dated, so an average recurrence interval need not apply. However, roughly equal (characteristic) displacement apparently happened during each Holocene earthquake. The Owens Valley fault zone accommodates some of the relative motion (dextral shear) between the North American and Pacific plates along a discrete structure. This shear occurs in the Walker Lane belt of normal and strike-slip faults within the mainly extensional Basin and Range Province. In Owens Valley displacement is partitioned between the OVFZ and the nearby, subparallel, and purely normal range-front faults of the Sierra Nevada. Compared to the OVFZ, these range-front normal faults are very discontinuous and have smaller Holocene slip rates of 0.1 to 0.8 mm/yr, dip slip. Contemporary activity on adjacent faults of such contrasting styles suggests large temporal fluctuations in the relative magnitudes of the maximum and intermediate principal stresses while the extension direction remains consistently east-west.« less

  20. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.

    2010-03-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin. The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated with SE Asian extrusion tectonism. The fault zone outlines a deep rift that widens to the south and connects with the main Malay Basin. In the central northern part of the basin, a series of intra-basinal left-lateral fracture zones are interconnected by NW to WNW-trending extensional faults and worked to distribute sinistral shearing across the width of the basin. Extensive thermal sagging throughout the Neogene has led to the accommodation of a very thick sedimentary succession. Moderate rifting resumed during the Early Miocene following older structural fabric. The intensity of rifting increases towards the west and was probably related to coeval extension in the western part of the Gulf of Thailand. Neogene extension culminated before the Pliocene, although faults in places remains active. Late Neogene basin inversion has been attributed to c. 70 km of right-lateral movement across major c. N-S-trending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion.

  1. Geologic Map of the Saint Helens Quadrangle, Columbia County, Oregon, and Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Saint Helens 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 35 km north Portland, Oregon. The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, Cascade Range has been the locus of a discontinuously active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Saint Helens quadrangle lies in the northern part of the Portland Basin, a roughly 2000-km2 topographic and structural depression. It is the northernmost of several sediment-filled structural basins that collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The rhomboidal basin is approximately 70 km long and 30 km wide, with its long dimension oriented northwest. The Columbia River flows west and north through the Portland Basin at an elevation near sea level and exits through a confined bedrock valley less than 2.5 km wide about 16 km north of Saint Helens. The flanks of the basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others, 1993; Mabey and Madin, 1995) indicate that as much as 550 m of late Miocene and younger sediments have accumulated in the deepest part of the basin near Vancouver. Most of this basin-fill material was carried in from the east by the Columbia River but contributions from streams draining the adjacent highlands are locally important. The Portland Basin has been interpreted as a pull-apart basin located in the releasing stepover between two echelon, northwest-striking, right-lateral fault zones (Beeson and others, 1985, 1989; Beeson and Tolan, 1990; Yelin and Patton, 1991; Blakely and others, 1995). These fault zones are thought to reflect regional transpression and dextral shear within the forearc in response to oblique subduction along the Cascadia Subduction Zone Pezzopane and Weldon, 1993; Wells and others, 1998). The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded its northeast flank by the Portland Hills Fault Zone (Balsillie and Benson, 1971; Beeson and others, 1989; Blakely and others, 1995), which is probably an active structure (Wong and others, 2001; Liberty and others, 2003). The nature of the corresponding northeastern margin of the basin is less clear, but a poorly defined and partially buried dextral extensional fault zone has been hypothesized from topography, microseismicity, potential fieldanomalies, and reconnaissance geologic mapping (Beeson and others, 1989; Beeson and Tolan, 1990; Yelin and Patton, 1991; Blakely and others, 1995). Another dextral structure, the Kalama Structural Zone of Evarts (2002), may underlie the north-northwest-trending reach of the Columbia River north of Woodland (Blakely and others, 1995). This map is a contribution to a U.S. Geological Survey (USGS) program designed to improve the geologic database for the Portland Basin region of the Pacific Northwest urban corridor, the populated forearc region of western Washington and Oregon. Better and more detailed information on the bedrock and surficial geology of the basin and its surrounding area is needed to refine assessments of seismic risk (Yelin and Patton, 1991; Bott and Wong, 1993), ground-failure hazards (Madin and Wang, 1999; Wegmann and Walsh, 2001) and resource availability in this rapid

  2. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    USGS Publications Warehouse

    Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Machette, M.N.; Owen, L.A.; Phillips, F.M.; Slate, J.L.; Wernicke, B.P.

    2007-01-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ???297 ?? 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36C1 geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ?? 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ???8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant. Copyright 2007 by the American Geophysical Union.

  3. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Brantley, Katherine S.; Dolan, James F.; Finkel, Robert C.; Klinger, Ralph E.; Knott, Jeffrey R.; Machette, Michael N.; Owen, Lewis A.; Phillips, Fred M.; Slate, Janet L.; Wernicke, Brian P.

    2007-06-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ˜297 ± 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36Cl geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ± 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ˜8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant.

  4. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    NASA Astrophysics Data System (ADS)

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that may proof promising for subsurface mining.

  5. Segmentation of the Cascadia Forearc in Southwestern Washington—Evidence from New Potential-Field Data

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Wells, R. E.; Sherrod, B. L.; Brocher, T. M.

    2016-12-01

    Newly acquired potential-field data, geologic mapping, and recorded seismicity indicate that the Cascadia subduction zone is segmented in southwestern Washington by a left-stepping, possibly active crustal structure spanning nearly the entire onshore portion of the forearc. The east-striking, southward verging Doty thrust fault is an important part of this trans-forearc structure. As mapped, the eastern end of the 50-km-long Doty fault connects with the northwestern termination of ongoing seismicity on the north-northwest-striking Mt. St. Helens seismic zone (MSHSZ), suggesting that the Doty fault and MSHSZ may be kinematically linked. Westward, the mapped Doty fault terminates at and may link to mapped faults striking northwestward to 35 km north of Grays Harbor, a total northwest distance of 85 km. A newly acquired aeromagnetic survey over the Doty fault and MSHSZ, and existing gravity data, emphasize Crescent Formation and other Eocene volcanic rocks in the hanging wall of the Doty fault with up to 4 km of vertical throw. Most MSHSZ epicenters fall within a broad (5- to 10-km wide) magnetic low extending 50 km north-northwestward from Mt. St Helens. The magnetic low skirts around the western margin of the Miocene-age Spirit Lake pluton, but otherwise is not obviously associated with topography or mapped geology. We suggest that dextral slip on the MSHSZ is distributed across a broad, northwest-striking area that includes the magnetic low and is transferred to compressional slip on the Doty fault. The Doty fault demarcates a clear north-to-south decrease in the density of episodic tremor, suggesting that the thrust fault may intersect or modulate over-pressured fluids generated above the slab (Wells et al., in review). The Doty fault, MSHSZ, and neighboring structures are consistent with a dextral shear couple (Wells and Coe, 1985) and consequent clockwise crustal rotation extending across the entire landward portion of the Cascadia forearc, from the Pacific Coast to the Cascadia arc and from Grays Harbor to the Portland basin in northwestern Oregon.

  6. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  7. Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.

    2013-09-01

    The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.

  8. Crustal and mantle structure beneath the Terre Adélie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Barruol, Guilhem; Fontaine, Fabrice R.; Bascou, Jérôme; Ménot, René-Pierre

    2015-02-01

    The Terre Adélie and George V Land (East Antarctica) represent key areas for understanding tectonic relationships between terranes forming the Neoarchean-Palaeoproterozoic Terre Adélie Craton (TAC) and the neighbouring lithospheric blocks, together with the nature of its boundary. This region that represents the eastern border of the TAC is limited on its eastern side by the Mertz shear zone (MSZ) separating more recent Palaeozoic units from the craton. The MSZ, that recorded dextral strike-slip movement at 1.7 and 1.5 Ga, is likely correlated with the Kalinjala or Coorong shear zone in South Australia, east of the Gawler Craton and may therefore represent a frozen lithospheric-scale structure. In order to investigate the lithospheric structure of the TAC and the MSZ, we deployed from 2009 October to 2011 October four temporary seismic stations, which sampled the various lithospheric units of the TAC and of the neighbouring Palaeozoic block, together with the MSZ. We used receiver function method to deduce Moho depths and seismic anisotropy technique to infer the upper mantle deformation. Results from receiver functions analysis reveal Moho at 40-44 km depth beneath the TAC, at 36 km under the MSZ and at 28 km beneath the eastern Palaeozoic domain. The MSZ therefore delimits two crustal blocks of different thicknesses with a vertical offset of the Moho of 12 km. Seismic anisotropy deduced from SKS splitting at stations on the TAC shows fast polarisation directions (Φ) trending E-W, that is, parallel to the continental margin, and delay times (δt) ranging from 0.8 to 1.6 s. These results are similar to the splitting parameters observed at the permanent GEOSCOPE Dumont D'Urville station (DRV: Φ 95°N, δt 1.1 s) located in the Palaeoproterozoic domain of TAC. On the MSZ, the small number of good quality measurements limits the investigation of the deep signature of the shear zone. However, the station in the Palaeozoic domain shows Φ trending N60°E, which is significantly different to the Φ trending measurements from stations on the TAC, suggesting that the MSZ may also represent a major frontier between the Neoarchean-Palaeoproterozoic and Palaeozoic terranes.

  9. On the motion od the Caribbean relative to South-America: New results from GPS geodesy 1999-2012

    NASA Astrophysics Data System (ADS)

    De La Rosa, R.; Marquez, J.; Bravo, M.; Madriz, Y.; Mencin, D.; Wesnousky, S. G.; Molnar, P. H.; Bilham, R.; Perez, O. J.

    2013-05-01

    Our previous (1994-2006) collaborative GPS studies in southern Caribbean and northern South-America (SA) show that along its southern boundary in north-central and northeastern Venezuela (Vzla) the Caribbean plate (CP) slips easterly at ~20 mm/a relative to SA, and that in northwestern South-America slip-partitioning takes place resulting in 12 mm/a of dextral motion across the Venezuelan Andes, ~6 mm/a of which occur along the main trace of the NE-trending Bocono fault, and the rest is taken up by SE-subduction of the CP beneath northwestern SA. A series of new velocity vectors obtained in the region from GPS geodesy in 1999-2012 and their corresponding elastic modelings shows that in north-central Vzla part (~3 mm/a) of the C-SA relative dextral shear is taken up by the east-trending continental La Victoria fault, which runs ~50 kms south of San Sebastian fault off-shore and is sub-parallel to it, the later taken up the rest of the motion. The velocity we find for Aruba Is (~20 mm/y due ~east) is consistent with the motion predicted by the Euler pole (61,9° N; 75,7 °W; ω = 0,229 °/Ma) we previously calculated to describe the C-SA relative plate motion. New velocity vectors obtained across the Venezuelan Andes are consistent with a modeled surface velocity due to 12 mm/a of dextral shear below a locking depth of 14 km on one or more vertical N50°E striking faults located within the 100-km wide Andean ranges. The Andes also show a horizontal convergence rate of 2 to 4 mm/a suggesting an uplift rate of ~1.7 mm/a if thrust motion takes place on shallowly dipping faults parallel to the Andes.

  10. Geologic Map of the Woodland Quadrangle, Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Woodland 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 50 km north of Portland, Oregon (fig. 1). The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Woodland quadrangle lies at the northern edge of the Portland Basin, a roughly 2000-km2 topographic and structural depression that is the northernmost of several sediment-filled structural basins, which collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The Portland Basin is approximately 70 km long and 30 km wide; its long dimension is oriented northwest. Its northern boundary coincides, in part, with the lower Lewis River, which flows westward through the center of the quadrangle. The Lewis drains a large area in the southern Washington Cascade Range, including the southern flank of Mount St. Helens approximately 25 km upstream from the quadrangle, and joins the Columbia River about 6 km south of Woodland (fig. 1). Northwest of Woodland, the Columbia River exits the broad floodplain of the Portland Basin and flows northward through a relatively narrow bedrock valley at an elevation near sea level. The flanks of the Portland Basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others, 1993; Mabey and Madin, 1995) indicate that as much as 550 m of late Miocene and younger sediments have accumulated in the deepest part of the basin near Vancouver. Most of this basin-fill material was carried in from the east by the Columbia River but sediment deposited by streams draining the adjacent highlands are locally important. The Portland Basin has been interpreted as a pull-apart basin located in the releasing stepover between two en echelon, northwest-striking, right-lateral fault zones (Beeson and others, 1985, 1989; Beeson and Tolan, 1990; Yelin and Patton, 1991; Blakely and others, 1995). These fault zones are thought to reflect regional transpression and dextral shear within the forearc in response to oblique subduction of the Pacific Plate along the Cascadia Subduction Zone (Pezzopane and Weldon, 1993; Wells and others, 1998). The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded on its northeast flank by the Portland Hills Fault Zone (Balsillie and Benson, 1971; Beeson and others, 1989; Blakely and others, 1995), which is probably an active structure (Wong and others, 2001; Liberty and others, 2003). The nature of the corresponding northeastern margin of the basin is less clear, but a poorly defined and partially buried dextral extensional fault zone has been hypothesized from topography, microseismicity, potential field-anomalies, and reconnaissance geologic mapping (Beeson and others, 1989; Beeson and Tolan, 1990; Yelin and Patton, 1991; Blakely and others, 1995). Another dextral structure may control the north-northwest-trending reach of the Columbia River between Portland and Longview (Blakely and others, 1995; Evarts, 2002; Evarts and others, 2002). This map is a contribution to a U.S. Geological Survey program designed to improve the geologic database for the Portland Basin part of the Pacific Northwest urban corridor,

  11. Preliminary investigation on the deformation rates of the Nazimiye Fault (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan

    2016-04-01

    The complex tectonic setting of the eastern Mediterranean is mainly shaped by the interaction between three major plates, Eurasian, African, and Arabian plates, with additional involvement from the smaller Anatolian Scholle. The internal deformation of the Anatolian Scholle is mainly accommodated along NW-striking dextral and NE-striking sinistral faults, which are explained by the Prandtl Cell model by Şengör (1979). Although some of these strike-slip faults, such as Tuzgölü, Ecemiş and Malatya-Ovacık faults, have long been documented, the Nazimiye Fault (NF) is only presented in very recent studies (Kara et al. 2013; Emre et al. 2012). The aim of the study is to understand intra-plate deformation of the Anatolian Scholle, by studying the morphotectonic structures along the NF. The study area located close to the eastern boundary of Anatolia, roughly on the wedge that is delimited by the North and East Anatolian shear zones and the Malatya-Ovacık Fault Zone. After the preliminary remote sensing analyses and field observations, I mapped the locations of the different terrace treads along the Pülümür River, which is strongly deflected by the activity of the NF. This dextral strike-slip fault, is not only characterized with the deformation of the Pülümür River, but also it shows many beheaded streams, pressure ridges, hot springs and travertines along its course. I sampled one of the alluvial fans for cosmogenic dating at the eastern section of the NF, where about 20 m of dextral offset was measured at the margins of the incised stream. Moreover, additional sampling was performed from different terrace levels along the Pülümür River, in order not only to estimate the min. horizontal rate, but also to quantify the vertical deformation. Moreover, I applied morphometric indices to understand the tectonic control on the local morphology along the NF. Transverse Topographic Symmetry Factor was used to show the relative degree of tectonic activity along the fault-bounded mountain fronts. In addition to that I also extracted hypsometric curves, hypsometric integrals and stream length gradient index to understand the relationship between characteristics of the drainage basins and tectonic activity. As preliminary results, I conclude that the southern segment of the NF is tectonically quiescent, whereas the deformation is mainly accommodated on the northern branch. References Emre, Ö., Duman, T.Y., Kondo, H., Olgun, Ş., Özalp, S., Elmacı, H., 2012. 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Erzincan (NJ37-3) Paftası, Seri No:44, Maden Tetkik ve Arama Genel Müdürlüǧü, Ankara-Türkiye. Kara, K., Sançar, T., Zabci, C., 2013. Morphologic and Morphotectonic Characteristics of the Nazimiye Fault Zone, Eastern Turkey. EGU2013-8105, EGU General Assembly Vienna, Austria. Şengör, A.M.C., 1979. The North Anatolian transform fault; its age, offset and tectonic significance. Journal of the Geological Society of London 136, Part 3, 269-282.

  12. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B; Faulds, James E

    The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern endmore » of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault, which accommodates motion such that the Mesozoic Nightingale sequence is juxtaposed with late Tertiary sedimentary rocks. The NW dextral fault, the NNE-down to east fault, and several NNE-down to the west faults intersect roughly at the thermal anomaly in Emerson Pass. This suggests that fault intersections locally control upwelling of geothermal fluids within the step-over. Based on this assumption, it is proposed that the area near Buckbrush Springs be investigated further for geothermal potential. At this location, a NNE-down to the west normal fault, with >1 km of offset, intersects a NW-striking down to the south fault at a small left step in the NNE fault. Further studies will include collection of available kinematic indicators near the shallow thermal anomaly in Emerson Pass, geothermometry on Buckbrush Spring, and possibly drilling of temperature gradient wells in Emerson Pass and at Buckbrush Spring.« less

  13. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC-NAM) relative plate motion since ~12 Ma (Atwater and Stock, 1998). We propose that the continental component of PAC-NAM shear is accommodated by: (1) 195 ± 15 km on the southern SAF (this study); (2) 12 ± 2 km on the Whittier-Elsinore fault; (3) 75 ± 20 km of cumulative shear across the central Mojave in the eastern California shear zone; (4) 30 ± 4 km of post-13 Ma slip on the Stateline fault; and (5) 47 ± 18 km of NW-directed translation produced by north-south shortening. Together, these components sum to 359 ± 31 km of net dextral displacement on the SAF system (sensu lato) in southern California since ca. 12 Ma, or ~300 km less than what is required by the global plate circuit. This suggests that the continental component of post-12 Ma PAC-NAM transform motion can be no more than ~390 km in the adjacent northern Gulf of California, substantially less than the 450 km of shear proposed in some models. We suggest that the remaining ~270-300 km of NW-directed relative plate motion is accommodated by a small component of late Miocene extension and roughly 225 km of slip on the offshore borderland fault system west of Baja California.

  14. Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-12-01

    In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

  15. Inland termination of the Weddell Sea Rift against a major Jurassic strike-slip fault zone between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin

    2013-04-01

    The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced within the newly identified Pagano Shear Zone, a major tectonic boundary between East and West Antarctica. We put forward two alternative kinematic tectonic models by analysing a compilation of our new data with previous magnetic and gravity datasets. In the simple shear model, ~E-W oriented Jurassic extension within the WSR was accommodated by left-lateral strike-slip motion on the Pagano Shear Zone. This would have facilitated eastward motion of the EWM block relative to East Antarctica, effectively transferring the block to West Antarctica. In a pure shear model, the left-lateral Pagano Shear Zone we identified and the dextral and normal fault systems, previously interpreted from aeromagnetic data further east at the the margins of the Dufek Intrusion, would represent conjugate fault systems. In the latter scenario, a more complex and potentially more distributed strike-slip boundary between the WSE and a mosaic of distinct East and West Antarctic crustal blocks may be possible. This tectonic model would resemble some geodynamic models for the opposite side of Antarctica, in the Ross Sea Embayment and Transantarctic Mountains, where more recent (Cenozoic) intraplate strike-slip fault systems have been proposed.

  16. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  17. Geochronological and Petrological Constraints on the Evolution of the Pan African Ajjaj Shear Zone, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Stuewe, K.; Abu-Alam, T. S.; Kloetzli, U. S.; Tiepolo, M.

    2014-12-01

    In the active tectonic regions, shear zones play an important role to re-configure the structure of the lithosphere. One of the largest shear zones on the Earth is the Najd Fault System of the Arabian-Nubian Shield. Literature data record the main active phase of this shear zone during the last stages of the Pan-African Orogeny (ca. 630 - 540 Ma). The Najd Fault System is composed of several shear zone segments, one of them is the Ajjaj shear zone. Determination of the age of variably deformed intrusions is expected to give approximated age of deformation in Ajjaj shear zone. Six samples of intrusive rocks showing variable composition were used to illustrate the time progress and evolution of the Ajjaj shear zone. One sample is from a very coarse grained diorite lying within the Ajjaj shear zone. It has very weak deformation and produces an intercept U-Pb zircon age of 696 ± 6 Ma. Two samples are from granodiorite-tonalite intrusions to the tenant of the Ajjaj shear zones. They show conspicuous degree of deformation and define two U-Pb clusters of concordia ages at 747 ± 12 Ma - 668 ± 8 Ma and 742 ± 5 Ma - 702 ± 12 Ma. Three samples are granites from variable plutons along the Ajjaj shear zone. Two of them show mylonitic foliation of flattened quartz and platy minerals such as biotite parallel to the main deformation trend of the shear zone. They yield U-Pb ages of 601 ± 6 Ma - 584 ± 3 Ma. The third sample is undeformed and has a cross-cut contact relationship with the foliation of the Ajjaj shear zone. It yield concordia ages of 581 ± 4 Ma. These data confine the activity of the Ajjaj shear zone to a limited period between 605 Ma and 577 Ma. As the activity of the Ajjaj shear zone was responsible for the exhumation of the Hamadat metamorphic complex, we also constrained the vertical motions that occurred during the shear zone activity using mmetamorphic rocks. It is shown that peak metamorphism occurred around 505 - 700 ºC at two ranges of pressure 8 - 11 and 14.5 ± 2 kbar with highest pressure rocks being central to the shear zone and lower pressure occurring in more distal parts. This suggests exhumation from about 44 - 58 depth with the largest exhumation depths occurring in the most central part of the shear zone.

  18. Fault locking, block rotation and crustal deformation in the Pacific Northwest

    USGS Publications Warehouse

    McCaffrey, R.; Qamar, A.I.; King, R.W.; Wells, R.; Khazaradze, G.; Williams, C.A.; Stevens, C.W.; Vollick, J.J.; Zwick, P.C.

    2007-01-01

    We interpret Global Positioning System (GPS) measurements in the northwestern United States and adjacent parts of western Canada to describe relative motions of crustal blocks, locking on faults and permanent deformation associated with convergence between the Juan de Fuca and North American plates. To estimate angular velocities of the oceanic Juan de Fuca and Explorer plates and several continental crustal blocks, we invert the GPS velocities together with seafloor spreading rates, earthquake slip vector azimuths and fault slip azimuths and rates. We also determine the degree to which faults are either creeping aseismically or, alternatively, locked on the block-bounding faults. The Cascadia subduction thrust is locked mainly offshore, except in central Oregon, where locking extends inland. Most of Oregon and southwest Washington rotate clockwise relative to North America at rates of 0.4-1.0?? Myr-1. No shear or extension along the Cascades volcanic arc has occurred at the mm/yr level during the past decade, suggesting that the shear deformation extending northward from the Walker Lane and eastern California shear zone south of Oregon is largely accommodated by block rotation in Oregon. The general agreement of vertical axis rotation rates derived from GPS velocities with those estimated from palaeomagnetic declination anomalies suggests that the rotations have been relatively steady for 10-15 Ma. Additional permanent dextral shear is indicated within the Oregon Coast Range near the coast. Block rotations in the Pacific Northwest do not result in net westward flux of crustal material - the crust is simply spinning and not escaping. On Vancouver Island, where the convergence obliquity is less than in Oregon and Washington, the contractional strain at the coast is more aligned with Juan de Fuca-North America motion. GPS velocities are fit significantly better when Vancouver Island and the southern Coast Mountains move relative to North America in a block-like fashion. The relative motions of the Oregon, western Washington and Vancouver Island crustal blocks indicate that the rate of permanent shortening, the type that causes upper plate earthquakes, across the Puget Sound region is 4.4 ?? 0.3 mm yr-1. This shortening is likely distributed over several faults but GPS data alone cannot determine the partitioning of slip on them. The transition from predominantly shear deformation within the continent south of the Mendocino Triple Junction to predominantly block rotations north of it is similar to changes in tectonic style at other transitions from shear to subduction. This similarity suggests that crustal block rotations are enhanced in the vicinity of subduction zones possibly due to lower resisting stress. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  19. Bounds on strain in large Tertiary shear zones of SE Asia from boudinage restoration

    NASA Astrophysics Data System (ADS)

    Lacassin, R.; Leloup, P. H.; Tapponnier, P.

    1993-06-01

    We have used surface-balanced restoration of stretched, boudinaged layers to estimate minimum amounts of finite strain in the mylonitic gneisses of the Oligo-Miocene Red River-Ailao Shan shear zone (Yunnan, China) and of the Wang Chao shear zone (Thailand). The layer-parallel extension values thus obtained range between 250 and 870%. We discuss how to use such extension values to place bounds on amounts of finite shear strain in these large crustal shear zones. Assuming simple shear, these values imply minimum total and late shear strains of, respectively, 33 ± 6 and 7 ± 3 at several sites along the Red River-Ailao Shan shear zone. For the Wang Chao shear zone a minimum shear strain of 7 ± 4 is deduced. Assuming homogeneous shear would imply that minimum strike-slip displacements along these two left-lateral shear zones, which have been interpreted to result from the India-Asia collision, have been of the order of 330 ± 60 km (Red River-Ailao Shan) and 35 ± 20 km (Wang Chao).

  20. Focal mechanisms and the stress regime in NE and SW Tanzania, East Africa

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.; Florentin, Juliette

    2005-07-01

    We report 12 new focal mechanisms from earthquakes in NE and SW Tanzania where the stress regime within the East African rift system is not well constrained. Focal mechanisms for events at the intersection of the Lake Tanganyika and Rukwa rifts in SW Tanzania indicate a complicated stress pattern with possible dextral strike-slip motion on some faults but oblique motion on others (either sinistral on NW striking faults or dextral on NE striking faults). Within the Rukwa rift, focal mechanisms indicate normal dip-slip motion with NE-SW opening. In NE Tanzania where the Eastern rift impinges on the margin of the Tanzania Craton, fault motions are consistent with a zone of distributed block faults and sub E-W extension. All twelve earthquakes likely nucleated within the crust.

  1. Microstructural Evolution during Mid-Crustal Shear Zone Thickening and Thinning, Mount Irene Detachment Zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, M.; Smith, S. A. F.; Scott, J.; Rooney, J. S.; Demurtas, M.

    2016-12-01

    Recent work has shown that ductile shear zones experience cyclic variations in stress and strain rate due to, for example, elastic loading from earthquake slip on brittle faults or the presence of rigid particles and asperities within the shear zone. Such non-steady state flow conditions can promote microstructural changes including a decrease in grain sizes followed by a switch in the main deformation mechanisms. Understanding the microstructural changes that occur during non steady-state deformation is therefore critical in evaluating shear zone rheology. The Mount Irene shear zone formed during Cretaceous extension in the middle crust and was active at temperatures of 600°C and pressures of 6 kbar. The shear zone localized in a basal calcite marble layer typically 3-5 m thick containing hundreds of thin (mm-cm) calc-silicate bands that are now parallel to the shear zone boundaries. The lower boundary of the shear zone preserves meter-scale undulations that cause the shear zone to be squeezed in to regions that are <1.5 m thick. The calc-silicate bands act as "flow markers" and allow individual shear zone layers to be traced continuously through thick and thin regions, implying that the mylonites experienced cyclic variations in stress and strain rate. Calc-mylonite samples collected from the same layer close to the base of the shear zone reveal that layer thinning was accompanied by progressive microstructural changes including intense twinning, stretching and flattening of large calcite porphyroclasts as well as the development of interconnected networks of recrystallized calcite aggregates. EBSD analysis shows that the recrystallized aggregates contain polygonal calcite grains with microstructures (e.g. grain quadruple junctions) similar to those reported for neighbor-switching processes associated with grain boundary sliding and superplasticity. Ongoing and future work will utilize samples from across the full thickness of the shear zone to determine key microstructural changes and deformation mechanisms that accommodated shear zone thinning and thickening during non-steady state deformation.

  2. Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2010-05-01

    Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. International Journal of Earth Sciences. 2. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. International Journal of Earth Sciences.

  3. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and initial T of 600 to 850 C, this produced periodic viscous shear heating events with periods of 100's to 1000's of years. Strain rates during these events approach 1 per second as temperatures reach 1400. Cooling between events returns the shear zone almost to its initial temperature, though ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Analysis shows that our system of equations jumps from one steady state to another, depending on a non-dimensional number relating the rate of shear heating to the rate of diffusive cooling. This year, Kelemen and Hirth show that the rate of stress drop during shear heating events is greater than the rate of elastic stress relaxation, so that shear heating events are a runaway instability. Rather than capping the temperature at 1400 C, we parameterize melt fraction as a function of T, and shear viscosity as a function of melt fraction. A problem with our 1D model is that predicted displacements are too large (1 to 20 m) during shear heating events, essentially because there is no resistance at shear zone ends. To address this, Coon and Spiegelman have embarked on a 3D model, incorporating a pre-existing fine-grained, tabular shear zone of finite extent, with a visco-elastic rheology for both shear zone and wall rocks. Preliminary 1D models using this approach show that the more complicated rheology yields the same result as the simpler model. We will present preliminary results, and determine the Maxwell time for this problem, since low strain rates could produce viscous relaxation in both shear zone and wall rocks with negligible shear heating.

  4. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand

    2017-10-01

    Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.

  5. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  6. The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)

    NASA Astrophysics Data System (ADS)

    Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.

    2003-04-01

    The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic gradient between the locus of melt generation in the orogenic root, and the opening pull-apart window. Such a pumping model may also be applied to other thermal anomalies in the Variscan Belt, e.g., in the SW-Bohemian Transverse Zone (FRANKE 2000), or in the Saxonian Granulites (FRANKE and STEIN 2000). Hydraulic expulsion of hot, low viscously materials has played an important role in the transport of heat for the hot Variscan root to higher and more external parts of the crust. FRANKE (2000); Geol. Soc. Spec. Publ. No. 179, 35-63. FRANKE and STEIN (2000); Geol. Soc. Spec. Publ. No. 179, 337-355. KLAMA et al. (2001); J. Conf. Abs.,6, 235. MALUSKI et al. (1991); Lithos, 26: 287-304. MATTE et al. (1998); Geodynamica Acta: 13-22. WIEDERER et al. (2002); Schweiz. Mineral. Petrogr. Mitt. 82, 393-407.

  7. Crustal Deformation Across the Basin and Range Province, Western United States, Measured with the Global Positioning System, 1992-2002

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Thatcher, W.

    2002-12-01

    The Basin and Range province of the western United States lies east of the Sierra Nevada mountains and accommodates roughly 25% of the motion between the North American and Pacific Plates in this region. It is experiencing both active extension and dextral shear, whose orientation is consistent with relative plate motion, suggesting that the province is an important part of the overall plate boundary system. We present results from recent measurement of Basin and Range crustal motion using the Global Positioning System (GPS). As of September 2002, ten years of deformation will have been observed with GPS measurements in 1992,1996, 1998 and 2002. The 800 km long east-to-west line of campaign-style geodetic benchmarks extends from east of the Wasatch fault zone in Utah to west of the Genoa fault zone and Lake Tahoe in California's Northern Sierra Nevada mountains, primarily along Interstate Highway 50. In all there are velocities at 91 GPS sites, nearly double the number previously presented (Thatcher et al. [1999]), all of which will be measured in September 2002. Incorporating this new data is expected to reduce the uncertainty in earlier measurements that show the motion of the Sierra Nevada block with respect to non-deforming North America to be accommodated by right lateral shear and extensional deformation in Nevada and Utah. Velocity variation of about 9 mm/yr is concentrated in the western one-third of the network, with a lesser amount (roughly 3 mm/yr) localized to the easternmost edge of the network, in the vicinity of the Wasatch fault zone. Recent densification of the GPS network across these two zones will also improve the spatial resolution of the deformation in these regions. The greatest rate of present-day deformation occurs near the ruptures of the Fairview Peak and Rainbow Mountain earthquakes in the Central Nevada Seismic Zone, extending west past the Genoa fault into the Sierra Nevada. This strain rate pattern is correlated with the concentration of historic faulting and seismicity in the western half of Nevada and eastern California, but is less well correlated with the relatively broad distribution of faults with Holocene and late Quaternary age. To process the data we use the GIPSY/OASIS II and Quasi-Observation Combination Analysis (Dong et al. [1998]) software packages and incorporate data from continuously recording GPS stations in California and Nevada.

  8. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  9. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  10. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    NASA Astrophysics Data System (ADS)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along the contact to the shear zones indicate a more complicated involvement of fluids during shear zone formation than described above. Apparently, fluids have been transported laterally from the outer parts of the shear zones into the gabbro-anorthosite along thin recrystallized zones of plagioclase. The fluid that infiltrated the undeformed host rock of the shear zones resulted in formation of Cl-free amphibole and garnet between the primary mafic minerals and plagioclase. A working hypothesis is that narrow fractures formed within the host rock, outside the sheared rock during shear zone formation. During shear zone formation, the central parts of the shear zones were completely hydrated by an externally derived Cl-bearing hydrous fluid. Some of the fluid migrated to the marginal parts of the shear zones and evolved to a highly saline solution. However, during desiccation of the fluid along the marginal parts of the shear zones, some of the fluid escaped along narrow fractures into the host rock of the shear zones. The Cl-free amphibole that formed from this fluid suggests that the narrow pathways of the fluid provided a path for water transport, but acted as a filter for the much larger ions of Cl.

  11. Precambrian evolution of the Salalah Crystalline Basement from structural analysis and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Al-Doukhi, Hanadi Abulateef

    The Salalah Crystalline Basement (SCB) is the largest Precambrian exposure in Oman located on the southern margin of the Arabian Plate at the Arabian Sea shore. This work used remote sensing, detailed structural analysis and the analysis of ten samples using 40Ar/39Ar age dating to establish the Precambrian evolution of the SCB by focusing on its central and southwestern parts. This work found that the SCB evolved through four deformational events that shaped its final architecture: (1) Folding and thrusting event that resulted in the emplacement of the Sadh complex atop the Juffa complex. This event resulted in the formation of possibly N-verging nappe structure; (2) Regional folding event around SE- and SW-plunging axes that deformed the regional fabric developed during the N-verging nappe structure and produced map-scale SE- and SW-plunging antiforms shaping the complexes into a semi-dome structure; (3) Strike-slip shearing event that produced a conjugate set of NE-trending sinistral and NW-trending dextral strike-slip shear zones; and (4) Localized SE-directed gravitational collapse manifested by top-to-the-southeast kinematic indicators. Deformation within the SCB might have ceased by 752.2+/-2.7 Ma as indicated by an age given by an undeformed granite. The thermochron of samples collected throughout the SCB complexes shows a single cooling event that occurred between about 800 and 760 Ma. This cooling event could be accomplished by crustal exhumation resulting in regional collapse following the prolonged period of the contractional deformation of the SCB. This makes the SCB a possible metamorphic core complex.

  12. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  13. On the competing affects of shear heating and grainsize reduction in lithospheric shear zone formation

    NASA Astrophysics Data System (ADS)

    Foley, B. J.

    2017-12-01

    Grain-size reduction is thought to play an important role in shear localization within the lithosphere, as mylonites are commonly seen in regions that have undergone intense deformation. However, flow in lithospheric shear zones can also cause heating due to the energy dissipated by deformation. As grain growth is strongly enhanced by warmer temperatures, shear heating may impede grainsize reduction and the formation of mylonite zones. I use models of simple shear, with length-scales representative of lithospheric shear zones and plate boundaries, including shear heating and grainsize evolution. Grain-damage theory is used to represent the evolution of grainsize. The models are used to determine conditions where grainsize reduction dominates versus those where shear heating dominates; if grainsize reduction dominates, then heating is held in check by the drop in viscosity brought about by small grains. On the other hand, if heating dominates then grain-reduction is prevented by fast grain-growth rates. From the numerical models, simple scaling laws are developed that give the stready-state grainsize and temperature rise as a function of strain-rate, background temperature, and parameters for grain-growth and grain-reduction. I find that for parameter ranges constrained by field observations of shear zones and rock deformation experiments, grainsize reduction dominated over shear heating. Very high strain-rates or driving stresses, above what is typically expected in natural shear zones, are needed for shear heating to dominate over grainsize reduction. Also explored is the timescale to reach steady-state grainsize and temperature conditions in a shear zone. For realistic driving stress or strain-rate, timescales to reach steady-state are often very long, on the order of hundreds of millions of years or longer. This might indicate that natural shear zones do not reach steady-state, or that additional processes are important in initiating lithospheric shear localization.

  14. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  15. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  16. An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

    NASA Astrophysics Data System (ADS)

    Zheng, Donghong; Che, Defu

    2007-08-01

    The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.

  17. Late Neoproterozoic metamorphic assemblages along the Pan-African Hamisana Shear Zone, southeastern Egypt: Metamorphism, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Ali-Bik, Mohamed W.; Sadek, Mohamed F.; Ghabrial, Doris Sadek

    2014-11-01

    A variety of Late Neoproterozoic gneisses and amphibolites are distributed along the N-S trending Hamisana Shear Zone (HSZ), in southeastern Egypt. The HSZ originated after the accretion of the Arabian-Nubian Shield (ANS) and covers an area of about 1500 km2 in southeastern Egypt and northeastern Sudan. The architecture of the northern part of the HSZ is best explained as a tectono-stratigraphic column, in which allochthonous ophiolitic mélange was thrusted onto metamorphosed island-arc assemblages (gneisses and amphibolites). The latter rock units were generally subjected to two successive phases of amphibolite facies metamorphism, followed by a thermal phase and retrograde overprint. The early penetrative, low- to medium-pressure metamorphism (M1) was synchronous with D1-gneissosity and N-S trending lineation, demarcating the high strain HSZ. The mineral assemblages formed during the M1 phase include quartz + andesine + hornblende (I) + biotite (I) in hornblende-biotite gneiss, quartz + andesine + pargasitic hornblende (I) + ferroan pargasitic hornblende (I) + edenitic hornblende (I) in hornblende-schist, quartz + plagioclase + biotite + muscovite in psammopelitic gneiss, and diopside + tremolite + calcite + sphene ± garnet in calc-silicates, being characteristic for amphibolite facies with metamorphic conditions of 600 ± 50 °C and 5-6.5 kbar. The second metamorphic phase (M2) is related to the crystallization of biotite and/or hornblende in S2 foliation demarcating the NE-SW trending dextral shear deformation (D2). The calculated temperature for this M2 phase is about 592 °C. Subsequent thermal events are documented by growth of spinel and scapolite in calc-silicate rocks and of cordierite in psammopelitic gneiss in response to uplift, decomposition and heat provided by the nearby late-formed igneous intrusions. Finally, the rocks reached a temperature of about 530 °C during the cooling retrogressive stage. Based on geological, petrological and geochemical investigations, the island arc assemblages are grouped into: (a) meta-igneous rocks (hornblende-biotite gneiss, biotite gneiss and amphibolites) and (b) metasedimentary rocks (psammopelitic gneiss, hornblende-schist and calc-silicates). Geochemical inspection revealed the non-consanguineous nature of these rock units. They represent subduction-related, theoleiitic and calc-alkaline magmatic rocks and their concomitant sedimentary derivations as well as minor continental shelf calcareous sediments. In terms of maturity, the geochemical signatures of these subduction-related rocks point to an immature volcanic arc origin.

  18. Evolution of crustal stress, pressure and temperature around shear zones during orogenic wedge formation: a 2D thermo-mechanical numerical study

    NASA Astrophysics Data System (ADS)

    Markus Schmalholz, Stefan; Jaquet, Yoann

    2016-04-01

    We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and maximal shear heating in shear zones is approximately 200 °C. Marker points can migrate through the main shear zone in the lower crust which remains active throughout lithospheric shortening. Some pressure-temperature paths show an anti-clockwise evolution. The impact of various model parameters on the results is discussed as well as applications of the results to geological data.

  19. Microstructural and rheological evolution of calcite mylonites during shear zone thinning: Constraints from the Mount Irene shear zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.

    2018-01-01

    Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism and shear zone rheology.

  20. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    To better understand the influence of Rivera plate kinematics on the geodynamic evolution of western Mexico, we use more than 1400 crossings of seafloor spreading magnetic lineations along the Pacific-Rivera rise and northern Mathematician ridge to solve for rotations of the Rivera plate relative to the underlying mantle and the Pacific and North American plates at 14 times since 9.9 Ma. Our comparison of magnetic anomaly crossings from the undeformed Pacific plate to their counterparts on the Rivera plate indicates that significant areas of the Rivera plate have deformed since 9.9 Ma. Dextral shear along the southern edge of the plate from 3.3-2.2 Ma during a regional plate boundary reorganization deformed the Rivera plate farther into its interior than previously recognized. In addition, seafloor located north of two rupture zones within the Rivera plate sutured to North America after 1.5 Ma. Anomaly crossings from these two deformed regions thus cannot be used to reconstruct motion of the Rivera plate. Finite rotations that best reconstruct Pacific plate anomaly crossings onto their undeformed counterparts on the Rivera plate yield stage spreading rates that decrease gradually by 10% between 10 and 3.6 Ma, decrease rapidly by 20% after ˜3.6 Ma, and recover after 1 Ma. The slowdown in Pacific-Rivera seafloor spreading at 3.6 Ma coincided with the onset of dextral shear across the then-incipient southern boundary of the Rivera plate with the Pacific plate. The available evidence indicates that the Rivera plate has been an independent microplate since at least 10 Ma, contrary to published assertions that it fragmented from the Cocos plate at ˜5 Ma. Motion of the Rivera plate relative to North America has changed significantly since 10 Ma, in concert with significant changes in Pacific-Rivera motion. A significant and robust feature of Rivera-North America motion not previously recognized is the cessation of margin-normal convergence and thus subduction from 2.6 to 1.0 Ma along the entire plate boundary, followed by a resumption of trench-normal subduction along the southern half of the Rivera-North America plate boundary after 1.0 Ma. Motion of the Rivera plate relative to the underlying mantle since 10 Ma has oscillated between periods of landward motion and seaward motion. The evidence suggests that the torque exerted by slab pull on this young and hot oceanic plate is either minimal or is effectively counterbalanced by forces that resist its motion.

  1. Basement-driven strike-slip deformation involving a salt-stock canopy system

    NASA Astrophysics Data System (ADS)

    Dooley, Tim; Jackson, Martin; Hudec, Mike

    2016-04-01

    NW-striking basement-involved strike-slip zones have been reported or inferred from the northern Gulf of Mexico (GoM). This interpretation is uncertain, because the effects of strike-slip deformation are commonly difficult to recognize in cross sections. Recognition is doubly difficult if the strike-slip zone passes through a diapir field that complicates deformation, and an associated salt canopy that partially decouples shallow deformation from deep deformation. We use physical models to explore the effects of strike-slip deformation above and below a salt-stock canopy system. Canopies of varying maturity grew from a series of 14 feeders/diapirs located on and off the axis of a dextral basement fault. Strike-slip deformation styles in the overburden vary significantly depending on: (1) the location of the diapirs with respect to the basement fault trace, and; (2) the continuity of the canopy system. On-axis diapirs (where the diapirs lie directly above the basement fault) are typically strongly deformed and pinched shut at depth to form sharp S-shapes, whereas their shallow deformation style is that of a open-S-shaped pop-up structure in a restraining bend. The narrow diapir stem acts as a shear zone at depth. Pull-apart structures form between diapirs that are arranged in a right-stepping array tangental to the basement fault trace. These grade along strike into narrow negative flower structures. Off-axis diapirs (diapirs laterally offset from the basement fault but close enough to participate in the deformation) form zones of distributed deformation in the form of arrays of oblique faults (R shears) that converge along strike onto the narrower deformation zones associated with on-axis diapirs. Above an immature, or patchy, canopy system the strike-slip structures closely match sub canopy structures, with the exception of wrench fold formation where the supracanopy roof is thin. In contrast, the surface structures above a mature canopy system consist of a broad zone of PDZ-parallel faults and high-angle wrench folds, strongly decoupled from the subcanopy structure. The exception to this is where there are gaps (windows) in the canopy, allowing coupling to the deeper deformation field. In this mature canopy open-S planforms are muted as deformation is spread over a broader area of coalesced salt sheets, except at the canopy edge and where the supracanopy roof is thin. Supracanopy structures are also influenced by the sutures between the individual salt sheets. Results from this set of analog models are potentially useful as predictive tools to understand the origin and geometry of structures in areas where subsurface data is scarce or data quality is poor.

  2. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major range-front faults (5-6%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems. The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures. These findings may help guide future exploration efforts, especially for blind geothermal systems, which probably comprise the bulk of the geothermal resources in the Great Basin.

  3. Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; McClelland, W.

    2002-01-01

    New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since ~100 Ma. These faults are on the upper plate of a subduction zone ~350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~70, ~60, and ~30 Ma. No single driving mechanism can explain all of the ~95 million-year history of strike-slip faulting. Since ~40 Ma, the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip. Prior to 66 Ma, oblique subduction is the most plausible driving mechanism for dextral strike slip. Cumulative displacement on all faults of the western limb of the orocline is at least 400 km, about half that on the eastern limb; this discrepancy might be explained by a combination of thrusting and unrecognized strike-slip faulting.

  4. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone, China

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Zhang, Lisheng; Qi, Yinchuan; Ling, Chengyang

    2017-05-01

    Structural and microstructural characteristics, deformation temperatures and flow vorticities of the northern Ailao Shan (ALS) high-grade metamorphic belt provide significant information regarding the nature and tectonic evolution of the Ailao Shan-Red River (ASRR) shear zone. Mineral deformation mechanisms, quartz lattice-preferred orientation (LPO) patterns and the opening angles of quartz c-axis fabrics of samples from the Gasa section indicate that the northern ALS high-grade metamorphic belt has experienced progressive shear deformation. The early stage shearing is characterized by a gradual decrease of deformation temperatures from >650 °C at the northeastern unit to ca. 300 °C at the southwestern unit, that results in the formation of migmatites, mylonitic gneisses, thin bedded mylonites, mylonitic schists and phyllonites from the NE to SW across the strike of the shear zone. The late stage low-temperature (300-400 °C) shearing is superimposed on the early deformation throughout the belt with the formation of discrete, small-scale shear zones, especially in the thin-banded mylonitic rocks along both margins. The kinematic vorticity values estimated by rotated rigid porphyroclast method and oblique grain-shaped/quartz c-axis-fabric method imply that the general shear-dominated flow (0.49-0.77) progressively changed to a simple shear-dominated flow (0.77-1) toward the late stage of ductile deformation. The two stages of shearing are consistent with early shortening-dominated and late extrusion-controlled regional tectonic processes. The transition between them occurred at ca. 27 Ma in the ALS high-grade metamorphic belt along the ASRR shear zone. The large amount of strike-slip displacement along the ASRR shear zone is predominantly attributed to accelerated flow along the shear zone during the late extrusion-controlled tectonic process.

  5. Deep resistivity sounding studies in detecting shear zones: A case study from the southern granulite terrain of India

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Stephen, Jimmy

    2006-10-01

    The resistivity signatures of the major crustal scale shear zones that dissect the southern granulite terrain (SGT) of South India into discrete geological fragments have been investigated. Resistivity structures deduced from deep resistivity sounding measurements acquired with a 10 km long Schlumberger spreads yield significant insights into the resistivity distribution within the E-W trending shear system comprising the Moyar-Bhavani-Salem-Attur shear zone (MBSASZ) and Palghat-Cauvery shear zone (PCSZ). Vertical and lateral extensions of low resistivity features indicate the possible existence of weak zones at different depths throughout the shear zones. The MBSASZ characterized by very low resistivity in its deeper parts (>2500 m), extends towards the south with slightly higher resistivities to encompass the PCSZ. A major resistivity transition between the northern and southern parts is evident in the two-dimensional resistivity images. The northern Archaean granulite terrain exhibits a higher resistivity than the southern Neoproterozoic granulite terrain. Though this resistivity transition is not clear at greater depths, the extension of low resistivity zones has been well manifested. It is speculated here that a network of crustal scale shear zones in the SGT may have influenced the strength of the lithosphere.

  6. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone in the Parry Sound domain, Ontario, formed at upper amphibolite facies conditions. The deformation process of the shear zone involves fully plastic deformation and high-temperature dynamic recrystallization and annealing recovery of both quartz and plagioclase. Geochemical evidence indicates that the chemical changes in the deformed rocks resulted from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. A geochemical model that incorporates closed-system two-component mixing with open-system mass transfer can well explain the observed major and trace element data.

  7. Neoarchean ductile deformation of the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei, North China

    NASA Astrophysics Data System (ADS)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue

    2017-05-01

    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was thus developed in accommodation of the upward and downward movements. It is possible that such a tectonic model also applies to many Archean granite-greenstone terrains.

  8. Geophysical constraints for terrane boundaries in southern Mongolia

    NASA Astrophysics Data System (ADS)

    Guy, Alexandra; Schulmann, Karel; Munschy, Marc; Miehe, Jean-Marc; Edel, Jean-Bernard; Lexa, Ondrej; Fairhead, Derek

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) is a typical accretionary orogen divided into numerous lithostratigraphic terranes corresponding to magmatic arcs, back arcs, continental basement blocks, accretionary wedges and metamorphic blocks. These terranes should be in theory characterized by contrasting magnetic and gravity signatures thanks to their different petrophysical properties. To test this hypothesis, the stratigraphically defined terranes in southern Mongolia were compared with potential field data to constrain their boundaries and extent. The existence of terranes in southern Mongolia cannot be attested by the uniform geophysical fabrics due to the lack of systematic correspondence between the high/low amplitude and high/low frequency geophysical domains and major terranes. Processed magnetic and gravity grids show that both gravity and magnetic lineaments are E-W trending in the west and correlate with direction of some geological units. In the east, both magnetic and gravity lineaments are disrupted by NE-SW trending heterogeneities resulting in complete blurring of the geophysical pattern. Correlation of magnetic signal with geological map shows that the magnetic highs coincide with late Carboniferous-early Permian volcanic and plutonic belts. The matched-filtering shows good continuity of signal to the depth located along the boundaries of these high magnetic anomalies which may imply presence of deeply rooted tectono-magmatic zones. The axes of high density bodies in the western and central part of the studied CAOB are characterized by periodic alternations of NW-SE trending high frequency and high amplitude gravity anomalies corresponding to late Permian to Triassic cleavage fronts up to 20 km wide. The matched-filtering analysis shows that the largest deformation zones are deeply rooted down to 20 km depth. Such a gravity signal is explained by the verticalization of high density mantle and lower crustal rocks due to localized vertical shearing associated to upright folding. The magnetic signal is interpreted to result from a giant Permo-Triassic magmatic event associated lithosphere scale deformation whereas the gravity pattern is related to post-accretionary shortening of the CAOB in between North China and Siberia cratons. The blurring of the gravity signals to the west is attributed to activity of Triassic dextral shear zones parallel to the eastern Siberian boundary later on affected by Cretaceous extension and magmatism affecting the whole of eastern Asia.

  9. Origin of narrow terranes and adjacent major terranes occurring along the denali fault in the eastern and central alaska range, alaska

    USGS Publications Warehouse

    Nokleberg, W.J.; Richter, D.H.

    2007-01-01

    Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5) formation and dextral transport along the Denali fault of the m??lange of the Windy terrane from fragments of the Gravina-Nutzotin-Gambier volcanic-plutonic-sedimentary belt and from the North American Continental Margin. Copyright ?? 2007 The Geological Society of America.

  10. The emplacement of the Peridotite Nappe of New Caledonia and its bearing on the tectonics of obduction

    NASA Astrophysics Data System (ADS)

    Gautier, Pierre; Quesnel, Benoît; Boulvais, Philippe; Cathelineau, Michel

    2016-12-01

    The Peridotite Nappe of New Caledonia is one of the few ophiolites worldwide that escaped collisional orogeny after obduction. Here we describe the deformation associated with serpentinization in two klippes of the nappe in northwestern New Caledonia. The klippes are flat lying and involve S/SW vergent reverse-slip shear zones which are true compressional structures in origin. Further northeast, the nappe is folded in association with the development of a steep schistosity in low-grade metasediments. This difference in structural style indicates that the Peridotite Nappe experienced compression at greater depths toward its root zone, suggesting a "push from the rear" mechanism of emplacement. This supports the view that the nappe has been emplaced through horizontal contraction sustained by plate convergence. We establish a crustal-scale cross section at the end of the obduction event, before Neogene extension. This involves a large fold nappe of high-pressure rocks bounded from below by a major thrust. Furthermore, we show that obduction in New Caledonia occurred through dextral oblique convergence. Oblique convergence probably resulted from the initial obliquity between the subduction trench and the continental ribbon that became incorporated in it. This obliquity can solve the paradox of the Peridotite Nappe seemingly being emplaced at the same time the high-pressure rocks were exhumed. Oblique convergence together with focused erosional denudation on the northeastern flank of the island led to exhumation of the metamorphic rocks in a steep fold nappe rising through the rear part of the orogen.

  11. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  12. Timing of Multiple Stages of Granitic Magmatisms: Constraints on Shearing along the Ailao Shan-Red River Shear Zone

    NASA Astrophysics Data System (ADS)

    Chen, W.; Liu, J.; Fan, W.; Feng, J.; DAO, H.; Yan, J.

    2017-12-01

    The Ailao Shan-Red River (ASRR) shear zone is a large scale shear zone resulted from collision between India and Euro-Asia Plates in Cenozoic. Magmatisms related to the shear zone evolution took place before, during or after shearing process that contributes to pre-, syn- and post- granitic emplacement. Combined structure, fabric and geochronology analyses of granitic rocks within sheared Proterozoic country rocks along the ASRR shear zone offer important clues on timing of shearing activity and constraining on transformation of types of the shearing. Zircon U-Pb dating results indicate that the granitic intrusions within the ASRR shear zone are broadly grouped into two stages: Permo-Triassic (256.0±6.0 Ma, 244.0±7.6 Ma and 234.0±9.3 Ma) and Cenozoic (27.1±1.5 Ma, 26.34±0.62 Ma and 25.10±0.61 Ma). The Permo-Triassic intrusions show evidences for intensive mylonitization. The older Cenozoic granitic rocks were also strongly sheared, but the younger Cenozoic granites were weakly sheared and they cut across early intrusions (e.g. the Permo-Triassic and older Cenozoic intrusions). Petrographic microscope observations suggest that the Permo-Triassic granitic intrusions show prominent superimposition of high temperature mylonization by low temperature mylonization. Quartz c-axis fabrics of the granites demonstrate that there are multiple maxima due to the superimposition. The older Cenozoic granitic intrusion of 27.1±1.5 Ma shows weak mylonization and possess four symmetrical point maxima in their quartz c-axis fabrics. The EBSD data indicate that the intrusion experienced pure shearing. Intrusions of 26.34±0.62 Ma and 25.10±0.61 Ma show evidences for very weak mylonization. The quartz c-axis patterns of the rocks dominantly resulted from low temperature deformation by simple shearing. It is concluded, in summary, that: (1) Permo-Triassic granitic intrusions experienced superimposed shearing of high and low temperatures; (2) Evidences for both early pure shearing and late simple shearing are well-preserved in the sheared Cenozoic granitic intrusions. The transformation of the two types of strain changed at ca. 27Ma; (3) Cessation of ductile shearing along the ASRR shear zone is perhaps from 26 to 25Ma.

  13. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.

  14. The Amount and Preferred Orientation of Simple-shear in a Deformation Tensor: Implications for Detecting Shear Zones and Faults with GPS

    NASA Astrophysics Data System (ADS)

    Johnson, A. M.; Griffiths, J. H.

    2007-05-01

    At the 2005 Fall Meeting of the American Geophysical Union, Griffiths and Johnson [2005] introduced a method of extracting from the deformation-gradient (and velocity-gradient) tensor the amount and preferred orientation of simple-shear associated with 2-D shear zones and faults. Noting the 2-D is important because the shear zones and faults in Griffiths and Johnson [2005] were assumed non-dilatant and infinitely long, ignoring the scissors- like action along strike associated with shear zones and faults of finite length. Because shear zones and faults can dilate (and contract) normal to their walls and can have a scissors-like action associated with twisting about an axis normal to their walls, the more general method of detecting simple-shear is introduced and called MODES "method of detecting simple-shear." MODES can thus extract from the deformation-gradient (and velocity- gradient) tensor the amount and preferred orientation of simple-shear associated with 3-D shear zones and faults near or far from the Earth's surface, providing improvements and extensions to existing analytical methods used in active tectonics studies, especially strain analysis and dislocation theory. The derivation of MODES is based on one definition and two assumptions: by definition, simple-shear deformation becomes localized in some way; by assumption, the twirl within the deformation-gradient (or the spin within the velocity-gradient) is due to a combination of simple-shear and twist, and coupled with the simple- shear and twist is a dilatation of the walls of shear zones and faults. The preferred orientation is thus the orientation of the plane containing the simple-shear and satisfying the mechanical and kinematical boundary conditions. Results from a MODES analysis are illustrated by means of a three-dimensional diagram, the cricket- ball, which is reminiscent of the seismologist's "beach ball." In this poster, we present the underlying theory of MODES and illustrate how it works by analyzing the three- dimensional displacements measured with the Global Positioning System across the 1999 Chi-Chi earthquake ground rupture in Taiwan. In contrast to the deformation zone in the upper several meters of the ground below the surface detected by Yu et al. [2001], MODES determines the orientation and direction of shift of a shear zone representing the earthquake fault within the upper several hundred or thousand meters of ground below the surface. Thus, one value of the MODES analysis in this case is to provide boundary conditions for dislocation solutions for the subsurface shape of the main rupture during the earthquake.

  15. The Najd Fault System of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt; Kadi, Khalid; Abu-Alam, Tamer; Hassan, Mahmoud

    2014-05-01

    The Najd Fault System of the Arabian-Nubian Shield is considered to be the largest Proterozoic Shear zone system on Earth. The shear zone was active during the late stages of the Pan African evolution and is known to be responsible for the exhumation of fragments of juvenile Proterozoic continental crust that form a series of basement domes across the shield areas of Egypt and Saudi Arabia. A three year research project funded by the Austrian Science Fund (FWF) and supported by the Saudi Geological Survey (SGS) has focused on structural mapping, petrology and geochronology of the shear zone system in order to constrain age and mechanisms of exhumation of the domes - with focus on the Saudi Arabian side of the Red Sea. We recognise important differences in comparison with the basement domes in the Eastern desert of Egypt. In particular, high grade metamorphic rocks are not exclusively confined to basement domes surrounded by shear zones, but also occur within shear zones themselves. Moreover, we recognise both exhumation in extensional and in transpressive regimes to be responsible for exhumation of high grade metamorphic rocks in different parts of the shield. We suggest that these apparent structural differences between different sub-regions of the shield largely reflect different timing of activity of various branches of the Najd Fault System. In order to tackle the ill-resolved timing of the Najd Fault System, zircon geochronology is performed on intrusive rocks with different cross cutting relationships to the shear zone. We are able to constrain an age between 580 Ma and 605 Ma for one of the major branches of the shear zone, namely the Ajjaj shear zone. In our contribution we present a strain map for the shield as well as early geochronological data for selected shear zone branches.

  16. Initiation of deformation of the Eastern California Shear Zone: Constraints from Garlock fault geometry and GPS observations

    USGS Publications Warehouse

    Gan, Weijun; Zhang, P.; Shen, Z.-K.; Prescott, W.H.; Svarc, J.L.

    2003-01-01

    We suggest a 2-stage deformation model for the Eastern California Shear Zone (ECSZ) to explain the geometry of the Garlock fault trace. We assume the Garlock fault was originally straight and then was gradually curved by right-lateral shear deformation across the ECSZ. In our 2-stage deformation model, the first stage involves uniform shear deformation across the eastern part of the shear zone, and the second stage involves uniform shear deformation across the entire shear zone. In addition to the current shape of the Garlock fault, our model incorporates constraints on contemporary deformation rates provided by GPS observations. We find that the best fitting age for initiation of shear in eastern part of the ECSZ is about 5.0 ?? 0.4 Ma, and that deformation of the western part started about 1.6 Myr later.

  17. Magma-Tectonic Interactions along the Central America Volcanic Arc: Insights from the August 1999 Magmatic and Tectonic Event at Cerro Negro, Nicaragua

    NASA Astrophysics Data System (ADS)

    La Femina, P.; Connor, C.; Strauch, W.

    2002-12-01

    Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.

  18. The mid-Miocene structural conversion within the NE Tibetan Plateau from new proof of the interaction between two conflicting fault systems in the western Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Wu, L.; Xiao, A.

    2016-12-01

    We present a detailed structural analysis on the fault geometry and Cenozoic development in the Dongping area, northwestern Qaidam Basin, based on the precise 3-D seismic interpretation, remote sensing images and seismic attribute analysis. Two conflicting fault systems distributed in different orientations ( EW-striking and NNW-striking) with opposing senses of shear are recognized and discussed, and the interaction between them provides new insights to the intracontinental deformation of the Qaidam Basin within the NE Tibetan Plateau. The EW-striking fault system constitutes the south part of the Altyn left-slip positive flower structure. Faulting on the EW-striking faults dominated the northwestern Qaidam since 40 Ma in respond to the inception of the Altyn Tagh fault system as a ductile shear zone, tilting the south slope of the Altyn Tagh. Whereas the NNW-striking fault system became the dominant structures since the mid-Miocene ( 15 Ma), induced by the large scale strike-slip of the Altyn Tagh fault which leads to the NE-SW directed compression of the Qaidam Basin. Thus it evidently implies a structural conversion taking place within the NE Tibetan Plateau since the mid-Miocece ( 15 Ma). Interestingly, the preexisting faults possibly restrained the development of the later period faults, while the latter tended to track and link to the former fault traces. Taken the large scale sinistral striking-slip East Kunlun fault system into account, the late Cenozoic intracontinental deformation in the Qaidam Basin showing the dextral transpressional attribute is suggested to be the consequence of the combined effect of its two border sinistral strike-slip faults, which furthermore favors a continuous and lateral-extrusion mechanism of the growth of the NE Tibetan Plateau.

  19. Interseismic Deformation due to Oblique India-Sunda Collision: Implications for the Arakan Sleeping Giant

    NASA Astrophysics Data System (ADS)

    Mallick, R.; Lindsey, E. O.; Feng, L.; Hubbard, J.; Hill, E.

    2017-12-01

    The northern extent of the collision of the Indian and Sunda plates occurs along the Arakan megathrust. This collision is oblique, and at least two large strike-slip faults, the Sagaing Fault and the Churachandpur-Mao Fault (CMF) accommodate part of this obliquity. The megathrust is conspicuous in its lack of notable interplate earthquakes in the instrumental catalogue; it has even been called aseismic by some authors and suggested not to accumulate any elastic strain. Nevertheless, geological evidence from the great 1762 Arakan earthquake suggests that the megathrust is capable of producing M 8 and possibly tsunamigenic events that can adversely affect the lives of many millions of people living in the region. We present for the first time a new dataset of GPS rates from the MIBB (Myanmar-India-Bangladesh-Bhutan) cGPS network (2011-present), which consists of region-wide east-west and north-south profiles. We use a Bayesian framework to explore the fault geometry (locking depth and fault dip) and relative plate motion that can reproduce the pattern of east-west convergence in both previously published and our own GPS data. We explore the individual contributions of the megathrust, CMF, Sagaing Fault, and block rotation to dextral shearing across the Indo-Burman ranges and further east. Our results suggest that the total convergence rate across the foldbelt is 14-18 mm/yr, while the total dextral shearing rate is 40 mm/yr. Rotation of the crustal sliver between the two major plates may explain some of this dextral motion, while reducing the strike-slip rates on the intervening faults. We show that given the current network geometry we are most sensitive to the location of maximum strain, i.e., the depth and distance from the trench below which the megathrust slides freely. Our results show that the megathrust is stably sliding below a depth of 30 km, but the seismogenic potential of the shallow megathrust and splay faults that possibly sole into the same system remain unresolved from purely geodetic data. Planned additional geodetic stations will help resolve the relative contribution of rotation and strike-slip faulting. Meanwhile, other forms of data such as paleoseismic observations may be necessary to determine how slip reaches the surface and better understand the seismic hazard.

  20. Slip triggered on southern California faults by the 1992 Joshua Tree, Landers, and big bear earthquakes

    USGS Publications Warehouse

    Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.

    1994-01-01

    Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.

  1. Shear deformation in the northeastern margin of the Izu collision zone, central Japan, inferred from GPS observations

    NASA Astrophysics Data System (ADS)

    Doke, R.; Harada, M.; Miyaoka, K.; Satomura, M.

    2016-12-01

    The Izu collision zone, which is characterized by the collision between the Izu-Bonin arc (Izu Peninsula) and the Honshu arc (the main island of Japan), is located in the northernmost part of the Philippine Sea (PHS) plate. Particularly in the northeastern margin of the zone, numerous large earthquakes have occurred. To clarify the convergent tectonics of the zone related to the occurrence of these earthquakes, in this study, we performed Global Positioning System (GPS) observations and analysis around the Izu collision zone. Based on the results of mapping the steady state of the GPS velocity and strain rate fields, we verified that there has been wide shear deformation in the northeastern part of the Izu collision zone, which agrees with the maximum shear directions in the left-lateral slip of the active faults in the study area. Based on the relative motion between the western Izu Peninsula and the eastern subducting forearc, the shear zone can be considered as a transition zone affected by both collision and subduction. The Higashi-Izu Monogenic Volcano Group, which is located in the southern part of the shear deformation zone, may have formed as a result of the steady motion of the subducting PHS plate and the collision of the Izu Peninsula with the Honshu arc. The seismic activities in the Tanzawa Mountains, which is located in the northern part of the shear deformation zone, and the eastern part of the Izu Peninsula may be related to the shear deformation zone, because the temporal patterns of the seismic activity in both areas are correlated.

  2. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure

    NASA Astrophysics Data System (ADS)

    Natal'in, Boris A.; Şengör, A. M. Celâl

    2005-08-01

    A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single "Silk Road Arc" located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone ("the Silk Road transpression") was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr-Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist-Teisseyre lineament.

  3. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.

  4. Rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott

    2011-10-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.

  5. Along-Strike Differences of the Main Himalayan Thrust and Deformation within the Indian Crust: Insights from Seismicity and Seismic Velocities in Bhutan and its Foreland

    NASA Astrophysics Data System (ADS)

    Diehl, T.; Singer, J.; Hetényi, G.; Kissling, E. H.; Clinton, J. F.

    2015-12-01

    The seismicity of Bhutan is characterized by the apparent lack of great earthquakes and a significantly lower activity compared to most other parts of the Himalayan arc. To better understand the underlying mechanisms of this anomalously low activity and to relate it with possible along-strike differences in the structure of the orogenic belt, a temporary network with up to 38 broadband seismometers was installed in Bhutan between January 2013 and November 2014. In this work we present a catalog of local and regional earthquakes detected and located with the GANSSER network complemented by regional stations in India, Bangladesh, and China. State-of-the-art data analysis and earthquake location procedures were applied to derive a high-precision earthquake catalog of Bhutan and surrounding regions. Focal mechanisms from regional moment tensor inversions and first-motion polarities complement the earthquake catalog. In the vicinity of the Shumar-Kuru Chu Spur in East Bhutan, seismicity forms a moderately dipping structure at about 12 km depth, which we associate with the Main Himalayan Thrust (MHT). North of 27.6°N the dip of the structure steepens, which can be interpreted as a ramp along the MHT. In West Bhutan seismicity occurs at depths of 20 to 40 km and receiver function images indicate that seismicity occurs in the underthrusting Indian crust rather than on the MHT. The highest seismic activity is clustered along the Goalpara Lineament, a dextral NE-SW striking shear zone in southwest Bhutan, which appears to connect to the western edge of the Shillong Plateau in the foreland. Focal depths indicate that this shear zone is located at depths of 20-30 km and therefore in the underthrusting Indian crust. Preliminary results of a 3D local earthquake tomography show substantial differences in the uppermost crust between east and west Bhutan. Consistent with our receiver function images, the results also indicate a thinning of the crustal root towards eastern Bhutan.

  6. Fold interference pattern in thick-skinned tectonics; a case study from the external Variscan belt of Eastern Anti-Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.

    2016-07-01

    Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.

  7. Miocene tectonics of the Western Alboran domain: from mantle extensional exhumation to westward thrusting

    NASA Astrophysics Data System (ADS)

    Gueydan, F.; Frasca, G.; Brun, J. P.

    2015-12-01

    In the frame of the Africa-Europe convergence, the Mediterranean tectonic system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western Mediterranean is characterized by the exhumation of the largest subcontinental mantle massif worldwide (the Ronda Peridotite) and a narrow arcuate geometryacross the Gibraltar arc within the Betic-Rif belt (the internal part being called the Alboran domain), where the relationship between slab dynamics and surface tectonics is not well understood. New structural and geochronological data are used to argue for 1/ hyperstrechting of the continental lithosphere allowing extensional mantle exhumation to shallow depths, followed by 2/ lower miocene thrusting. Two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion.The Miocene tectonics of the western Alboran is therefore marked by the inversion of a continental rift, triggered by shortening of the upper continental plate and accommodated by E-W dextral strike-slip corridors. During thrusting and westward displacement of the Alboran domain with respect to Iberia, the hot upper plate, which involved the previously exhumed sub-continental mantle, underwent fast cooling.

  8. A kinematic model for the evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Dixon, Timothy H.; Xie, Surui

    2018-07-01

    The Eastern California shear zone in the Mojave Desert, California, accommodates nearly a quarter of Pacific-North America plate motion. In south-central Mojave, the shear zone consists of six active faults, with the central Calico fault having the fastest slip rate. However, faults to the east of the Calico fault have larger total offsets. We explain this pattern of slip rate and total offset with a model involving a crustal block (the Mojave Block) that migrates eastward relative to a shear zone at depth whose position and orientation is fixed by the Coachella segment of the San Andreas fault (SAF), southwest of the transpressive "big bend" in the SAF. Both the shear zone and the Garlock fault are assumed to be a direct result of this restraining bend, and consequent strain redistribution. The model explains several aspects of local and regional tectonics, may apply to other transpressive continental plate boundary zones, and may improve seismic hazard estimates in these zones.

  9. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain

    2017-04-01

    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.

  10. Strain localization in the lower crust: brittle precursors versus lithological heterogeneities (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2016-04-01

    The Davenport shear zone in Central Australia is a strike-slip ductile shear zone developed during the Petermann Orogeny (~ 550 Ma). The conditions of shearing are estimated to be amphibolite-eclogite facies (650 °C, 1.2 GPa). The up to seven kilometre thick mylonite zone encloses several large low strain domains with excellent exposure, thus allowing a thorough study of the initiation of shear zones. Quartzo-feldspathic gneisses and granitoids inherit a suite of lithological heterogeneities such as quartz-rich pegmatites, mafic layers and dykes. When in a favourable orientation to the shortening direction, these rheologically different pre-existing layers might be expected to localize deformation. However, with the singular exception of long, continuous and fine-grained dolerite dykes, this is not observed. Quartz-rich pegmatites are mostly unsheared, even if in a favourable orientation, and sometimes boudinaged or folded. There are instead many shear zones only a few mm to cm in width, extending up to tens of metres, which are in fact oriented at a very high angle to the shortening direction. Parallel to these, a network of little to moderately overprinted brittle fractures are observed, commonly marked by pseudotachylyte (pst) and sometimes new biotite. Shear reactivation of these precursor fractures is generally limited to the length of the initial fracture and typically re-uses and shears the pst. The recrystallized mineral assemblage in the sheared pst consists of Cpx+Grt+Fsp±Ky and is the same to that in the adjacent sheared gneiss, with the same PT estimates (650 °C, 1.2 GPa). In some cases, multiple generations of cross-cutting and sheared pst demonstrate alternating fracture and flow during progressive shear zone development and a clear tendency for subsequent pst formation to also localize in the existing shear zone. The latest pst may be both unsheared and unrecrystallized (no grt) and is probably related to a late stage, still localized within the same shear zone. The observation that pst is preferentially sheared indicates that it is weaker than the host rock, although their bulk compositions are about the same, suggesting that the governing factors for localization are the finer grain size and the elongate, nearly planar geometry of the original pst generation zone. The same may be true of the sheared dolerite dykes, which are long, narrow and generally finer grained than the surrounding gneiss or granite. Although quartz-rich pegmatites are not preferred sites of localization, quartzo-feldspathic mylonites are fully recrystallized with a relatively coarse grain size (typically > 50 microns) typical of rather low long-term flow stress. We therefore propose that localization in the lower crust only occurs on long planar layers with a finer grain size that can promote weakening by grain-size sensitive creep. Coarser-grained lithological layers and boundaries are not exploited during the initiation of a shear zone and, in particular, quartz-rich layers are not preferentially sheared.

  11. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin

    2010-12-01

    The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.

  12. Potential of pressure solution for strain localization in the Baccu Locci Shear Zone (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Casini, Leonardo; Funedda, Antonio

    2014-09-01

    The mylonites of the Baccu Locci Shear Zone (BLSZ), Sardinia (Italy), were deformed during thrusting along a bottom-to-top strain gradient in lower greenschist facies. The microstructure of metavolcanic protoliths shows evidence for composite deformation accommodated by dislocation creep within strong quartz porphyroclasts, and pressure solution in the finer grained matrix. The evolution of mylonite is simulated in two sets of numerical experiments, assuming either a constant width of the deforming zone (model 1) or a narrowing shear zone (model 2). A 2-5 mm y-1 constant-external-velocity boundary condition is applied on the basis of geologic constraints. Inputs to the models are provided by inverting paleostress values obtained from quartz recrystallized grain-size paleopiezometry. Both models predict a significant stress drop across the shear zone. However, model 1 involves a dramatic decrease in strain rate towards the zone of apparent strain localization. In contrast, model 2 predicts an increase in strain rate with time (from 10-14 to 10-12 s-1), which is consistent with stabilization of the shear zone profile and localization of deformation near the hanging wall. Extrapolating these results to the general context of crust strength suggests that pressure-solution creep may be a critical process for strain softening and for the stabilization of deformation within shear zones.

  13. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history

    USGS Publications Warehouse

    Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, Jiawen

    2003-01-01

    The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ~1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ~0.7 Ga. Subsequent intra-oceanic arc formation at ~470-490 Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ~400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at ~230-235 Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia-Sino-Korean and Lhasa-West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ~60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW-ESE extension. The Neogene(?) is characterized by normal faults and NNE-trending sub-horizontal extension. Pleistocene(?)-Quaternary NW-SE extension and NE-SW contraction comprises sinistral strike-slip faults and is part of the NW-SE extension imposed across eastern Asia by the India-Asia collision. 

  14. Steady-state LPO is not always reached in high-strain shear zones

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Warren, J. M.

    2017-12-01

    Seismic anisotropy in the upper mantle results from the alignment of olivine crystal lattices during flow by dislocation creep. Experiments on the evolution of olivine lattice preferred orientation (LPO) as a function of shear strain have found that high strains (>10) are necessary to achieve a steady-state LPO (i.e., the dominant slip system does not change appreciably with further strain) when a pre-existing LPO is present. At lower strain ( 2), a pseudo-steady-state fabric is reached, in which the [100] axes of olivine reach a steady orientation relative to the deformation kinematics, but the [010] and [001] axes continue to evolve (e.g. Hansen et al., 2014). To constrain LPO evolution at mantle conditions, we looked at the LPO variation across three high temperature mantle shear zones in the Josephine Peridotite of SW Oregon. These shear zones provide a rare opportunity to examine LPO evolution in natural samples as a function of shear strain, due to the presence of a pyroxene foliation that serves as a strain marker. Observations of two of these shear zones are consistent with experimental observations (Warren et al., 2008; Skemer et al., 2010). Shear Zone G reaches a steady-state LPO at a strain of >20. Shear Zone P reaches a pseudo-steady-state LPO, with a consistent [100] axis orientation, at a strain of 3.5. However, a steady-state orientation is not reached in the [010] or [001] axes at the maximum strain of 5.25. The third shear zone, Shear Zone A, does not appear to reach even a pseudo-steady-state LPO, despite reaching strains >20 at its center. Instead, the dominant slip plane switches back and forth between the (010) and (001) planes with increasing strain, while the [100] axis orientations continue to evolve. Unusually, at peak strain, the [100] axes are oriented 40° past the shear plane. In contrast, the other two shear zones, along with other natural and experimental examples, have the [100] axes oriented approximately parallel to the shear direction at very high strain. The high angle of the [100] axes to the shear direction at high strain in SZA may explain angular offsets between plate motion and fast seismic direction, for instance as seen in the MELT experiment (Wolfe and Solomon, 1998). Hansen et al., 2014, EPSLSkemer et al., 2010, J. Pet. Warren et al., 2008, EPSLWolfe and Solomon, 1998, Science

  15. Deformational History and Rotation of the Leeward Antilles Island Arc: Results of the BOLIVAR Project

    NASA Astrophysics Data System (ADS)

    Beardsley, A. G.; Avé Lallemant, H. G.

    2005-12-01

    The Leeward Antilles island arc is located offshore northern Venezuela and includes Aruba, Curaçao, and Bonaire (ABCs). The ABCs trend WNW-ESE parallel to the obliquely convergent Caribbean-South American plate boundary zone. Field work on the ABCs has provided new structural data supporting a minimum of 90° clockwise rotation of the islands within the diffuse plate boundary zone. Analysis of faulting, bedding, and cleavages suggest three phases of deformation (D1-D3). The oldest phase of deformation, D1, is characterized by northeast trending normal faults, northwest trending fold axes and cleavages, and northeast striking dextral strike-slip faults. East striking sinstral strike-slip faults are rare. The second phase of deformation, D2, is represented by west-northwest trending thrust faults, north-northeast striking normal faults, northwest trending dextral strike-slip faults, and northeast striking sinstral strike-slip faults. Finally, the youngest phase of deformation, D3, is characterized by northeast striking thrust faults, northwest striking normal faults, east-west dextral strike-slip faults, and north-northwest sinstral strike-slip faults. Quartz and calcite veins were also studied on the ABCs. Cross-cutting relationships in outcrop suggest three phases of veining (V1-V3). The oldest veins, V1, trend northeastward; V2 veins trend northward; and the youngest veins, V3, trend northwestward. Additionally, joints were measured on the ABCs. On Bonaire and Curaçao, joints trend approximately northeast while joints on Aruba are almost random with a slight preference for west-northwest. Fluid inclusion analysis of quartz and calcite veins provides additional information about the pressure and temperature conditions of the deformation phases. Preliminary results from the earliest veins (V1) show a single deformational event on Aruba and Bonaire. On Bonaire, they exhibit both hydrostatic and lithostatic pressure conditions. This new data supports three stages of deformation accompanied by rotation of the ABCs. The structures identified suggest a clockwise rotation of the principal stress orientation since the Late Cretaceous. D1 deformation and rotation occurred at the southeastern Caribbean plate margin beginning approximately 73 Ma on Aruba. Arc-parallel strike-slip motion rotated the islands clockwise 90° Internal deformation features of the island blocks are consistent with an obliquely convergent plate boundary. D2 deformation is characterized by clockwise block rotation facilitated by dextral strike-slip faults defining the northern and southern boundaries of the diffuse plate boundary zone. Most likely, D2 correlates to the Eocene change in plate motions due to convergence between North and South America, approximately 55 Ma. The youngest phase of deformation and rotation, D3, happens along the arcuate South Caribbean Deformed Belt. Since approximately 25 Ma, rotation and development of northwest trending pull-apart basins between the ABCs progressed. Northeastward motion of the Maracaibo block may also contribute to recent rotation of the island arc.

  16. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance

    NASA Astrophysics Data System (ADS)

    Bestmann, Michel; Kunze, Karsten; Matthews, Alan

    2000-11-01

    The deformation history of a monophase calcite marble shear zone complex on Thassos Island, Northern Greece, is reconstructed by detailed geometric studies of the textural and microstructural patterns relative to a fixed reference system (shear zone boundary, SZB). Strain localization within the massive marble complex is linked to decreasing P- T conditions during the exhumation process of the metamorphic core complex. Solvus thermometry indicates that temperatures of 300-350°C prevailed during part of the shear zone deformation history. The coarse-grained marble protolith outside the shear zone is characterized by symmetrically oriented twin sets due to early coaxial deformation. A component of heterogeneous non-coaxial deformation is first recorded within the adjacent protomylonite. Enhanced strain weakening by dynamic recrystallization promoted strong localization of plastic deformation in the ultramylonite of the calcite shear zone, where high strain was accommodated by non-coaxial flow. This study demonstrates that both a pure shear and a simple shear strain path can result in similar crystallographic preferred orientations (single c-axis maximum perpendicular to the SZB) by different dominant deformation mechanisms. Separated a-axis pole figures (+ a- and - a-axis) show different density distributions with orthorhombic texture symmetry in the protolith marble and monoclinic symmetry in the ultramylonite marble consistently with the observed grain fabric symmetry.

  17. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen

    2012-03-01

    The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi-brittle deformation structures, such as hot striae and discrete retrogression zones, are attributed to normal-slip shearing in the third deformation episode (D3), which was probably locally active, along the eastern flank of the DCS range, for example. There are four quartz c-axis fabric patterns in the mylonitic rocks, including type A point maxima, type B Y point maxima with crossed girdles superimposition, type C quadrant maxima, as well as type D point and quadrant maxima combination. They are consistent with microscopic observations of microstructures of high-temperature pure shearing, low-temperature simple shearing and their superimposition. Integrated microstructural analysis and fabric thermometer studies provide information on both high temperature (up to 750 °C) and dominant low-temperature (300-600 °C) deformations of quartz grains in different rock types. Sillimanite and garnet fabrics, especially the latter, were primarily formed at the peak metamorphism during high-temperature pure shearing. The above structural, microstructural and fabric associations were generated in the tectonic framework of the Indian-Eurasian collision. The low-temperature microstructures and fabrics are attributed to left-lateral shearing along the ASRR shear zone from 27 to 21 Ma during the southeastward extrusion of the Indochina block, which postdated high-temperature deformation at the peak metamorphism during the collision.

  18. The Freyenstein Shear Zone - Implications for exhumation of the South Bohemian Batholith (Moldanubian Superunit, Strudengau, Austria)

    NASA Astrophysics Data System (ADS)

    Griesmeier, Gerit; Iglseder, Christoph; Konstantin, Petrakakis

    2016-04-01

    The Moldanubian superunit is part of the internal zone of the Variscan Orogen in Europe and borders on the Saxothuringian and Sudetes zones in the north. In the south, it is blanketed by the Alpine foreland molasse. Tectonically it is subdivided into the Moldanubian Nappes (MN), the South Bohemian Batholith (SBB) and the Bavarian Nappes. This work describes the ~ 500 m thick Freyenstein shear zone, which is located at the southern border of the Bohemian Massif north and south of the Danube near Freyenstein (Strudengau, Lower Austria). The area is built up by granites of Weinsberg-type, which are interlayered by numerous dikes and paragneisses of the Ostrong nappe system. These dikes include medium grained granites and finegrained granites (Mauthausen-type granites), which form huge intrusions. In addition, smaller intrusions of dark, finegrained diorites und aplitic dikes are observed. These rocks are affected by the Freyenstein shear zone und ductily deformed. Highly deformed pegmatoides containing white mica crystals up to one cm cut through the deformed rocks and form the last dike generation. The Freyenstein shear zone is a NE-SW striking shear zone at the eastern edge of the SBB. The mylonitic foliation is dipping to the SE with angles around 60°. Shear-sense criteria like clast geometries, SĆ structures as well as microstructures show normal faulting top to S/SW with steep (ca. 50°) angles. The Freyenstein shear zone records a polyphase history of deformation and crystallization: In a first phase, mylonitized mineral assemblages in deformed granitoides can be observed, which consist of pre- to syntectonic muscovite-porphyroclasts and biotite as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. The muscovite porphyroclasts often form mica fishes and show top to S/SW directed shear-sense. The lack of syntectonic chlorite crystals points to metamorphic conditions of lower amphibolite-facies > than 450° C. In a later stage fluid infiltration under lower greenschist-facies conditions locally lead to sericitization of feldspar and development of pseudomorphs after it. In addition, syn-mylonitic biotite has been chloritized mimetically. Chlorite growth across the mylonitic foliation occurs rarely. Brittle faulting, overprinting the shear zone features, is documented by the occurrence of numerous harnish planes. They show normal faulting to the N with angles around 30° and locally sinistral shear-sense. The Freyenstein shear zone belongs to a system of NE-SW striking shear zones and faults in the Moldanubian superunit and is located at the border between the SBB and MN ductily deforming both. Therefore, it plays an important role in exhumation processes of last stage SBB (synkinematic) intrusions during Late Variscan orogenic extension. According to cooling ages in other shear zones and (synkinematic) intrusions an age of ca. 320-290 Ma for the ductile deformation can be assumed.

  19. Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Hoeft, J. S.; Frankel, K. L.

    2010-12-01

    The eastern California shear zone (ECSZ) and Walker Lane represent an evolving segment of the Pacific-North America plate boundary. Understanding temporal variations in strain accumulation and release along plate boundary structures is critical to assessing how deformation is accommodated throughout the lithosphere. Late Pleistocene displacement along the Lone Mountain fault suggests the Silver Peak-Lone Mountain (SPLM) extensional complex is an important structure in accommodating and transferring strain within the ECSZ and Walker Lane. Using geologic and geomorphic mapping, differential global positioning system surveys, and terrestrial cosmogenic nuclide (TCN) geochronology, we determined rates of extension across the Lone Mountain fault in western Nevada. The Lone Mountain fault displaces the northwestern Lone Mountain and Weepah Hills piedmonts and is the northeastern component of the SPLM extensional complex, a series of down-to-the-northwest normal faults. We mapped seven distinct alluvial fan deposits and dated three of the surfaces using 10Be TCN geochronology, yielding ages of 16.5 ± 1.2 ka, 92 ± 9 ka, and 137 ± 25 ka for the Q3b, Q2c, and Q2b deposits, respectively. The ages were combined with scarp profile measurements across the displaced fans to obtain minimum rates of extension; the Q2b and Q2c surfaces yield an extension rate between 0.1 ± 0.1 and 0.2 ± 01 mm/yr and the Q3b surface yields a rate of 0.2 ± 0.1 to 0.4 ± 0.1 mm/yr, depending on the dip of the fault. Active extension on the Lone Mountain fault suggests that it helps partition strain off of the major strike-slip faults in the northern ECSZ and transfers deformation to the east around the Mina Deflection and northward into the Walker Lane. Combining our results with estimates from other faults accommodating dextral shear in the northern ECSZ reveals an apparent discrepancy between short- and long-term rates of strain accumulation and release. If strain rates have remained constant since the late Pleistocene, this could reflect transient strain accumulation, similar to the Mojave segment of the ECSZ. However, our data also suggest a potential increase in strain rates between ~92 ka and ~17 ka, and possibly to present day, which may also help explain the mismatch between long- and short-term rates of deformation in the region.

  20. Seismotectonics of the Eastern Himalayan System and Indo-Burman Convergence Zone Using Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Mitra, S.; Suresh, G.

    2014-12-01

    The Eastern Himalayan System (east of 88°E) is distinct from the rest of the India-Eurasia continental collision, due to a wider zone of distributed deformation, oblique convergence across two orthogonal plate boundaries and near absence of foreland basin sedimentary strata. To understand the seismotectonics of this region we study the spatial distribution and source mechanism of earthquakes originating within Eastern Himalaya, northeast India and Indo-Burman Convergence Zone (IBCZ). We compute focal mechanism of 32 moderate-to-large earthquakes (mb >=5.4) by modeling teleseismic P- and SH-waveforms, from GDSN stations, using least-squares inversion algorithm; and 7 small-to-moderate earthquakes (3.5<= mb <5.4) by modeling local P- and S-waveforms, from the NorthEast India Telemetered Network, using non-linear grid search algorithm. We also include source mechanisms from previous studies, either computed by waveform inversion or by first motion polarity from analog data. Depth distribution of modeled earthquakes reveal that the seismogenic layer beneath northeast India is ~45km thick. From source mechanisms we observe that moderate earthquakes in northeast India are spatially clustered in five zones with distinct mechanisms: (a) thrust earthquakes within the Eastern Himalayan wedge, on north dipping low angle faults; (b) thrust earthquakes along the northern edge of Shillong Plateau, on high angle south dipping fault; (c) dextral strike-slip earthquakes along Kopili fault zone, between Shillong Plateau and Mikir Hills, extending southeast beneath Naga Fold belts; (d) dextral strike-slip earthquakes within Bengal Basin, immediately south of Shillong Plateau; and (e) deep focus (>50 km) thrust earthquakes within IBCZ. Combining with GPS geodetic observations, it is evident that the N20E convergence between India and Tibet is accommodated as elastic strain both within eastern Himalaya and regions surrounding the Shillong Plateau. We hypothesize that the strike-slip earthquakes south of the Plateau occur on re-activated continental rifts paralleling the Eocene hinge zone. Distribution of earthquake hypocenters across the IBCZ reveal active subduction of the Indian plate beneath Burma micro-plate.

  1. New constraints on the Pan-African tectonics and the role of the Mwembeshi Zone in Central Zambia: Deformation style and timing of two orthogonal shortening events

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Lehmann, Jeremie; Saalmann, Kerstin; Milani, Lorenzo; Kinnaird, Judith; Charlesworth, Guy; Rankin, William; Frei, Dirk

    2014-05-01

    In Central Zambia the Mwembeshi Zone (MwZ) separates two branches of the Late Neoproterozoic - Cambrian Pan-African Orogen: the NE-convex Lufilian Arc and the E-W trending Zambezi Belt whose distinct features emphasize the role of the zone as a regional structural and metamorphic boundary. North of the MwZ, the Hook Batholith was emplaced within the low metamorphic grade Neoproterozoic metasedimentary rocks, and represents the largest Pan-African intrusion in Southern Africa. The granitoids and their host-rocks were affected by two deformation events. During the D1 deformation of E-W shortening, two high-strained zones developed in the batholith. To the NE, the Nalusanga Zone (NZ) is a ~3 km wide NW-striking subvertical sinistral strike-slip shear zone. To the SW, a ~2.5 km wide N-S trending subvertical pure-shear Itezhi-Tezhi Zone (ITZ) formed. In both structures, the granitoids show a smooth transition from weakly deformed rocks to porphyroclastic mylonites. Microstructural analysis defined them as medium metamorphic grade zones, deforming the granitoids at temperatures between 500 and 550°C. The lower greenschist facies metamorphism in the country rocks indicates that the deformation occurred during the cooling of the granitoids. D1 in the metasedimentary rocks east of the Hook batholith formed tight, upright folds with subvertical axial-planar cleavage and NNW-SSE trending axis consistent with the E-W shortening. U-Pb zircon geochronology and cross-cutting relationships between granites bracket D1 deformation between 549 ± 2 Ma and 541 ± 3 Ma in the NZ and in the SE part of the batholith. In the ITZ, the 533 ± 3 Ma age on a deformed granite indicates prolonged E-W shortening during granite emplacement and cooling history. D2 represents a stage of N-S shortening. Airborne geophysical data revealed bending of the N-S trending ITZ and rotation to the east. The D1 structures in the granitoids are cut by D2 north-vergent thrusts and subvertical NW trending dextral strike-slip zones. East of the granite, D2 resulted in E-W trending open folds that refolded the D1 structures. This folding becomes more intense and the folds are tighter when approaching the MwZ to the south. Along the MwZ, the molasse rocks, deposited after D1 (post ~528 Ma, based on new detrital-zircon ages), recorded high-strain greenschist facies coaxial deformation and the formation of E-W trending isoclinal folds with a steep south-dipping axial planar cleavage. This study shows that the area north of the MwZ is characterised by two orthogonal contraction events. The newly described D1 event of E-W shortening in the Hook area cannot be correlated with any of the published Pan-African tectonic models for the Lufilian Arc and Zambezi Belt. The D2 event of N-S shortening affected the region in response to the final docking between the Lufilian Arc and the Zambezi Belt. The strongest effect of this event was observed along the MwZ, which, during this stage, was a zone of intense coaxial deformation.

  2. The Pico do Itapeva Formation: A record of gravitational flow deposits in an Ediacaran intracontinental basin, southern Brasília Orogen, SE Brazil

    NASA Astrophysics Data System (ADS)

    Caputo Neto, V.; Ribeiro, A.; Nepomuceno, F. O.; Dussin, I. A.; Trouw, R. A. J.

    2018-07-01

    The Pico do Itapeva Formation is a key metasedimentary unit to the understanding of the extensional events that occurred between the late stage of the southern Brasília Orogen collision and the main collision in the central Ribeira Orogen. The formation crops out in a 20 km long NE-trending narrow belt in the Mantiqueira mountain range in eastern São Paulo State, Brazil. It is located in the interference zone of the southern Brasília and the central Ribeira orogens and records deformation and greenschist facies metamorphism (biotite zone) related to the Brasiliano orogeny. The Pico do Itapeva Formation rests unconformably on a metaigneous substratum of the Socorro-Guaxupé Nappe/Embu Terrane and, on the southern side, is truncated by a steep SE-dipping dextral reverse shear zone. It consists of a coarsening- and thickening-upward succession, with minimum thickness of 800 m, composed of lutite, arkose and conglomerate. These rocks constitute three distinct lithofacies associations: LAI- arkose, arkose-lutite composite beds, lutite and fine conglomerate beds; LAII- arkose, pebbly arkose and scarce lutite and; LAIII- conglomerate and pebbly arkose. Most of the beds are massive; graded beds, dish and convolute structures occur locally. Bed thickness varies from thin to very thick and amalgamated bodies constitute up to 30m thick strata. Three mappable units at scale 1:20,000 were recognized based on different proportions of the three lithofacies associations. The deposits are interpreted as the record of mass flows and associated processes in a fan delta setting developed in an intermontane rift basin. U-Pb LA-ICP-MS detrital zircon ages suggest the maximum depositional age at ca. 611 Ma and the basin evolution is interpreted in the range between 611 and 580 Ma during an inter-orogenic stage between the Brasília and Ribeira orogenies.

  3. New Constraints on Baja California-North America Relative Plate Motion Since 11 Ma

    NASA Astrophysics Data System (ADS)

    Bennett, S. E.; Skinner, L. A.; Darin, M. H.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.

    2013-12-01

    Tectonic reconstructions of the Pacific-North America (PAC-NAM) plate boundary across the Gulf of California and Salton Trough (GCAST) constrain the controversial magnitude of Baja California microplate-North America (BCM-NAM) relative motion since middle Miocene time. We use estimates of total PAC-NAM relative dextral-oblique motion from the updated global plate-circuit model (Atwater and Stock, 2013; GSA Cordilleran Mtg) to resolve the proportion of this motion on faults east of the BCM. Modern GPS studies and offset of late Miocene cross-gulf geologic tie points both suggest that BCM has never been completely coupled to the Pacific plate. Thus, our preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative motion increases from north to south due to greater distance from the Euler pole. Finer-scale restoration of tectonic blocks along significant (>1 km offset) faults, across extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is constrained by local geologic and marine-geophysical datasets and accomplished via the open-source Tectonic Reconstruct ArcGIS tool. We find that restoration across the Gulf of California completely closes marine basins and their terrestrial predecessors between 6 and 9 Ma. Latest Miocene opening of these basins was coincident with a ~10° clockwise azimuthal change from 8 to 6 Ma in PAC-NAM relative motion, as revealed by the global plate circuit model. The coupling ratios used in our reconstruction produce important changes in BCM-NAM relative motion, where a point at the latitude of the Guaymas rift corridor experienced a ~10° clockwise azimuthal change from ~119° to ~129° between 8 and 6 Ma, and a ~27 mm/yr rifting rate increase from ~13 to ~40 mm/yr between 9 and 6 Ma. This increase in obliquity and rate of rifting likely drove localization of plate boundary strain into the North American continent and ultimately formed the Gulf of California. Initiation of these basins ca. 9 Ma requires that the residual ~20 - 40 km of dextral-oblique motion from 9 to 11 Ma occurred immediately offshore or east of the present-day Sonora-Sinaloa shoreline on as-yet undocumented structures. Total preferred BCM-NAM dextral-oblique motion since 11 Ma varies from ~385 km in the southern Gulf of California to ~365 km at the Midriff Islands. These values and the south-north gradient are consistent with recent estimates of ~340 × 40 km of relative dextral plate motion across southern California and the Eastern California Shear Zone. Attempts to restore larger amounts (e.g. 450 - 500 km) of BCM-NAM motion require a higher percent of late Miocene BCM-PAC coupling and result in unacceptable overlap between continental tectonic blocks in western Sonora and Sinaloa and submerged, extended continental crust in the southern Gulf of California.

  4. The Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert region of the southwestern United States

    USGS Publications Warehouse

    Wells, M.L.; Beyene, M.A.; Spell, T.L.; Kula, J.L.; Miller, D.M.; Zanetti, K.A.

    2005-01-01

    The Pinto shear zone is one of several Late Cretaceous shear zones within the eastern fringe of the Mesozoic magmatic arc of the southwest Cordilleran orogen that developed synchronous with continued plate convergence and backarc shortening. We demonstrate an extensional origin for the shear zone by describing the shear-zone geometry and kinematics, hanging wall deformation style, progressive changes in deformation temperature, and differences in hanging wall and footwall thermal histories. Deformation is constrained between ???74 and 68 Ma by 40Ar/39Ar thermochronology of the exhumed footwall, including multi-diffusion domain modeling of K-feldspar. We discount the interpretations, applied in other areas of the Mojave Desert region, that widespread Late Cretaceous cooling results from refrigeration due to subduction of a shallowly dipping Laramide slab or to erosional denudation, and suggest alternatively that post-intrusion cooling and exhumation by extensional structures are recorded. Widespread crustal melting and magmatism followed by extension and cooling in the Late Cretaceous are most consistent with production of a low-viscosity lower crust during anatexis and/or delamination of mantle lithosphere at the onset of Laramide shallow subduction. ?? 2005 Elsevier Ltd. All rights reserved.

  5. The Ionian and Alfeo-Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?

    NASA Astrophysics Data System (ADS)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.

    2016-04-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW-SSE transtensive fault system connecting the Alfeo seamount and the Etna volcano (Alfeo-Etna Fault, AEF). A second, NW-SE crustal discontinuity, the Ionian Fault (IF), separates two lobes of the CA subduction complex (Western and Eastern Lobes) and impinges on the Sicilian coasts south of the Messina Straits. Analysis of multichannel seismic reflection profiles shows that: 1) the IF and the AEF are transfer crustal tectonic features bounding a complex deformation zone, which produces the downthrown of the Western lobe along a set of transtensive fault strands; 2) during Pleistocene times, transtensive faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain which acted as thrust faults during the Messinian and Pliocene; and 3) the IF and the AEF, and locally the Malta escarpment, accommodate a recent tectonic event coeval and possibly linked to the Mt. Etna formation. Regional geodynamic models show that, whereas AEF and IF are neighboring fault systems, their individual roles are different. Faulting primarily resulting from the ESE retreat of the Ionian slab is expressed in the northwestern part of the IF. The AEF, on the other hand, is part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments, which results in rifting processes within the Western Lobe of the Calabrian Arc accretionary wedge. As such, it is primarily associated with Africa-Eurasia relative motion.

  6. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    NASA Astrophysics Data System (ADS)

    La Femina, P.; Weber, J. C.; Geirsson, H.; Latchman, J. L.; Robertson, R. E. A.; Higgins, M.; Miller, K.; Churches, C.; Shaw, K.

    2017-12-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then by modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic (interseimic = between major earthquakes) fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and over-pressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure, as an alternative or in addition to weak mineral phases in the fault zone, may thus cause the CRF fault creep and the lack of seismicity that we observe.

  7. The Jeffers Brook diorite-granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.

    2018-04-01

    Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.

  8. Basin geometry and cumulative offsets in the Eastern Transverse Ranges, southern California: Implications for transrotational deformation along the San Andreas fault system

    USGS Publications Warehouse

    Langenheim, V.E.; Powell, R.E.

    2009-01-01

    The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.

  9. Textural evolution of plagioclase feldspar across a shear zone: Implications for deformation mechanism and rock strength

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Austrheim, Håkon; Mukai, Hiroki; Putnis, Christine V.

    2014-05-01

    Caledonian amphibolite facies shear zones developed in granulite facies anorthosites and anorthositic gabbros of the Bergen Arcs, western Norway allow a detailed study of the relationships between fluid-infiltration, mineral reactions, the evolution of microstructure and deformation mechanisms. A sequence of rocks from the relatively pristine granulites into a shear zone has been studied by optical microscopy, EMPA, SEM, EBSD and TEM, focusing on the progressive development of microstructure in the plagioclase feldspars, leading up to their deformation in the shear zone. At the outcrop scale, fluid infiltration into the granulites is marked by a distinct colour change in the plagioclase from lilac/brown to white. This is associated with the breakdown of the intermediate composition plagioclase (~An50) in the granulite to a complex intergrowth of Na-rich and Ca-rich domains. EBSD analysis shows that this intergrowth retains the crystallographic orientation of the parent feldspar, but that the Ca-rich domains contain many low-angle boundaries as well as twin-related domains. Within the shear zone, this complex intergrowth coarsens by grain boundary migration, annihilating grain boundaries but retaining the Na-rich and Ca-rich zoning pattern. Analysis of nearest-neighbour misorientations of feldspar grains in the shear zone demonstrates that local crystallographic preferred orientation (CPO) is inherited from the parent granulite grain orientations. Random pair misorientation angle distributions show that there is no CPO in the shear zone as a whole, nor is there significant shape preferred orientation (SPO) in individual grains. These observations are interpreted in terms of fluid-induced weakening and deformation by dissolution-precipitation (pressure solution) creep.

  10. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  11. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    NASA Astrophysics Data System (ADS)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle deformation of feldspar; and finally, a zone of generally brittle deformation. These zones represent deformation in progressively narrower regions at shallower depths, under lower temperatures and higher stresses.

  12. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    NASA Astrophysics Data System (ADS)

    Molli, Giancarlo; Menegon, Luca; Malasoma, Alessandro

    2017-04-01

    The switching in deformation mode (from distributed to localized) and mechanism (viscous versus frictional) represent a relevant issue in the frame of processes of crustal deformation in turn connected with the concept of the brittle-"ductile" transition and seismogenesis. On the other hand the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as having a fundamental role in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyses an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-mylonite during deformation in subduction-related environment. The studied sample come from the external Corsican continental crust units involved in alpine age subduction and characterized by a low grade blueschist facies peak assemblages. The blueschist facies host rock is cut by a thin (< 1 cm thick) brittle-viscous shear zone that preserves domains with a cataclastic microstructure overprinted by mylonitic deformation. Blue amphibole is stable in the shear zone foliation, which therefore formed under HP/LT metamorphic conditions in a subduction environment. Quartz microstructure in the damage zone flanking the brittle-viscous shear zone shows evidence of both microcracking and dislocation glide, with limited recrystallization localized in intracrystalline bands. In the mylonite portion of the shear zone, quartz forms polycrystalline ribbons of dynamically recrystallized grains with a crossed-girdle c-axis CPO. Extrapolation of laboratory-derived flow laws indicates strain rate of ca. 3.5 * 10-12 s-1 during viscous flow in the shear zone. The studied structures, possibly formed by transient instability related to episodic stress/strain rate variations, may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep with coseismic rupture and then a fossil example of stick-slip strain accommodation in subduction environment of continental crust.

  13. High temperature pseudotachylytes and ductile shear zones in dry rocks from the continental lower crust (Lofoten, Norway)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot

    2014-05-01

    Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and overgrow the plagioclase porphyroclasts; in some cases small garnets nucleated along thin microfractures discordant to the pseudotachylyte vein or along the pseudotachylyte boundary. In the host rock garnet form thin continuous coronitic rims surrounding biotite and opaque and discontinuous one around pyroxene. The mineral assemblage of ultramlylonites is also consistent with high grade metamorphic conditions (recrystallized plagioclase and clinopyroxene, biotite and amphibole). Nucleation of ductile shear zones is dictated by the availability of pseudotachylyte veins; remarkably, lithological boundaries have not been exploited by ductile shear zones. Brittle deformation and extreme grain size reduction are likely to be necessary conditions in order to promote ductile strain localization in dry rocks in the lower crust.

  14. Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.

    2013-12-01

    Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine-grained calcite and a lack of a lattice preferred orientation suggest ultrafine-grained calcite deformed by diffusion creep accommodated grain boundary sliding. These structures suggest a strain-rate between 10-15 - 10-11 s-1, using calcite flow laws at temperatures 150-250 °C. Microstructures suggest both seismic and aseismic slip along this ancient fault zone. During periods of aseismic slip, deformation is accommodated by plasticity-induced fracturing and diffusion creep. Calcite veins suggest an increase in pore-fluid pressure, contributing to fluidized and unstable flow, but also providing the calcite that deformed by diffusion creep during aseismic creep.

  15. Anatomy of a Plate Boundary at Shallow Crustal Levels: a Composite Section from the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.

    2010-12-01

    New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz that become less continuous and more sigmoidal toward the PSS, indicating a strain gradient across the gouge zone. Gouge textures are consistent with deformation by pressure solution. Intact wafers from one of the gouges, experimentally -sheared in a biaxial configuration under true-triaxial loading at σn’= 31MPa and Pf = 10MPa, yielded a friction coefficient, μss = 0.32 and displayed velocity strengthening behavior. No significant re-strengthening was observed during hold periods of slide-hold tests. Well-cemented glacial till (~8000 years old), which caps many outcrops, is a marker that shows that the damage zone is not active in the near-surface, but most of the fault core is. The active near-surface damage zone here is <40m wide and the active fault core is <2.5m wide. Both overprint a much wider, inactive damage zone. The combination of rheologically-weak Australian Plate fault rocks with surface rupture traces indicates distinctly different coseismic and interseismic behaviors along the southern strike-slip-normal segment of the Alpine Fault.

  16. Evolution of the Sibişel Shear Zone (South Carpathians): A study of its type locality near Răşinari (Romania) and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Negulescu, Elena; Profeta, Lucia; Sǎbǎu, Gavril; Jianu, Denisa; Petrescu, Lucian; Hoffman, Derek

    2016-09-01

    The Sibişel Shear Zone is a 1-3 km wide, ductile shear zone located in the South Carpathian Mountains, Romania. In the Rășinari area, the ductile shear zone juxtaposes amphibolite facies rocks of the Lotru Metamorphic Suite against greenschist facies rocks of the Râuşorul Cisnădioarei Formation. The first represents the eroded remnants of Peri-Gondwanan arcs formed between the Neoproterozoic-Silurian (650-430 Ma), regionally metamorphosed to amphibolite facies during the Variscan orogeny (350-320 Ma). The second is composed of metasedimentary and metavolcanic Neoproterozoic-Ordovician (700-497 Ma) assemblages of mafic to intermediate bulk composition also resembling an island arc metamorphosed during the Ordovician (prior to 463 Ma). Between these lie the epidote amphibolite facies mylonitic and ultramylonitic rocks of the Sibișel Formation, a tectonic mélange dominated by mafic actinolite schists attenuated into a high strain ductile shear zone. Mineral Rb-Sr isochrons document the time of juxtaposition of the three domains during the Permian to Early Triassic ( 290-240 Ma). Ductile shear sense indicators suggest a right lateral transpressive mechanism of juxtaposition; the Sibişel shear zone is a remnant Permo-Triassic suture between two Early Paleozoic Gondwanan terranes. A zircon and apatite U-Th/He age transect across the shear zone yields Alpine ages (54-90 Ma apatite and 98-122 Ma zircon); these data demonstrate that the exposed rocks were not subjected to Alpine ductile deformation. Our results have significant implications for the assembly of Gondwanan terranes and their docking to Baltica during Pangea's formation. Arc terranes free of Variscan metamorphism existed until the Early Triassic, emphasizing the complex tectonics of terrane amalgamation during the closure of Paleotethys.

  17. Structural Control and Groundwater Flow in the Nubian Aquifer

    NASA Astrophysics Data System (ADS)

    Fathy, K.; Sultan, M.; Ahmed, M.; Save, H.; Emil, M. K.; Elkaliouby, B.

    2017-12-01

    An integrated research approach (remote sensing, field, geophysics) was conducted to investigate the structural control on groundwater flow in large aquifers using the less studied Nubian Sandstone Aquifer System (NSAS) of NE Africa as a test site. The aquifer extends over 2.2 x 106 km2 in Egypt, Libya, Chad, and Sudan and consists of thick (> 3 kms), water-bearing, Paleozoic and Mesozoic sandstone with intercalations of Tertiary shale and clay. It is subdivided into three sub-basins (Northern Sudan Platform [NSP], Dakhla [DAS], and Kufra) that are separated by basement uplifts (e.g., E-W trending Uweinat-Aswan uplift that separates DAS from the NSP). Aquifer recharge occurs in the south (NSP and southern Kufra) where the aquifer is unconfined and precipitation is high (Average Annual Precipitation [AAP]: 117 mm/yr.) and discharge is concentrated in the north (DAS and northern Kufra). Our approach is a three-fold exercise. Firstly, we compared GOCE-based Global Geopotential Models (GGMs) to terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity anomalies. Secondly, structures and uplifts were mapped using hill shade images and their extension in the subsurface were mapped using the Eigen_6C4 model-derived Bouguer anomalies and their Tilt Derivative products (TDR). Thirdly, hydrological analysis was conducted using GRACE CSR 1° x 1° mascon solutions to investigate the mass variations in relation to the mapped structures. Our findings include: (1) The Eigen-6C4 is the optimum model having the lowest deviation (9.122 mGal) from the terrestrial gravity anomalies; (2) the surface expressions of structures matched fairly well with their postulated extensions in the subsurface; (3) identified fault systems include: Red Sea rift-related N-S to NW-SE trending grabens formed by reactivating basement structures during Red Sea opening and Syrian arc-related NE-SW trending dextral shear systems; (4) TWS patterns are uniform throughout the length (hundreds of kilometers) of the identified shear systems but are dissimilar from those extracted in areas proximal to, but outside of, the shear zones; and (5) basement uplifts impede or redirect the groundwater flow.

  18. Geologic map of the Lead Mountain 15’ quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Jagiello, Keith J.; Fitzgibbon, Todd T.; John, Barbara E.

    2013-01-01

    The Lead Mountain 15’ quadrangle in the Mojave Desert contains a record of Jurassic, Cretaceous, Tertiary, and Quaternary magmatism. Small amounts of Mesoproterozoic(?) augen gneiss and Paleozoic and Mesozoic(?) metasedimentary rocks are preserved in small patches; they are intruded by voluminous Jurassic plutons of quartz diorite to granite composition and by Late Cretaceous granite of the Cadiz Valley batholith. Jurassic intrusive rocks include part of the Bullion Mountain Intrusive Suite and also younger dikes inferred to be part of the Jurassic Independence dike swarm. A contact-metamorphosed aureole 2 km wide in the Jurassic plutonic rocks fringes the Cadiz Valley batholith. Early Miocene dacitic magmatism produced a dense swarm of dikes in the eastern Bullion Mountains and the volcanic-intrusive remnant of a volcano at Lead Mountain. Tilting of the dike swarm from inferred vertical orientations may have resulted from Miocene tectonic extension. Conglomerate of Pliocene and (or) Miocene age is also tilted. Younger volcanism is recorded by Pliocene basalt of the Deadman Lake volcanic field, basalt of Lead Mountain (approximately 0.36 Ma), and the even younger basalt of Amboy. Quaternary sedimentation built alluvial fans and filled playas in the map area. Faulting in the dextral eastern California shear zone produced several northwest-striking faults in the quadrangle, some of them active into the Pleistocene and some that may have many kilometers of right-lateral offset.

  19. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  20. Diffuse Pacific-North American plate boundary: 1000 km of dextral shear inferred from modeling geodetic data

    USGS Publications Warehouse

    Parsons, T.; Thatcher, W.

    2011-01-01

    Geodetic measurements tell us that the eastern part of the Basin and Range Province expands in an east-west direction relative to stable North America, whereas the western part of the province moves to the northwest. We develop three-dimensional finite element representations of the western United States lithosphere in an effort to understand the global positioning system (GPS) signal. The models are constrained by known bounding-block velocities and topography, and Basin and Range Province deformation is represented by simple plastic (thermal creep) rheology. We show that active Basin and Range spreading by gravity collapse is expected to have a strong southward component that does not match the GPS signal. We can reconcile the gravitational component of displacement with observed velocity vectors if the Pacific plate applies northwest-directed shear stress to the Basin and Range via the Sierra Nevada block. This effect reaches at least 1000 km east of the San Andreas fault in our models. ?? 2011 Geological Society of America.

  1. The carbonaceous phyllite rock-hosted Pedra Verde copper mine, Borborema Province, Brazil: Stable isotope constraints, structural controls and metallogenic evolution

    NASA Astrophysics Data System (ADS)

    da Silva Nogueira de Matos, José Henrique; Saraiva dos Santos, Ticiano José; Virgínia Soares Monteiro, Lena

    2017-12-01

    The Pedra Verde Copper Mine is located in the Viçosa do Ceará municipality, State of Ceará, NE Brazil. The copper mineralization is hosted by the Pedra Verde Phyllite, which is a carbonaceous chlorite-calcite phyllite with subordinate biotite. It belongs to the Neoproterozoic Martinópole Group of the Médio Coreaú Domain, Borborema Province. The Pedra Verde deposit is stratabound and its ore zoning is conspicuous, according to the following sequence, from bottom to top: marcasite/pyrite, native silver, chalcopyrite, bornite, chalcocite, native copper and hematite. Barite and carbonaceous material are reported in ore zones. Zoning reflects the ore formation within a redox boundary developed due to the interaction between oxidized copper- and sulfate-bearing fluids and the reduced phyllite. Structural control on mineralization is evidenced by the association of the ore minerals with veins, hinge folds, shadow pressures, and mylonitic foliation. It was mainly exercised by a dextral transcurrent shear zone developed during the third deformational stage identified in the Médio Coreaú Domain between 590 Ma and 570 Ma. This points to the importance of epigenetic, post-metamorphic deformational events for ore formation. Oxygen isotopic composition (δ18OH2O = 8.94 to 11.28‰, at 250 to 300 °C) estimated for the hydrothermal fluids in equilibrium with calcite indicates metamorphic or evolved meteoric isotopic signatures. The δ13CPDB values (-2.60 to -9.25‰) obtained for hydrothermal calcite indicate mixing of carbon sources derived from marine carbonate rocks and carbonaceous material. The δ34SCDT values (14.88 to 36.91‰) of sulfides suggest evaporites as sulfate sources or a closed system in relation to SO42- availability to form H2S. Carbonaceous matter had a key role in thermochemical sulfate processes and sulfide precipitation. The Pedra Verde Copper Mine is considered the first stratabound meta-sedimentary rock-hosted copper deposit described in Brazil and shares similarities with the syn-orogenic copper deposits of the Congo-Zambian Copperbelt formed during the Gondwana amalgamation.

  2. Fifty years of shear zones

    NASA Astrophysics Data System (ADS)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high temperature shear zones with flaser gabbro and amphibolitization must have been developed at deeper levels in the shear zone and 'dragged upwards'. An attempt to justify these assertions will made using outcrop exsmples and some deep Seismic data John Ramsay was always cautious about up-scaling and indulging in large scale tectonic speculations, but without his geometric acumen the big scale picture would have been even less clear. Ramsay, J.G. and Graham, R.H., 1970. Strain variation in shear belts. Canadian Journal of Earth Sciences, 7(3), pp.786-813.

  3. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan

    USGS Publications Warehouse

    Drew, L.J.; Berger, B.R.; Kurbanov, N.K.

    1996-01-01

    The Muruntau gold deposit in the Kyzylkum desert of Uzbekistan is the largest single deposit (??? 1100 tonnes of gold) of the class of low-sulfide syndeformation/synigenous gold deposits formed in the brittle/ductile transition zone of the crust within transpressional shear zones. Hosted by the Cambrian to Ordovician Besopan Suite, the ores were deposited in pre-existing thrust-fault- and metamorphism-related permeabilities and in synmineralization dilational zones created in a large fault-related fold. The Besopan Suite is a 5,000-m-thick sequence of turbiditic siltstones, shales and sandstones. The ore is primarily localized at the base of the Besopan-3 unit, which is a 2,000-m-thick series of carbonaceous shales, siltstones, sandstones and cherts. Initial gold deposition took place within the Sangruntau-Tamdytau shear zone, which was developed along the stratigraphic contact between the Besopan-3 and Besopan-4 units. During the mineralization process, folding of the Besopan Suite and a left-step adjustment in the Sangruntau-Tamdytau shear zone were caused by two concurrent events: (1) the activation of the left-lateral Muruntau-Daugyztau shear zone that developed at nearly a 90?? angle to the preceding shear zone and (2) the intrusion of granitoid plutons. These structural events also resulted in the refocusing of hydrothermal fluid flow into new zones of permeability.

  4. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes the retro-shear zone to propagate rearward with time. The main conclusion is that the rearward propagation will cease only when 1) the retro shear zone reaches the S point (i.e. the mantle cutoff in the upper plate) or 2) the erosion outflux from the subduction wedge matches the accretionary influx. Given the location of the upper plate Moho at Cascadia, it seems that erosion is the control factor in pinning the retro shear zone there.

  5. Latest Cretaceous and Paleocene extension in SE California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosdal, R.M.; Conrad, J.E.; Murphy, G.P.

    1993-04-01

    Two ductile deformations formed the 3.5-km-thick, south dipping American Girl shear zone in the Cargo Muchancho Mountains, SE California. The older event (D1) imprints crystalloblastic fabrics that record contractional strains at midcrustal depths in the Middle( ) and Late Jurassic. The second event (D2) is marked by superposed mylonitic fabrics that are coplanar and colinear with fabrics of D1. Small mylonitic shear zones of D2 cut undeformed rocks in the hanging wall of the American Girl shear zone. Folded sheets of Jurassic granite geneiss and kinematic indicators in mylonites indicative southward directed transport down the present dip of the foliationmore » during D2. [sup 40]Ar/[sup 39]Ar release spectrum on hornblende from undeformed upper-plate monzo-diorite (173 Ma, U-Pb zircon), about 2 km above the top of shear zone has a plateau age of 96.7[+-]0.9 Ma. In contrast, hornblende release spectra from granite gneiss about 200 m below the top of the shear zone and from hornblende gneiss about 3 km below the top of the shear zone are flat and have identical ages. Hornblende from monzodiorite at the base of the upper plate has a more complicated spectrum that is interpreted to indicate a cooling age of 60.4[+-]1.3 Ma.« less

  6. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2017-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation thus plays an important role in resetting U-Pb systematics and allows the timing of shear zone development to be linked to the early stages of eclogite exhumation at ca. 405 Ma. Atom-probe analyses of adjacent subgrains, one that has recrystallized and one with an inherited age, will provide insight into trace-element mobility on the nm-scale.

  7. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2016-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation thus plays an important role in resetting U-Pb systematics and allows the timing of shear zone development to be linked to the early stages of eclogite exhumation at ca. 405 Ma. Atom-probe analyses of adjacent subgrains, one that has recrystallized and one with an inherited age, will provide insight into trace-element mobility on the nm-scale.

  8. Changes in Central Walker Lane Strain Accommodation near Bridgeport, California; as told by the Stanislaus Group

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Pluhar, C. J.; Glen, J. M.; Farner, M. J.

    2012-12-01

    Accommodating ~20-25% of the dextral-motion between the Pacific and North American plates the Walker Lane is represented as an elongate, NW oriented, region of active tectonics positioned between the northwesterly-translating Sierra Nevada microplate and the east-west extension of the Basin and Range. This region of transtension is being variably accommodated on regional-scale systems of predominantly strike-slip faulting. At the western edge of the central Walker Lane (ca. 38°-39°N latitude) is a region of crustal-scale blocks bounded by wedge-shaped depositional-basins and normal-fault systems, here defined as the west-central Walker Lane (WCWL). Devoid of obvious strike-slip faulting, the presence of tectonic-block vertical-axis rotations in the WCWL represents unrecognized components of dextral-shearing and/or changes of strain-accommodation over time. We use paleomagnetic reference directions for Eureka Valley Tuff (EVT) members of the late Miocene Stanislaus Group as spatial and temporal markers for documentation of tectonic-block vertical-axis rotations near Bridgeport, CA. Study-site rotations revealed discrete rotational domains of mean vertical-axis rotation ranging from ~10°-30° with heterogeneous regional distribution. Additionally, the highest measured magnitudes of vertical-axis rotation (~50°-60° CW) define a 'Region of High Strain' that includes the wedge-shaped Bridgeport Valley (Basin). This study revealed previously-unrecognized tectonic rotation of reference direction sites from prior studies for two (By-Day and Upper) of the three members of the EVT, resulting in under-estimates of regional strain accommodation by these studies. Mean remanent directions and virtual geomagnetic poles utilized in our study yielded a recalculated reference direction for the By-Day member of: Dec.=353.2°; Inc.= 43.7°; α95=10.1, in agreement with new measurements in the stable Sierra Nevada. This recalculated direction confirmed the presence of previously unrecognized reference site rotations, and provided an additional reference direction for determining vertical-axis rotation magnitudes. We present a kinematic model based on mean rotation magnitudes of ~30° CW for the Sweetwater Mountains and Bodie Hills that accounts for rotational-strain accommodation of dextral shear in the WCWL since the late Miocene. This model considers rotational magnitudes, paleostrain indicators, edge-effects, and strain-accommodating structures of rotating crustal blocks to represent changes in regional strain accommodation over time. The results and models presented here elucidate the complicated and evolving nature of the WCWL, and further understanding of variations in strain accommodation for the Walker Lane.

  9. Transform Faults and Lithospheric Structure: Insights from Numerical Models and Shipboard and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Takeuchi, Christopher S.

    In this dissertation, I study the influence of transform faults on the structure and deformation of the lithosphere, using shipboard and geodetic observations as well as numerical experiments. I use marine topography, gravity, and magnetics to examine the effects of the large age-offset Andrew Bain transform fault on accretionary processes within two adjacent segments of the Southwest Indian Ridge. I infer from morphology, high gravity, and low magnetization that the extremely cold and thick lithosphere associated with the Andrew Bain strongly suppresses melt production and crustal emplacement to the west of the transform fault. These effects are counteracted by enhanced temperature and melt production near the Marion Hotspot, east of the transform fault. I use numerical models to study the development of lithospheric shear zones underneath continental transform faults (e.g. the San Andreas Fault in California), with a particular focus on thermomechanical coupling and shear heating produced by long-term fault slip. I find that these processes may give rise to long-lived localized shear zones, and that such shear zones may in part control the magnitude of stress in the lithosphere. Localized ductile shear participates in both interseismic loading and postseismic relaxation, and predictions of models including shear zones are within observational constraints provided by geodetic and surface heat flow data. I numerically investigate the effects of shear zones on three-dimensional postseismic deformation. I conclude that the presence of a thermally-activated shear zone minimally impacts postseismic deformation, and that thermomechanical coupling alone is unable to generate sufficient localization for postseismic relaxation within a ductile shear zone to kinematically resemble that by aseismic fault creep (afterslip). I find that the current record geodetic observations of postseismic deformation do not provide robust discriminating power between candidate linear and power-law rheologies for the sub-Mojave Desert mantle, but longer observations may potentially allow such discrimination.

  10. Modelling of deformation around magmatic intrusions with application to gold-related structures in the Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Karrech, A.; Schaubs, P. M.; Regenauer-Lieb, K.; Poulet, T.; Cleverley, J. S.

    2012-03-01

    This study simulates rock deformation around high temperature granite intrusions and explores how gold bearing shear zones near intrusions were developed in the Yilgarn, using a new continuum damage mechanics algorithm that considers the temperature and time dependent elastic-visco-plastic constitutive behaviour of crustal materials. The results demonstrate that strain rates have the most significant effects on structural patterns for both extensional and compressional cases. Smaller strain rates promote the formation of narrow high-strain shear zones and strong strain localisation along the flank or shoulder areas of the intrusion and cold granite dome. Wider diffuse shear zones are developed under higher strain rates due to strain hardening. The cooling of the intrusion to background temperatures occurred over a much shorter time interval when compared to the duration of deformation and shear zones development. Strong strain localisation near the intrusion and shear zone development in the crust occurred under both extensional and compressional conditions. There is always clear strain localisation around the shoulders of the intrusion and the flanks of the "cold" granitic dome in early deformation stages. In the models containing a pre-existing fault, strain localisation near the intrusion became asymmetric with much stronger localisation and the development of a damage zone at the shoulder adjacent to the reactivated fault. At higher deformation stages, the models produced a range of structural patterns including graben and half graben basin (extension), "pop-up" wedge structures (compression), tilted fault blocks and switch of shear movement from reverse to normal on shear zones. The model explains in part why a number of gold deposits (e.g. Wallaby and Paddington deposits) in the Yilgarn were formed near the flank of granite-cored domes and deep "tapping" faults, and shows that the new modelling approach is capable of realistically simulating high strain localisation and shear zone development.

  11. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip mylonite zone grades into a gently N-dipping detachment to the west which accommodated strike slip by exhumation of high-grade lower crustal rocks. The Qazaz and the Hafafit Domes are similar, mirror-image structures with small differences in the accommodating shear zones. It is likely that these types of strike-slip related oblique core complexes are common in the Arabian Nubian shield, and possibly elsewhere.

  12. Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.

    2001-01-01

    The Hulayfah-Ad Dafinah-Ruwah fault zone is a belt of highly strained rocks that extends in a broad curve across the northeastern Arabian shield. It is a subvertical shear zone, 5-30 km wide and over 600 km long, and is interpreted as a zone of oblique sinistral transpression that forms the suture between the Afif terrane and the Asir-Jiddah-Hijaz-Hulayfah superterrane. Available data suggest that the terranes began to converge sometime after 720 Ma, were in active contact at about 680 Ma, and were in place, with suturing complete, by 630 Ma, The fault zone was affected by sinistral horizontal and local vertical shear, and simultaneous flattening and fault-zone-parallel extension. Structures include sinistral sense-of-shear indicators, L-S tectonite, and coaxial stretching lineations and fold axes. The stretching lineations switch from subhorizontal to subvertical along the fault zone indicating significant variation in finite strain consistent with an origin by oblique transpression. The sense of shear on the fault zone suggests sinistral trajectories for the converging terranes, although extrapolating the shear sense of the suture zone to infer far-field motion must be done with caution. The amalgamation model derived from the chronologic and structural data for the fault zone modifies an existing model of terrane amalgamation and clarifies the definitions of two deformational events (the Nabitah orogeny and the Najd fault system) that are widely represented in the Arabian shield. ?? 2001 Elsevier Science B.V.

  13. Strain accumulation across the central Nevada seismic zone, 1973-1994

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; Svarc, J. L.; Gross, W. K.

    1995-10-01

    Five trilateration networks extending for 280 km along the central Nevada seismic zone (1915 Pleasant Valley, M = 7.3; 1954 Dixie Valley, M = 6.8; 1954 Stillwater, M = 6.8; 1954 Rainbow Mountain, M = 6.6; 1954 Fairview Peak, M = 7.1; and 1932 Cedar Mountain, M = 7.2) have been surveyed 6 times since 1973 to determine deformation along the zone. Within the precision of measurement the deformation appears uniform along the zone and is described by the principal strain rates 0.036±0.008 μstrain/yr N60°W±3° and -0.031±0.008 μstrain/yr N30°E±3°, extension reckoned positive. The observed strain rates are consistent with simple, right-lateral, tensor shear at the rate of 0.033 μstrain/yr across a shear zone striking N15°W. This central Nevada shear zone appears to be the northward continuation of the eastern California shear zone. The orientation of the strike-slip and normal-slip ruptures within the central Nevada seismic zone are consistent with principal stress axes parallel to the measured principal strain rate axes. Space-based geodetic measurements (very long baseline interferometry) indicate that the relative motion accommodated across the Basin and Range province west of Ely, Nevada, is about 9.1±1.5 mm/yr N16°W±8° (Dixon et al., 1995.) Notice that the right-lateral shear zone postulated to explain deformation in the central Nevada seismic zone is properly oriented to accommodate that relative motion. However, a 135-km effective width of the shear zone would be required to accommodate all of the 9.1 mm/yr relative motion at the strain rates observed in the Nevada seismic zone; only about 3 mm/yr of that relative motion is accommodated within the span of the trilateration networks.

  14. Movement sense determination in sheared rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1985-01-01

    Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less

  15. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain gradients but are insufficient to maintain them because the stress perturbations will dissipate with deformation. Metamorphism can unquestionably cause sufficient rheological change, but only in certain rock types: for example, granitoids have much less capacity for metamorphically induced rheologic change than do mafic rocks. The magnitude of phase geometry variation observed in natural systems suggests that morphological change (e.g., interconnection of weak phases) likely has little direct affect on strength changes, although other textural factors related to diffusion paths and crystallographic orientation could play a significant role. Thermal perturbation, mainly in the form of shear heating, remains potentially powerful but inconclusive. Taken together, these observations indicate that a simple algorithm predicting shear zone formation will not succeed in many geologically relevant instances. One significant reason may be that the inherent lithologic variation at the km scale, such as observed in the Central Gneiss belt, prevents the development of self-organized strain patterns that would form in more rheologically uniform systems.

  16. Relating rheology to geometry in large-scale natural shear zones

    NASA Astrophysics Data System (ADS)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and diffusion, or metamorphic reactions? (3) In two-phase / polyphase mixtures, does the strong phase generally form a load-bearing framework, favoring constant strain-rate (Voigt) bound behavior, or does the weak phase form through-going strain pathways, favoring constant stress (Reuss) bound behavior, or do the phases remain well mixed, favoring an intermediate behavior (e.g., Tullis et al model)? (4) How do we deal with the rheological effect of water? Is it simply an unconstrained variable in nature? Is the water fugacity model in flow laws adequate? (5) How can we better relate experimental results (often carried out at constant strain-rate, and not reaching microstructural steady state) to deformation in natural shear zones? Rheological observations on well-constrained natural shear zones are helping us answer some of these questions.

  17. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.

  18. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.

  19. Tectonics of the IndoBurma Oblique Subduction Zone

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.

    2016-12-01

    The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.

  20. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    USGS Publications Warehouse

    Cosca, M.A.; Essene, E.J.; Kunk, Michael J.; Sutter, J.F.

    1992-01-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ??? 1000 and ??? 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ??? 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ??? 600 Ma as required by the deposition of overlying undeformed Cambrian and/or Ordovician sedimentary rocks. ?? 1992 Springer-Verlag.

  1. Strain Localization on Different Scales and their Related Microstructures - Comparison of Microfabrics of Calcite Mylonites from Naxos (Greece) and Helvetic Nappes (Switzerland)

    NASA Astrophysics Data System (ADS)

    Ebert, A.; Herwegh, M.; Karl, R.; Edwin, G.; Decrouez, D.

    2007-12-01

    In the upper crust, shear zones are widespread and appear at different scales. Although deformation conditions, shear zone history, and displacements vary in time and space between shear zones and also within them, in all shear zones similar trends in the evolution of large- to micro-scale fabrics can be observed. The microstructural analyses of calcite mylonites from Naxos and various Helvetic nappes show that microstructures from different metamorphic zones vary considerably on the outcrop- and even on the sample- scale. However, grain sizes tend to increase with metamorphic degree in case of Naxos and the Helvetic nappes. Although deformation conditions (e.g. deformation temperature, strain rate, and shear zone geometry, i.e. shear zone width and rock type above/below thrust) vary between the different tectonic settings, microstructural trends (e.g. grain size) correlate with each other. This is in contrast to many previous studies, where no corrections for second phase contents have been applied. In an Arrhenius-type diagram, the grain growth trends of calcite of all studied shear zones fit on a single trend, independent of the dimensions of localized large-scale structures, which is in the dm to m- and km-range in case of the Helvetic thrusts and the marble suite of Naxos, respectively. The calcite grain size increases continuously from few μm to >2mm with a temperature increase from <300°C to >700°C. In a field geologist's point of view, this is an important observation because it shows that natural dynamically stabilized steady state microfabrics can be used to estimate temperature conditions during deformation, although the tectonic settings are different (e.g. strain rate, fluid flow). The reason for this agreement might be related to a scale-dependence of the shear zone dimensions, where the widths increase with increasing metamorphic conditions. In this sense, the deformation volumes affected by localization must closely be linked to the strength of the affected rocks. In comparison to experiments, similar microstructural trends are observed. Here, however, shifts of these trends occur due to the higher strain rates.

  2. The Northwest Geysers EGS Demonstration Project, California – Part 2: Modeling and interpretation

    DOE PAGES

    Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.; ...

    2015-09-02

    In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280–400 °C) located under the conventional (240 °C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic datamore » at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW-striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The mo deling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects.« less

  3. The Northwest Geysers EGS Demonstration Project, California – Part 2: Modeling and interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.

    In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280–400 °C) located under the conventional (240 °C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic datamore » at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW-striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The mo deling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects.« less

  4. Role of the Western Anatolia Shear Zone (WASZ) in Neotectonics Evolution of the Western Anatolia Extended Terrain, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Gogus, O. H.; Hancer, M.

    2013-12-01

    The Neotectonics period in western Anatolia Extended Terrain, Turkey (WAET) may have initiated in late Oligocene following the Eocene Alpine collision which produced the Izmir-Ankara suture zone. The Western Anatolia Shear Zone (WASZ) bounds the WAET to the east. The shear zone contains mostly normal faults in the vicinity of the Gulf of Gokova. However, its movement is mostly oblique slip from the vicinity of Tavas towards the Lake of Acigol where it makes a northward bend and possibly joins the Eskisehir fault zone to the north of the town of Afyon. The shear zone forms the southern and eastern margins of the Kale-Tavas, Denizli and Acigol basins. The shear zone is similar in its structural/tectonics setting to the Eastern California Shear zone (ECSZ) of the Basins and Ranges of North America Extended terrain which is also composed of many normal to oblique-slip faults and separates two extended terrains with different rates of extension. Western Anatolia experienced many devastating earthquakes within the last 2000 years. Many of the ancient Greek/Roman city states, including Ephesus, Troy, and Hierapolis were destroyed by large historical earthquakes. During the second half of the 20th century, the region experienced two major large earthquake giving normal fault focal mechanism solutions. They are the 1969, M=6.9 Alasehir and the 1970, M=7.1 Gediz earthquakes. These earthquakes had caused substantial damage and loss of life in the region. Therefore, a comprehensive understanding of the kinematics of the Cenozoic extensional tectonics and earthquake potential of the WASZ in the region, is very important, especially since the fault zone is very close to the major towns in eastern part of western Turkey, such as Mugla, Denizli, Sandikli, Dinar and Afyon.

  5. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less

  6. Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery; Polufuntikova, Lena

    2017-04-01

    The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.

  7. Homogenous stretching or detachment faulting? Which process is primarily extending the Aegean crust

    NASA Astrophysics Data System (ADS)

    Kumerics, C.; Ring, U.

    2003-04-01

    In extending orogens like the Aegean Sea of Greece and the Basin-and-Range province of the western United States, knowledge of rates of tectonic processes are important for understanding which process is primarily extending the crust. Platt et al. (1998) proposed that homogeneous stretching of the lithosphere (i.e. vertical ductile thinning associated with a subhorizontal foliation) at rates of 4-5 km Myr-1 is the dominant process that formed the Alboran Sea in the western Mediterranean. The Aegean Sea in the eastern Mediterranean is well-known for its low-angle normal faults (detachments) (Lister et al., 1984; Lister &Forster, 1996) suggesting that detachment faulting may have been the primary agent achieving ~>250 km (McKenzie, 1978) of extension since the Miocene. Ring et al. (2003) provided evidence for a very fast-slipping detachment on the islands of Syros and Tinos in the western Cyclades, which suggests that normal faulting was the dominant tectonic process that formed the Aegean Sea. However, most extensional detachments in the Aegean do not allow to quantify the amount of vertical ductile thinning associated with extension and therefore a full evaluation of the significance of vertical ductile thinning is not possible. On the Island of Ikaria in the eastern Aegean Sea, a subhorizontal extensional ductile shear zone is well exposed. We studied this shear zone in detail to quantify the amount of vertical ductile thinning associated with extension. Numerous studies have shown that natural shear zones usually deviate significantly from progressive simple shear and are characterized by pronounced shortening perpendicular to the shear zone. Numerous deformed pegmatitic veins in this shear zone on Ikaria allow the reconstruction of deformation and flow parameters (Passchier, 1990), which are necessary for quantifying the amount of vertical ductile thinning in the shear zone. Furthermore, a flow-path and finite-strain study in a syn-tectonic granite, which intruded into the shear zone, was carried out. Consistent results show that the mean kinematic vorticity number in the shear zone was close to 1, indicating that the bulk deformation path was close to simple shear. This in turn indicates that vertical ductile thinning was not important during extensional faulting. We conclude that detachment faulting was the primary agent that extended the Aegean crust.

  8. Large-magnitude Dextral Slip on the Wairarapa Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Little, T.

    2004-12-01

    Dextral slip associated with an 1855 Ms 8.0+ event on the Wairarapa fault near Wellington, New Zealand was reported to be 12+/-1 m along a rupture length of at least 148km (Grapes, 1999), one of the largest single-event strike-slip offsets documented worldwide. Initial results from a new study involving detailed neotectonic mapping and microtopographic surveys of offset landforms (including many beheaded, inactive streams) strongly suggest that dextral slip was as much as 50% greater than previously measured. 1855 surface ruptures were mapped with certainty where a linear scarp characterized by steep slopes (30-90°) and exposed alluvium cuts across active or inactive stream channels. The fifteen individual strands comprising the Wairarapa fault zone that we have mapped to date are 1200+/-700 m long and typically left-stepping. Slip in the stepover zones between these strands is distributed amongst two or more ruptures and intervening anticlines, a situation that causes along-strike variations in slip and which locally complicates the interpretation of 1855 displacement. We focused on seven of the best-preserved sites where low-discharge streams are disrupted by the fault zone, including five that had been previously attributed by Grapes (1999) to coseismic slip during the 1855 earthquake. One of these (Pigeon Bush) includes two sequentially displaced, now beheaded linear stream channels, oriented perpendicular to the fault scarp, that preserve distinct offsets with respect to a single deeply incised, originally contiguous gorge on the opposite side of the fault. To quantify the minimum fault displacements at each site, we made 1:500 scale topographic maps employing n = 2,000-10,000 points collected with GPS and laser instrumentation. Measured dextral slip values, here attributed to the 1855 earthquake, include 16.4+/-1.0m (Hinaburn), 12.9+/-2.0m (Cross Creek), 17.2+/-2.5m (Lake Meadows), 18.7+/-1.0m (Pigeon Bush), 13.0+/-1.5m (Pigeon Bush 2), 15.1+/-1.0m (Pigeon Bush 3), and 16.0+/-1.5m (Tauwharenikau). Reverse slip at these localities ranged from 0.5 to 3.8+/-0.5m. Tape measurement of two other offset streams in dense bush yielded two further dextral slip measurements of 13.5+/-0.5m and 17.5+/-1.5m. AMS radiocarbon dating was undertaken at two sites to test whether slip occurred during one rupture event in 1855, or possibly could have accrued as a result of two or more earthquake ruptures. At the classic Pigeon Bush site, the youngest, most proximal beheaded stream channel is partially infilled by fluvial conglomerate with abundant charcoal. Two samples at depths of 15cm and 154cm yield calibrated dates of AD 1364+/-63 and AD 1355+/-60 (all dates are 2 sigma intervals). The stream must have been offset and abandoned after this time, and with no historical record of any other local earthquake, the 18.7+/-1.0m offset at Pigeon Bush is inferred to have occurred entirely in 1855. At Tauwharenikau, an abandoned channel is underlain by gravel on the upthrown side, but this gravel is overlain by 30 cm of swamp deposits on the downthrown side. We interpret the swamp deposits to reflect post-rupture incursion of groundwater into the down-thrown block. Basal swamp grasses yield calibrated dates of AD 1709+/-26 (27% probability) or 1869+/-60 (71% probability) for one sample and AD 1723+/-49 (34% probability) or 1871+/-70 (64% probability) for another sample, evidence that the 16.0+/-1.5m of slip at Tauwharenikau occurred entirely in 1855. These initial results strongly support the assertion that the southern Wairarapa fault experienced the largest single-event strike-slip offset yet documented worldwide.

  9. Implications of SHRIMP and microstructural data on the age and kinematics of shearing in the Asir terrane, southern Arabian Shield, Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.H.; Wooden, J.L.

    2001-01-01

    The Asir terrane consists of north-trending belts of variably metamorphosed volcanic, sedimentary, and plutonic rocks that are cut by numerous shear zones (Fig. 1). Previous workers interpreted the shear zones as sutures, structures that modify earlier sutures, or structures that define the margins of tectonic belts across which there are significant lithologic differences and along which there may have been major transposition (Frisch and Al-Shanti, 1977; Greenwood et al., 1982; Brown et al., 1989). SHRIMP data from zircons (Table 1) and sense-of-shear data recently acquired from selected shear zones in the terrane help to constrain the minimum ages and kinematics of these shearing events and lead to an overall model of terrane assembly that is more complex than previously proposed. 

  10. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.

    2013-04-01

    We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but the strength cannot drop since the shear zone has a finite thickness.

  11. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  12. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Brandl, Philipp A.; Lima, Selma M.; Haase, Karsten M.

    2018-07-01

    We present here new bathymetric, petrological and geochemical whole rock, glass and mineral data from the submarine Epi volcano in the New Hebrides (Vanuatu) island arc. The structure has previously been interpreted to be part of a larger caldera structure but new bathymetric data reveal that the volcanic cones are aligned along shear zones controlled by the local tectonic stress field parallel to the recent direction of subduction. We aim to test if there is an interaction between local tectonics and magmatism and to what extent the compositions of island arc volcanoes may be influenced by their tectonic setting. Primitive submarine Epi lavas and those from the neighbouring Lopevi and Ambrym islands originate from a depleted mantle wedge modified by addition of subduction zone components. Incompatible element ratios sensitive to fluid input (e.g., Th/Nb, Ce/Yb) in the lavas are positively correlated with those more sensitive to mantle wedge depletion (e.g., Nb/Yb, Zr/Nb) amongst the arc volcanoes suggesting that fluids or melts from the subducting sediments have a stronger impact on the more depleted compositions of the mantle wedge. The whole rock, glass and mineral major and trace element compositions and the occurrence of exclusively normally zoned clinopyroxene and plagioclase crystals combined with the absence of inversely zoned crystals and water-bearing phases in both mafic and evolved lavas suggest that the erupted melt was relatively dry compared to other subduction zone melts and has experienced little disequilibrium modification by melt mixing or assimilation. Our data also imply that differentiation of amphibole is not required to explain the incompatible element patterns but may rather result from extensive clinopyroxene fractionation in agreement with petrographic observations. Thermobarometric calculations indicate that the melts fractionated continuously during ascent, contrasting with fractionation during stagnation in an established crustal magma reservoir. We interpret the occurrence of this fractional crystallisation end-member in a relatively thick island arc crust ( 30 km thickness) to result from isolated and relatively rapid ascent of melts, most likely through a complex system of dykes and sills that developed due to the tectonic positioning of Epi in a complex tectonic zone between a compressional environment in the north and an extensional setting in the south. We can show that the alignment of the cones largely depends on the local tectonic stress field at Epi that is especially influenced by a large dextral strike-slip zone, indicating that structural features have a significant impact on the location and composition of volcanic edifices.

  13. Coulomb Fault Mechanics at Work in the Proterozoic: Strike-Slip Faults and Regional-Scale Veining in the Mt. Isa Inlier, Australia

    NASA Astrophysics Data System (ADS)

    Begbie, M. J.; Sibson, R. H.; Ghisetti, F. C.

    2005-12-01

    The Proterozoic Mt Isa inlier, comprising greenschist to amphibolite facies metamorphic assemblages intruded by granites during the Isan Orogeny (1590-1500 Ma), is disrupted by brittle, late- or post-orogenic strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of NE-SW subvertical dextral strike-slip faults, and a conjugate set of NW-SE sinistral faults. These faults thus define a regional stress field with σ1 oriented approximately E-W and σ3 oriented approximately N-S. Locally, the faults outcrop as linear blade-like ridges of silicified microbreccias-cataclasites and quartz veining that extends for kilometres across the semi-arid terrain. The informally named Spinifex Fault is one of the dextral set of subvertical faults. This fault is a classic example of coulomb fault mechanics at work in the Proterozoic. The Spinifex Fault trends ~065° across an outcropping granitic pluton, the margins of which it offsets dextrally by ~0.75 km. Locally within the pluton, the fault refracts to ~075° across an amphibolite layer. In the surrounding granitic pluton the fault trace is comparatively inconspicuous and unmineralized but where it transects the amphibolite it is defined by an upstanding ridge of silicified microbreccia-cataclasite (~10 m thick). Associated with the Spinifex Fault is a swarm of predominantly extensional subvertical quartz veins (cm to m thick) trending 090-95° and a series of mineralised fault splays trending 070-080°. Extension veins define the σ1-σ2 plane, with the Spinifex fault lying at an angle of ~25-30° to the inferred σ1. These veins are composed of colloform and crustiform banded quartz, brecciated fragments of quartz vein and wallrock that are typically rimmed with cockade overgrowths and bladed quartz after calcite pseudomorphs. Mineralised fault splays are < 50 m or so wide with a composite brittle fabric comprising: (1) bounding subvertical cataclastic `walls' <10 m or so thick made up of silicified microbreccias and cataclasites containing vein fragments; (2) innumerable subvertical quartz veins (cm to m thick) lying subparallel to the bounding shear zones with textures ranging from pure dilation to multiply recemented breccias of wallrock and quartz fragments; (3) irregular non-systematic veins; and (4) occasional minor faults from the complementary set. Mutual cross-cutting relationships between all the structural components indicate penecontemporaneous development within the inferred stress field. Slickenfibers and striations along fault components indicate predominantly strike slip motion on subvertical planes. Homogenisation temperatures from quartz hosted fluid inclusions cluster at ~210°C while vein textures record histories of incremental hydrothermal deposition under low effective stress, probably in the epizonal environment (<1-2 km depth). This regional study demonstrates the existence of a rather uniform stress province, corresponding to an Andersonian regime and initiation of faults in accord with the coulomb failure criterion.

  14. Experimental study of the free surface velocity field in an asymmetrical confluence

    NASA Astrophysics Data System (ADS)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows disappears quite quickly, because of the severe flow contraction that aids the flow uniformization. This is also accelerated because of a flow redistribution process that starts already upstream of the confluence, resulting in a lower than expected velocity difference over the shear layer between the bulk of the incoming flows. In contrast, the shear layer between the contracted section and the separation zone proves to be of a significantly higher order of magnitude, with large turbulent structures appearing that get transported far downstream. In conclusion, the resulting understanding of this analysis of velocity fields with a larger field of view shows that when analyzing confluence hydrodynamics, one should pay ample attention to analyze data far enough up and downstream to assess all the relevant processes.

  15. Driving mechanisms for >40 km of exhumation during contraction and extension in a continental arc, Cascades core, Washington

    USGS Publications Warehouse

    Paterson, Scott R.; Miller, R.B.; Alsleben, H.; Whitney, D.L.; Valley, P.M.; Hurlow, H.

    2004-01-01

    In the NW North American Cordillera, the Cascades core region of the Coast Plutonic Complex underwent Late Cretaceous (>96 Ma to locally 73 Ma) SW-NE contraction and crustal thickening followed by dextral transpression (???73 to 55 Ma), then transtension (3 mm /yr) by local thrusting in regions undergoing crustal thickening. In the central part of the core (Chelan block), >40 km of exhumation occurred between 91 and 45 Ma, about half of which occurred during early contraction (driven by thrusting) and half during top-to-north, arc-oblique shear during reactivation of a midcrustal Cretaceous thrust, the Dinkelman decollement. The footwall of this thrust consists of the Swakane Biotite Gneiss, a Cretaceous, metaclastic assemblage with recorded pressures of 10-12 kbar, no arc-related magmatism, and structures dominated by pervasive top-to-north shearing. The hanging wall consists of the Napeequa Complex, an oceanic assemblage with recorded pressures of 6-12 kbar, voluminous arc-related magmatism, and complex structures indicating early top-to-WSW shearing, younger top-to-north shearing, and widespread folding. In the Napeequa, top-to-north shearing started by 73 Ma during melt-present conditions at pressures ???6 kbar. Top-to-north shearing in both hanging wall and footwall continued during exhumation (???1.6 mm/yr) and cooling to greenschist facies conditions during which slip became increasingly localized, eventually resulting in formation of pseudotachylite on discrete slip surfaces. We suggest that arc-oblique extension was driven by along-arc heterogeneity in displacements/ erosion, initially during transpression and underplating of continental sediments, and later during transtension. Copyright 2004 by the American Geophysical Union.

  16. Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana

    NASA Astrophysics Data System (ADS)

    Amponsah, Prince Ofori; Salvi, Stefano; Béziat, Didier; Siebenaller, Luc; Baratoux, Lenka; Jessell, Mark W.

    2015-12-01

    The Leo Man Craton in West Africa is host to numerous economic gold deposits. If some regions, such as the SW of Ghana, are well known for world-class mineralizations and have been extensively studied, gold occurrences elsewhere in the craton have been discovered only in the last half a century or so, and very little is known about them. The Julie gold deposit, located in the Paleoproterozoic Birimian terrane of NW Ghana, is one such case. This deposit is hosted in a series of granitoid intrusives of TTG composition, and consists of a network of deformed, boudinaged quartz lodes (A-type veins) contained within an early DJ1 E-W trending shear zone with dextral characteristics. A conjugate set of veins (C-type) perpendicular to the A-type veins contains low grade mineralization. The main ore zone defines a lenticular corridor about 20-50 m in width and about 3.5 km along strike, trending E-W and dipping between 30 and 60°N. The corridor is strongly altered, by an assemblage of sericite + quartz + ankerite + calcite + tourmaline + pyrite. This is surrounded by a second alteration assemblage, consisting of albite + sericite + calcite + chlorite + pyrite + rutile, which marks a lateral alteration that fades into the unaltered rock. Mass balance calculations show that during alteration overall mass was conserved and elemental transfer is generally consistent with sulfidation, sericitization and carbonatization of the host TTG. Gold is closely associated with pyrite, which occurs as disseminated grains in the veins and in the host rock, within the mineralized corridor. SEM imagery and LA-ICP-MS analyses of pyrites indicate that in A-type veins gold is associated with bismuth, tellurium, lead and silver, while in C-type veins it is mostly associated with silver. Pyrites in A-type veins contain gold as inclusions and as free gold on its edges and fractures, while pyrites from C-type veins contains mostly free gold. Primary and pseudosecondary fluid inclusions from both type veins indicate circulation in the system of an aqueous-carbonic fluid of low to moderate salinity, which entered the immiscibility PT region of the H2O-CO2-NaCl system, at about 220 °C and <1 kbar.

  17. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during shear.

  18. Paleomagnetic constraints on the interpretation of early Cenozoic Pacific Northwest paleogeography

    USGS Publications Warehouse

    Wells, Ray E.

    1984-01-01

    Widespread Cenozoic clockwise tectonic rotation in the Pacific Northwest is an established fact; however, the geologic reconstructions based on these rotations are the subject of continuing debate. Three basic mechanisms have been proposed to explain the rotations: (1) simple shear rotation of marginal terranes caught in the dextral shear couple between oceanic plates and North America; (2) rotation during oblique microplate collision and accretion to the continental margin; and (3) rotation of continental margin areas during episodes of intracontinental extension. In areas where detailed structure and stratigraphy are available, distributed shear rotations are amplv demonstrated paleomagnetically. However, rotation due to asymmetric interarc extension must be significant, especially for the Oregon Coast Range, in light of recent estimates of large Tertiary extension across the northern Basin and Range. The relative importance of shear versus extension is difficult to determine, but shear could account for nearly onehalf of the observed rotations. Oblique microplate collision has not contributed significantly to the observed Cenozoic rotations because most of the rotation post-dates collision-related deformation in the Oregon and Washington. Coast Range. The resultant continental reconstructions suggest that about 300 km of extension has occurred at 42°N. latitude (southern Oregon border) since early Eocene time. This reconstruction suggests that Cretaceous sedimentary basins east of the Klamath Mountains have undergone significant Tertiary extension (about f<0%) , but little rotation. Upper Cretaceous sedimentary rocks in the Blue Mountains of Oregon near Mitchell are probably rotated at least 15° and perhaps as much as 60°, which allows considerable latitude in the restoration of that part of the basin.

  19. Reconciling opposite strike-slip kinematics in the transpressional belt of the Sierras Pampeanas (Argentina)

    NASA Astrophysics Data System (ADS)

    Zampieri, D.; Gutierrez, A. A.; Massironi, M.; Mon, R.

    2012-04-01

    In northwest Argentina, the Sierras Pampeanas consists of a basement-involved thrust system resulting from the Andean-phase shortening active since the Miocene in relation with an episode of shallow subduction of the Nazca plate under the South-American one (Jordan et al., 1983, Episodes). The thrust belt is characterized by N-S trending ranges of Precambrian-Early Paleozoic crystalline basement rocks separated by broad depressions infilled by thick Cenozoic sedimentary deposits. Various Paleozoic granitoids intruded within metamorphic schists and gneisses constitute hard cores around which deformation has been continuously focussed. The kinematics of the N-S faults bounding the ranges has been object of hot scientific debates, since both dextral and sinistral strike-slip activity has been found throughout central Andes. Most previous works relate this opposite strike-slip component to the evolution of the relative motions between plates. However, several evidences suggest a coeval opposite kinematics along different faults with the same trend, explained by alternating kinematic excursions during the late Cenozoic reorganization of relative plate motions (Marrett and Strecker, 2000, Tectonics). In this work we present new findings of Miocene-Present opposite transcurrence along faults enclosing a N-S elongated intrusive body (Achala batholith) in the Córdoba Range. In particular, to the west of the batholith a 6 km-wide sigmoidal basin, infilled by Pliocene to Quaternary deformed deposits, point to a sinistral shear along a major N-S fault with a prominent left bend. On the contrary, on the east side a similar pull-apart basin infilled by Pliocene deposits is consistent with a right lateral strike-slip component along a N-S fault showing a dextral bend. This suggests a moderate northwards escape of the granitoid block enveloped by a basement characterized by a penetrative and steeply dipping foliation, N-S oriented. Hence, we propose a partitioning of the deformation in which simple shear is dominant at the batholith boundaries and within the foliated basement, whereas pure shear is mainly accommodated by the rigid granitoid block, which is also forced to laterally escape. This model may explain coeval opposite strike-slip kinematics observed in transpressional belts with a strong shortening component affecting tectonic units with highly contrasting rheological properties.

  20. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    NASA Astrophysics Data System (ADS)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was extensionally reactivated by a branch fault of the Frontal Range Fault. Extension may be ductile (limestone mylonites), ductile and brittle (ooid deformation, boudinaged belemnite rostra, shear bands) or brittle. Extension is heterogeneously distributed within the Frontal Range. Extension is mainly related to orogenic/gravitational collapse of the Oman Mountains. Collapse may have been associated with isostatic rebound and rise of the two domes. In the western part of the study area, the Frontal Range Fault has a listric morphology. It is probably horizontal at a depth of 15 km below the Batinah coastal area. The fault seems to use the clay- and tuff-bearing Aruma Group as shear horizon. The depth of 15 km may coincide with the brittle-ductile transition of quartz- and feldspar-rich rocks. Close to this depth, the listric Batinah Coast Fault curves into the Frontal Range Fault. Extension along the Frontal Range and Batinah Coast faults probably reactivated preexisting late Cretaceous thrust faults during post-late Eocene time. The latter fault is likely mechanically related to the Wadi Kabir Fault via the Fanja Graben Fault and the Sunub fault segment. Listwaenite and serpentinite cluster preferably around the extensional faults. The Semail Gap probably functioned as a sinistral transform fault or fault zone during the Permian.

  1. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  2. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less

  3. EXTENT AND KINEMATICS OF ASWA SHEAR ZONE IN UGANDA AND SOUTH SUDAN USING AIRBORNE GEOPHYSICAL AND REMOTE SENSING DATA. A. Katumwehe. 1, E. A. Atekwana. 1, M.G. Abdelsalam.1 1Oklahoma State University, Boone Pickens School of Geology, Stillwater, USA

    NASA Astrophysics Data System (ADS)

    katumwehe, A. B.; Atekwana, E. A.; Abdel Salam, M. G.

    2012-12-01

    The Aswa Shear zone (ASZ) is a fundamental Precambrian lithospheric structure playing an important role in the evolution of the Mesozoic South Sudan rifts, the propagation of the Cenozoic East African Rift System (EARS), the eruption of EARS shield volcanoes (Mt Kilimanjaro and Mt Elgon), re-organization of drainage systems (the White Nile), and the distribution of recent seismicity in South Sudan. Traces of the shear zone have been mapped extending in central and east Africa in a NW-SE direction from South Sudan in the northwest through Uganda and Tanzania to the southeast and possibly into Madagascar. Gondwana reconstructions suggest that the ASZ continues further southeast into south India. Nonetheless, the kinematics and extent of the ASZ have not been fully understood because of limited exposure. In areas where it is exposed the shear zone is expressed by narrow dominantly NW-trending outcrops. We use recently acquired high resolution airborne magnetic and radiometric data over Uganda integrated with 90 m spatial resolution Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and 30 m spatial resolution Landsat Thematic Mapper (TM) spectral data to elucidate the kinematics and ascertain the significance of the ASZ in the development of the EARS and the tectonic architecture of east and central Africa. Vertical derivative, Euler deconvolution and analytical signal filters were applied to the total field magnetic data to image the shallow subsurface structures associated with the ASZ while upward continuation (5000 m) was applied to assess the ASZ depth continuity. We also used radiometric data to create ternary images while SRTM and Landsat TM data were used to map the surface expression of the shear zone. The geophysical data from Uganda suggest that the ASZ is characterised by a 50-60 km wide corridor of ductile deformation associated with NW-trending strike-slip shearing. It is dominated by three, equally-spaced and discrete sinistral strike-slip shear zones bounding wider belts dominated by splays of secondary shear zones and shear-related folds. These folds become tighter close to discrete shear zones and their axial traces become sub-parallel to the shear zones themselves. A similar pattern is observed on the surface in South Sudan in the SRTM DEM and the Landsat TM images. The evolution of these folds is explained in terms of secondary constructional strain developed in association and nearly perpendicular to the NW-trend of the sinistral strike-slip shearling. There is a remarkable resemblance between the magnetic fabric of the ASZ and that of the Najd fault system; a major sinistral strike-slip shear system in the Arabian-Nubian Shield suggesting that the shear zones may have evolved through similar Neopreterozoic Pan-African tectonic events, possibly associated with the collision between East and West Gondwana. The EARS bifurcates into the Eastern and Western branches -south of the ASZ while the Western branch terminates at the ASZ near the border between Uganda and South Sudan. This implies that the ASZ together with the Tanzanian craton played an important role in strain localization and prorogation during the evolution of the EARS.

  4. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.

  5. Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia

    USGS Publications Warehouse

    Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R.

    2003-01-01

    The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron-formation (BIF)-hosted ore zones in the gently dipping Sunrise Shear Zone and high-grade vein-hosted ore in the Western Lodes. There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post-dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C. O and S isotopic compositions of ore-related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low-salinity aqueous-carbonic fluids and late high-salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2-H2O, and H2O- dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low-salinity aqueous-carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280??C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace-element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted In As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones most likely result from different gold-deposition mechanisms. The association of ore zones in the Sunrise Shear Zone with pyrite-replaced BIF suggests that wall-rock sulfidation was the most significant mechanism of gold precipitation, through the destabilisation of gold-bisulfide complexes. The Western Lodes, however, do not exhibit any host-rock preference and multistage veins commonly contain coarse-grained gold. Fluid-inclusion characteristics and breccia textures in veins in the Western Lodes suggest that rapid pressure changes, brought about by intermittent release of overpressured fluids and concomitant phase separation, are likely to have caused the destabilisation of gold-thiocomplexes, leading to formation of higher-grade gold ore zones.

  6. Permeability and strength structure around an ancient exhumed subduction-zone fault

    NASA Astrophysics Data System (ADS)

    Kato, A.; Sakaguchi, A.; Yoshida, S.; Kaneda, Y.

    2003-12-01

    Investigating the transporting properties of subduction zone faults is crucial for understanding shear strength and slip-stability, or instability, of subduction zone faults. Despite the influence of pore pressure on a wide range of subduction-zone fault processes, few previous studies have evaluated the permeability structure around the fault placed in a well-defined structural context. In this study, the aim is to gain the entire permeability and the shear strength structure around the ancient subduction zone fault. We have conducted a series of permeability measurements and shear failure experiments in seismogenic environments using intact rocks sampled at the outcrop of an exhumed fault zone in the Cretaceous Shimanto accretionary complex, in Shikoku, SW Japan, where a typical evidence for seismic fault rock of pseudotachylyte has been demonstrated [Ikesawa et al., 2003]. This fault zone is located at boundary between the sandstone-dominant coherent unit of the Nonokawa Formation and the Okitsu mélange. The porosity of each rock sample is less than 1 %, except for the shear zone. Cylindrical test specimens (length = 40 mm, diameter = 20 mm) were cored to an accuracy of within 0.02 mm. Most of values of permeability were evaluated at confining pressure Pc of 140 MPa and pore pressure Pp of 115 MPa simulating the depth of 5 km (suprahydrostatic pore pressure). It is found that the permeability at room temperature shows the heterogeneous structure across the fault zone. The permeability of sandstone-dominant coherent unit is the lowest (10-19 m2) across the fault zone. In contrast, high shear zone has the highest permeability (10-16 m2). Following the increase in temperature, permeability evolution has been investigated. The permeability at 250oC continuously decreases with hold time for all types of rock specimens, and the reduction rate of permeability against hold time seems to become small with hold time. It seems that the reduction rate does not significantly depend on the rock types. The specimen was loaded at a strain rate of 2*E-6 /s under the conditions (Pc, Pp, T) = (140 MPa, 105 MPa, 250oC) to conduct the shear fracture experiments. High shear zone has a minimum value in strength profile. In contrast, the largest shear strength is observed at sandstone in coherent unit. From the seismic reflection surveys in the Nankai Trough, Park et al. [2002] delineated reflections with negative polarities beneath the Nankai accretionary prism 20-60 km landward of the frontal thrust, which are located deeper than the negative polarity décollement near the frontal thrust. They interpreted that the DSRs indicate the elevated fluid pressures. The fault zone studied in this paper is consistent with the duplex-model, and corresponds to the area where the décollement near the frontal thrust stepped down. Present results show the possibility that the coherent sandstone acts as a cap rock for fluid flow, and shear zone as a conduit for the flow, which leads to the elevated pore pressures along the roof thrust.

  7. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.

  8. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the conditions and enigmatic development of magma-poor and magma rich margins.

  9. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  10. Greenstone-hosted lode-gold mineralization at Dungash mine, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Weihed, Pär

    2014-11-01

    The auriferous quartz ± carbonate veins at Dungash mine, central Eastern Desert of Egypt, are confined to ∼E-trending dilation zones within variably foliated/sheared metavolcanic/volcaniclastic rocks. The vein morphology and internal structures demonstrate formation concurrent with a dextral shear system. The latter is attributed to flexural displacement of folded, heterogeneous rock blocks through transpression increment, late in the Neoproterozoic deformation history of the area. Geochemistry of the host metavolcanic/metavolcaniclastic rocks from the mine area suggests derivation from a low-K, calc-alkaline magma in a subduction-related, volcanic arc setting. In addition, chemistry of disseminated Cr-spinels further constrain on the back-arc basin setting and low-grade metamorphism, typical of gold-hosting greenstone belts elsewhere. Mineralogy of the mineralized veins includes an early assemblage of arsenopyrite-As-pyrite-gersdorffite ± pyrrhotite, a transitional pyrite-Sb-arsenopyrite ± gersdorffite assemblage, and a late tetrahedrite-chalcopyrite-sphalerite-galena-gold assemblage. Based on arsenopyrite and chlorite geothermometers, formation of gold-sulfide mineralization occurred between ∼365 and 280 °C. LA-ICP-MS measurements indicate the presence of refractory Au in arsenian pyrite (up to 53 ppm) and Sb-bearing arsenopyrite (up to 974 ppm). Abundant free-milling gold associated with the late sulfide assemblage may have been mobilized and re-distributed by circulating, lower temperature ore fluids in the waning stages of the hydrothermal system. Based on the isotopic values of vein quartz and carbonate, the calculated average δ18OH2O values of the ore fluids are 5.0 ± 1.4‰ SMOW for quartz, and 3.3 ± 1.4‰ for vein carbonate. The measured carbonate δ13C values correspond to ore fluids with δ13CCO2 = -6.7 ± 0.7‰ PDB. These results suggest a mainly metamorphic source for ore fluids, in good agreement with the vein morphology, textures and hydrothermal alteration. The calculated δ34SH2S values for early, transitional, and late sulfide assemblages define three distinct ranges (∼1.5-3.6‰), (∼0.4-1.0‰), and (-3.7‰ to -1.9‰), respectively. The systematic evolution towards lighter δ34S values may be attributed to recrystallization, or to ore fluid buffering under variable physicochemical conditions. The shear zone-related setting, mineralogy and isotopic characteristics of gold mineralization in Dungash mine are comparable with other orogenic gold deposits in the region (e.g., Barramiya deposit), which may suggest a regional setting controlling gold metallogeny of the region. This setting should guide future exploration programs in the central Eastern Desert province.

  11. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California--Nevada border just north of Lake Tahoe. Focal mechanism and stress inversion results, based on the variance of the P-axis orientation, reveal a strike-slip dominated region directly north of Lake Tahoe that abruptly transitions northeastward to a transtentional regime along the Sierra front (i.e., in the hanging wall regime of the Sierran block). The majority of earthquakes used in the relocation and stress analysis occurs within a time period that includes unusual upper mantle/lower-crustal (˜30 km depth) dike injection events: 1) 2003 North Lake Tahoe and 2) 2011-2012 Sierra Valley, CA, that we interpret to be rift-related processes along the eastern Sierra Nevada microplate. Earthquake relocations for events shallower than about 18 km depth (the seismogenic depth determined in this study in the north Lake Tahoe area) cluster along high-angle fault structures, primarily in the footwall of the Sierra Nevada block. This new analysis isolates areas of distinctly strike-slip versus transtensional stress regimes, based on the variability of the P-axis plunge, that straddle the Sierra Nevada--Great Basin transition zone at the latitude of Lake Tahoe.

  12. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  13. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  14. Strength of the Subduction Plate Interface beneath the Seismogenic Zone: A Microstructural Investigation of Deformation Mechanisms within a Phyllosilicate- and Amphibole-rich Shear Zone

    NASA Astrophysics Data System (ADS)

    Seyler, C.; Kirkpatrick, J. D.; Šilerová, D.

    2017-12-01

    Localization of strain at plate boundaries requires rheological weakening of the lithosphere. The rheology of the subduction plate interface is dictated by the dominant grain-scale deformation mechanisms. However, little is known about the deformation mechanisms within phases commonly found in subduction zones, such as phyllosilicates and amphiboles. We investigate the Leech River Shear Zone on Vancouver Island, British Columbia to explore deformation processes downdip of the seismogenic zone and evaluate the bulk rheology of the plate interface. This shear zone juxtaposes a metamorphosed accretionary prism against a metabasaltic oceanic plateau, representing a paleo-plate interface from the ancient Cascadia subduction zone. Preliminary geothermometry results record a prograde deformation temperature of 573.6±11.2 ˚C in the overriding accretionary wedge, and the hornblende-chlorite-epidote-plagioclase mineral assemblage suggests upper greenschist to lower amphibolite facies metamorphism of the downgoing oceanic crust. Detailed mapping of the plate interface documents a 200 m wide mylonitic shear zone developed across the lithologic contact. Asymmetric shear fabrics, isoclinal folding, boudinage, and a steeply plunging, penetrative stretching lineation are consistent with sinistral-oblique subduction. Numerous discordant quartz veins are variably sheared into sigmoidal shapes as well as isoclinally folded and boudinaged, indicating cyclical synkinematic fracture and vein formation. At the grain-scale, interconnected, anastomosing layers of muscovite, chlorite, and graphite in the accretionary prism rocks likely deformed through kinking and dislocation glide. Framework minerals such as quartz and feldspar deformed by dislocation creep. In the metabasalt, hornblende and chlorite form a continuous S—C fabric in which asymmetric hornblende porphyroclasts deformed by rigid grain rotation and dissolution-precipitation creep. The strength of the subduction plate interface beneath the seismogenic zone was therefore controlled by multiple syn-kinematic mechanisms, with overall strength dominated by the rheology of phyllosilicates and amphibole, generating very low viscosities at the plate interface and enhancing strain localization.

  15. 40Ar/39Ar mica ages from marble mylonites: a cautionary tale

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Huet, Benjamin; Schneider, David; Grasemann, Bernhard

    2014-05-01

    40Ar/39Ar geochronology on white mica is a popular method to date deformation under moderate (brittle-ductile) temperatures. In particular, deformation events preserved in greenschist facies shear zones have been successfully dated with this method. A consequence of strain localization in many tectonic settings that bear calcitic marbles is the formation of marble mylonites and ultramylonites. Little is known, however, about the behaviour of the K/Ar systems and the influence of deformation on the ages in such rocks. We studied an extremely localized shear zone (2 cm thick) in marble from Syros (Cyclades, Greece) and performed microstructural, chemical and isotopic analysis on samples from the host rock and the shear zone. The host rock is composed of coarse-grained (300 µm) calcite with only minor undulatory extinction and slightly curved grain boundaries. This initial large grain size is likely to have formed during the Eocene high-pressure - low-temperature event that is well documented in the Cyclades. In contrast, the marble within the shear zone shows evidence of strong intracrystalline deformation and recrystallization resulting in grain size reduction and the formation of an ultramylonite. Both microstructures and kinematics are consistent with the low grade evolution described on Syros. White mica (100's microns in size) are preferentially orientated parallel to the foliation. In both samples there is no clear evidence for crystal plastic deformation of the mica grains. Bigger grains behave brittle resulting in grain size reduction. A deformation mechanism map for calcite at 300 °C indicates that the host rock deformed at strain rates of around 10-12.5 s-1 whereas within the shear zone strain rates of up to 10-9.5 s-1 are attained. We performed laser-heating 40Ar/39Ar analysis on white mica located in the host rock and the shear zone. The low-strain host rock yielded a ca. 40 Ma age, and the shear zone recorded a ca. 37 Ma age; both ages are statistically indistinguishable when errors are considered. These dates correspond to the regional Eocene high-pressure - low-temperature event and not the later low grade deformation event that is responsible for the formation of the studied shear zone. Although the marble within the shear zone was deformed at extremely fast strain rates, we observe no resetting in the isotopic system. Moreover, mineral chemistry demonstrates that (1) white mica is homogeneous and (2) there is no compositional difference between the host rock and the shear zone. This is in agreement with thermodynamical modelling, which indicates that the observed assemblage (calcite + dolomite + quartz + white mica) is stable without any composition change along the pressure-temperature path followed by the metamorphic rocks of Syros. Our case study emphasizes it is not the amount of strain the rock suffered but the degree of mica recrystallization that is important for resetting of the K/Ar system at low temperatures.

  16. Shear zone reactivation during South Atlantic rifting in NW Namibia

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Passchier, C. W.; Salomon, E.

    2013-12-01

    Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.

  17. Syn-extensional emplacement of the 1. 42 Ga Sandia Granite, N. M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Kirby, E.; Andronicos, C.

    1993-02-01

    The 1.42 Ga Sandia pluton is one of a suite of Middle Proterozoic granitoid intrusions exposed in northern New Mexico. It crops out over 420 km[sup 2] in the Sandia Mountains, just east of Albuquerque. Recent structural work indicates that the pluton was emplaced syntectonically with respect to a transtensional ductile shear zone on its southeastern side. The shear zone is 1-2 km wide, dips 60[degree] NW under the pluton, and is thus inferred to be a deformed base or lower side of the pluton. From NW to SE, a transect across the zone consists of (1) essentially undeformed, locallymore » flow-foliated Sandia pluton (megacrystic monzogranite); (2) mylonitic, augen orthogneiss that is clearly sheared Sandia pluton; its matrix is depleted in quartz and K-feldspar and enriched in biotite relative to the undeformed pluton; (3) Cibola granite - a 1 km wide zone of fine to coarse grained, equigranular, leucocratic granite; (4) the Tijeras Fault - a Phanerozoic brittle fault; (5) the Tijeras Greenstone - unsheared amphibolite and interlayered pelitic schist and quartzite. Field and microstructural relationships indicate that pluton crystallization was synchronous with shear zone movements. Shear zone movement is interpreted to have punctuated segregation of evolved melts during fractional crystallization of the magma. Geochemical data show linear trends in major and trace elements, with compositional gaps between the main pluton and leucocratic phases. Strain studies suggest that the biotite-rich mylonitic augen orthogneiss records significant volume loss in the matrix. Melts presumably were drawn down pressure gradients into the active shear zone after the main unit was 50--70% crystallized. Further work is required to constrain whether extension was related to regional deformation or only to pluton emplacement.« less

  18. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Cai, Keda; Chen, Ming; He, Yulin

    2016-06-01

    Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.

  19. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.

  20. Slip events propagating along a ductile mid-crustal strike-slip shear zone (Malpica-Lamego line, Variscan Orogen, NW Iberia)

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio

    2017-04-01

    The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it seems that faulting originated in other sectors of the fault zone, and then propagated through the studied section.

  1. Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps)

    NASA Astrophysics Data System (ADS)

    Rolland, Y.; Rossi, M.

    2016-11-01

    The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the precipitation of quartz, epidote and muscovite from a local fluid hosted in the Helvetic cover. These two fluids advocate for the presence of an upper-crustal scaled fluid convection cell, with up-going fluids through the lower crust and likely down-going fluids in the 15 km upper crust.

  2. Modeling the evolution of the lower crust with laboratory derived rheological laws under an intraplate strike slip fault

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sagiya, T.

    2015-12-01

    The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between inside and outside of the shear zone is smaller under an intraplate situation than in the interplate one, and smaller viscosity difference will result in a wider shear zone.

  3. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.

  4. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along the area of interaction between thrust structure and the transpressional zone suggest an intricate interference pattern between thrust-related folds and strike-slip brittle shear zones, suggesting that the latter caused a strong reorientation of previously formed folds. The extension of the traspressional zone, which can be followed for some 20 km across the study area, indicates that important left-lateral movements, roughly parallel to the orientation of the convergence zone, were active during the last stages of the Late Triassic Cimmerian event, in contrast to what indicated by previous authors in the Mashhad area.

  5. The role of detachment and interlayer shear zones in the structural evolution of the southern Espinhaço range, eastern Brazil

    NASA Astrophysics Data System (ADS)

    Kuchenbecker, Matheus; Sanglard, Júlio Carlos Destro

    2018-07-01

    Sedimentary rocks usually show a significant mechanical anisotropy due to its layered nature. Because of this, they play an important role controlling rock deformation and the study of the deformation partitioning caused by rheological heterogeneities becomes a crucial step to understand the inversion of sedimentary basins. The detachment and interlayer shear zones, described at southern Espinhaço range, correspond to part of the structural collection that records the compressive deformation which is associated to the Brazilian-Pan African orogeny during Gondwana amalgamation. The mechanical contrast between lithological units is the main parameter of control for the occurrence of these zones which can be found with variable thickness from millimeter interlayer shear zones to regional-sized basement-cover detachment zones. The phyllitic layers are the most incompetent lithotype among metasedimentary rocks and they play an important role in the ductile-brittle regional deformation by accommodating much of the deformation during faulting and/or folding. Even though being a more competent rock, internal interlayer shear zones and other shear structures can be found in quartzite when in contact with weaker rocks. These structures accommodate a significant amount of deformation at the southern Espinhaço range and, because of this, they are of great value in understanding the inversion of the Espinhaço basins during West Gondwana assembly. The focus of the present paper is to discuss the main situations where interlayer shear occurs, to present a brief compendium of the main structures associated to this process and to add parameters to its recognition and interpretation.

  6. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  7. Cobalt-copper deposits of the Blackbird district, Lemhi County, Idaho

    USGS Publications Warehouse

    Vhay, J. S.

    1947-01-01

    The report contains brief descriptions of all the accessible workings in the district, of which the most important are Calera, Brown Bear, Uncle Sam, and Hawkeye mines. In the Calera adit, about 1,700 feet of the mineralized zone, ranging in width from 3 feet to 40 feet and averaging about 15 feet; have been explored (August 1946); the zone lies on a wide northwest-striking shear zone dipping moderately ( 60° ±) northeast. The Brown Bear adit is in a wide, mineralized, north-south shear zone in which are higher-grade pods plunging 25° to 35° north. The Uncle Sam mine explores a relatively narrow north-south shear zone in which are two or three north-plunging ore shoots. The Hawkeye mine is in a broad zone of mineralized schist in which are several north-plunging lenses of ore.

  8. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts to the east and a sinistral strike-slip movement along the NW-trending ASZ with strain localization at the boundary between the Saharan Metacraton and the Tanzania craton. This evidence suggests that 1) ASZ lies at the boundary between Sahara Metacraton and Tanzania Craton 2) ASZ is not a product of escape tectonics as previously suggested.

  9. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the contribution of small strain-free recrystallized grains is larger in CTR than in CT samples. Our results suggest that loading conditions substantially affect material heterogeneity-induced localization in its nucleation and transient stages.

  10. Is fault surface roughness indicative of fault mechanisms? Observations from experimental Limestone faults

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Tesei, T.; Collettini, C.

    2016-12-01

    Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.

  11. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    NASA Astrophysics Data System (ADS)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  12. Application of gamma ray spectrometric measurements and VLF-EM data for tracing vein type uranium mineralization

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-12-01

    This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.

  13. Geochronology and Structural Studies in the Northern Ritter Range: Implications for the Tectonic History of Mesozoic Sierra Nevada Arc

    NASA Astrophysics Data System (ADS)

    Black, C. J.; Whitesides, A. S.; Anderson, J. L.; Culbert, K. N.; Vandeveer, M.; Cox, I. V.; Cardamone, J.; Torrez, G.; Quirk, M.; Memeti, V.; Cao, W.; Paterson, S. R.

    2010-12-01

    Field mapping in the Northern Ritter Range pendant, central Sierra Nevada reveals four different lithotectonic units. Unit 1, east of Gem Lake, consists of Paleozoic passive margin metasedimentary rocks. Unit 2 lies unconformably above and west and is composed of Late Triassic to Middle Jurassic rhyolitic to andesitic, clast-rich, metavolcanic rocks that are typically massive, thick bedded, relatively homogeneous. Breccias and millimeter sized plagioclase phenocrysts are common in these beds. Unit 3 west of and structurally higher than unit 2 and is composed of thinly bedded metavolcanic and metasedimentary rocks of same age. Unit 2 and Unit 3 both steeply dipping and NW striking bedding and bedding parallel foliations. Unit 4 is composed of less deformed, Cretaceous, rhyolitic to andesitic breccias and rare volcaniclastic units that are west of and unconformably above unit 3. All units are now separated by faults. The Cretaceous dextral, oblique Gem Lake shear zone reactivated the uncomformity between units 1 and 2. West of the shear zone, both the shearing and strain intensity gradually decrease, the later from >60% to 40% shortening. Unit 2 and 3 are separated by a thrust fault, with local pseudotachelite now overprinted by ductile deformation. Unit 3 and 4 are now juxtaposed along a deformed unconformity west of which strain decreases to shortening values > 30%. These host rocks are intruded by granitic to dioritic plutons preserving a wide range of internal characteristics and emplacement styles. The oldest pluton is the 100 Ma Rush Creek Granodiorite, which intruded into unit 2. The Kuna Crest (KC, 94.6 Ma), the Waugh Lake (WL, 93.6 Ma), and the Thousand Island Lake leucogranodiorites (TIL) (~94 Ma) all intrude into the unit 3. The TIL cut the unconformity between units 3 and 4. The WL pluton is possibly cut by movement between units 2 and 3. The typically NW striking steeply dipping bedding in host rock units is dramatically deflected to EW orientations along the SW margin of the KC lobe. Within the nearby WL Granodiorite, hundreds of andesitic host rock blocks, some up to hundred meter lengths suggest that stoping was an important emplacement process. Migmatitic zones occur along several pluton margins. Our observations are consistent with aspects of the Tobisch et al. (2000) paper suggesting early brittle thrusting led to rotation of beds to steep dips. However our results indicate that beds were already at near vertical dips prior to ductile shortening and well before pluton emplacement. And although regional downward flow of extrusive volcanics has certainly occurred we see evidence against previous suggestions that this downward flow was localized in pluton aureoles as plutons typically cut discordantly across already steeply dipping beds and in turn are deformed by the younger ductile deformation. Although ductile shortening may play a minor role in rotation of beds, much of the ductile deformation had to occur after beds were steeply dipping as the 100-93.5 m.y. plutons have fabrics that are continuous with ductile deformation in the host rocks.

  14. C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U deposit

    NASA Astrophysics Data System (ADS)

    Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick

    2017-12-01

    Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked to fluid-basement rock reactions led to the precipitation at around 450 °C of poorly-crystallized hydrothermal graphite. This graphite presents isotopic (δ13C - 30 to - 26‰ PDB) and morphological differences from the high-T metamorphic graphite (> 600 °C, - 29 to - 20‰ δ13C) derived from metamorphism of C-rich sedimentary material. The brittle structural reactivation and the related fluid migration and graphite precipitation were specifically focused within the shear zones and related damage zones. The brittle reactivation produced major changes in the petro-physical, mineralogical, and chemical characteristics of the structures and their damage zones. It especially increased the fracture paleoporosity and rock weakness toward the fault cores. These major late metamorphic modifications of the graphitic shear zones were likely key parameters favoring the enhanced reactivity of these basement zones under tectonic stress following deposition of the Athabasca Basin, and so controlled basinal brine movement at the basin/basement interface related to the formation of the unconformity-related uranium deposits. This relationship consequently readily explains the specific spatial relationships between unconformity-related U deposits and the ductile-brittle graphitic shear zones.

  15. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.

  16. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone

    PubMed Central

    Singh, Satish C.; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E.; Carton, Helene; Wei, Shengji; Nugroho, Adam B.; Gemilang, Wishnu A.; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude (Mw) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin. PMID:28070561

  17. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    PubMed

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  18. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  19. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  20. Post-rift deformation of the Red Sea Arabian margin

    NASA Astrophysics Data System (ADS)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent systems that locally are associated with metre-thick reverse fault zones. Along the analysed faults there is evidence of tectonic reworking. Relict kinematic indicators or the sense of asymmetry of sigmoidal Miocene dykes may suggest that a former sinistral movement was locally accommodated by these faults. This evidence of inversion of strike-slip movement associated with reverse structures, mostly found at the inland endings of these lineaments, suggests an inversion tectonics that could be related to the progressive and recent oceanisation of rift segments. Schettino A., Macchiavelli C., Pierantoni P.P., Zanoni D. & Rasul N. 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207, 457-480. Schlische R.W., Withjack M.O. & Olsen P.E., 2003. Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance, in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, eds Hames W., Mchone J.G., Renne P. & Ruppel C., American Geophysical Union, 33-59.

  1. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60 kilometers - from the Brenner Pass area located along the crestline of the Alps to mount Zugspitze near the northern fringe of the Northern Calcareous Alps. Major fault zones and intercalated rigid blocks thus can 'teleconnect' zones of preferred mass-wasting over large lateral distances in orogens. Reference: Prager, C., Zangerl, C., Patzelt, G., Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8, 377-407.

  2. Fluid chemistry and evolution of hydrothermal fluids in an Archaean transcrustal fault zone network: The case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada

    USGS Publications Warehouse

    Neumayr, P.; Hagemann, S.G.; Banks, D.A.; Yardley, B.W.D.; Couture, J.-F.; Landis, G.P.; Rye, R.

    2007-01-01

    Detailed fluid geochemistry studies on hydrothermal quartz veins from the Rouyn-Noranda and Val-d'Or areas along the transcrustal Cadillac Tectonic Zone (CTZ) indicate that unmineralized (with respect to gold) sections of the CTZ contained a distinct CO2-dominated, H2S-poor hydrothermal fluid. In contrast, both gold mineralized sections of the CTZ (e.g., at Orenada #2) and associated higher order shear zones have a H2O-CO2 ?? CH4-NaCl hydrothermal fluid. Their CO2/H2S ratios indicate H2S-rich compositions. The Br/Cl compositions in fluid inclusions trapped in these veins indicate that hydrothermal fluids have been equilibrated with the crust. Oxygen isotope ratios from hydrothermal quartz veins in the CTZ are consistently 2??? more enriched than those of associated higher order shear zones, which are interpreted to be a function of greater fluid/rock ratios in the CTZ and lower fluid/rock ratios, and more efficient equilibration of the hydrothermal fluid with the wall rock, in higher order shear zones. An implication from this study is that the lower metal endowment of the transcrustal CTZ, when compared with the higher metal endowment in higher order shear zones (ratio of about 1 : 1000), may be the result of the lack of significant amounts of H2O-H2S rich fluids in most of the CTZ. In contrast, gold mineralization in the higher order shear zones appear to be controlled by the high H2S activity of the aqueous fluids, because gold was likely transported in a bisulfide complex and was deposited during sulfidation reactions in the wall rock and phase separation in the quartz veins. ?? 2007 NRC Canada.

  3. Geophysical and Geochemical Signatures Associated with Mantle Fluids Beneath an Active Shear Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Umeda, K.; Asamori, K.; Sueoka, S.; Tamura, H.; Shimizu, M.

    2014-12-01

    In 1997, the Kagoshima earthquake doublet, consisting of two closely associated Mw ~ 6 strike-slip events, five km and 48 days apart, has occurred in southwest Japan. The location is where an E-W trending discontinuity along 32°N latitude on southern Kyushu Island is clearly defined in GPS velocities, indicating the presence of a highly active left-lateral shear zone. However, there have not been any obvious indications of active faulting at the surface prior to the earthquake doublet, which could be associated with this shear zone. Three-dimensional inversion of magnetotelluric sounding data obtained in the source region of the earthquake doublet reveals a near-vertical conductive zone with a width of 20 km, extending down to the base of the crust and perhaps into the upper mantle toward the Okinawa trough. The prominent conductor corresponds to the western part of the active shear zone. Elevated 3He/4He ratios in groundwaters sampled from hot spring and drinking water wells suggest the emission of mantle-derived helium from the seismic source region. The geophysical and geochemical observations are significant indications that the invasion of mantle fluids into the crust, driven by upwelling asthenosphere from the Okinawa trough, triggers the notable left-lateral shearing in the zone in the present-day subduction system. In addition, the existence of aqueous fluids in and below the seismogenic layer could change the strength of the zones, and alter the local stress regime, resulting in the occurrence of the 1997 earthquake doublet.

  4. Discussion on ``Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan Zone, western Iran'' [Journal of Structural Geology, 22(8) (2000) 1125 1139

    NASA Astrophysics Data System (ADS)

    Numan, Nazar M. S.

    2001-12-01

    The NW-SE trending Alpine Zagros Thrust Belt passes from southwest Iran into northeastern Iraq. Mohajjel and Fergusson contend in their work in Iran on the Sanandaj-Sirjan Zone (with a consistent Zagros trend) that collision of the Afro-Arabian continent and the Iranian microcontinent took place in the Late Cretaceous. It seems that tectonostratigraphic evidence from the neighbouring Iraqi territories, namely the Zagros Thrust Belt in the northern part, the Foreland Belt and the Quasiplatform of the north and the Platform in the western and southern deserts (Fig. 1), chronicles the subductional history in this part of the world to a fair degree of accuracy. It rather provides for an Eocene age of the continental collision between Arabia and the Iranian microcontinent.

  5. Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert

    2017-01-01

    Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.

  6. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  7. Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.

    2017-12-01

    Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.

  8. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.

  9. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  10. Wind Shear Effects on the Structure and Dynamics of the Daytime Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Haghshenas, Armin; Mellado, Juan Pedro

    2017-04-01

    The daytime atmospheric boundary layer (ABL), in which the positive buoyancy flux at the surface creates convective instability and generates turbulence, has been a subject of extensive research during the last century. However, fewer studies have considered wind shear in detail and most of them are single-case studies. So most of the available theories and parameterizations have not been sufficiently tested over a wide range of atmospheric conditions. Moreover, since previous numerical studies were mostly carried out by large eddy simulation, a complete understanding of the physics of the problem is still missing due to the lack of information about the small-scale dynamics. Specifically, despite the consensus in the community that wind shear enhances the entrainment process, the amount of enhancement is still matter of contention. In order to investigate the effects of wind shear on the structure and dynamics of the ABL in detail, direct numerical simulations are used in this study. Shear is prescribed by a height-constant velocity in the troposphere and the simulation runs until a fully turbulent, quasi-equilibrium regime is observed. Despite the simplification of neglecting the Coriolis force, our configuration reproduces the main features observed in the previous studies, which had taken the Coriolis force into account. As a novelty compared to previous single-case studies, we introduce a dimensionless parameter that allows us to study systematically any combination of surface buoyancy flux, buoyancy stratification, and wind shear; We refer to this dimensionless number as shear number. Seven simulations with shear numbers ranging from 0 (no wind) to 20 (moderate wind) are conducted; this range of shear numbers corresponds to wind strength from 0 to 15 m/s in the free troposphere for typical midday atmospheric conditions. In general, we find that shear effects are negligibly small when the shear number is below 10, and for larger values the effects remain constrained inside the entrainment zone and surface layer. This critical shear number is justified by scrutinizing the turbulence regimes (convective and mechanical) within the entrainment zone in the sense that, for this shear number, the turbulence transport of turbulence kinetic energy inside the entrainment zone equals the shear-production rate. Following this analysis a critical flux Richardson number of 0.6 inside the entrainment zone is found. In particular, we observe the following: First, the mean buoyancy and total buoyancy flux inside the mixed layer remain invariant under a change of shear number and they follow the free-convection scaling laws. Second, the height of minimum buoyancy flux increases due to shear effects, but just moderately (less than 5%). Nevertheless, this increment represents a growth of entrainment zone's thickness by 50% for shear numbers of the order of 20. Third, we observe that for shear numbers larger than 10, the entrainment flux ratio grows by up to 50% in an early state of ABL development. We provide explicit parameterizations of all these shear effects.

  11. Strain heating in process zones; implications for metamorphism and partial melting in the lithosphere

    NASA Astrophysics Data System (ADS)

    Devès, Maud H.; Tait, Stephen R.; King, Geoffrey C. P.; Grandin, Raphaël

    2014-05-01

    Since the late 1970s, most earth scientists have discounted the plausibility of melting by shear-strain heating because temperature-dependent creep rheology leads to negative feedback and self-regulation. This paper presents a new model of distributed shear-strain heating that can account for the genesis of large volumes of magmas in both the crust and the mantle of the lithosphere. The kinematic (geometry and rates) frustration associated with incompatible fault junctions (e.g. triple-junction) prevents localisation of all strain on the major faults. Instead, deformation distributes off the main faults forming a large process zone that deforms still at high rates under both brittle and ductile conditions. The increased size of the shear-heated region minimises conductive heat loss, compared with that commonly associated with narrow shear zones, thus promoting strong heating and melting under reasonable rheological assumptions. Given the large volume of the heated zone, large volumes of melt can be generated even at small melt fractions.

  12. Crustal extension and transform faulting in the southern Basin Range Province. [California, Arizona, and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. Field reconnaissance and study of geologic literature guided by analysis of ERTS-1 MSS imagery have led to a hypothesis of tectonic control of Miocene volcanism, plutonism, and related mineralization in part of the Basin Range Province of southern Nevada and northwestern Arizona. The easterly trending right-lateral Las Vegas Shear Zone separates two volcanic provinces believed to represent areas of major east-west crustal extension. One volcanic province is aligned along the Colorado River south of the eastern termination of the Las Vegas Shear Zone; the second province is located north of the western termination of the shear zone in southern Nye County, Nevada. Geochronologic, geophysical, and structural evidence suggests that the Las Vegas Shear Zone may have formed in response to crustal extension in the two volcanic provinces in a manner similar to the formation of a ridge-ridge transform fault, as recognized in ocean floor tectonics.

  13. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening.

    PubMed

    Wei, Yanpeng; Xu, Guangyue; Zhang, Kun; Yang, Zhe; Guo, Yacong; Huang, Chenguang; Wei, Bingchen

    2017-03-07

    The effects of nanosecond laser peening on Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 metallic glass were investigated in this study. The peening treatment produced an extra-deep shock-affected zone compared to crystal metal. As opposed to the conventional shear bands, numerous arc shear bands appeared and aggregated in the vertical direction of the laser beam, forming basic units for accommodating plastic deformation. The arc shear bands exhibited short and discrete features near the surface of the material, then grew longer and fewer at deeper peened layer depths, which was closely related to the laser shock wave attenuation. An energy dissipation model was established based on Hugoniot Elastic Limit and shear band characteristics to represent the formation of an extra-deep shock-affected zone. The results presented here suggest that the bulk modification of metallic glass with a considerable affected depth is feasible. Further, they reveal that nanosecond laser peening is promising as an effective approach to tuning shear bands for improved MGs ductility.

  14. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.

  15. Quantifying cerebral asymmetries for language in dextrals and adextrals with random-effects meta analysis

    PubMed Central

    Carey, David P.; Johnstone, Leah T.

    2014-01-01

    Speech and language-related functions tend to depend on the left hemisphere more than the right in most right-handed (dextral) participants. This relationship is less clear in non-right handed (adextral) people, resulting in surprisingly polarized opinion on whether or not they are as lateralized as right handers. The present analysis investigates this issue by largely ignoring methodological differences between the different neuroscientific approaches to language lateralization, as well as discrepancies in how dextral and adextral participants were recruited or defined. Here we evaluate the tendency for dextrals to be more left hemisphere dominant than adextrals, using random effects meta analyses. In spite of several limitations, including sample size (in the adextrals in particular), missing details on proportions of groups who show directional effects in many experiments, and so on, the different paradigms all point to proportionally increased left hemispheric dominance in the dextrals. These results are analyzed in light of the theoretical importance of these subtle differences for understanding the cognitive neuroscience of language, as well as the unusual asymmetry in most adextrals. PMID:25408673

  16. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-01-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  17. Using paleomagnetism to expand the observation time window of plate locking along subduction zones: evidence from the Chilean fore-arc sliver (38°S - 42°S)

    NASA Astrophysics Data System (ADS)

    Hernandez-Moreno, Catalina; Speranza, Fabio; Di Chiara, Anita

    2017-04-01

    Fore-arc crustal motion has been usually addressed by the analysis of earthquake slip vectors and, since the last twenty years, by velocity fields derived from Global Positioning System (GPS) data. Yet this observation time window (few decades) can be significantly shorter than a complete seismic cycle or constrained to interseismic periods where the postseismic deformation release, the vicinity of other important faults, and the slip partitioning in oblique subduction may hinder the finite deformation pattern. Paleomagnetic data may yield finite rotations occurring since rock formation, thus provide a much longer observation time span in the order of millions or tens of millions of years. The cumulative permanent or nonreversing deformation in function of the considered geological formation age can represent the average over many seismic cycles, thus significantly complement "instantaneous" information derived from seismic and GPS data. With the aim of evaluate the strike-variation and evolution of the plate coupling along the Chilean subduction zone, here we report on the paleomagnetism of 43 Oligocene-Pleistocene volcanic sites from the fore-arc sliver between 38°S and 42°S. Sites were gathered west of the 1000 km long Liquiñe-Ofqui dextral fault zone (LOFZ) that represents the eastern fore-arc sliver boundary. Nineteen reliable sites reveal that the fore arc is characterized by counterclockwise (CCW) rotations of variable magnitude, except at 40°S - 41°S, where ultrafast (>50°/Myr) clockwise (CW) rotations occur within a 30 km wide zone adjacent to the LOFZ. CCW rotation variability (even at close sites) and rapidity (>10°/Myr) suggest that the observed block rotation pattern is related to NW-SE seismically active sinistral faults crosscutting the whole fore arc. According to previously published data, CW rotations up to 170° also occur east of the LOFZ and have been related to ongoing LOFZ shear. We suggest that the occurrence and width of the eastern fore-arc sliver undergoing CW rotations is a function of plate coupling along the subduction zone interface. Zones of high coupling enhance stress normal to the LOFZ, induce high LOFZ strength, and yield a wide deformation zone characterized by CW rotations. Conversely, low coupling imply a weak LOFZ, a lack of CW rotations, and a fore arc entirely dominated by CCW rotations related to sinistral fault kinematics. Our locking inferences are in good agreement with those recently derived by GPS analysis and indicate that seismotectonic segment coupling has remained virtually unchanged during the last 5Ma.

  18. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation facilitates to constrain the geometrical parameters of analogue models.

  19. Kinematics of the mosquito terrane, Coldfoot Area, Alaska: Keys to Brooks Range tectonics: Final report, Project No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, T.A.; Coney, P.J.

    1988-04-01

    Within the large-scale geometry of the Brooks Range, the Angayucham terrane occurs as a vast overthrust sheet. From the north flank of the Ruby terrane it underlies the Koyukuk basin and stretches north as the roof thrust to the various nappe terranes of the Brooks Range. The tectonic relationship of the Ruby terrane to the south flank of the Brooks Range lies largely obscured beneath the Angayucham in the eastern apex of the Koyukuk basin. The Mosquito terrane occurs as a window through the Angayucham at this juncture. The composition and structures of the Mosquito terrane reveal that is themore » result of shear along a sub-horizontal step or flange within the prominent, through-going dextral strike-slip fault system which cuts across the eastern Koyukuk basin and southeastern Brooks Range. Units of the Mosquito were derived from both the Angayucham and Ruby terranes. A consistent tectonic fabric imposed upon them is kinematically linked to the strike-slip system and indicates a northeasterly direction of transport across the terrane. The presence of Ruby-correlative units within the Mosquito suggests the Ruby underlies the Angayucham and that it is in contact with terrances of the southern Brooks Range at that structural level along high-angle strike-slip faults. These relationships demonstrate that an episode of dextral transpression is the latest in the history of terrane accretion and tectonic evolution of the Brooks Range. 35 refs.« less

  20. Cyclical shear fracture and viscous flow during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, California

    NASA Astrophysics Data System (ADS)

    Compton, Katharine E.; Kirkpatrick, James D.; Holk, Gregory J.

    2017-06-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures, such as veins and pseudotachylytes, which record broadly contemporaneous brittle and ductile deformation. Here, we investigate veins within the Saddlebag Lake Shear Zone, central Sierra Nevada, California, to constrain the conditions and processes that caused fractures to form during ductile deformation. The shear zone mylonites contain compositional banding at centimeter- to meter- scales, and a ubiquitous, grain-scale, continuous- to spaced-foliation defined by aligned muscovite and chlorite grains. Veins of multiple compositions formed in two predominant sets: sub-parallel to the foliation and at high angle to the foliation. Some foliation sub-parallel veins show apparent shear offset consistent with the overall kinematics of the shear zone. These veins are folded with the foliation and are commonly boudinaged, showing they were rigid inclusions after formation. Quartz microstructures and fluid inclusion thermobarometry measurements indicate the veins formed by fracture at temperatures between 400-600 °C. Quartz, feldspar and tourmaline δ18O values (+ 2.5 to + 16.5) suggest extended fluid-rock interaction that involved magmatic, metamorphic, and meteoric-hydrothermal fluids. The orientation and spatial distribution of the veins shows that shear fractures formed along mechanically weak foliation planes. We infer fracture was promoted by perturbations to the strain rate and/or pore pressure during frictional-viscous deformation in a low effective stress environment. Evidence for repeated fracture and subsequent flow suggest both the stress and pore pressure varied, and that the tendency to fracture was controlled by the rates of pore pressure recovery, facilitated by fracture cementation. The tectonic setting and inferred phenomenological behavior were similar to intra-continental transform faults that host triggered tectonic tremor, suggesting the mechanisms that caused brittle fracture during viscous deformation may be important for comparable active systems.

  1. Timescales of ductility in an extensional shear zone recorded as diffusion profiles in deformed quartz

    NASA Astrophysics Data System (ADS)

    Nachlas, William; Teyssier, Christian; Whitney, Donna

    2015-04-01

    We document rutile needles that were in the process of exsolving from quartz during ductile shearing, and we apply the Arrhenius parameters for Ti diffusion in quartz to extract the timescales over which diffusion transpired. By constraining temperature conditions of deformation using multiple independent thermometers in the same rocks (Ti-in-quartz, Zr-in-rutile, quartz fabrics and microstructures), we estimate the longevity of a ductile shear zone that accommodated extensional collapse in the North American Cordillera. Eocene exhumation of the Pioneer core complex, Idaho, USA, was accommodated by the brittle-ductile Wildhorse detachment system that localized in a zone of sheared metasediments and juxtaposes lower crustal migmatite gneisses with upper crustal Paleozoic sedimentary units. Deformation in the Wildhorse detachment was partly accommodated within a continuous sequence (~200 m) of quartzite mylonites, wherein quartz grains are densely rutilated with microscopic rutile needles that are pervasively oriented into the lineation direction. We apply high-resolution spectroscopic CL analysis to map the Ti concentration field in quartz surrounding rutile needles, revealing depletion halos that indicate exsolution as Ti unmixes from quartz. Linear transects through depletion halos show that concentration profiles exhibit a characteristic diffusion geometry. We apply an error-function diffusion model to fit the measured profiles to extract the temperature or time recorded in the profile. Assuming modest temperature estimates from our combined thermometry analysis, results of diffusion modeling suggest that the quartzite shear zone was deforming over an integrated 0.8 - 3.1 Myr. If samples are permitted to have deformed in discrete intervals, our results suggest deformation of individual samples for timescales as short as 100 kyr. By comparing samples from different levels of the shear zone, we find that deformation was sustained in higher levels of the shear zone for longer duration than in samples deeper into the footwall, which we interpret to reflect progressive downward propagation of a widening ductile zone. Considering the complex nonlinear feedbacks between the temperature- and time-dependence of both lattice diffusion and work hardening of microstructures, our approach introduces a unique opportunity to link timing with kinematics to reconstruct the thermomechanical evolution of a deforming shear zone. As a parallel test of this method, we have applied it to rock deformation experiments where it reproduces the approximate number of hours over which the experiment was conducted, further exemplifying the validity of this approach for constraining earth events.

  2. Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Wan, Yongge; Shen, Zheng-Kang; Bürgmann, Roland; Sun, Jianbao; Wang, Min

    2017-02-01

    We revisit the problem of coseismic rupture of the 2008 Mw7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from ˜36° at the southwest end to ˜83° at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with ˜8.4 m thrust and ˜5 m dextral slip near Hongkou and ˜6 m thrust and ˜8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2×1021 N m, corresponding to an Mw7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of Mw7.5 at Yingxiu-Hongkou, Mw7.3 at Beichuan-Pingtong, Mw7.2 near Qingping, Mw7.1 near Qingchuan, and Mw6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is decoupled by differential motion across a decollement in the mid crust, above which deformation is dominated by brittle reverse faulting and below which deformation occurs by viscous horizontal shortening and vertical thickening.

  3. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  4. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  5. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric paleofluids can be traced into a zone of pervasive flow (in the direction of extension from W to E) in which a high transient geotherm is preserved. In the Snake Range the pattern of meteoric signature is consistent with the expected diachronous fluid-rock interaction that would be expected from a rolling-hinge detachment; in the arched section of the detachment meteoric fluid-rock interaction was cut-off early, while the long-lived portion of the E-dipping detachment continued to receive surface fluids. In summary, the hydrology of extending crust involves circulation of surface fluids through the upper crust to the ductile detachment shear zones in the root system of normal faults. Synkinematic hydrous phases encapsulate the signature of meteoric fluids and indicate high-elevation catchment areas for the Cordillera, with development of topography from N to S over Cenozoic time. Meteoric fluids leave a distinct stable isotopic signature that tracks the spatial and temporal interaction among fluid, rock, and structures/ microstructures, and provides useful fingerprints of the inter-relationship between tectonics and crustal hydrology.

  6. Shear localization in a mature mylonitic rock analog during fast slip

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.

    2017-02-01

    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  7. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    NASA Astrophysics Data System (ADS)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition. Furthermore, the occurrence of micro-fracturing in the ductile crust must have an influence on elastic wave propagation. While in the upper crust, fractures are believed to be the primary contributor to seismic anisotropy, at high pressure, the intrinsic rock Vp and Vs velocities are largely a function of the shape and crystallographic preferred orientation of minerals. However, if microfracturing is involved during ductile deformation, it may have a stronger influence on seismic properties (velocity and anisotropy) than the SPO and CPO of the main mineral phases, particularly if the microfractures are preferentially oriented. Thus, in major active ductile shear zones, like the Main Himalayan Thrust, the speculated transient but pervasive micro-fracturing during ongoing ductile deformation should be considered when interpreting seismic anisotropy. Finding evidences for brittle deformation, and associated fluid flow, in the ductile crust is a major challenge because many of these textural and mineralogical features tend to be obliterated by the pro-eminent ductile deformation. However, in order to fully understand the causes of some of these geophysical observations, the chemical and physical characterization of exhumed "fossil" ductile shear zones remains essential.

  8. Size distribution and roundness of clasts within pseudotachylytes of the Gangavalli Shear Zone, Salem, Tamil Nadu: An insight into its origin and tectonic significance

    NASA Astrophysics Data System (ADS)

    Behera, Bhuban Mohan; Thirukumaran, V.; Soni, Aishwaraya; Mishra, Prasanta Kumar; Biswal, Tapas Kumar

    2017-06-01

    Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1-3 km wide NNE-SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE-SSW and NW-SE directions, suggesting an N-S compression. The Gangavalli Shear Zone represents the NNE-SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (<1000 {\\upmu }m2) deviating from linearity. The shape of the clasts shows a high degree of roundness (>0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000^{circ }\\hbox {C}. Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.

  9. Detailed fault structure of the Tarutung Pull-Apart Basin in Sumatra, Indonesia, derived from local earthquake data

    NASA Astrophysics Data System (ADS)

    Muksin, Umar; Haberland, Christian; Nukman, Mochamad; Bauer, Klaus; Weber, Michael

    2014-12-01

    The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north-south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE-SW to NW-SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.

  10. A reconnaissance space sensing investigation of the crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau: April 1971

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. A.

    1972-01-01

    The author has identified the following significant results. An area of anomalous linear topographic grain and color expressions was recognized in Apollo 9 and ERTS-1 imagery along the Colorado River of northwestern Arizona and southern Nevada. Field reconnaissance and analysis of U-2 photography has shown the anomaly to be a zone of north to north-northwest trending dike swarms and associated granitic plutons. The dikes vary in composition from rhyolite to diabase, with an average composition nearer rhyolite. Shearing and displacement of host rocks along dikes suggest dike emplacement along active fault zones. Post-dike deformation has resulted in shearing and complex normal faulting along a similar north-south trend. The epizonal plutonism and volcanism of this north-south belt appears to represent a structurally controlled volcanogenic province which ends abruptly in the vicinity of Lake Mead at a probable eastern extension of the Las Vegas Shear Zone. The magnitude and chronology of extensional faulting and plutonism recognized in the north-south zone, support the hypothesis that the Las Vegas Shear Zone is a transform fault separating two areas of crustal spreading.

  11. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    NASA Astrophysics Data System (ADS)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper amphibolite-facies (0.9-1.0 GPa, 700 °C) mafic metagabbro from Precambrian exposures in Montana (USA) and in greenschist-facies (0.7-0.8 GPa, 450-500 °C) metagranites from the External Crystalline Massifs of the European Central Alps. The shear zones are characterized by strain gradients from undeformed coarse-grained protoliths to very fine grained ultramylonite, and by microstructures dominated by CPO-producing deformation mechanisms in the protomylonite and CPO-weakening mechanisms such as dissolution-precipitation creep and grain boundary sliding in the ultramylonite. In the mafic mylonites, the result is a lower seismic anisotropy ( 2%) in the core of the shear zones despite a well-developed hornblende shape-preferred orientation. Preliminary observations of these examples suggest that marginal gradients may contribute as much or more to the bulk anisotropy signal compared to the higher strained cores of these structures. If true, a similar effect could explain some otherwise puzzling anisotropy studies of larger scale shear zones such as from the Himalaya where anisotropy tilt proximal to the Main Himalayan Thrust is notably steeper than expected. In conclusion, while some anisotropy studies of crustal scale deformation patterns are relatively straightforward, others will require careful consideration of the limitations and potential future improvements to seismic detection methods, including ground truthing based on samples and exposures as well as a better understanding of physical processes involved in deformation localization.

  12. Permeability evolution governed by shear: An example during spine extrusion at Unzen volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ashworth, James; Lavallée, Yan; Wallace, Paul; Kendrick, Jackie; Coats, Rebecca; Miwa, Takahiro; Hess, Kai-Uwe

    2017-04-01

    A volcano's eruptive style is strongly controlled by the permeability of the magma and the surrounding edifice rock - explosive activity is more likely if exsolved gases cannot escape the system. In this study, we investigate how shear strain causes variations in permeability within a volcanic conduit, and discuss how spatio-temporal variation in shear regimes may develop. The eruption of Unzen volcano, Japan, which occurred between 1990 - 1995, culminated in the extrusion of a 60 metre-high dacitic spine. The spine, left exposed at the lava dome surface, displays the petrographic architecture of the magma in the shallow conduit. Observations and measurements made in the field are combined with laboratory experiments to understand the distribution of permeability in the shallow conduit. Examination of the lava dome led to the selection of two sites for detailed investigation. First, we examined a section of extruded spine 6 metres in width, which displays a transition from apparently unsheared rock in the conduit core to rocks exhibiting increasing shear towards the conduit margin, bounded by a fault gouge zone. Laboratory characterisation (mineralogy, porosity, permeability, X-ray tomography) was undertaken on these samples. In contrast, a second section of spine (extruded later during the eruption) exhibited a large tensile fracture, and this area was investigated using non-destructive in-situ permeability measurements. Our lab measurements show that in the first outcrop, permeability decreases across the shear zone from core to gouge by approximately one order of magnitude perpendicular to shear; a similar decrease is observed parallel to shear, but is less severe. The lowest permeability is observed in the most highly sheared block; here, permeability is 2.5 x10-14 m2 in the plane of shear and 9 x10-15 m2 perpendicular to shear. Our measurements clearly demonstrate the influence of shear on conduit permeability, with significant anisotropy in the shear zone. The sheared rocks are strongly micro-fractured, resulting in a porosity decrease of up to 4% and permeability decrease of over one order of magnitude with increasing effective pressure (effective pressure = confining pressure - pore pressure) between 5 - 100 MPa, representative of increasing lithostatic pressure from 200 m to 4 km depth in the crust. In contrast, our field study of the second spine section, which features a 2 cm wide by 3 metre-long tensile fracture flanked by a 40-cm wide shear damage zone, reveals that dilational shear can result in an increase in permeability of approximately three orders of magnitude. The contrasting shear zone characteristics can be attributed to different shear regimes, which likely occur at different depths in the conduit. At greater depth in the system, where lithostatic pressures largely exceed pore pressure, compactional shear appears to dominate, reducing the permeable porous network as magma strains along the conduit margin, whereas at shallower levels, where the effective pressure is low, dilational shear becomes dominant, resulting in the creation of permeable pathways. We conclude that contrasting shearing regimes may simultaneously affect magma ascent dynamics in volcanic conduits, causing a range of dynamic permeability variations (positive and negative), which dictate eruptive behaviour.

  13. Alternations in burial and exhumation along the Selimiye (Kayabükü) shear zone in the Menderes Massif from detailed garnet pressure-temperature paths

    NASA Astrophysics Data System (ADS)

    Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.

    2015-12-01

    Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.

  14. Fabric evolution across a discontinuity between lower and upper crustal domains from field, microscopic, and anisotropy of magnetic susceptibility studies in central eastern Eritrea, NE Africa

    NASA Astrophysics Data System (ADS)

    Ghebreab, W.; Kontny, A.; Greiling, R. O.

    2007-06-01

    In the Neoproterozoic East African Orogen (EAO) of Eritrea, lower to middle crustal high-grade metamorphic rocks are juxtaposed against low-grade upper crustal rocks along diffuse tectonic contact zones or discontinuities. In the central eastern part of Eritrea, such a tectonic zone is exposed as a low-angle shear zone separating two distinct high- and low-grade domains, the Ghedem and Bizen, respectively. Integrated field, microfabric, and anisotropy of magnetic susceptibility (AMS) studies show that this low-angle shear zone formed during late deformation, D2, with top-to-the-E/SE sense of motion. The hanging wall upper crustal volcanosedimentary schists are mainly paramagnetic and the footwall middle crustal mylonitized orthogneisses are mainly ferrimagnetic. Magnetic fabric studies revealed a good agreement between metamorphic/mylonitic and magnetic foliations (Kmin) and helped to explain fabric development in the shear zone. The magnetic lineations (Kmax) reflect stretching lineations where stretched mineral aggregates dominate fine-grained mylonitic matrices and intersection lineations where microstructural studies revealed two fabric elements. AMS directional plots indicate that the orientations of the magnetic lineation and of the pole to the magnetic foliation vary systematically across the shear zone. While Kmax axes form two broad maxima oriented approximately N-S and E-W, the Kmin axes change from subhorizontal, generally westward inclination in the west to moderate to steep inclination in the direction of tectonic movement to the east. Because there is a systematic change in inclination of Kmin for individual samples, all samples together form a fairly well defined cluster distribution. The distribution of Kmin in combination with the E-W scattered plot of the Kmax is in accordance with the E/SE flow of mylonites over exhumed Damas core complex in the late Neoproterozoic. During the Cenozoic, the Red Sea rift-related detachments exploited the late orogenic shear zone, indicating that the discontinuities between ductile middle and brittle upper crustal layers in the region are reactivated low-angle shear zones and possible sites of core complexes.

  15. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  16. Integrated geophysical investigations for the delineation of source and subsurface structure associated with hydro-uranium anomaly: A case study from South Purulia Shear Zone (SPSZ), India

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Biswas, A.

    2012-12-01

    South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.

  17. Heterogeneous material distribution, an important reason for generation of strain-localized mylonite and frictional slip zones in the Hidaka metamorphic belt, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Shimada, Koji; Toyoshima, Tsuyoshi; Obara, Tomohiro; Niizato, Tadafumi

    2004-12-01

    Lithological heterogeneity of low P/T metamorphic rocks in southern area of Hidaka metamorphic belt (HMB) was formed through historical development of HMB while these rocks had been laid in ductile lower crust. Many strain-localized mylonite zones (<100 m in thickness) are preferentially developed within S-type tonalite and pelitic gneiss, which are characterized by a large modal amount of phyllosilicates (biotite+muscovite+chlorite) and quartz, compared to other lithofacies in HMB. Mylonitic foliations are more conspicuous with close to the center of the shear zone associated with increase in amounts of phyllosilicate minerals, indicating fluidenhanced weakening mechanisms were operated in plastic shear zones. Pseudotachylyte veins are observed exclusively in these mylonite zones, which were generated during exhumation stage of HMB. We conclude the seismic slip zones in southern HMB had been initiated in the ductile lower crust by concentration of localized plastic shear zones within the phyllosilicate- and quartz-rich lithofacies, which were heterogeneously formed by old metamorphic and magmatic events. Then these zones were further weakened by fluid-enhanced plastic deformation, and finally seismic slips occurred at the bottom of seismogenic upper crust, during exhumation of HMB.

  18. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    NASA Astrophysics Data System (ADS)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic instabilities can occur. The instability is enhanced by the development of a self-localizing thermal perturbation in the fine grained zone that is narrower than the original width of the fine-grained zone. To examine the effect of melting, we include a parameterization of partially molten rock viscosity as a function of temperature assuming a simple relationship between melt fraction and temperature. At T > ~1400°C, all other deformation mechanisms are deactivated but shear heating continues, allowing for continued temperature evolution. In addition a strain rate cap proportional to the shear wave velocity in olivine has been imposed, reflecting the maximum rate that changes in stress can be communicated through the system. While Kelemen and Hirth (2007) allowed for grain size evolution, this has not yet been implemented in our model. Adding grain size evolution as an additional strain softening mechanism would probably allow instabilities to develop at more geologically reasonable applied strain rates. In addition to discussing the stability of the olivine only system, we will explore grain size evolution during system evolution and evaluate the consequences that the grain size evolution and lithology have on the stability of the system.

  19. Pseudotachylytes of the Deep Crust: Examples from a Granulite-Facies Shear Zone

    NASA Astrophysics Data System (ADS)

    Orlandini, O.; Mahan, K. H.; Regan, S.; Williams, M. L.; Leite, A.

    2013-12-01

    The Athabasca Granulite Terrane is an exhumed section of deep continental crust exposed in the western Canadian shield. The terrane hosts the 1.88 Ga Cora Lake shear zone, a 3-5 km wide sinistral and extensional oblique-slip system that was active at high-pressure granulite-grade conditions ( ~1.0 GPa, >800°C to ~0.8 GPa and 700 °C). Pseudotachylyte, a glassy vein-filling substance that results from frictional melting during seismic slip, is common in ultramylonitic strands of the shear zone, where veins run for tens of meters subparallel to foliation. Some but not all PST veins have been overprinted with the Cora Lake shear zone foliation, and undeformed PST locally bears microlitic garnet. The frictional melts that quench into PST may reach >1400 °C, but are extremely localized and cool to country rock temperatures within minutes, resulting in glass and/or microlitic mineral growths. The melt itself is thought by many to be in disequilibrium with the host rock due to its rapid nature, but during cooling equilibrium is probably reached at small scales. This allows for microprobe analysis of adjacent microlites for thermobarometric calculations. Preliminary results from undeformed (e.g., youngest of multiple generations) PST suggest that quenching occurred in upper amphibolite facies ambient conditions and is compatible with later stages of Cora Lake shear zone activity. Host-rock mylonites contain abundant garnet and pyroxene sigma clasts indicating sinistral shear, and where PST-bearing slip surfaces are found at low angles to the foliation, they display sinistral offset. The host rock contains abundant macroscopic and microscopic sinistral shear fracture systems (e.g., Riedel [R], Y, and P displacement surfaces) within the immediate proximity of PST veins, indicating a complex interplay of brittle and ductile behavior that is interpreted to be genetically related to the formation of the PST. The shear fracture systems are characterized by sharply bounded surfaces or zones populated by equant 1-15 μm grains, including orthopyroxene. These grains show no evidence of fracturing under backscatter-electron images and preserve cohesion with all surrounding grains, suggesting crystal-plastic behavior. There is evidence for multiple generations of subparallel shear fracture sets, as R shears of an earlier fracture set are cut by Y shears of a later set. The PST generation veins are overprinted in much the same way, and are consistently found in an orientation that suggests they nucleated on Y shear surfaces. Given that available data on the Cora Lake PST indicates formation under conditions where crystal-plastic deformation typically dominates, the downward propagation of faults from the traditional seismogenic zone seems the most reasonable model for emplacement. The propagation of fault slips to depths of 30-50 km has been actively observed for several Mw >7.5 strike-slip and thrust earthquakes, but the deformation mechanisms and specific conditions that allow PST formation at such depths is not well understood. The almost exclusive contemporaneous localization of brittle PST systems into highly ductile ultramylonites suggests an interesting paradox of rheological response to constant regional strain fields .

  20. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro

    2017-01-01

    Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.

  1. Analogue modelling for localization of deformation in the extensional pull-apart basins: comparison with the west part of NAF, Turkey

    NASA Astrophysics Data System (ADS)

    Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola

    2017-04-01

    Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.

  2. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation

    NASA Astrophysics Data System (ADS)

    Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.

    2018-06-01

    In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 < U < 9 ppm; Th/U > 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.

  3. The Western Tauern Window (Eastern Alps): Timing and Interplay of Folds and Sinistral Shear Zones as Result of South-Alpine Indentation

    NASA Astrophysics Data System (ADS)

    Schneider, Susanne; Rosenberg, Claudio; Hammerschmidt, Konrad

    2010-05-01

    The Tauern Window (TW) is the only domain within the Eastern Alps where deep crustal, Tertiary metamorphic rocks were exhumed to surface. The window is bounded by large-scale faults, partly considered to be responsible for its exhumation (e.g., Selverstone 1988, Fügenschuh 1997), and it is also cross cut internally by large-scale shear zones, whose significance in terms of type and timing of deformation, exhumation, and large-scale kinematic links is the subject of our investigation. These shear zones (Ahorn, Olperer, Greiner, Ahrntal) are widespread throughout the western TW, from the mm- to the km-scale. They are sinistral and located in the steep limbs of upright antiforms, forming a mylonitic foliation, that strikes parallel to the axial planes of these upright folds. We present new structural and geochronological data, obtained by in-situ dating of microstructurally defined syn- and postkinematic grains, to constrain the duration and termination of folding and sinistral shearing. Previous dating suggested initiation of shearing contemporaneous to nappe stacking between 32-and 30Ma, ongoing until 15Ma (Glodny et al., 2008). However, the fabric of the dated grains was not related to deformation phases defined from structural overprinting relationships, and the classical separation technique did not allow to separate synkinematic from pre- and post- kinematic grains. The northern margin of the western TW is pervasively overprinted by the Ahorn Shear Zone (Rosenberg & Schneider 2008), which shows S-side up kinematic indicators in addition to the sinistral ones, and a pronounced southward increase in metamorphic grade from lower greenschist facies to amphibolite facies conditions, within 2km. Phengites of the mylonitic foliation dated with the Rb/Sr in-situ technique, yield formation ages of 14-24Ma . The southern margin of the western TW is overprinted by the sinistral Ahrntal Fault (Schneider et al. 2009), which cuts discordantly several nappes from the Zentralgneiss to the Upper Austroalpine units. Within the Upper Penninic nappes N-side up kinematic indicators occur, in addition to the sinistral ones. Newly formed biotites of Zentralgneiss rocks have been dated with the Rb/Sr technique (Kitzig et al. 2009), yielding 18-20Ma for their formation during sinistral deformation. Fine-grained phengites from the axial plane foliation of the upright folds were dated with the K/Ar method, yielding 14-17Ma. Ar/Ar in-situ LA analyses of sinistral mylonites (Ahorn, Olperer and Greiner) yield formation ages of syn-kinematic phengites between 24-12Ma. These grains are overgrown by post-kinematic phengites of 12-9Ma. Northeast of the western TW, sinistral shear is accommodated by the brittle sinistral SEMP Fault system, whose activity has been dated to 17Ma (Peresson & Decker 1997). Several sinistral shear zones (Ahorn, Greiner, Ahrntal) of the western TW may coalesce into the SEMP Fault (e.g., Linzer et al., 2002). In the west, the Ahorn Shear Zone terminates nearly 10km east of the Brenner Fault, into a NW-striking fold belt. The Ahrntal Fault continues into the Jaufen Fault, which merges with the brittle sinistral Giudicarie Fault. Motion along the Giudicarie Fault initiated in the Miocene (Stipp et al., 2004), or already in the Oligocene (Müller et al 2001). Based on these results, a temporal, kinematic and geometric continuity between sinistral shearing along the Giudicarie Fault, along the SEMP Fault, and throughout the western TW, can be assessed. The sinistral shear zones of the western TW are kinematically linked to upright folds, hence to crustal thickening. Upright folding and sinistral shearing were active since 24Ma and terminated at 12Ma. In summary, the sinistral displacements of the Giudicarie System appear to be partitioned into upright folds and sinistral, transpressive shear zones in the western Tauern Window, both of which contribute to its exhumation. The coalescence of the sinistral shear zones into the SEMP Fault System coincides with the eastern termination of the ENE-striking upright folds, possibly indicating transfer of shortening into a strike-slip displacement. Therefore, the western TW as a whole, represents a Miocene, sinistral transpressive belt, accommodating sinistral displacements associated with South-Alpine indentation by folding and sinistral shearing, and transferring these into sinistral movements associated with lateral escape along the SEMP System, until 12 Ma.

  4. Geology of the Vienna Mineralized Area, Blaine and Camas Counties, Idaho

    USGS Publications Warehouse

    Mahoney, J. Brian; Horn, Michael C.

    2005-01-01

    The Vienna mineralized area of south-central Idaho was an important silver-lead-producing district in the late 1800s and has intermittently produced lead, silver, zinc, copper, and gold since that time. The district is underlain by biotite granodiorite of the Cretaceous Idaho batholith, and all mineral deposits are hosted by the biotite granodiorite. The granodiorite intrudes Paleozoic sedimentary rocks of the Sun Valley Group, is overlain by rocks of the Eocene Challis Volcanic Group, and is cut by numerous northeast-trending Eocene faults and dikes. Two mineralogically and texturally distinct vein types are present in a northwest- and east-trending conjugate shear-zone system. The shear zones postdate granodiorite emplacement and joint formation, but predate Eocene fault and dike formation. Ribbon veins consist of alternating bands of massive vein quartz and silver-sulfide (proustite and pyrargyrite) mineral stringers. The ribbon veins were sheared and brecciated during multiple phases of injection of mineralizing fluids. A quartz-sericite-pyrite-galena vein system was subsequently emplaced in the brecciated shear zones. Both vein systems are believed to be the product of mesothermal, multiphase mineralization. K-Ar dating of shear-zone sericite indicates that sericitization occurred at 80.7?2.8 Ma; thus mineralization in the Vienna mineralized area probably is Late Cretaceous in age.

  5. The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Stewart, R. A.; Reimold, W. U.; Charlesworth, E. G.; Ortlepp, W. D.

    2001-07-01

    In August 1998, a major deformation zone was exposed over several metres during mining operations on 87 Level (2463 m below surface) at Western Deep Levels Gold Mine, southwest of Johannesburg, providing a unique opportunity to study the products of a recent rockburst. This zone consists of three shear zones, with dip-slip displacements of up to 15 cm, that are oriented near-parallel to the advancing stope face. Jogs and a highly pulverised, cataclastic 'rock-flour' are developed on the displacement surfaces, and several sets of secondary extensional fractures occur on either side of the shear zones. A set of pinnate (feather) joints intersects the fault surfaces perpendicular to the slip vector. Microscopically, the shear zones consist of two pinnate joint sets that exhibit cataclastic joint fillings; quartz grains display intense intragranular fracturing. Secondary, intergranular extension fractures are associated with the pinnate joints. Extensional deformation is also the cause of the breccia fill of the pinnate joints. The initial deformation experienced by this zone is brittle and tensile, and is related to stresses induced by mining. This deformation has been masked by later changes in the stress field, which resulted in shearing. This deformation zone does not appear to be controlled by pre-existing geological features and, thus, represents a 'burst fracture', which is believed to be related to a seismic event of magnitude ML=2.1 recorded in July 1998, the epicentre of which was located to within 50 m of the study locality.

  6. Effect of microstructure and THCM processes on fault weakening

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.; Rattez, H.

    2017-12-01

    Field observations of exhumed mature faults and outcrops, i.e. faults that have experienced a large slip, suggest that shear localization occurs in a narrow zone of few millimeters thick or even less inside the fault core. The size of this zone plays a major role in the energy budget of the system as it controls the feedback of the dissipative terms in the energy balance equation.Strain localization in narrow bands can be seen as a bifurcation from the homogeneous deformation solution of the underlying mathematical problem, and is favored by softening behavior. Here we model the shearing of a saturated fault gouge under various multi-physical couplings to investigate the influence of these coupled processes on the softening response. The major drawback of classical continuum theories is that they lead to infinitely narrow shear localized zone. This can be remedied by resorting to Cosserat continuum theory for which constitutive models contain a material length. Moreover, Cosserat models are appropriate for taking into account the granular microstructure of the fault gouge for which the Cosserat material length is naturally related to the grain size of the gouge. Thus, bifurcation analysis of the sheared layer includes the calculation of the evolution of the thickness of the localized zone.A numerical analysis including the effect of shear heating and pore fluid thermal pressurization is performed and the results of the bifurcation analysis are compared to field observations in terms of the localized zone thickness. At high temperature rise, thermally induced mineral transformation such as dehydration of clayey minerals or decomposition of carbonates can occur. The effect of these chemical reactions on the shear band thickness evolution is investigated and the numerical results are compared to observations of the Mt. Maggio fault located in the Northern Apennines of Italy.

  7. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    NASA Astrophysics Data System (ADS)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  8. Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina

    NASA Astrophysics Data System (ADS)

    Garber, Joshua M.; Roeske, Sarah M.; Warren, Jessica; Mulcahy, Sean R.; McClelland, William C.; Austin, Lauren J.; Renne, Paul R.; Vujovich, Graciela I.

    2014-07-01

    The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the 80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405-400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60-70 million years after one microplate collision (the Precordillera) but ceased 5-10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved.

  9. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    NASA Astrophysics Data System (ADS)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of eclogitization and determine if this can sufficiently decrease the integrated strength of the lithosphere to allow a measurable increase in strain rate.

  10. Zircon growth in shear zones

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana

    2013-04-01

    The possibility of direct dating of the deformation process is critical for understanding of orogenic belts evolution. Establishing the age of deformation by isotopic methods is indispensable in the case of uneven deformation overlapping, when later deformation inherits the structural plan of the early strains, and to distinguish them on the basis of the structural data only is impossible. A good example of zircon from the shear zones is zircon formed under the eclogite facies conditions. On the one hand, the composition of zircon speaks about its formation simultaneously to eclogitic paragenesis (Rubatto, Herman, 1999; Rubatto et al., 2003). On the other hand, geological studies show that mineral reactions of eclogitization are often held only in areas of shear deformations, which provides access of fluid to the rocks (Austrheim, 1987; Jamtveit et al., 2000; Bingen et al., 2004). Zircons from mafic and ultramafic rocks of the Tanaelv and Kolvitsa belts (Kola Peninsula, the Baltic Shield) have showed that the metamorphic zircon growth is probably controlled by the metamorphic fluid regime, as evidenced by an increase of zircon quantity with the degree of shearing. The internal structure of zircon crystals can provide an evidence of zircon growth synchronous with shearing. The studied crystals have a sector zoning and often specific "patchy" zoning (Fig. 1), which speaks about rapid change of growth conditions. Such internal structure can be compared with the "snowball" garnet structure reflecting the rotation of crystals during their growth under a shift. Rapidly changing crystallization conditions can also be associated with a small amount of fluid, where supersaturation is changing even at a constant temperature. Thus, the growth of metamorphic zircon in shear zones is more likely to occur in the fluid flow synchronous with deformation. A distinctive feature of zircons in these conditions is isometric shape and sector "patchy" zoning. The work was supported by Russian Foundation of Basic Research (project: 13-05-00035.) and the DES-6 program.

  11. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.

  12. Shear localization in the shallow part of megathrusts: understanding active megathrusts trough the study of fossil analogues.

    NASA Astrophysics Data System (ADS)

    Cerchiari, Anna; MIttempergher, Silvia; Remitti, Francesca; Festa, Andrea

    2017-04-01

    The shallowest part of active megathrusts has an intriguing behaviour, characterized by the coexistence of coseismic slips and aseismic creep, slow slip events, low and very low frequency earthquakes. Origins and interplays of these phenomena are actually little known. In this respect, the study of exhumed shallow parts of fossil megathrusts is an advantageous approach in terms of accessibility, costs and resolution. The Sestola-Vidiciatico tectonic Unit in the Northern Apennines has been interpreted as a possible analogue of a shallow, hectometer scale megathrust shear zone, which accommodated subduction of the Adria plate under the Ligurian prism during early-middle Miocene by involving sediments from the seafloor to burial depth corresponding to 150° C maximum temperature. Performing detailed microstructural analysis on samples through optical, cathodoluminescence and scanning electron microscopy, we studied a 5 m thick fault zone marking the base of the SVU. Here, more or less competent marls make up a heterogeneous fault zone assemblage, with a strongly deformed tectonic fabric characterized by mesoscopic cleavage, boudinage, faults and low-angle thrusts coated by calcite veins. At the top of the shear zone, a sharp and continuous shear vein, 20 cm thick cuts all other structures. At the microscale, we identified a primary sedimentary layering, consisting of alternating fine and coarse marly or shaly laminae that are crosscut by "soft-sediment"-type deformation bands derived from the reorientation of mineral grains without fracturing. Parallel to the sedimentary laminae, oriented phyllosilicates define a pervasive foliation in clay-rich domains. More competent calcareous portions are strongly boudinaged and cut by calcite shear veins displaying crack-and-seal texture and locally implosion breccias. Multiple mutually crosscutting generations of extensional veins are recognizable, with dispersed orientations and complex relations with shear veins. Calcite veins appear also to be partially dissolved by pressure-solution processes. Our microstructural findings suggest that deformation started acting on not completely lithified sediments, with a progressive and differential embrittlement of the shear zone, depending on lithology (i. e. competence contrast) and fluid pressure cycles. Features described point out also for thrusting under low differential stress, with decoupling from the footwall and progressive migration and thinning of the shear zone.

  13. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    NASA Astrophysics Data System (ADS)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P < 0.5 GPa, followed by deformation at greenschist facies conditions. 40Ar/39Ar step-heating analyses on amphiboles reveal that shearing at amphibolite facies conditions possibly began at the Triassic-Jurassic boundary and persisted until t < 188 Ma, with the Mafic Complex cooling rapidly at the footwall of the Diorite-Granite Complex at ca. 165.4 ± 1.7 Ma. Final exhumation to the basin floor was accommodated by low-angle detachment faulting, responsible for the 1-10 m thick damage zone locally capping the Mafic Complex. The top basement surface is onlapped at a low angle by undeformed Mesozoic sandstone, locally containing clasts of footwall rocks. Existing constraints from the neighboring Corsica ophiolites suggest an age of ca. 165-160 Ma for these final stages of exhumation of the Santa Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.

  14. Effect of footwall structures on kinematic evolution of dominant thrusts from hinterland of an orogenic wedge: Insights from Sikkim Himalayan FTB

    NASA Astrophysics Data System (ADS)

    Ghosh, Pritam; Bhattacharyya, Kathakali

    2017-04-01

    Deformation profile of a thrust sheet is generally characterized by a dominance of simple-shear toward the base and pure-shear higher up. In this study, we attempt to examine the effect of underlying footwall structure on the evolution of such a deformation profile with time. We focus on two dominant thrusts of the Sikkim Himalayan FTB, the northern most Main Central thrust (MCT) and its major footwall thrust, the Pelling thrust (PT). The MCT and the PT sheets are folded in an E-W trending antiform-synform pair by the growth of the underlying Lesser Himalayan duplex. The PT acts as the roof thrust of the duplex. The coarse-grained, quartzo-feldspathic gneissic protoliths transform into quartz-mica mylonite forming ˜1170m thick amphibolite facies MCT zone and ˜938m thick greenschist facies PT zone. Due to the forelandward progression of deformation front, the overlying MCT foliation is superposed by the underlying PT foliation. Within both the fault zones, quartz has undergone grain-size reduction dominantly by dislocation creep, and feldspar by fracturing mechanism. Interestingly, microfracturing is more dominant in MCT zone than in the PT zone. Additionally, pressure solution is significantly higher in the PT zone than in the MCT. Thus, there is a spatial variation in deformation mechanisms within the MCT and PT zones. Based on recrystallized quartz grain-sizes, we estimate deformation temperatures of ˜430˚ C-510˚ C and ˜400˚ C-430˚ C within the MCT and the PT, respectively. Both quartz and feldspar grains record a higher flattening strain in the MCT zone than in the PT zone. We infer fracturing and pressure solution accommodated a significant amount of strain, thereby under-representing the viscoplastic strain. Estimation of kinematic vorticity from two different incremental strain markers, namely oblique-fabric and subgrains, indicate both the MCT and the PT zones record a progressively higher pure-shear dominated deformation with time. The PT zone records a higher pure-shear than the MCT zone. Therefore, integration of structural geometry, microstructure and kinematic data suggest that the PT fault zone records the effect of footwall duplex more prominently than the MCT fault zone. We attribute the temporal evolution toward a pure-shear dominated deformation within the PT zone due to the growth of the underlying Lesser Himalayan duplex.

  15. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.

    2008-07-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.

  16. Kinematics of Post-Collisional Extensional Tectonics and Exhumation of the Menderes Massif in the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.

    2006-12-01

    The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.

  17. [Clinical features of focal brain lesions in the left-handed and ambidextrous].

    PubMed

    Chebysheva, L N; Bragina, N N; Dobrokhotova, T A

    1977-01-01

    On the basis of a study of 31 patients who demonstrated deviations from dextrality (Simistrals and ambidextrals) the authors describe some traits of the nervous and mental changes in focal brain lesions. There are insignificant correlations between the character of nervous and mental changes and the side of a brain lesion. The study demonstrated a wide variability of the clinical symptomatology, a peculiarity of each neurological and psychopathological phenomenon, distinguishing them from similar changes in dextrals. The studied contingent revealed prevalence of a disturbed sensory cognition in the clinical picture; the presence of special phenomena which most likely are not seen in dextrals and which are also related to a pathology of sensory cognition. It is being assumed that these clinical traits may testify to an insufficiency of speech lateralization in sinistrals and that an insufficient speech lateralization is accompanied by other than in dextrals organization of sensory processes.

  18. Deep-tow studies of the Vema Fracture Zone: 1. Tectonics of a major slow slipping transform fault and its intersection with the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    MacDonald, Ken. C.; Castillo, David A.; Miller, Stephen P.; Fox, Paul J.; Kastens, Kim A.; Bonatti, Enrico

    1986-03-01

    The Vema transform fault, which slips at a rate of 24 mm/yr, displaces the Mid-Atlantic Ridge (MAR) 320 km in a left-lateral sense. High-resolution deep-tow studies of the Vema ridge-transform intersection (RTI) and the eastern 130 km of the active transform fault reveal a complex pattern of dip-slip and strike-slip faults which evolve in time and space. At the intersection, both the neovolcanic zone and the west wall of the MAR rift valley curve counterclockwise toward the transform fault along trends approximately 30° oblique to the regional north-south trend of the spreading axis. The curving of extensional structures in the rift valley, such as normal faults and the axial zone of dike injection, appears to be related to transmission of transform related shear stresses into the spreading center domain. Intermittent locking of the American and African lithospheric plates across the RTI causes shear stresses to penetrate up to 4 km into the MAR axial neovolcanic zone where the lithosphere is relatively thin and up to 12 km into the block-faulted west wall of the rift valley where the lithosphere is thicker. The degree of shear coupling across the RTI may vary with time due to changes in the thickness of the lithosphere along the axis (0-10 km), the strength of a "mantle weld" at depth, and the presence or absence of an axial magma chamber, so that extensional structures at the RTI may be either spreading center parallel when coupling is weak or oblique when coupling is strong. Oblique extension across the RTI in addition to other factors may account for some of the down dropping of lithosphere within the deep nodal basin. The easternmost 20 km of the active transform fault zone near the RTI displays a braided network of three to nine tectonically active grabens and V-shaped furrows in a zone 2-4 km wide, interpreted to consist of interwoven Riedel shears, P shears, and oblique normal faults. Clay cake deformation experiments and deep-tow observations suggest that P shears and R shears, which are 10°-20° oblique to the transform slip direction, develop during the initial stages of transform faulting near the RTI as the newly accreted lithosphere accelerates to full plate velocity. Some of the R shears propagate along strike and intercept the oblique normal faults resulting in sharply curving scarps at the RTI. Subsequent to this merging of the two fault types, some of the R shears develop a significant component of dip slip, while other R shears merge with P shears creating a complex anastomosing fault pattern up to 4 km wide. A continuous strand within this braided pattern of faults is interpreted to be the principal transform displacement zone near the RTI. Twenty kilometers west of the RTI the active transform fault zone narrows to a furrow generally less than 100 m wide with only a few short discontinuous splays. This narrow groove cuts through thinly sedimented basalt 20-40 km west of the RTI and continues as a narrow furrow (less than 100 m wide) through up to 1.5 km of layered turbidite fill most of the way to the western RTI. Such a narrow zone of deformation typifies the mature stages of transform faulting where the lithosphere on both sides of the transform fault is relatively old, thick, and rigid and has completed its acceleration to full plate velocity. The transform fault zone is closely associated with a partially buried median ridge and widens to 1-2 km where it transects exposed portions of the ridge. The transform parallel median and transverse ridges create the highest topography associated with the transform fault and may be serpentinized ultramafic intrusions capped by displaced crustal blocks of gabbro, metagabbro, and basalt.

  19. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    NASA Astrophysics Data System (ADS)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example documents a competition between shear zone widening and narrowing mechanisms, i.e. distributed and localized deformation, depending on the specific mineral phase and deformation mechanism active in each moment of the shear zone evolution. In addition, our mechanical data point to dynamic evolution of the studied brittle-ductile transition characterized by major weakening to strengths ˜10 MPa. Such non-steady-state evolution may be common in crustal shear zones especially when phase transformations are involved. References: Diamond, L. W., and A. Tarantola (2015), Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: Reconstruction of differential stress magnitudes and pre-deformation fluid properties, Earth Planet. Sci. Lett., 417, 107-119. Mares, V. M., and A. K. Kronenberg (1993), Experimental deformation of muscovite, J. Struct. Geol., 15(9), 1061-1075. Paterson, M. S., and F. C. Luan (1990), Quartzite rheology under geological conditions, Geol. Soc. London, Spec. Publ., 54(1), 299-307. Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 1-5.

  20. Tectonics of short-offset, slow-slipping transform zones in the FAMOUS area, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Goud, Margaret R.; Karson, Jeffrey A.

    1985-12-01

    ANGUS photographs and ALVIN observational data from Fracture Zones A and B on the Mid-Atlantic Ridge near 37°N were examined for structural and sedimentological indications of the area's tectonics. Both transform fault zones are characterized by volcanic rubble, breccias, chalks, and undisturbed sediments typical of slow-slipping transforms. The photographic data consist of 16 camera-sled traverses from the FAMOUS Expedition using the ANGUS deep-towed camera system. These data cover several different morphotectonic provinces along the strike of both slow-slipping (2 cm yr-1) fracture zones. ALVIN data come from two dives in the central part of Fracture Zone B. The two fracture zones differ in their distribution of fractured and sheared chalks which indicate regions of strike-slip deformation along the transform. Evidence of shearing is confined to a very narrow region in the center of FZ A, whereas the zone of shear deformation is as much as 6 km wide across FZ B. Other differences include the morphology and depth of the transform valleys and their contiguous nodal basins and the extent of exposures of fresh-looking volcanic ridges in the nodal basin.

  1. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.

    PubMed

    Fusseis, F; Regenauer-Lieb, K; Liu, J; Hough, R M; De Carlo, F

    2009-06-18

    The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust.

  2. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  3. Strain rate dependent calcite microfabric evolution - An experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

    2014-12-01

    A flanking structure developed along a secondary shear zone in calcite marbles, on Syros (Cyclades, Greece), provides a natural laboratory for directly studying the effects of strain rate variations on calcite deformation at identical pressure and temperature conditions. The presence and rotation of a fracture during progressive deformation caused extreme variations in finite strain and strain rate, forming a localized ductile shear zone that shows different microstructures and textures. Textures and the degree of intracrystalline deformation were measured by electron backscattered diffraction. Marbles from the host rocks and the shear zone, which deformed at various strain rates, display crystal-preferred orientation, suggesting that the calcite preferentially deformed by intracrystalline-plastic deformation. Increasing strain rate results in a switch from subgrain rotation to bulging recrystallization in the dislocation-creep regime. With increasing strain rate, we observe in fine-grained (3 μm) ultramylonitic zones a change in deformation regime from grain-size insensitive to grain-size sensitive. Paleowattmeter and the paleopiezometer suggest strain rates for the localized shear zone around 10-10 s-1 and for the marble host rock around 10-12 s-1. We conclude that varying natural strain rates can have a first-order effect on the microstructures and textures that developed under the same metamorphic conditions.

  4. Crustal structure in high deformation zones: Insights from gravimetric and magnetometric studies in the Guacha Corral shear zone (Eastern Sierras Pampeanas, Argentina)

    NASA Astrophysics Data System (ADS)

    Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.

    2018-03-01

    The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.

  5. Kinematics, partitioning and the relationship between velocity and strain in shear zones

    NASA Astrophysics Data System (ADS)

    Murphy, Justin James

    Granite Point, southeast Washington State, captures older distributed deformation deflected by younger localized deformation. This history agrees with mathematical modeling completed by Watkinson and Patton (2005; 2007 in prep). This model suggests that distributed strain occurs at a lower energy threshold than localized strain and predicts deformation histories similar to Granite Point. Ductile shear zones at Granite Point define a zone of deformation where strain is partitioned and localized into at least ten sub parallel shear zones with sinistral, west side down shear sense. Can the relative movement of the boundaries of this partitioned system be reconstructed? Can partitioning be resolved from a distributed style of deformation? The state of strain and kinematics of actively deforming zones was studied by relating the velocity field to strain. The Aleutian Arc, Alaska and central Walker Lane, Nevada were chosen because they have a wealth of geologic data and are recognized examples of obliquely deforming zones. The graphical construction developed by Declan De Paor is ideally suited for this application because it provides a spatially referenced visualization of the relationship between velocity and strain. The construction of De Paor reproduces the observed orientation of strain in the Aleutian Arc, however, the spatial distribution of GPS stations suggest a component of partitioning. Partitioning does not provide a unique solution and cannot be differentiated from a combination of partitioning and distributed strain. In the central Walker Lane, strain trajectories can be reproduced at the domain scale. Furthermore, the effect of anisotropy from Paleozoic through Cenozoic crustal structure, which breaks the regional strain field into pure shear and simple shear dominated transtension can be detected. Without GPS velocities to document strictly coaxial strain, the strain orientation should not be taken as the velocity orientation. The strain recorded at Granite Point should not be used to reconstruct the relative movement of the boundaries because the strain direction may not be parallel to the velocity orientation. Kinematic reconstructions of obliquely deforming zones that assume a palaeo-velocity orientation equal to the measured orientation of finite strain may not accurately reflect the deviation between velocity and strain.

  6. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    NASA Astrophysics Data System (ADS)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required.

  7. Expression of Lithospheric Shear Zones in Rock Elasticity Tensors and in Anisotropic Receiver Functions and Inferences on the Roots of Faults and Lower Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.

    2016-12-01

    We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes parallel to exhumed and highly localized structures such as the Idaho Springs-Ralston and Black Canyon shear zones. In either case, denser seismic studies should elucidate the width of the deep seismic expression of the shear zones.

  8. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial deposits. We interpret these faults as Riedel shears of the Elsinore Fault that distribute dextral strain over an area at least 2 km wide. Finally, our mapping of the Elsinore Fault itself reveals two releasing bends that are superimposed on the overall transpressive regime in the area. Axen, G.J. and Fletcher, J.M., 1998, Hall Volume, GSA, p. 365-392. Dorsey, R.J., Housen, B.A., Janecke, S.U., Fanning, C. M., Spears, A.L.F., 2011, GSA Bulletin, v. 123, p. 771-793. Winker, C.D. and Kidwell, S.M., 1996, Field Conference Guide, Pacific Section AAPG/SEPM, Book 80, p. 295-336.

  9. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.

  10. Geologic map of the Kings Mountain and Grover quadrangles, Cleveland and Gaston Counties, North Carolina, and Cherokee and York Counties, South Carolina

    USGS Publications Warehouse

    Horton, J. Wright

    2006-01-01

    This geologic map of the Kings Mountain and Grover 7.5-minute quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist, and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacksburg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metadiorite and metagabbro (Paleozoic), and High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by Toluca Granite (Ordovician?), Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply-dipping layers, foliations, and folds on the southeast to gently- and moderately-dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite on the east side of the map to greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwest part of the map. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in their richness and variety of mineral deposits, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron. (Abstract from pamphlet.)

  11. Geologic Map of the Kings Mountain and Grover Quadrangles, Cleveland and Gaston Counties, North Carolina, and Cherokee and York Counties, South Carolina

    USGS Publications Warehouse

    Horton, J. Wright

    2008-01-01

    This geologic map of the Kings Mountain and Grover 7.5-min quadrangles, N.C.-S.C., straddles a regional geological boundary between the Inner Piedmont and Carolina terranes. The Kings Mountain sequence (informal name) on the western flank of the Carolina terrane in this area includes the Neoproterozoic Battleground and Blacksburg Formations. The Battleground Formation has a lower part consisting of metavolcanic rocks and interlayered schist and an upper part consisting of quartz-sericite phyllite and schist interlayered with quartz-pebble metaconglomerate, aluminous quartzite, micaceous quartzite, manganiferous rock, and metavolcanic rocks. The Blacks-burg Formation consists of phyllitic metasiltstone interlayered with thinner units of marble, laminated micaceous quartzite, hornblende gneiss, and amphibolite. Layered metamorphic rocks of the Inner Piedmont terrane include muscovite-biotite gneiss, muscovite schist, and amphibolite. The Kings Mountain sequence has been intruded by metatonalite and metatrondhjemite (Neoproterozoic), metagabbro and metadiorite (Paleozoic?), and the High Shoals Granite (Pennsylvanian). Layered metamorphic rocks of the Inner Piedmont in this area have been intruded by the Toluca Granite (Ordovician?), the Cherryville Granite and associated pegmatite (Mississippian), and spodumene pegmatite (Mississippian). Diabase dikes (early Jurassic) are locally present throughout the area. Ductile fault zones of regional scale include the Kings Mountain and Kings Creek shear zones. In this area, the Kings Mountain shear zone forms the boundary between the Inner Piedmont and Carolina terranes, and the Kings Creek shear zone separates the Battleground Formation from the Blacksburg Formation. Structural styles change across the Kings Mountain shear zone from steeply dipping layers, foliations, and folds on the southeast to gently and moderately dipping layers, foliations, and recumbent folds on the northwest. Mineral assemblages in the Kings Mountain sequence show a westward decrease from upper amphibolite facies (sillimanite zone) near the High Shoals Granite in the eastern side of the map area to upper greenschist (epidote-amphibolite) facies in the south-central part of the area near the Kings Mountain shear zone. Amphibolite-facies mineral assemblages in the Inner Piedmont terrane increase in grade from the kyanite zone near the Kings Mountain shear zone to the sillimanite zone in the northwestern part of the map area. Surficial deposits include alluvium in the stream valleys and colluvium along ridges and steep slopes. These quadrangles are unusual in the richness and variety of the mineral deposits that they contain, which include spodumene (lithium), cassiterite (tin), mica, feldspar, silica, clay, marble, kyanite and sillimanite, barite, manganese, sand and gravel, gold, pyrite, and iron.

  12. Washington State Play Fairway Analysis - Passive Monitoring of St. Helens Shear Zone for Tomography and Precision Microseismic Event Detection

    DOE Data Explorer

    Swyer, Michael (ORCID:0000000309776975); Cladouhos, Trenton; Crosbie, Kayla; Ulberg, Carl (ORCID:000000016198809X)

    2017-10-03

    Data resources were derived from a passive seismic survey of the northern St. Helens Shear Zone on geothermal leases 12-24 km north of Mount St. Helens for phase 2 of the Geothermal Play-Fairway Analysis of Washington State Prospects. A 20 seismic station array of broadband seismometers was deployed with irregular spacing (1-4 km) over an area of 12 km to image seismogenic features and their damage zones in the shallow crust.

  13. Seismicity, shear failure and modes of deformation in deep subduction zones

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  14. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew J.

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the pore pressure response in fluid-saturated rock near active faults is controlled by shear strain accumulation associated with tectonic loading, which implies a strong feedback between fault strength and permeability: dynamic triggering susceptibilities may vary in space and also in time.

  15. Building the Pamir-Tibet Plateau: Eo-Oligocene Crustal Stacking and Orogen Parallel Evasion of Upper and Middle Crustal Material in the Pamir

    NASA Astrophysics Data System (ADS)

    Rutte, D.; Ratschbacher, L.; Stübner, K.; Schneider, S.

    2015-12-01

    The gneisses of the Central Pamir Domes and their cover document crustal stacking of a ~10 km thick Ediacaran-Paleogene succession to a thickness of >35 km and their exhumation along bi-vergent, top-to-N and top-to S, normal-sense shear zones. The giant South Pamir Shakhdara-Alichur gneiss-dome system formed similarly by N-S extension along bivergent detachments. Prograde amphibolite-facies metamorphism in the domes and low-grade metamorphism in their hanging wall is dated at ~40 Ma (Lu-Hf garnet, U-Pb titanite) [Smit et al., 2014; Stearns et al., 2015] and ~33 Ma (K/Ar sericite). Retrograde metamorphism―driven by crustal extension―started at ~21 Ma (multi-method thermochronology; Stearns et al.[2013]). These Gneiss Domes offer a unique window into the Eocene-Miocene state of the Asian middle crust of the Pamir-Tibet Plateau. Top-to-N thrust stacking accommodated thickening in the upper crust, with displacements of single thrust sheets of > 30 and > 19 km. At depth, ductile flow formed km-scale recumbent fold nappes. We reconstruct their geometry by structural mapping and U-Pb zircon dating, documenting repetition of metatuffite, and paragneiss layers. In the interior of the domes, amphibolite-facies deformation fabrics with prograde kyanite define an E-W stretching lineation. Associated microstructures indicate top-to-E and top-to-W shear senses. Chocolate tablet boudinage indicate vertical flattening during bulk crustal thickening. We suggest that prograde E-W stretching relates to an early orogen-parallel flow component in the middle crust, contemporaneous with crustal stacking during bulk top-to-N convergence prior to ~21 Ma. Material likely evaded laterally out of the Pamir, contributing to >60 km thick crust in the Hindu Kush, west of the India-Asia frontal collision. In the Neogene crust extruded laterally from the Pamir Plateau to the west by dextral wrenching and E-W extension; this component of deformation is accommodated by E-W shortening in the Afghan-Tajik Depression.

  16. Early Permian Pangea `B' to Late Permian Pangea `A'

    NASA Astrophysics Data System (ADS)

    Muttoni, Giovanni; Kent, Dennis V.; Garzanti, Eduardo; Brack, Peter; Abrahamsen, Niels; Gaetani, Maurizio

    2003-10-01

    The pre-drift Wegenerian model of Pangea is almost universally accepted, but debate exists on its pre-Jurassic configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by ˜3000 km with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted ˜20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general distribution of plate boundaries and resulting driving forces are qualitatively consistent with a right-lateral shear couple between Gondwana and Laurasia during the Permian. Transcurrent plate boundaries associated with the Pangea transformation reactivated Variscan shear zones and were subsequently exploited by the opening of western Neotethyan seaways in the Jurassic.

  17. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  18. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - I. A simple damage structure inferred from borehole core permeability

    USGS Publications Warehouse

    Lockner, David A.; Tanaka, Hidemi; Ito, Hisao; Ikeda, Ryuji; Omura, Kentaro; Naka, Hisanobu

    2009-01-01

    The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine-grained core region, however, will impede fluid flow across the fault.

  19. Neotectonics in the foothills of the southernmost central Andes (37°-38°S): Evidence of strike-slip displacement along the Antiñir-Copahue fault zone

    NASA Astrophysics Data System (ADS)

    Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José

    2004-10-01

    The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.

  20. Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution

    USGS Publications Warehouse

    Kusky, Timothy M.; Bradley, Dwight C.; Donely, D. Thomas; Rowley, David; Haeussler, Peter J.

    2003-01-01

    A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5–3.0 kbars (5.2–10.5 km) into a part of the accretionary wedge with an ambient temperature of 210–300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt.Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 mélanges, and an arrayof faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons have sheeted margins and appear to have intruded along extensional jogs in margin-parallel strike-slip faults, whereas others form significant angles with the main faults and may have been influenced by minor faults of other orientations. Some of the plutons of the Sanak-Baranof belt have their long axes oriented parallel to faults of an orthorhombic fault set, implying that these faults may have provided a conduit for magma emplacement. This orthorhombic set of late faults is interpreted to have initially formed during the ridge subduction event, and continued to be active for a short time after passage of the triple junction. ENE-striking dextral faults of this orthorhombic fault system exhibit mutually crosscutting relationships with Eocene dikes related to ridge subduction, and mineralized strike-slip and normal faults of this system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Movement on the orthorhombic fault system accommodated exhumation of deeper levels of the southern Alaska accretionary wedge, which is interpreted as a critical taper adjustment to subduction of younger oceanic lithosphere during ridge subduction. These faults therefore accommodate both deformation of the wedge and assisted emplacement of near-trench plutons. Structures that crosscut the plutons and aureoles include the orthorhombic fault set and dextral strike-slip faults, reflecting a new kinematic regime established after ridge subduction, during underthrusting of the trailing oceanic plate with new dextral-oblique convergence vectors with the overriding plate. The observation that the orthorhombic fault set both cuts and is cut by Eocene intrusives demonstrates the importance of these faults for magma emplacement in the forearc.A younger, ca. 35 Ma suite of plutons intrudes the Chugach terrane in the Prince William Sound region, and their intrusion geometry was strongly influenced by pre-existing faults developed during ridge subduction. The generation of these plutons may be related to the sudden northward migration of the triple junction at ca. 40–33 Ma, as the ridge was being subducted nearly parallel to the trench during this interval. These younger plutons are used to provide additional constraints on the structural evolution of the wedge. Late- to post-ridge subduction fabrics include a pressure solution cleavage and additional movement on the orthorhombic fault system. After triple junction migration, subduction of the trailing oceanic plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. This change in kinematics is recorded by very late gouge-filled dextral faults in the late structures of the accretionary prism.

  1. A snail-eating snake recognizes prey handedness.

    PubMed

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-04-05

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal.

  2. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  3. Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Barbot, Sylvain; Fialko, Yuri; Sandwell, David

    2009-10-01

    We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a `homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (~1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.

  4. Mantle shear-wave tomography and the fate of subducted slabs.

    PubMed

    Grand, Steven P

    2002-11-15

    A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.

  5. Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Bezerra, F. H. R.; Rossetti, D. F.; Oliveira, R. G.; Medeiros, W. E.; Neves, B. B. Brito; Balsamo, F.; Nogueira, F. C. C.; Dantas, E. L.; Andrades Filho, C.; Góes, A. M.

    2014-02-01

    The eastern continental margin of South America comprises a series of rift basins developed during the breakup of Pangea in the Jurassic-Cretaceous. We integrated high resolution aeromagnetic, structural and stratigraphic data in order to evaluate the role of reactivation of ductile, Neoproterozoic shear zones in the deposition and deformation of post-rift sedimentary deposits in one of these basins, the Paraíba Basin in northeastern Brazil. This basin corresponds to the last part of the South American continent to be separated from Africa during the Pangea breakup. Sediment deposition in this basin occurred in the Albian-Maastrichtian, Eocene-Miocene, and in the late Quaternary. However, our investigation concentrates on the Miocene-Quaternary, which we consider the neotectonic period because it encompasses the last stress field. This consisted of an E-W-oriented compression and a N-S-oriented extension. The basement of the basin forms a slightly seaward-tilted ramp capped by a late Cretaceous to Quaternary sedimentary cover ~ 100-400 m thick. Aeromagnetic lineaments mark the major steeply-dipping, ductile E-W- to NE-striking shear zones in this basement. The ductile shear zones mainly reactivated as strike-slip, normal and oblique-slip faults, resulting in a series of Miocene-Quaternary depocenters controlled by NE-, E-W-, and a few NW-striking faults. Faulting produced subsidence and uplift that are largely responsible for the present-day morphology of the valleys and tablelands in this margin. We conclude that Precambrian shear zone reactivation controlled geometry and orientation, as well as deformation of sedimentary deposits, until the Neogene-Quaternary.

  6. Effective stress, friction and deep crustal faulting

    USGS Publications Warehouse

    Beeler, N.M.; Hirth, Greg; Thomas, Amanda M.; Burgmann, Roland

    2016-01-01

    Studies of crustal faulting and rock friction invariably assume the effective normal stress that determines fault shear resistance during frictional sliding is the applied normal stress minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at temperatures and stresses near the brittle-ductile transition (BDT) that depends on the percentage of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths where the shear zone is narrow. Below the BDT αf = 0 is due to a dramatically decreased strain rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the pore pressure alone and requires localization. If pore pressure increases and the fault localizes back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies among effective stress, contact-scale strain rate, and pore pressure allow estimates of the conditions necessary for deep low-frequency seismicity seen on the San Andreas near Parkfield and in some subduction zones. Among the implications are that shear in the region separating shallow earthquakes and deep low-frequency seismicity is distributed and that the deeper zone involves both elevated pore fluid pressure and localization.

  7. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    NASA Astrophysics Data System (ADS)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  8. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  9. Granite-hosted molybdenite mineralization from Archean Bundelkhand craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    NASA Astrophysics Data System (ADS)

    Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.

    2014-06-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  10. New investigations of the October 1999 Hector Mine Earthquake surface rupture

    NASA Astrophysics Data System (ADS)

    Sousa, F.; Harvey, J. C.; Hudnut, K. W.; Akciz, S. O.; Stock, J. M.

    2013-12-01

    We report on new field and computer based investigation of the surface rupture of the October 16, 1999 Hector Mine Earthquake. In cooperation with the United States Marine Corps Air Ground Combat Center Twentynine Palms (MCAGCC), our team was allowed ground and aerial access to the extent of the surface rupture for limited times during October - December 2012. As far as we know, this was the first scientific access granted to the entire surface rupture since the immediate aftermath of the earthquake, and the first scientific access of any kind to some parts of the maximum slip zone since before the event. This locale is an excellent natural laboratory for detailed study of a major earthquake surface rupture because: 1) complete circumscription within the boundaries of MCAGCC severely limit both past and future human disruption of the rupture, particularly in the mountainous maximum slip zone; 2) groundbreaking aerial LiDAR survey carried out six months after the earthquake was followed up by a higher density, wider swath LiDAR survey in May 2012, making the temporal evolution of this rupture perhaps the most completely physically documented of any major rupture; and 3) field investigation immediately following the event was followed up by computer based offset measurements using the April 2000 LiDAR dataset, providing a database of published offset measurements. Due to time constraints imposed by MCAGGC we focused our new research effort along the ~8 km long maximum slip zone of the rupture, roughly corresponding to the zone of >4 m dextral offset. Our investigation includes 1) walking this entire section of the fault and making >30 measurements of dextral slip while photo documenting the current state of the rupture; 2) creating a difference raster for the entire 8 km maximum slip zone from exactly congruent DEM's made from the 2000 and 2012 LiDAR data sets; 3) documenting the fault traces with a Trimble GeoXH high precision handheld GPS unit (+/- 10 cm); 4) carrying out field checks of a small number of computer-based offset measurements made using the 2000 LiDAR dataset; and 5) high-resolution low-altitude (<100 m AGL) photography of the maximum slip zone during a helicopter overflight. To date, important results include 1) identification of two new maximum slip locations where features are offset 7.9 m +/- 0.5 m and 6.7 m +/- 0.5 m; 2) a database of >30 offset measurements (georeferenced and photo documented) made by our team on the ground; 3) clear changes in fracture visibility in the field, with some fractures more visible, and others no longer visible, compared to the 1999-2000 studies; and 4) examples of a few field checks that both strongly agree and disagree with computer based LiDAR offset measurements.

  11. Full-field local displacement analysis of two-sided paperboard

    Treesearch

    J.M. Considine; D.W. Vahey

    2007-01-01

    This report describes a method to examine full-field displacements of both sides of paperboard during tensile testing. Analysis showed out-of-plane shear behavior near the failures zones. The method was reliably used to examine out-of-plane shear in double notch shear specimens. Differences in shear behavior of machine direction and cross-machine direction specimens...

  12. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  13. Role of Silica Redistribution in the Rate-State Behavior of Megathrusts: Field Observations and Experimental Results

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.; Den Hartog, S. A. M.

    2014-12-01

    Observations of ancient fault zones and results of high temperature friction experiments indicate that silica redistribution influences the rate (response to velocity increases) and state (time-dependent healing) behavior of megathrusts. The Kodiak Accretionary Complex in Alaska has four shear zones that record plate boundary deformation: the Ghost Rocks mélange, the Uganik thrust, the Uyak mélange, and the central belt of the Kodiak Formation. All these examples of underplated rocks represent top-toward-the-trench shear zones that extend along the plate margin for 100's of kms. The first three examples were accreted within the seismogenic zone and record a progressive history from stratal disruption and particulate flow to localized shearing on pervasive web-like arrays of scaly microfaults in shales. Microfaults show evidence for silica dissolution and local reprecipitation in dilational stepovers and in intensely veined sandstone blocks. The fourth example (the central belt) was accreted further downdip, and these rocks have pervasive, regularly spaced en echelon quartz vein systems. Microstructures within veins indicate periodic cracking and sealing during progressive simple shear. Silica depletion zones adjacent to veins indicate diffusive transport of silica in response to local chemical potential gradients. A simple 1-D transport-kinetics model indicates that cracks in this case could be filled with quartz in less than a year and in as little as a week. Rock friction experiments on lithologies similar to Kodiak examples depict three distinct regimes of frictional behavior as a function of increasing temperature, with velocity weakening in a T range that can be related to the seismogenic zone. These three regimes are predicted by a model for gouge deformation that includes thermally activated pressure solution during shear of quartz grains embedded in a foliated matrix. The slip instabilities that characterize the seismogenic zone may therefore be related in part to grain scale diffusive mass transfer of silica. The observations of Kodiak Fault zones indicate that silica redistribution also plays an important role in the interseismic period through crack healing and dissolution of silica, both along the plate interface and within the adjacent rocks that store elastic strain.

  14. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.

  15. Correlation between Reynolds number and eccentricity effect in stenosed artery models.

    PubMed

    Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto

    2013-01-01

    Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.

  16. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis

    NASA Astrophysics Data System (ADS)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean

    2018-06-01

    A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed to explore the influence of frictional heating and thermal pore fluid pressurization on the strain localization phenomenon. A general framework is presented to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM couplings and predict the onset of instability. The presence of internal lengths in Cosserat continua enables to estimate the thickness of the localization zone. This is done by performing a linear stability analysis of the system and looking for the selected wavelength corresponding to the instability mode with fastest finite growth coefficient. These concepts are applied to the study of fault zones under fast shearing. For doing so, we consider a model of a sheared saturated infinite granular layer. The influence of THM couplings on the bifurcation state and the shear band width is investigated. Taking representative parameters for a centroidal fault gouge, the evolution of the thickness of the localized zone under continuous shear is studied. Furthermore, the effect of grain crushing inside the shear band is explored by varying the internal length of the constitutive law.

  17. Rheology linked with phase changes as recorded by development of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Jeřábek, Petr; Bukovská, Zita

    2015-04-01

    The South Armorican Shear Zone in France represents a major right-lateral strike slip shear zone formed in the late stages of Variscan orogeny. The active deformation in this shear zone is associated with the development of S-C fabrics in granitoids where thin shear bands (C) overprint an earlier higher grade metamorphic foliation (S). In the studied samples covering low to high intensity of shear band overprint, we identified three stages of shear band evolution associated with distinct microstructures and deformation mechanisms. The initiation of shear bands stage I is associated with the formation of microcracks crosscutting the S fabric and detected namely in the recrystallized quartz aggregates. The microcracks of suitable orientation are filled by microcline, albite, muscovite and chlorite which is a typical assemblage also for the well developed shear bands. Phase equilibrium modeling in PERPLEX indicates that this assemblage formed at pressure-temperature range of 0.1-0.4 GPa and 300-340 °C. Stage II of shear band evolution is characterized by dynamic recrystallization and grain size reduction of quartz aggregates along the microcracks and replacement of quartz by microcline along grain boundaries. This process leads to disintegration of quartz aggregate fabric and phase mixing in the shear bands. The inferred deformation mechanism for this stage is solution-precipitation creep although recrystallization of quartz is still active at the contact between quartz aggregates and shear bands. The coarse grained microstructure of quartz aggregates with ca ~250 microns average grain size reduces to ~10 microns grain size when recrystallized along extremely thin shear bands/microcracks and to ~20 microns grain size when recrystallized along the thicker shear bands. By using the flow law of Patterson and Luan (1990) for dislocation creep in quartz and the quartz piezometer of Stipp and Tullis (2003) corrected after Holyoke and Kronenberg (2010), the quartz recrystallization along thin shear bands records strain rates of ~10^-14 whereas the recrystallization along thick shear bands records strain rates of ~10^-15. The contemporaneous operation of solution-precipitation creep in shear bands and dislocation creep in quartz along the shear band boundary suggests low viscosity contrast between the mixed phase shear band matrix and pure quartz aggregate implying that the solution-precipitation creep reflect similar stress and strain rate conditions as the dislocation creep in quartz. Stage III of shear band evolution is characterized by interconnection of dispersed muscovite grains and the deformation becomes accommodated by dislocation creep in thin muscovite bands separating the inactive domains of stage II microstructure. References: Holyoke III, C. W., & Kronenberg, A. K. (2010). Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics, 494(1-2), 17-31. Paterson, M. S., & Luan, F. C. (1990). Quartzite rheology under geological conditions. In R. J. Knipe & E. H. Rutter (Eds.), Deformation Mechanisms, Rheology and Tectonics (pp. 299-307). London: Geological Society Special Publications. Stipp, M., & Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21), 1-5.

  18. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    NASA Astrophysics Data System (ADS)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.

  19. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.

  20. 40Ar-39Ar laser dating of ductile shear zones from central Corsica (France): Evidence of Alpine (middle to late Eocene) syn-burial shearing in Variscan granitoids

    NASA Astrophysics Data System (ADS)

    Di Vincenzo, Gianfranco; Grande, Antonietta; Prosser, Giacomo; Cavazza, William; DeCelles, Peter G.

    2016-10-01

    The island of Corsica (France) plays a central role in any reconstruction of Western Mediterranean geodynamics and paleogeography but several key aspects of its geological evolution are still uncertain. The most debated topics include the interpretation of the Corsican orogen as the result of an east- or west-directed subduction, and the actual involvement of the Variscan basement of Corsica in the Alpine orogenic cycle. This study integrates 40Ar-39Ar laserprobe, mesostructural, microtextural, and microchemical analyses and places relevant constraints on the style, P-T conditions, and timing of Alpine-age, pervasive ductile shear zones which affected the Variscan basement complex of central Corsica, a few kilometers to the west of the present-day front of the Alpine nappes. Shear zones strike NNE-SSW, dip at a high angle, and are characterized by a dominant sinistral strike-slip component. Two of the three investigated shear zones contain two texturally and chemically resolvable generations of white mica, recording a prograde (burial) evolution: (1) deformed celadonite-poor relicts are finely overgrown by (2) a celadonite-rich white mica aligned along the main foliation. White mica from a third sample of another shear zone, characterized by a significantly lower porphyroclast/matrix ratio, exhibits a nearly uniform high-celadonite content, compositionally matching the texturally younger phengite from the nearby shear zones. Mineral-textural analysis, electron microprobe data, and pseudosection modeling constrain P-T conditions attained during shearing at 300 °C and minimum pressures of 0.6 GPa. In-situ 40Ar-39Ar analyses of coexisting low- and high-celadonite white micas from both shear zones yielded a relatively wide range of ages, 45-36 Ma. Laser step-heating experiments gave sigmoidal-shaped age profiles, with step ages in line with in-situ spot dates. By contrast, the apparently chemically homogenous high-celadonite white mica yielded concordant in-situ ages at 34 Ma, but a hump-shaped age spectrum, with maximum ages of 35 Ma and intermediate- to high-temperature steps as young as 33-32 Ma. Results indicate that the studied samples consist of an earlier celadonite-poor white mica with a minimum age of 46 Ma, overgrown by a synshear high-celadonite white mica, developed at greater depth between 37 and 35 Ma; faint late increments in shearing occurred at ≤ 33-32 Ma, when white mica incipiently re-equilibrated during exhumation. Results suggest that ductile shearing with a dominant strike-slip component pervasively deformed the Corsican basement complex during the emplacement and progressive thickening of the Alpine orogenic wedge and broaden the extent of the domain affected by the Alpine tectonometamorphic events. Integration of petrological modeling and geochronological data shows that the Variscan basement of central Corsica, close to the Alpine nappes, was buried during the late Eocene by ≥ 18 km of Alpine orogenic wedge and foreland deposits. Our results, combined with previously published apatite fission-track data, imply an overburden removal ≥ 15 km from the late Eocene (Priabonian) to the early Miocene (Aquitanian), pointing to a minimum average exhumation rate of 1.3-1.5 mm/a.

  1. Natural constraints on the rheology of the lower continental crust (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio

    2015-04-01

    Current models and extrapolated laboratory data generally predict viscous flow in the lower continental crust and any localized brittle deformation at these depths has been proposed to reflect downward propagation of the frictional-viscous transition zone during short-term seismic events and related high strain rates. Better natural constraints on this proposed rheological behaviour can be obtained directly from currently exposed lower crust that has not been strongly overprinted during its exhumation. One of the largest and best preserved lower crustal sections is located in the Musgrave Ranges, Central Australia. The Petermann Orogeny (550 Ma) in this area is characterized by the development of localized shear zones on a wide range of scales, overprinting water-deficient granulites of Musgravian age (1.2 Ga) as well as younger granites and gabbros. Shearing is rarely localized on lithological inhomogeneities, but rather on precursor fractures and on commonly associated pseudotachylytes. The only exception is that older dolerite dykes are often exploited, possibly because they are planar layers of markedly smaller grain size. Sheared pseudotachylyte often appears caramel-coloured in the field and has a fine grained assemblage of Grt+Cpx+Fsp. Multiple generations of pseudotachylyte formed broadly coeval with shearing are indicated by clasts of sheared pseudotachylyte within pseudotachylyte veins that then themselves subsequently sheared. The ductile shear zones formed under sub-eclogitic conditions of ca. 650°C and 1.2 GPa, generally typical of the lower continental crust. However, the P-T conditions during pseudotachylyte formation cannot be readily determined using classical geothermobarometry, because of the fine grain sizes and possible disequilibrium. The software "Xmaptools" (by Pierre Lanari) allows the quantification of X-ray maps produced by EDS or WDS. It provides both very precise definition of local mineral compositions for exchange geothermobarometry on a statistical basis, and an estimate of the bulk pseudotachylyte composition for small areas, avoiding clasts and heterogeneous composition of the former melt. The combination with thermodynamic modelling using PerpleX is used to test the results from geothermobarometry. The estimated conditions are similar to the ductile shear zones and support evidence for synchronous action of brittle faulting and viscous shearing in the lower crust.

  2. Polyphase deformation history and strain analyses of the post-amalgamation depositional basins in the Arabian-Nubian Shield: Evidence from Fatima, Ablah and Hammamat Basins

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Fakharani, Abdelhamid; Abdeen, Mamdouh M.

    2014-11-01

    Post-amalgamation depositional basins <650 Ma (PADBs), dominated by volcano-sedimentary assemblages, unconformably overlying Neoproterozoic juvenile (mantle-derived) arcs, represent one of the main collage in the Arabian-Nubian Shield (ANS). In this work, three distinguished PADBs; namely Fatima, Ablah and Hammamat PADBs, are the subject matter of detailed field investigations and quantitative strain analysis in an attempt to highlight the polyphase deformation history of these PADBs and to discern whether the ANS's PADBs were deformed at the same time or not. The Fatima PADB is studied in its type locality along the northwestern flank of Wadi Fatima; between Jabal Abu Ghurrah and Jabal Daf, in Jeddah tectonic terrane. The Ablah PADB is examined around Wadi Yiba, further south of its type locality near Jabal Ablah in Al-Aqiq Quadrangle, in Asir tectonic terrane. The Hammamat PADB is investigated in Wadi Umm Gheig, Wadi Allaqi and Wadi Hodein in the Egyptian Eastern Desert tectonic terrane. It is supposed that the Fatima is a basin controlled by dextral transcurrent shearing occurred along the NE-oriented Wadi Fatima Shear Zone and the Ablah is a strike-slip pull-apart basin, and both basins were believed to be deposited during and soon after the Nabitah Orogeny (680-640 Ma) that marked suturing of the Afif terrane with the oceanic ANS terranes to the west. They were affected by at least three Neoproterozoic deformation phases and show geometric and kinematic relationships between folding and thrusting. The Hammamat PADB is a fault-bounded basin affected by a NW-SE- to NNW-SSE-oriented shortening phase just after the deposition of the molasse sediments, proved by NW- to NNW-verging folds and SE- to SSE-dipping thrusts that were refolded and thrusted in the same direction. The shortening phase in the Hammamat was followed by a transpressional wrenching phase related to the Najd Shear System, which resulted in the formation of NW-SE sinistral-slip faults associated with positive flower structures that comprise NE-verging folds and SW-dipping thrusts. Strain results in the three studied PADBs are nearly consistent, indicating that they are correlated and underwent the same history of deformation. The ANOVA test indicates that there is no significant difference for the Vector mean and ISYM for the three PADBs. There is only a significant difference for the Harmonic mean (P-value < 0.05). A Post Hoc test (Shefee) shows that the difference exists between the Allaqi and the Umm Gheig's deformed polymictic conglomeratic pebbles of the Hammamat PADB.

  3. Fluid and element transfer at the slab-mantle interface: insights from the serpentinized Livingstone Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Scott, J.; Tarling, M.; Tulley, C. J.; le Roux, P. J.

    2017-12-01

    At the slab-mantle interface in subduction zones, hydrous fluids released by dehydration reactions are fluxed upwards into the fore-arc mantle corner. The extent to which these fluids can move across the plate interface shear zone has significant implications for understanding the composition of the mantle wedge and the origin of episodic tremor and slow slip. The >1000 km long Livingstone Fault in New Zealand provides a superbly exposed analogue (both in terms of scale and the rock types involved) for the serpentinite shear zone likely to be present along the slab-mantle interface. The Livingstone Fault is a sheared serpentinite mélange up to several hundreds of meters wide that separates greenschist-facies quartzofeldspathic metasediments (e.g. analogue for slab sediments) from variably-serpentinized harzburgitic peridotite (e.g. analogue for mantle wedge). To track element mobility and paleo-fluid flow across the shear zone, Sr and Nd isotopes were measured in five transects across the metasediments, mélange and serpentinized peridotites. Results show that the mélange and serpentinized peridotites (originally with Sr and Nd similar to Permian MORB) were progressively overprinted with the isotopic composition of the metasediments at distances of up to c. 400 m from the mélange-metasediment contact. Mass balance calculations require that many elements were mobile across the mélange shear zone, but permeability modeling indicates that diffusive transfer of such elements is unrealistically slow. Instead, it appears that fluid and element percolation in to and across the mélange was aided by episodic over-pressuring and fracturing, as indicated by the widespread presence of tremolite-bearing breccias and veins that mutually cross-cut the serpentinite mélange fabrics. Overall, the field and isotopic results indicate that fluid and element redistribution within major serpentinite-bearing shear zones is strongly aided by fracturing and brecciation that are triggered by episodic fluid over-pressuring. By comparison to recent geophysical and experimental results, we infer that high fluid pressures and the resultant brittle failure processes may contribute to the slow slip and tremor signal near the forearc mantle corner.

  4. The Influence of Grain Boundary Fluids on the Recrystallization Behavior in Calcite: A Comparison of "dry" and "wet" Marble Mylonites

    NASA Astrophysics Data System (ADS)

    Schenk, O.; Urai, J.; Evans, B.

    2003-12-01

    Carbonate rocks are able to accumulate large amounts of strain and deform crystal-plastically even at low p-T conditions and thus, marble sequences are often the site of strain localization in the upper crust during late-stage deformation in mountain building processes. In this study we sought to identify the effect of fluids on grain boundary morphology and recrystallization processes in marble mylonites during shear zone evolution, as fluids play a major role in the flow behavior of many rock materials during deformation (e.g. quartz, olivine, halite, feldspar). We compared calcite marble mylonites from two geological settings: (a) Schneeberg Complex, Southern Tyrole, Italy and (b) Naxos Metamorphic Core Complex, Greece. The shear zones of the selected areas are suitable for comparison, because they consist of similar lithology and the marble mylonites resemble each other in chemical composition. In addition, calcite-dolomite solvus geothermometry and TEM observations indicate similar p-T conditions for the shear zones formation. However, the two settings are different in the availability of fluids during the shear zone evolution: In the Schneeberg mylonites, both the alteration of minerals during retrograde metamorphism of neighboring micaschists and the existence of veins suggest that fluids were present during mylonitization. The absence of these features in the Naxos samples indicates that fluids were not present during deformation of these mylonites. This difference is also supported by the signature of stable isotopes. Microstructural investigations using optical and scanning electron microscopes on broken and planar surfaces did not indicate major differences between wet and dry mylonites: Grain boundaries of both types of samples display pores with shapes controlled by crystallography, and pore morphologies that are similar to observations from crack and grain-boundary healing experiments. Grain size reduction was predominantly the result of subgrain rotation recrystallization. However, the coarse grains inside the wet protomylonites (Schneeberg) are characterized by intracrystalline shear zones. With the exception of the intracrystalline shear zones, there were no obvious microstructural signatures that were obvious indicators of the presence of fluids, at least for these two field examples.

  5. Origin and evolution of the Seattle Fault and Seattle Basin, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.

    1994-01-01

    Analysis of seismic reflection data reveals that the Seattle basin (Washington) is markedly asymmetric and consists of ~9-10 km of Eocene and younger deposits. The basin began as a discrete geologic element in the late Eocene (~40 Ma), the result of a reorganization in regional fault geometry and kinematics. In this reorganization, dextral offset on the Puget fault southeast of Seattle stepped eastward, and the Seattle fault began as a restraining transfer zone. North-vergent reverse or thrust faulting on the Seattle fault forced flexural subsidence in the Seattle basin to the north. Offset on the Seattle fault and subsidence of the Seattle basin have continued to the present. -Authors

  6. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    PubMed

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  7. Simulating stick-slip failure in a sheared granular layer using a physics-based constitutive model

    DOE PAGES

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; ...

    2017-01-14

    In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less

  8. Response to comment on "No late Quaternary strike-slip motion along the northern Karakoram fault"

    NASA Astrophysics Data System (ADS)

    Robinson, Alexander C.; Owen, Lewis A.; Chen, Jie; Schoenbohm, Lindsay M.; Hedrick, Kathryn A.; Blisniuk, Kimberly; Sharp, Warren D.; Imrecke, Daniel B.; Li, Wenqiao; Yuan, Zhaode; Caffee, Marc W.; Mertz-Kraus, Regina

    2016-06-01

    In their comment on ;No late Quaternary strike-slip motion along the northern Karakoram fault;, while Chevalier et al. (2016) do not dispute any of the results or interpretations regarding our observations along the main strand of the northern Karakoram fault, they make several arguments as to why they interpret the Kongur Shan Extensional System (KES) to be kinematically linked to the Karakoram fault. These arguments center around how an ;active; fault is defined, how slip on segments of the KES may be compatible with dextral shear related to continuation of the Karakoram fault, and suggestions as to how the two fault systems might still be connected. While we appreciate that there are still uncertainties in the regional geology, we address these comments and show that their arguments are inconsistent with all available data, known geologic relationships, and basic kinematics.

  9. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  10. Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device

    NASA Astrophysics Data System (ADS)

    Cen, Duofeng; Huang, Da

    2017-06-01

    Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.

  11. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  12. Enhanced Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam for Metal, Radionuclide, and NAPL Remediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.

    2010-12-01

    In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.

  13. A new finite element code for the study of strain-localization under strike-slip faults

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J.; Montesi, L.

    2016-12-01

    Shear localization under strike-slip faults in ductile conditions remains a matter of debate. The rheology of rocks in the ductile regime is fundamentally strain-rate hardening, which complicates the understanding of the formation of narrow shear zones. Localized shear zones are present in a variety of scales, including kilometric structures at plate boundaries. To compensate for strain-rate hardening, shear zones must be weaker than their surroundings thanks to some weakening mechanism that works at multiple length scales. Mechanisms as shear heating or grain size reduction have been invoked to explain localization of deformation, but none of these mechanisms can work in scales that range from 1 to 1000 km. Layered fabric development has been suggested as a candidate to develop localized shear zones at multiple scales. To test this hypothesis, we have developed a new software that uses the Finite Element Method library deal.II written in C++. We solve the elasticity equations for elastic and Maxwell visco-elastic mediums. A key component required to study strain localization is adaptive mesh refinement. The code automatically identifies those regions in which the deformation is being localized and will increase the resolution. We benchmark the code and test its accuracy using analytical solutions of strike-slip deformation with different boundary conditions. We simulate the instantaneous deformation caused by two kinds of dislocations: a free fault subject to a far field traction and fault with an imposed displacement. We also simulate the visco-elastic relaxation following a strike-slip dislocation. We show that deal.II is a flexible library, suitable for different problems, which will prove useful to study the mechanisms that can lead to strain localization.

  14. Rheology and stress in subduction zones around the aseismic/seismic transition

    NASA Astrophysics Data System (ADS)

    Platt, John P.; Xia, Haoran; Schmidt, William Lamborn

    2018-12-01

    Subduction channels are commonly occupied by deformed and metamorphosed basaltic rocks, together with clastic and pelagic sediments, which form a zone up to several kilometers thick to depths of at least 40 km. At temperatures above 350 °C (corresponding to depths of > 25-35 km), the subduction zone undergoes a transition to aseismic behavior, and much of the relative motion is accommodated by ductile deformation in the subduction channel. Microstructures in metagreywacke suggest deformation occurs mainly by solution-redeposition creep in quartz. Interlayered metachert shows evidence for dislocation creep at relatively low stresses (8-13 MPa shear stress). Metachert is likely to be somewhat stronger than metagreywacke, so this value may be an upper limit for the shear stress in the channel as a whole. Metabasaltic rocks deform mainly by transformation-assisted diffusional creep during low-temperature metamorphism and, when dry, are somewhat stronger than metachert. Quartz flow laws for dislocation and solution-redeposition creep suggest strain rates of 10-12 s-1 at 500 °C and 10 MPa shear stress: this is sufficient to accommodate a 100 mm/yr. convergence rate within a 1 km wide ductile shear zone. The up-dip transition into the seismic zone occurs through a region where deformation is still distributed over a thickness of several kilometers, but occurs by a combination of microfolding, dilational microcracking, and solution-redeposition creep. This process requires a high fluid flux, released by dehydration reactions down-dip, and produces a highly differentiated deformational fabric with alternating millimeter-scale quartz and phyllosilicate-rich bands, and very abundant quartz veins. Bursts of dilational microcracking in zones 100-200 m thick may cause cyclic fluctuations in fluid pressure and may be associated with episodic tremor and slow slip events. Shear stress estimates from dislocation creep microstructures in dynamically recrystallized metachert are 10 MPa. [Figure not available: see fulltext.

  15. Timing and conditions of regional metamorphism and crustal shearing in the granulite facies basement of south Namibia: Implications for the crustal evolution of the Namaqualand metamorphic basement in the Mesoproterozoic

    NASA Astrophysics Data System (ADS)

    Bial, Julia; Büttner, Steffen; Appel, Peter

    2016-11-01

    Granulite facies basement gneisses from the Grünau area in the Kakamas Domain of the Namaqua-Natal Metamorphic Province in south Namibia show high-grade mineral assemblages, most commonly consisting of garnet, cordierite, sillimanite, alkali feldspar and quartz. Cordierite + hercynitic spinel, and in some places quartz + hercynitic spinel, indicate granulite facies P-T conditions. The peak assemblage equilibrated at 800-850 °C at 4.0-4.5 kbar. Sillimanite pseudomorphs after kyanite1 and late-stage staurolite and kyanite2 indicate that the metamorphic record started and ended within the stability field of kyanite. Monazite in the metamorphic basement gneisses shows a single-phase growth history dated as 1210-1180 Ma, which we interpret as the most likely age of the regional metamorphic peak. This time coincides with the emplacement of granitic plutons in the Grünau region. The ∼10 km wide, NW-SE striking Grünau shear zone crosscuts the metamorphic basement and overprints high-temperature fabrics. In sheared metapelites, the regional metamorphic peak assemblage is largely obliterated, and is replaced by synkinematic biotite2, quartz, alkali feldspar, sillimanite and cordierite or muscovite. In places, gedrite, staurolite, sillimanite and green biotite3 may have formed late- or post-kinematically. The mylonitic mineral assemblage equilibrated at 590-650 °C at 3.5-5.0 kbar, which is similar to a retrograde metamorphic stage in the basement away from the shear zone. Monazite cores in two mylonite samples are similar in texture and age (∼1200 Ma) to monazite in metapelites away from the shear zone. Chemically distinct monazite rims indicate a second growth episode at ∼1130-1120 Ma. This age is interpreted to date the main deformation episode along the Grünau shear zone and the retrograde metamorphic stage seen in the basement. The main episode of ductile shearing along the Grünau shear zone took place 70-80 million years after the thermal peak metamorphism and granite emplacement, and after substantial isobaric cooling of the basement. Metamorphism and regional shearing in the Grünau area can be correlated with the crustal evolution in the Kakamas Domain in South Africa, but not with the timing of metamorphism in the Aus area, 230 km to the NW of Grünau, which is significantly younger.

  16. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Treesearch

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  17. Fault Wear by Damage Evolution During Steady-State Slip

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  18. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-10-01

    Pre-existing structures within crystalline basement may exert a significant influence over the evolution of rifts. However, the exact manner in which these structures reactivate and thus their degree of influence over the overlying rift is poorly understood. Using borehole-constrained 2D and 3D seismic reflection data from offshore southern Norway we identify and constrain the three-dimensional geometry of a series of enigmatic intrabasement reflections. Through 1D waveform modelling and 3D mapping of these reflection packages, we correlate them to the onshore Caledonian thrust belt and Devonian shear zones. Based on the seismic-stratigraphic architecture of the post-basement succession, we identify several phases of reactivation of the intrabasement structures associated with multiple tectonic events. Reactivation preferentially occurs along relatively thick (c. 1 km), relatively steeply dipping (c. 30°) structures, with three main styles of interactions observed between them and overlying faults: i) faults exploiting intrabasement weaknesses represented by intra-shear zone mylonites; ii) faults that initiate within the hangingwall of the shear zones, inheriting their orientation and merging with said structure at depth; or iii) faults that initiate independently from and cross-cut intrabasement structures. We demonstrate that large-scale discrete shear zones act as a long-lived structural template for fault initiation during multiple phases of rifting.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.

    In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less

  20. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  1. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  2. Evolution of fabric in Chitradurga granite (south India) - A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis

    NASA Astrophysics Data System (ADS)

    Mondal, Tridib Kumar

    2018-01-01

    In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc = Inclination.

  3. Ground Surface Deformation in Unconsolidated Sediments Caused by Bedrock Fault Movements: Dip-Slip and Strike-Slip Fault Model Test and Field Survey

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Tani, K.

    2001-12-01

    Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.

  4. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik

    2017-04-01

    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.

  5. Effect of tree roots on a shear zone: modeling reinforced shear stress.

    Treesearch

    Kazutoki Abe; Robert R. Ziemer

    1991-01-01

    Tree roots provide important soil reinforcement that impoves the stability of hillslopes. After trees are cut and roots begin to decay, the frequency of slope failures can increase. To more fully understand the mechanics of how tree roots reinforce soil, fine sandy soil containing pine roots was placed in a large shear box in horizontal layers and sheared across a...

  6. Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes

    USGS Publications Warehouse

    Pallister, John S.; Cashman, Katharine V.; Hagstrum, Jonathan T.; Beeler, Nicholas M.; Moran, Seth C.; Denlinger, Roger P.

    2013-01-01

    The 2004–2008 eruption of Mount St. Helens produced seven dacite spines mantled by cataclastic fault rocks, comprising an outer fault core and an inner damage zone. These fault rocks provide remarkable insights into the mechanical processes that accompany extrusion of degassed magma, insights that are useful in forecasting dome-forming eruptions. The outermost part of the fault core consists of finely comminuted fault gouge that is host to 1- to 3-mm-thick layers of extremely fine-grained slickenside-bearing ultracataclasite. Interior to the fault core, there is an ∼2-m-thick damage zone composed of cataclastic breccia and sheared dacite, and interior to the damage zone, there is massive to flow-banded dacite lava of the spine interior. Structures and microtextures indicate entirely brittle deformation, including rock breakage, tensional dilation, shearing, grain flow, and microfaulting, as well as gas and fluid migration through intergranular pores and fractures in the damage zone. Slickenside lineations and consistent orientations of Riedel shears indicate upward shear of the extruding spines against adjacent conduit wall rocks.Paleomagnetic directions, demagnetization paths, oxide mineralogy, and petrology indicate that cataclasis took place within dacite in a solidified steeply dipping volcanic conduit at temperatures above 500 °C. Low water content of matrix glass is consistent with brittle behavior at these relatively high temperatures, and the presence of tridymite indicates solidification depths of <1 km. Cataclasis was coincident with the eruption’s seismogenic zone at <1.5 km.More than a million small and low-frequency “drumbeat” earthquakes with coda magnitudes (Md) <2.0 and frequencies <5 Hz occurred during the 2004–2008 eruption. Our field data provide a means with which to estimate slip-patch dimensions for shear planes and to compare these with estimates of slip patches based on seismic moments and shear moduli for dacite rock and granular fault gouge. Based on these comparisons, we find that aseismic creep is achieved by micron-scale displacements on Riedel shears and by granular flow, whereas the drumbeat earthquakes require millimeter to centimeter displacements on relatively large (e.g., ∼1000 m2) slip patches, possibly along observed extensive principal shear zones within the fault core but probably not along the smaller Riedel shears. Although our field and structural data are compatible with stick-slip models, they do not rule out seismic and infrasound models that call on resonance of steam-filled fractures to generate the drumbeat earthquakes. We suggest that stick-slip and gas release processes may be coupled, and that regardless of the source mechanism, the distinctive drumbeat earthquakes are proving to be an effective precursor for dome-forming eruptions.Our data document a continuous cycle of deformation along the conduit margins beginning with episodes of fracture in the damage zone and followed by transfer of motion to the fault core. We illustrate the cycle of deformation using a hypothetical cross section of the Mount St. Helens conduit, extending from the surface to the depth of magmatic solidification.

  7. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China

    NASA Astrophysics Data System (ADS)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi

    2018-05-01

    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  8. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    DTIC Science & Technology

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  9. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation

    NASA Astrophysics Data System (ADS)

    Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi

    2017-04-01

    The instrumental seismicity of Bhutan is characterized by a lower activity compared to most other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. From the recorded seismicity, earthquake moment tensors, and local earthquake tomography, we reveal along-strike variations in structure and crustal deformation regime. Imaged structural variations, primarily a thickened crust in western Bhutan, suggest lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting interseismic coupling and style of deformation. Sikkim, western Bhutan, and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking dextral fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) might segment the MHT between eastern Nepal and western Bhutan and connect the deformation front of the Himalaya with the Shillong Plateau in the foreland by forming the western boundary of a West-Assam block. In contrast, the eastern boundary of this block, hitherto associated with the Kopili foreland fault, appears to be diffuse. In eastern Bhutan, we image a seismogenic, flat portion of the MHT, which might be related to a partially creeping fault segment or increased background seismicity originating from the 2009 MW6.1 earthquake. In western-central Bhutan, clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes beneath the densely populated foreland basin as documented by the Dhubri earthquake of 1930, which is likely associated to this structure.

  10. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  11. Anisotropic structures of oceanic slab and mantle wedge in a deep low-frequency tremor zone beneath the Kii Peninsula, SW Japan

    NASA Astrophysics Data System (ADS)

    Saiga, Atsushi; Kato, Aitaro; Kurashimo, Eiji; Iidaka, Takashi; Okubo, Makoto; Tsumura, Noriko; Iwasaki, Takaya; Sakai, Shin'ichi; Hirata, Naoshi

    2013-03-01

    is an important feature of elastic wave propagation in the Earth and can arise from a variety of ordered architectures such as fractures with preferential alignments or preferred crystal orientations. We studied the regional variations in shear wave anisotropy around a deep Low-Frequency Earthquake (LFE) zone beneath the Kii Peninsula, SW Japan, using waveforms of local earthquakes observed by a dense linear array along the LFE zone. The fast directions of polarization are subparallel to the strike of the margin for both crustal and intraslab earthquakes. The delay time of the split shear waves in intraslab earthquakes is larger than that in crustal earthquakes and shows a down-dip variation across the LFE zone. This indicates that anisotropy exists in the mantle wedge and in the lower crust and/or oceanic slab. We explain the observed delay time of 0.015-0.045 s by suggesting that the mantle wedge consists of a deformed, 1-15 km thick serpentine layer if the mantle wedge is completely serpentinized. In addition to high-fluid pressures within the oceanic crust, the sheared serpentine layer may be a key factor driving LFEs in subduction zones.

  12. Structure and Tectonics of the Saint Elias Orogen

    NASA Astrophysics Data System (ADS)

    Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.

    2001-12-01

    The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and accretion is marked by only modest amounts of uplift. The structural boundary between the central and western segments of the orogen localizes the course of the Bering piedmont glacier. The structural segments coincide with subdivisions in historical seismicity, particularly ruptures of great to large magnitude earthquakes. The results of this structural study provide the requisite geological framework to design new-generation geophysical monitoring systems to study active deformation within the orogen.

  13. Potential for Great Thrust Earthquakes in NE Colombia & NW Venezuela

    NASA Astrophysics Data System (ADS)

    Bilham, R. G.; Mencin, D.

    2013-05-01

    Sixty-five percent of the ≈19 mm/yr eastward velocity of the Caribbean Plate north of Aruba and the Guajira peninsula relative to the South American plate is accommodated by dextral slip on the Bocono Fault system in NW Venezuela at 12±1 mm/yr, the remaining ~3 mm/yr of shear apparently distributed to the NW of the fault (Perez et al., 2011). The N40E strike of the Bocono fault system, however, requires that 10.6±1 mm/yr of convergence should accompany this partitioned dextral shear, but GPS measurements reveal that less than 25% of this convergence occurs across the Venezuelan Andes. The remaining 6-8 mm of convergence is presumably accommodated by incipient subduction between the Bocono fault and a trench 300 km NW of the northern coast of Colombia. Hence NW Venezuela and NE Colombia may occasionally host great earthquakes. Our current poor understanding of the geometry of the plate interface permits the plate to be locked 300 km down-dip and possibly 600 km along-strike, and if the plate slips in 10 m ruptures it could do so every 1200 years in a M~9 earthquake. No great earthquake has occurred since 1492, since when ~4 m of potential slip has developed, but should slip occur on just 10% of the hypothesized décollement (100x150 km) it could do so now in an Mw=8.2 earthquake. In that a potential Mw>8 earthquake poses a future seismic and tsunami threat to the Caribbean it is important to examine whether great earthquakes have occurred previously near the NW Venezuela coast. It is possible that creep accommodates the entire convergence signal, since there is no suggestion from microseismicity for an abrupt locked-to-sliding transition, as, for example, signifies its location in the Himalaya. An alternative measure of future potential seismic energy release is to identify the locus and rate of present-day strain contraction. To this end, Venezuelan, Colombian and US (CU and UNAVCO) investigators are installing an array of more than a dozen continuous operating GPS sites in the region. Studies of tsunami deposits on the Dutch Antilles suggest that the provenance of paleotsunami responsible for moving 10-100 ton blocks of coral onshore in the past two millennia has been from the east (Sheffers, 2002), and not from the north or south as we might expect from a NW Venezuelan earthquake. The existence of precariously balanced rocks in the region provides an alternative constraint on the occurrence of large local accelerations. The survival of at least four precariously balanced megablocks on the island of Aruba suggests that horizontal accelerations here have not exceeded 1 g for the past several millennia, but refined numerical estimates of potential shaking intensity consistent with their survival have yet to be completed. Accelerations exceeded 2.5 g in the Tohuko 2011 earthquake but above the Mexican subduction zone, accelerations have typically not exceeded 0.5 g in recent Mw~7.5 earthquakes, and hence the existence of these blocks may not exclude the historical occurrence of damaging earthquakes. A broader search for surviving strong-motion indicators in Colombia and Venezuela is planned during the installation of the GPS array.

  14. Structural Analyses of the Kahiltna Terrane: A Kinematic Record of the Collision of the Talkeetna Superterrane

    NASA Astrophysics Data System (ADS)

    Bier, S. E.; Fisher, D.

    2002-12-01

    Macro-, meso-, and microscale structural analyses from several localities across the ~1000 km Kahiltna Terrane provide valuable kinematic insights into the late Cretaceous collision between the Talkeetna superterrane and North America. The Kahiltna Terrane, a Jurassic-Cretaceous flysch basin inboard of the Talkeetna superterrane (Wrangellia, Peninsular, and Alexander terranes), contains incremental strain indicators that record a history of oblique collision and subsequent deformation in a strike-slip regime. A comparison of structural data from localities across the Kahiltna terrane suggests a unique history not yet described in previous work on south-central Alaskan tectonics. Data was collected from the Reindeer Hills area, the northwestern Talkeetna Mountains, Denali National Park, the Peters Hills, and the Tordrillo Mountains. In the Reindeer Hills, a melange zone occurs as a series of exposures dismembered by ongoing strike slip faulting between the flysch of the Kahiltna terrane and the precollisional edge of the North American continent. This melange is characterized by fault-bounded blocks of Paleozoic limestone and sandstone within an argillite matrix with a conspicuous scaly fabric. The blocks range in size from 10 cm to tens of meters; and melange fish indicate a south-directed shear sense. The melange is overlain by a red and green (Triassic-Jurassic?) conglomerate along an unconformity that likely marks the base of a perched slope basin near the toe of an accretionary wedge. The strike of bedding and cleavage in this area trends EW. The fold axes trend NW-SE and folds verge to the south. In the northwest corner of the Talkeetna Mountains, the structure is dominated by north vergent folds and faults. The strike of bedding trends ~025°; whereas the strike of the cleavage is ~060°. Both cleavage and bedding dip to the southeast. The fold axes trend roughly NE-SW. North of the Denali Fault System, in Denali National Park, strike of bedding is ~122° and the dip is to the southwest. Folds can be divided into two sets: 1) tight folds with axes trending E-W and 2) open folds with axes that trend N-S. Cleavage is axial planar to the first set of folds. Crenulation cleavage that trends E-W may also be associated with the first set of folds. In the Peters Hills, reversals in facing direction indicate the presence of multiple macroscale folds. The strike of bedding and cleavage trend ~240° and dip to the northwest. Outcrop observations of smaller scale north-vergent folds and larger scale south-vergent folds suggest multiple deformation events. Stretching lineations trend NE-SW, and incremental strain indicators record indicate a dextral shearing event. The Kahiltna terrane exposed in the vicinity of the Tordrillo Mountains consists of alternating volcaniclastic sandstones and turbidite sequences. The strike of bedding and cleavage is ~240°, and they dip steeply to the northwest. Small isoclinal folds and faults indicate northwestward transport and deformation overprinted by large-scale open folds that verge to the east. Observations of the melange indicate precollisional northward-dipping subduction beneath an accretionary assemblage of Triassic(?) material. Structural observations from multiple localities across the Kahiltna terrane indicate northward-directed thrusting related to dextral transpression and oblique collision of the Talkeetna superterrane, with varying amounts of obliquity along the margin.

  15. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  16. What stress in the lithosphere tells us about strength of Pennsylvanian dextral transcurrent fault systems within the Appalachian mountain chain during final closure of Laurentia and Gondwana

    NASA Astrophysics Data System (ADS)

    Engelder, T.

    2006-05-01

    In the Appalachian Basin, joints and coal cleat reflect a rectilinear stress field lasting in excess of 10 My with an along-strike dimension > 1500 km at approximately 300 Ma. This is an Appalachian-wide stress field (AWSF). Given the duration and dimension of the AWSF, it is reasonable to presume that this stress field within Laurentian crust arose from tractions at its Alleghanian boundary with Gondwana. The strength of this conjecture rests with trajectories of the AWSF pointing in the direction of the oblique convergence between African Gondwana and Laurentia. During this same 10 My, Laurentian fragments and peri-Gondwanan microcontinents were driven dextrally as much as 400 km (Valentino, et al., 1994; Bartholomew and Tollo, 2004). Consequently, several dextral transcurrent sutures within Avalonian and peri-Gondwanan terranes were caught within this Laurentian-Gondwana stress field with SH cross cutting the dextral fault systems at ~ 30°. If dextral transcurrent systems were strong, the friction angle on these faults would have been SH ~ 30°. Weaker faults would have caused SH trajectories to curve and cross cut the fault system at a higher angle, like the situation along the San Andreas (Hardebeck and Michal, 2004). It is noteworthy that no evidence of weak-fault curving of SH is seen along the 1500 km with the AWSF. Evidence, however circumstantial, suggests that transcurrent sutures at the edge of Laurentia were strong during assembly of Pangea.

  17. InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.

    2017-12-01

    Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.

  18. Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging

    NASA Astrophysics Data System (ADS)

    Nishiwaki, T.; Lin, A.

    2017-12-01

    Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of <230 m of the borehole, the rocks are composed of weak consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the direction close to east-west, coincident with that inferred from geophysical observations (Tsukahara et al., 2001), seismic inversion results (Katao, 1997) and geological structures (Lin, 2001).Katao et al., 1997. J. Phys. Earth, 45, 105.Lin, 2016. AGU, Fall Meeting.Lin, 2001. J. Struc. Geo., 23, 1167.Miyawaki and Uchida, 2016. AGU, Fall Meeting.Tsukahara et al., 2001. Isl. Arc, 10, 261.

  19. Mechanics of shear rupture applied to earthquake zones

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1986-01-01

    The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.

  20. Heating, weakening and shear localization in earthquake rupture

    NASA Astrophysics Data System (ADS)

    Rice, James R.

    2017-08-01

    Field and borehole observations of active earthquake fault zones show that shear is often localized to principal deforming zones of order 0.1-10 mm width. This paper addresses how frictional heating in rapid slip weakens faults dramatically, relative to their static frictional strength, and promotes such intense localization. Pronounced weakening occurs even on dry rock-on-rock surfaces, due to flash heating effects, at slip rates above approximately 0.1 m s-1 (earthquake slip rates are typically of the order of 1 m s-1). But weakening in rapid shear is also predicted theoretically in thick fault gouge in the presence of fluids (whether native ground fluids or volatiles such as H2O or CO2 released by thermal decomposition reactions), and the predicted localizations are compatible with such narrow shear zones as have been observed. The underlying concepts show how fault zone materials with high static friction coefficients, approximately 0.6-0.8, can undergo strongly localized shear at effective dynamic friction coefficients of the order of 0.1, thus fitting observational constraints, e.g. of earthquakes producing negligible surface heat outflow and, for shallow events, only rarely creating extensive melt. The results to be summarized include those of collaborative research published with Nicolas Brantut (University College London), Eric Dunham (Stanford University), Nadia Lapusta (Caltech), Hiroyuki Noda (JAMSTEC, Japan), John D. Platt (Carnegie Institution for Science, now at *gramLabs), Alan Rempel (Oregon State University) and John W. Rudnicki (Northwestern University). This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  1. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  2. In-situ 40Ar/39Ar Laser Probe Dating of Micas from Mae Ping Shear Zone, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Yeh, M. W.; Lo, C. H.; Lee, T. Y.; Charusiri, P.

    2012-04-01

    The Mae Ping Shear Zone (MPSZ, also known as Wang Chao Fault Zone), which trends NW-SE from Myanmar to central Thailand, was considered as the southern boundary of the SE extrusion of Indochina and Sibumasu block during the Cenozoic escape tectonic event of SE asia. Many analyses of 40Ar/39Ar dating on biotite and K-feldspar, K/Ar dating on biotite and illite, zircon fission-track and apatite fission-track dating had been accomplished to constrain the shearing period. Nevertheless, it is hard to convince that the ages could represent the end of the shearing since none of the dated minerals have been proved to be crystallized syn-tectonically. Meta-granitoid and gneiss from the MPSZ were analyzed in this study by applying in-situ 40Ar/39Ar laser probe dating with combination of petrology and micro-structural analysis in the purpose to decipher the geological significance of the dates. Plagioclase was replacing K-feldspar for K-feldspar was cut and embayed by plagioclase observed by SEM + EDS. Muscovite in the granitoid own fish shapes of sinistral sense of shearing, and are always in contact with plagioclase and quartz, which suggests that the muscovite crystallized from the dissolving K-feldspar under amphibolite facies condition. 117 spots on 12 muscovite fishes yield ages from 44 Ma to 35 Ma and have a mean age of 40 Ma. Since the growth condition of the muscovite is higher than the closure temperature, thus we can interpret these muscovite ages as cooling ages. Hence left-lateral shearing of the MPSZ can be deduced as syn- to post-muscovite growth and uplifted the crystalline rocks within the shear zone. The ages of matrix biotite in gneiss has a mean age of 35 Ma, which is consistent with the cooling path reconstructed from previous studies. While the ages of inclusion biotite in the K-feldspar phenocryst scatter from 40 to 50 Ma due to the isotopes were not totally re-equilibrated during the shearing. Consequently, the left-lateral shearing of the MPSZ was supposed to initiate prior to 44 Ma and lasted till 35Ma, which is earlier than previously proposed.

  3. Structuring of The Jurassic Basin of Chott in Gabes region (Southern Tunisia) associated to the Liassic rifting from geophysical and well data

    NASA Astrophysics Data System (ADS)

    Hassine, Mouna; Abbes, Chedly; Azaiez, Hajer; Gabtni, Hakim; Bouzid, Wajih

    2016-04-01

    The graben system of El Hamma, west of Gabes in Tunisia, corresponds to a pull apart basin developed in an extensive relay zone between two principal shear corridors (PSC) with a dextral sliding of N110-120 average direction. These PSC corresponds to two segments of the south-Atlasic shear corridor of NW-SE direction, which extends from Chott El Hodna in Algeria, to the NW, to the Libyan Djeferra to the SE (M.Hassine and al., 2015; M.Hassine and al., work in progress). This work aims to define the basin structuring during the Jurassic, especially from the Upper Lias during the Liassic rifting. For this, we performed seismic, gravity and well data analysis. Several wells situated in this basin and on its edges, which totally or partly crossed the Jurassic series which were described by several authors (J. Bonnefous, 1972 ; M. Soussi, 2002, 2004). These series corresponds to the Nara formation (PF Burollet, 1956) elevated to a group rank by M. Soussi (2003). It consists of two carbonate units separated by a marl-carbonate and sandstone member, dated successively of lower Lias (Hettangian- lower Pliensbachian.), Toarcian to Callovian and Upper Callovian-Tithonian. The correlation of this Jurassic formations along a North-South transect shows, from the South to the North, a significant variation in facies and thickness of the Jurassic series especially from the Upper Lias. Two resistant moles appears to the Northern and Southern edges of the pull-apart basin of El Hamma. The trend reversal of the lateral evolution of this series take place on the border NW-SE faults of the basin (PSC). The analysis of several seismic lines calibrated to well data, reveals a differentiated structuring inside the pull-apart basin itself, associated on the one hand, to the play of the N160 and N130-140 direction fault network which structure the basin in horsts and grabens of second order ( M. Hassine and al., 2015); and on the other hand, to the rise of the upper Triassic evaporates either by intrusions along major faults or as domes. They are especially observed on the northern margin of the basin where they delimit subsiding mini-basins bordered by high zones. The Middle Jurassic seismic horizons are then billeted in these mini-basins where they show an aggradational and retrogradational onlaps between the gutters zones and the salt rise zones. The Upper carbonate term of the series, attributed to the Upper Callovian- Tithonian sealed in unconformity the entire system. This early salt migration, that seems to be associated to the Liassic extension, was already mentioned in the Central Atlas (Bedir M. and al., 2000; D. Tanfous and al., 2005) and along the north-south chain (C . Gourmelen, 1984; C. Abbes, 2004). The residual gravity anomaly map shows a complex gravity field. Negative anomalies of -7.2 to -3.2 mlGal coincide with the graben structures; while positive anomalies reaching 2.2 mlGal overlap with horst structures. Moreover, Euler solutions reveal only the deep faults sealed by the upper member Callovo- Tithonian of the series, preferentially oriented in a direction close to East-West.

  4. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is considered as one of the factors is the effect of the fault zone adjacent, especially the Atera fault. CPBF is located just southeast extension of the Akou fault, NW-SE strike. We think that this extension reaches up to CPBF. Based on the above, we make a presentation about interaction of two faults from the point of view of kinematic vicissitudes and alteration process.

  5. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2007-12-01

    A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading: earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively; terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially attached to Southern Patagonia/West Antarctic Peninsula, while the Ellsworth Whitmore Terrane is combined with the Thurston Island Block; paleogeographies demonstrate rifting and extension in a backarc environment relative to a Pacific margin subduction zone/accretionary wedge where simultaneous crustal shortening occurs; a ridge jump towards the subduction zone from east of the Falkland Islands to the Rocas Verdes Basin evinces subduction rollback; this ridge jump combined with backarc extension isolated an area of thicker continental crust — The Falkland Islands Block; well-documented EW oriented seafloor spreading anomalies in the Weddell Sea are perpendicular to the subduction zone and propagate in the opposite direction to rollback; the dextral strike-slip Gastre and sub-parallel faults form one boundary of the Gondwana subduction rollback, whereas the other boundary may be formed by inferred sinistral strike-slip motion between a combined Thurston Island/Ellsworth Whitmore Terrane and Marie Byrd Land/East Antarctica.

  6. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange

    NASA Astrophysics Data System (ADS)

    Webber, Sam; Ellis, Susan; Fagereng, Åke

    2018-04-01

    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  7. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.

  8. Micromechanics of sea ice gouge in shear zones

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter; Scourfield, Sally; Lishman, Ben

    2015-04-01

    The deformation of sea ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the sea cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents Sea show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of sea ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the sea ice problem.

  9. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    USGS Publications Warehouse

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  10. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    NASA Astrophysics Data System (ADS)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006. Geol. Soc. London Sp. Publ., 268, 1-23. Carosi R., Montomoli C., Rubatto D. & Visonà D. 2010. Tectonics, 29, TC4029. Iaccarino S., Montomoli C., Carosi R., Massonne H-J., Langone A., Visonà D. 2015. Lithos, 231, 103-121. Montomoli C., Iaccarino S., Carosi R., Langone A. & Visonà D. 2013. Tectonophysics 608, 1349-1370, doi:10.1016/j.tecto.2013.06.006. Montomoli C., Carosi R., Iaccarino S. 2015. Geol. Soc. London Sp. Publ., 412, 25-41.

  11. A Model of Subduction of a Mid-Paleozoic Oceanic Ridge - Transform Fault System along the Eastern North American Margin in the Northern Appalachians

    NASA Astrophysics Data System (ADS)

    Kuiper, Y. D.

    2016-12-01

    Crustal-scale dextral northeasterly trending ductile-brittle fault systems and increased igneous activity in mid-Paleozoic eastern New England and southern Maritime Canada are interpreted in terms of a subducted oceanic spreading ridge model. In the model, the fault systems form as a result of subduction of a spreading ridge-transform fault system, similar to the way the San Andreas fault system formed. Ridge subduction results in the formation of a sub-surface slab window, mantle upwelling, and increased associated magmatism in the overlying plate. The ridge-transform system existed in the Rheic Ocean, and was subducted below parts of Ganderia, Avalonia and Meguma in Maine, New Brunswick and Nova Scotia. The subduction zone jumped southeastward as a result of accretion of Avalonia. Where the ridge-transform system was subducted, plate motions changed from predominantly convergent between the northern Rheic Ocean and Laurentian plates to predominantly dextral between the southern Rheic Ocean and Laurentian plates. In the model, dextral fault systems include the Norumbega fault system between southwestern New Brunswick and southern Maine and New Hampshire, and the Kennebecasis, Belle Isle and Caledonia faults in southeastern New Brunswick. A latest Silurian transition from arc- to within-plate- magmatism in the Coastal Volcanic Belt in eastern Maine may suggest the onset of ridge subduction. Examples of increased latest Silurian to Devonian within-plate magmatism include the Cranberry Island volcanic series and coastal Maine magmatic province in Maine, and the South Mountain Batholith in Nova Scotia. Widespread Devonian to earliest Carboniferous granitic to intermediate plutons, beyond the Coastal Volcanic Belt towards southern Maine and central New Hampshire, may outline the shape of a subsurface slab window. The possibility of ridge-transform subduction in Newfoundland and in the southern Appalachians will be discussed. The northern Appalachians may be a unique location along the Eastern North American Margin and possibly on Earth, in that it may preserve the only known evidence for an ancient Mendocino-style triple junction and San Andreas-type fault.

  12. Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ozawa, T.

    2016-12-01

    The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.

  13. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.

    2015-01-01

    The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along active faults and demonstrate that fine-scale variability in fault slip has been missed by traditional earthquake response methods.

  14. Shear heating and metamorphism in subduction zones, 1. Thermal models

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the very hottest examples, exhumed metamorphic rocks represent the products of normal, not anomalous, subduction. Consequently numerous geochemical, petrologic, and geophysical interpretations that have been founded on models that lack shear heating must be re-evaluated.

  15. STRUCTURAL GEOMETRY OF AN EXHUMED UHP TERRANE IN THE EASTERN SULU OROGEN, CHINA: IMPLICATIONS FOR CONTINENTAL COLLISIONAL PROCESSES

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kusky, T.

    2009-12-01

    High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.

  16. Scaly fabrics and veins of tectonic mélanges in the Shimanto Belt, SW Japan

    NASA Astrophysics Data System (ADS)

    Ramirez, G. E.; Fisher, D. M.; Smye, A.; Hashimoto, Y.; Yamaguchi, A.

    2017-12-01

    Mélanges in ancient subduction fault zones provide a microstructural record of the plate boundary deformation associated with underthrusting. These rocks exhibit many of the characteristics associated with exposed ancient subduction fault zones worldwide, including: 1) σ1 is near orthogonal to the deformation fabric, 2) microstructurally pervasive quartz and calcite filled veins concentrated in coarser blocks and along extensional jogs on slip surfaces, 3) evidence for local diffusion of silica sourced from web-like arrays of slip surfaces (i.e., scaly fabrics), and 4) repeated cracking and sealing that record cyclic variations in stress. We present XRD, XRF, and EPMA observations of scaly fabrics from five ancient subduction-related shear zones (Yokonami, Mugi, Kure, Okitsu, and Makimine mélanges) from the Shimanto Belt in Japan that exemplify these characteristics and represent the full temperature range of the seismogenic zone ( 150-340 °C). The scaly fabrics associated with these shear zones display significantly different microstructural and geochemical characteristics. Individual slip surfaces in the scaly fabrics of Mugi mélange, underplated at the updip limit of the seismogenic zone, are characterized by broader (50-300 µm) anastomosing shear zones while the Makimine mélange, underplated at the downdip limit of the seismogenic zone, exhibits thinner (10-20 µm) anastomosing shear zones. XRD analyses also imply geochemical differences such as a decrease in albite concentration and an increase in illite concentration with increasing temperature/depth of underthrusting. Scaly fabrics are sites of silica redistribution in which silica is depleted on the slip surfaces and precipitated as mostly quartz in crack-seal veins. The time to seal, or heal, fractures is mainly temperature-dependent but can also be significantly quickened by fluid salinity, degree of fluid-rock interactions, and geochemical reactions (i.e. incongruent pressure solution). Microstructural and geochemical characteristics that show differences with temperature/depth of underthrusting highlight the importance of establishing the geochemical processes and activation energies that contribute to slip, fracturing, and healing of rocks that underthrust the subduction interface.

  17. Scaly fabrics and veins of the Mugi and Makimine mélanges in the Shimanto belt, SW Japan

    NASA Astrophysics Data System (ADS)

    Ramirez, G. E.; Fisher, D. M.; Yamaguchi, A.; Kimura, G.

    2016-12-01

    Two regionally extensive ancient subduction fault zones provide a microstructural record of the plate boundary deformation associated with underthrusting. These rocks exhibit many of the characteristics associated with exposed ancient subduction fault zones worldwide, including: (1) σ1 is near orthogonal to the deformation fabric (2) there are microstructurally pervasive quartz and calcite filled veins concentrated in coarser blocks and along extensional jogs on slip surfaces, (3) evidence for local diffusion of silica sourced from web-like arrays of slip surfaces (i.e., scaly fabrics), and (4) evidence for cycles of cracking and sealing that record cyclic variations in stress. We present new backscatter SEM observations of scaly fabrics from two ancient subduction-related shear zones from the Shimanto Belt in Japan that exemplify these characteristics and represent the full temperature range of the seismogenic zone: 1) the Mugi mélange (lower ( 130-150 °C) and upper ( 170-200 °C) sections) and 2) Makimine mélange (peak temperatures of 340 °C). The Mugi mélange is an underplated duplex consisting of two horses separated by an OOST. The upper section is bounded at the top by a pseudotachylite-bearing paleodécollement. The Makimine mélange was underplated at the downdip limit of the seismogenic zone. The scaly fabrics associated with these shear zones display significantly different microstructural characteristics. A slip surface from along the upper Mugi is characterized by broader ( 20-30 μm), zones of quartz-poor, anastomosing shear zones composed of fine-grained (0.5-2 μm in length) phyllosilicates. The Makimine mélange exhibits thinner (10-20 μm), anastomosing shear zones with coarser (1-4 μm in length) phyllosilicate grains that are more strongly oriented into parallelism with slip surfaces. Quartz veins are pervasively developed in more competent blocks and are oriented at near perpendicular angles to the slip surfaces. Microstructural analyses of ancient subduction-related faults show differences with temperature that highlight the importance of establishing the geochemical processes and activation energies that contribute to slip, fracturing, and healing of rocks that underthrust the subduction interface.

  18. Microplate and shear zone models for oceanic spreading center reorganizations

    NASA Technical Reports Server (NTRS)

    Engeln, Joseph F.; Stein, Seth; Werner, John; Gordon, Richard

    1988-01-01

    The kinematics of rift propagation and the resulting goemetries of various tectonic elements for two plates is reviewed with no overlap zone. The formation and evolution of overlap regions using schematic models is discussed. The models are scaled in space and time to approximate the Easter plate, but are simplified to emphasize key elements. The tectonic evolution of overlap regions which act as rigid microplates and shear zones is discussed, and the use of relative motion and structural data to discriminate between the two types of models is investigated. The effect of propagation rate and rise time on the size, shape, and deformation of the overlap region is demonstrated.

  19. Preliminary report on the Comet area, Jefferson County, Montana

    USGS Publications Warehouse

    Becraft, George Earle

    1953-01-01

    Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base- and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5? miles. It trends N. 80 ? W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as prebatholithic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of pyrite, galena, ruby silver, arqentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and also from disseminated secondary uranium ,minerals in the adjacent quartz monzonite. Undiscovered deposits of uranium ore may occur spatially associated with the base- and precious-metal deposits along the Comet-Gray Eagle shear zone and with chalcedonic vein zones similar to the Free Enterprise.

  20. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    PubMed

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  1. Global seismic data reveal little water in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Houser, C.

    2016-08-01

    Knowledge of the Earth's present water content is necessary to constrain the amount of water and other volatiles the Earth acquired during its formation and the amount that is cycled back into the interior from the surface. This study compares 410 and 660 km discontinuity depth with shear wave tomography within the mantle transition zone to identify regions with seismic signals consistent with water. The depth of the 410 and 660 km discontinuities is determined from a large updated dataset of SS-S410S and SS-S660S differential travel times, known as SS precursors. The discontinuity depths measured from binning and stacking the SS precursor data are then compared to the shear velocity model HMSL-S06 in the transition zone. Mapping all the possible combinations, very few locations match the predictions from mineral physics for the effects of water on discontinuity depth and shear velocity. The predictions, although not yet measured at actual transition zone temperatures and pressures, are a shallow 410 km discontinuity, a deep 660 km discontinuity, and a slow shear velocity. Only 8% of the bins with high-quality data are consistent with these predictions, and the calculated average water content within these bins is around 0.6 wt.%. A few isolated locations have patterns of velocity/topography that are consistent with water, while there are large regional-scale patterns consistent with cold/hot temperature anomalies. Combining this global analysis of long period seismic data and the current mineral physics predictions for water in transition zone minerals, I find that the mantle transition zone is generally dry, containing less than one Earth ocean of water. Although subduction zones could be locally hydrated, the combined discontinuity and velocity data show no evidence that wadsleyite or ringwoodite have been globally hydrated by subduction or initial Earth conditions.

  2. Tectonothermal evolution of a garnet-bearing quartzofeldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Bhadra, Subhadip; Nasipuri, Pritam

    2017-03-01

    We present mesoscale structural development across the Nilgiri Block and the flanking Moyar and Bhavani shear zones in south India, and detailed mineral-chemical and geothermobarometric studies of a garnet-bearing quartzofeldspathic gneiss from the easternmost part of the Moyar shear zone. Barring a narrow (< 100 μm) rim domain, major element distribution within garnet porphyroblasts reveals complete chemical homogenization. The absence of growth zoning in garnet porphyroblasts may suggest a protracted post-garnet growth residence period of the rock at elevated temperatures. Chemical zoning near garnet rim reflects the signature of both retrograde net-transfer (ReNTR) and retrograde exchange (ReER) equilibria. The ReNTR-equilibrium is recognized by prominent Mn kick-up in garnet, whereas the ReER-equilibrium is identified by divergence of Fe and Mg between garnet and biotite. Diffusion modelling, though qualitative, of the observed chemical zoning in garnet suggests an initial phase of rapid ( 150 °C/Ma) cooling, which may have been achieved by tectonic-extrusion-induced exhumation. Pressure-temperature conditions for peak, ReNTR and ReER are constrained, respectively, at 900 °C; 9-11 kbar, 735 °C; 8 kbar and 685 °C; 7.8 kbar. Analyses of structural fabrics establish oppositely verging nature of the Moyar and Bhavani shear zone and may suggest a doubly vergent orogenic development, with the former as prowedge and the latter as retrowedge. The presence of the Nilgiri Block as a topographically elevated region between these oppositely dipping thrust faults indeed corroborates a doubly vergent orogenic setup. The tectonic scenario is comparable with a continent-continent collision type accretionary tectonics. Peak high-P granulite facies metamorphism and post-peak long residence period of the studied quartzofeldspathic gneiss at deep crustal level suitably fit into the Neoarchean crustal dynamics resulting in crustal thickening, in the order of 41 km, within the Nilgiri Block.

  3. Volume gain during shearing of the Whatley Mill Gneiss, Pine Mountain Basement massif, eastern Alabama--A trace element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salpas, P.A.; Daniell, N.

    1993-03-01

    The Whatley Mill Gneiss is the most voluminous exposure of the Pine Mountain Basement massif in eastern Alabama. Its type lithology is a proto-mylonitic gneiss composed of K-spar augen, up to 5 cm in diameter, in a finer matrix of biotite, microcline, and quartz. Granulite-facies mineral assemblages in the Whatley Mill Gneiss have been completely retrograded to amphibolite- and greenschist-facies assemblages in response to deformation that produced shear zones paralleling the foliation of the gneiss. The augen gneiss and its associated mylonites are well-exposed in a creek bed in Chewacla State Park. At this location the mineralogy of the mylonitesmore » is dominated by quartz indicating that shearing was associated with influx of a silica-rich fluid. A detailed geochemical study of these rocks shows that the augen gneiss displays relatively little variation in its major and trace element compositions while the quartz-rich mylonites display wider ranges, are enriched in SiO[sub 2] and depleted in the REE and other incompatible trace elements relative to the augen gneiss. When standard composition/volume calculations are applied to the mylonites the results show (1) the bulk of all of the elements, including the REE, were immobile during shearing with the exceptions of Si and Al which were added; and, (2) volume changes calculated using the REE as immobile elements range from +70% to +350%. Though these volume changes seem excessive, they apply to meter-thick shear zones which may actually represent only a small fraction of the total volume of the augen gneiss. Consistent with previous interpretations of these shear zones, the calculated volume gains imply shearing during extension.« less

  4. Geological constraints on the mechanism of tectonic tremor

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.

    2016-12-01

    Observations of tectonic tremor in a wide variety of tectonic settings suggest that transitional behavior involving contemporaneous shear fracture and aseismic creep transients occurs in many major faults. Seismological and geophysical data indicate shear failure on critically stressed faults, likely under low effective stress conditions, are consistent characteristics, even though rock types and grain scale deformation mechanisms vary at these different locations. Geological observations could add additional insight into the specific failure mechanisms if the structures that form during tremor episodes can be identified. Exhumed shear zones often contain folded, boudinaged and/or dynamically recrystallized veins that record cyclical fracture and viscous deformation representing mixed bulk rheology. Examples from a Cretaceous transpressional continental shear zone in the Sierra Nevada, CA, include quartz-filled veins meters to tens of meters long with millimeters to centimeters of shear offset that preferentially developed along foliation planes in a high strain zone. Ambient temperatures during deformation were 400-600°C, and opening mode vein orientations and abundance suggest fluid pressure was near lithostatic at times. The orientation and spatial distribution of the veins indicate they formed under differential stress large enough for shear failure with pore pressures sufficiently high for the rocks to be critically stressed along mechanically weak foliation planes. Bulk deformation of the surrounding rock was accommodated viscously by crystal plastic deformation mechanisms. The mode of fracturing and overall behavior of the system was controlled by the local competition between the rates of stress recovery following fracture and stress drop, and pore pressure build up. The inferred mixed rheology recorded by the veins is phenomenologically similar to tremor. These shear fractures, and the conditions of failure they record, could be comparable to the mechanism that produces tectonic tremor.

  5. Slow slip pulses driven by thermal pressurization of pore fluid: theory and observational constraints

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2012-12-01

    We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate-dependence of friction, previously suggested as a mechanism for aseismic transients [e.g., Liu and Rice, 2009; Segall et al., 2010], if the frictional properties of gabbro [He et al., 2007] under the hydrothermal conditions for the North Cascadia slab [Hacker et al., 2003] are used. It therefore appears that while some friction weakening with the slip rate may be required to nucleate a slow slip event in the first place, thermal pressurization mechanism has to be included in realistic models of dynamics of aseismic slip transients, as long as the source of the transients is linked to the conditionally-stable part of the interface (with near velocity-neutral friction). The results of this study point to the importance of the principal shear zone thickness during a slip event and its possible change with the slip rate [e.g., Platt et al., AGU FM 2010]. The insight into how stable creep or a slow slip event may transition into a seismic rupture and how an earthquake rupture "selects" its principal shear zone, which is shown to largely define the TP slip dynamics, may require addressing the slip localization as a phenomena concurrent to the development of transient slip, and therefore coupled to other relevant source mechanisms.

  6. A homogeneous 2D deformation of geological interest: Rotation shear

    NASA Astrophysics Data System (ADS)

    Bastida, Fernando; Bobillo-Ares, Nilo C.; Aller, Jesús; Lisle, Richard J.

    2018-07-01

    We define a simple two-dimensional deformation called "rotation shear". It has one line of no finite longitudinal strain with invariant direction and another one that rotates with the deformation. An analysis of this deformation is carried out. Rotation shear superficially resembles simple shear but the analysis reveals that the two deformations have very different properties. In general, lines deformed by simple shear show a more complex deformation history and undergo greater longitudinal strain, i.e. are more extended, than lines deformed by rotation shear. Rotation shear is used to explain the development of geological structures such as kink bands, ideal similar folds, crenulation and crenulation cleavage and shear zones.

  7. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  8. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  9. Juxtaposition of Neoproterozoic units along the Baruda - Tulu Dimtu shear-belt in the East African Orogen of western Ethiopia

    USGS Publications Warehouse

    Braathen, A.; Grenne, Tor; Selassie, M.G.; Worku, T.

    2001-01-01

    Amalgamation of East and West Gondwanaland during the Neoproterozoic East African Orogen is recorded by several shear-belts or 'suture zones', some of which are associated with ultramafic and mafic complexes that have been interpreted as ophiolite fragments. The Baruda shear-belt is a major structure of this type that belongs to the N-S trending Barka - Tulu Dimtu zone. The significance of this zone has been studied within a transect in western Ethiopia which covers a variety of metasedimentary and metavolcanic sequences, ultramafic rocks and synkinematic intrusive complexes. All rocks participated in the regional D1 event as reflected in a penetrative steep foliation in supracrustal rocks and marginal parts of the intrusions. Highly strained rocks contain a stretching lineation that plunge to the east. The several-km thick Baruda shear-belt, comprising mylonitic supracrustal and plutonic rocks including mafic-ultramafic mega-lenses, is the most prominent expression of this event. Shear-sense indicators demonstrate top-to-the-west shear. Subsequent D2 deformation is recorded in 2-300 m wide, N-S striking, subvertical shear-zones with subhorizontal stretching lineation relatable to sinistral transcurrent movements. Our data indicate that rock units on either side of the Baruda shear-belt are related, rather than being exotic to each other as implied in suture zone models, since there is no major lithologic or metamorphic difference, geochemical data on metavolcanic rocks and pre-tectonic intrusions suggest a paleotectonic link, and style and extent of deformation is similar across the shear-belt. A tentative model for the transect suggests an arc and back-arc setting which experienced later continental collision and tectonic shortening. The initial setting was that of a shallow marine platform characterised by carbonates and sandstones, which covered extensive areas prior to break-up of a pre-existing supercontinent. Continental convergence is first recorded in high-K calc-alkaline volcanism characterised by pyroclastic deposits of andesitic composition, at an active continental margin at about 800 Ma. Subaerial arc volcanism was temporally and spatially overlapping with limited arc rifting, represented by submarine basalts compositionally transitional between enriched MORB and calc-alkaline magmas, and associated dyke swarms in the older carbonate-sandstone platform sequence. It is suggested that the large, mafic-ultramafic, bodies relate to this event and were originally formed as intrusions along one or more propagating rift axis within the arc complex. The regional Baruda shear-belt formed in response to contractional D1 deformation, and its location may have been largely controlled by competence contrasts between the array of rift-related intrusions and the marble-dominated lithologies. Associated shortening of the arc and back-arc region led to crustal thickening and emplacement of synkinematic, composite, batholiths at about 570-550 Ma. These are composed of moderately peraluminous granite and coeval, intermediate to mafic intrusions of shoshonitic affinity. D2 sinistral movements succeeded the contractional deformation. ?? 2001 Elsevier Science B.V.

  10. The Chunky Gal Mountain fault-detachment-normal fault providing evidence for Early-to-Middle Paleozoic extensional unroofing of the eastern Blue Ridge, or folded thrust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    1993-03-01

    The Chunky Gal Mountain fault (CGMF), located in the western Blue Ridge of southern NC and northern GA, contains unequivocal evidence for hanging wall-down-to-the-west movement. The 50 m-thick fault zone here consists of a series of shear zones in the footwall in a mass of mylonitized garnet-rich biotite gneiss. The main contact with the hanging wall reveals both a contrast in rock type and truncation of fabrics. Above the fault are amphibolite, ultramafic rocks, and minor metasandstone and pelitic schist of the Buck Creek mafic-ultramafic complex, while the footwall contains complexly folded metasandstone, pelitic schist, and calcsilicate pods of themore » Coleman River Formation. In the present orientation, the mylonitic foliation in the footwall rocks of the GGMF is subvertical; foliation in the hanging wall is subhorizontal at road level. These rocks were metamorphosed to upper amphibolite facies assemblages, and, after emplacement of the CGMF, were cut by brittle faults and trondhjemite dikes that contain no obvious tectonic fabric. Movement on the CGMF occurred near the thermal peak because enough heat remained in the rocks after movement to statically anneal the mylonite microfabric, but mesoscopic rotated porphyroclasts, rotated (dragged) earlier foliation, and some S-C fabrics clearly indicate the shear sense and vergence of this structure. Shear zones related to the CGMF transposed earlier fabrics, although some relicts preserving earlier structures remain in the shear zones. These rotated but untransposed relicts of amphibolite and garnet-rich biotite gneiss mylonite may indicate locally higher strain rates in subsidiary shear zones. The thermal/mechanical properties of the CGMF make it difficult to connect to the Shope Fork or Soque River thrusts farther south and east. Thus the hanging-wall-down configuration provides an alternative hypothesis that the CGMF may be a detachment-normal fault related to Taconian extensional unroofing of the Appalachians.« less

  11. Interseismic Coupling and Seismic Potential along the Indo-Burmese Arc and the Sagaing fault

    NASA Astrophysics Data System (ADS)

    Earnest, A.

    2017-12-01

    The Indo-burmese arc is formed by the oblique subduction of the Indian plate under the Eurasia. This region is a transition zone between the main Himalayan collision belt and the Andaman subduction zone. This obliquity causes strain partitioning which causes separation of a sliver plate, the Burma Plate. Considering the geomorphic, tectonic and geophysical signatures, IBR comprises all the structural features of an active subduction zone, whereas the present day tectonics of this region is perplexing. Ni et al. [1989] and Rao and Kalpana [2005] suggested that the subduction might have stopped in recent times or continues relatively in an aseismic fashion. This is implied by the NNE compressional stress orientations, instead of its downdip direction. The focal mechanism stress inversions show distinct stress fields above and below the 90 km depth. It is widely believed that the partitioning of Indian-Eurasia plate motion along the Indo-buremse arc and the Sagaing fault region the reason for earthquake occurrence in this region. The relative motion of 36mm/yr, between India and Eurasia, is partitioned across the Sagaing fault through a dextral movement of ˜20mm/yr and remaining velocity is accommodated at the Churachandapur-Mao fault (CMF) through dextral motion. The CMF and its surroundings are considered as seismically a low hazard region, an observation made from the absence of significant earthquakes and lack of field evidences. This made Kundu and Gahalaut [2013] to propose that the motion across the CMF happens in an aseismic manner. Recently, based on GPS studies Steckler et al. [2016] suggested that the region is still actively subducting and the presence of a locked megathrust plate boundary depicts the region as highly vulnerable for large magnitude seismic activities. Our study, based on various geodetic solutions and earthquake slip vectors, focus on interseisimic block models for the Indo-burmese arc and Sagaing fault region so as to model the crustal deformation of this area using an elastic block modelling approach. Results from our best fit model predicts the spatial distribution of interseismic coupling coefficient (φ) and the backslip component. These coefficients characterize the fault interface, which helps in estimating the seismic potential across Indo-burmese arc and the Sagaing fault region.

  12. An earthquake mechanism based on rapid sealing of faults

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1992-01-01

    RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3-5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.

  13. Sinistrals' Upper Hand: Evidence for Handedness Differences in the Representation of Body Space

    ERIC Educational Resources Information Center

    Hach, Sylvia; Schutz-Bosbach, Simone

    2010-01-01

    A difference in the perception of extrapersonal space has been shown to exist between dextrals and sinistrals. On the classical line bisection task, this difference is evident in a greater left bias for dextrals compared to sinistrals. Different modalities and regions of space can be affected. However, it has not yet been investigated whether a…

  14. The role of major rift faults in the evolution of deformation bands in the Rio do Peixe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Hilario Bezerra, Francisco; Araujo, Renata; Maciel, Ingrid; Cezar Nogueira, Francisco; Balsamo, Fabrizio; Storti, Fabrizio; Souza, Jorge Andre; Carvalho, Bruno

    2017-04-01

    Many studies have investigated on the evolution and properties of deformation bands, but their occurrence and relationships with basin-boundary faults remain elusive when the latter form by brittle reactivation of structural inheritance in crystalline basements. The main objective of our study was to systematically record the location, kinematics, geometry, and density of deformation bands in the early Cretaceous Rio do Peixe basin, NE Brazil, and analyze their relationship with major syn-rift fault zones. Reactivation in early Cretaceous times of continental-scale ductile shear zones led to the development of rift basins in NE Brazil. These shear zones form a network of NE- and E-W-trending structures hundreds of kilometers long and 3-10 km wide. They were active in the Brasiliano orogeny at 540-740 Ma. Brittle reactivation of these structures occurred in Neocomian times ( 140-120 Ma) prior the breakup between the South American and African plates in the late Cretaceous. The Rio do Peixe basin formed at the intersection between the NE-SW-striking Portalegre shear zone and the E-W-striking Patos shear zone. The brittle fault systems developed by the shear zone reactivation are the Portalegre Fault and the Malta Fault, respectively. In this research we used field structural investigations and drone imagery with centimetric resolution. Our results indicate that deformation bands occur in poorly sorted, medium to coarse grain size sandstones and localize in 3-4 km wide belts in the hanging wall of the two main syn-rifts fault systems. Deformation bands formed when sandstones were not completely lithified. They strike NE along the Portalegre Fault and E-W along the Malta Fault and have slip lineations with rake values ranging from 40 to 90. The kinematics recorded in deformation bands is consistent with that characterizing major rift fault systems, i.e. major extension with a strike-slip component. Since deformations bands are typical sub-seismic features, our findings can have implications for the prediction of deformation band occurrence in sedimentary basins and their geometric and kinematic relations with major basin-boundary fault systems.

  15. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2 Location of all illustrated samples. Table S3 Monazite geochronology lab data. Table S4 Allanite geochronology lab data. Fig. S1 Monazite geochronology analytical spots. Fig. S2 Allanite geochronology analytical spots.

  16. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  17. Brittle to ductile transition in a model of sheared granular materials

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.

    2016-12-01

    Understanding the fundamental mechanisms of deformation and failure in sheared fault gouge is critical for the development of physics-based earthquake rupture simulations that are becoming an essential ingredient in next generation hazard and risk models. To that end, we use the shear transformation zone (STZ) theory, a non-equilibrium statistical thermodynamics framework to describe viscoplastic deformation and localization in gouge materials as a first step towards developing multiscale models for earthquake source processes that are informed by high-resolution fault zone physics. The primary ingredient of the STZ theory is that inelastic deformation occurs at rare and local non-interacting soft zones known as the shear transformation zones. The larger the number of these STZs the more disordered (the more loose) the layer is. We will describe an implementation of this theory in a 2D/3D finite element framework, accounting for finite deformation, under both axial and shear loading and for dry and saturated conditions. We examine conditions under which a localized shear band may form and show that the initial value of disorder (or the initial porosity) plays an important role. In particular, our simulations suggest that if the material is more compact initially, the behavior is more brittle and the plastic deformation localizes with generating large strength drop. On the other hand, an initially loose material will show a more ductile response and the plastic deformations will be distributed more broadly. We will further show that incorporation of pore fluids alters the localization pattern and changes the stress slip response due to coupling between gouge volume changes (compaction and dilation) and pore pressure build up. We validate the model predictions by comparing them to available experimental observations on strain localization and fault gouge strength evolution. Finally, we discuss the implications of our model for gouge friction and dynamic weakening.

  18. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.

  19. Influence of the Eastern California Shear Zone on deposition of the Mio-Pliocene Bouse Formation: Insights from the Cibola area, Arizona

    USGS Publications Warehouse

    Dorsey, Rebecca J.; O'Connell, Brennan; Homan, Mindy B.; Bennett, Scott E. K.

    2017-01-01

    The Eastern California Shear Zone (ECSZ) is a wide zone of late Cenozoic strike-slip faults and related diffuse deformation that currently accommodates ~20–25% of relative Pacific–North America plate motion in the lower Colorado River region (Fig. 1A; Dokka and Travis, 1990; Miller et al., 2001; Guest et al., 2007; Mahan et al., 2009). The ECSZ is kinematically linked southward to dextral faults in the northern Gulf of California (Bennett et al., 2016a), and it may have initiated ca. 8 Ma when major strike-slip faults developed in the northern Gulf and Salton Trough region (Bennett et al., 2016b; Darin et al., 2016; Woodburne, 2017). Thus deformation related to the ECSZ occurred in the lower Colorado River region during deposition of the Bouse Formation, which is commonly bracketed between 6.0 and 4.8 Ma (House et al., 2008; Sarna-Wojcicki et al., 2011; Spencer et al., 2013) and may be as old as 6–7 Ma in the south (McDougall and Miranda Martínez, 2014, 2016). Post-4.5 Ma broad sagging is recognized along the lower Colorado River (Howard et al., 2015), but the possibility that faults of the ECSZ influenced local to regional subsidence patterns during deposition of the Bouse Formation has received little attention to date (e.g., Homan, 2014; O’Connell et al., 2016). The Bouse Formation is a widespread sequence of late Miocene to early Pliocene deposits exposed discontinuously along the lower Colorado River corridor (Fig. 1A). In the southern Blythe basin it consists of three regionally correlative members: (1) Basal Carbonate, consisting of supratidal and intertidal mud-flat marls, intertidal and shallow subtidal bioclastic grainstone and conglomerate, and subtidal marl; (2) Siliciclastic member, consisting of Colorado River-derived green claystone, red mudstone and siltstone, and cross-bedded river channel sandstone; and (3) Upper Bioclastic member fossiliferous sandy calcarenite, coarse pebbly grainstone, and calcareous-matrix conglomerate (Homan, 2014; Dorsey et al., 2016; O’Connell et al., 2016, 2017). The southern Bouse Formation has been interpreted as recording deposition in either a lake (Spencer and Patchett, 1997; Spencer et al., 2008, 2013; Bright et al., 2016) or shallow marine setting (Buising, 1990; McDougall, 2008; McDougall and Miranda Martínez, 2014; O’Connell et al., 2017).In this paper we summarize key results from five field seasons of detailed stratigraphic analysis south of Cibola, Ariz. ( . 1). The data reveal systematic stratal thinning and thickening, pinch-outs, and wedging patterns in the Bouse Formation that we conclude were produced by syn-depositional tilting in response to growth of normal faults near the eastern margin of the basin. Similar stratal patterns in other nearby areas suggest widespread structural controls on deposition of the Bouse Formation. A palinspastic reconstruction of the lower Colorado River region at 5 Ma, modified from Bennett et al. (2016), provides insight to regional fault geometries in the ECSZ that may have controlled syn-depositional tilting and subsidence in Bouse depocenters shortly prior to and during initiation of the Colorado River.

  20. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids

    NASA Astrophysics Data System (ADS)

    Stolz, Claude

    2010-12-01

    The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

Top