NASA Astrophysics Data System (ADS)
Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling
2017-10-01
To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.
Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao; Wienhold, Tobias; Vannahme, Christoph; Jakobs, Peter-Jürgen; Bacher, Andreas; Muslija, Alban; Mappes, Timo; Lemmer, Uli
2013-11-18
Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.
Single-mode surface plasmon distributed feedback lasers.
Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre
2018-03-29
Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Mattiello, Mario; Niklès, Marc; Schilt, Stéphane; Thévenaz, Luc; Salhi, Abdelmajid; Barat, David; Vicet, Aurore; Rouillard, Yves; Werner, Ralph; Koeth, Johannes
2006-04-01
A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 microm atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia.
NASA Astrophysics Data System (ADS)
Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven
2018-01-01
An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.
DFB laser array driver circuit controlled by adjustable signal
NASA Astrophysics Data System (ADS)
Du, Weikang; Du, Yinchao; Guo, Yu; Li, Wei; Wang, Hao
2018-01-01
In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Transversely bounded DFB lasers. [bounded distributed-feedback lasers
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G.; Yeh, C.
1975-01-01
Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.
NASA Technical Reports Server (NTRS)
Cook, Anthony L.; Hendricks, Herbert D.
1990-01-01
NASA has been pursuing the development of high-speed fiber-optic transceivers for use in a number of space data system applications. Current efforts are directed toward a high-performance all-integrated-circuit transceiver operating up to the 3-5 Gb/s range. Details of the evaluation and selection of candidate high-speed optical sources to be used in the space-qualified high-performance transceiver are presented. Data on the performance of commercially available DFB (distributed feedback) lasers are presented, and their performance relative to each other and to their structural design with regard to their use in high-performance fiber-optic transceivers is discussed. The DFB lasers were obtained from seven commercial manufacturers. The data taken on each laser included threshold current, differential quantum efficiency, CW side mode suppression radio, wavelength temperature coefficient, threshold temperature coefficient, natural linewidth, and far field pattern. It was found that laser diodes with buried heterostructures and first-order gratings had, in general, the best CW operating characteristics. The modulated characteristics of the DFB laser diodes are emphasized. Modulated linewidth, modulated side mode suppression ratio, and frequency response are discussed.
NASA Astrophysics Data System (ADS)
Bernhardi, E. H.; de Ridder, R. M.; Wörhoff, K.; Pollnau, M.
2013-03-01
We report on diode-pumped distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) channel waveguide lasers in Er-doped and Yb-doped Al2O3 on standard thermally oxidized silicon substrates. Uniform surface-relief Bragg gratings were patterned by laser-interference lithography and etched into the SiO2 top cladding. The maximum grating reflectivity exceeded 99%. Monolithic DFB and DBR cavities with Q-factors of up to 1.35×106 were realized. The Erdoped DFB laser delivered 3 mW of output power with a slope efficiency of 41% versus absorbed pump power. Singlelongitudinal- mode operation at a wavelength of 1545.2 nm was achieved with an emission line width of 1.70 0.58 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at wavelengths near 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. An Yb-doped dualwavelength laser was achieved based on the optical resonances induced by two local phase shifts in the DFB structure. A stable microwave signal at ~15 GHz with a -3-dB width of 9 kHz and a long-term frequency stability of +/- 2.5 MHz was created via the heterodyne photo-detection of the two laser wavelengths. By measuring changes in the microwave beat signal as the intra-cavity evanescent laser field interacts with micro-particles on the waveguide surface, we achieved real-time detection and accurate size measurement of single micro-particles with diameters ranging between 1 μm and 20 μm, which represents the typical size of many fungal and bacterial pathogens. A limit of detection of ~500 nm was deduced.
Chirped Grating Tunable Lasers for the Infrared Molecular Fingerprint Spectral Region
2013-09-01
lasers with chirped gratings and compare both normal DFB (pump stripe perpendicular to grating) and -DFB (pump stripe perpendicular to facets...structure. Because the period of grating increases gradually laterally, wavelength tuning is implemented by shifting pump stripe to different positions on...tilted with respect to facets and adjusting the pump stripe normal to the grating. Continuous tuning of 30 nm around 3.1 µm with 320 mW single facet
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
Li, Wangzhe; Zhang, Xia; Yao, Jianping
2013-08-26
We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.
Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy
NASA Astrophysics Data System (ADS)
Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme
2018-06-01
We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei
2009-11-23
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.
RGB and white-emitting organic lasers on flexible glass.
Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D
2016-02-08
Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).
Antenna coupled photonic wire lasers
Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...
2015-06-22
Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Investigation of High Linearity DFB Lasers for Analog Communications
1998-02-01
personal communication systems (PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We...PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We extract parameters from...is dependent upon the coupling coefficient, as discussed in Chapter 3. Spatial hole burning is more important at lower frequencies (owing to finite
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
External Cavity Coherent Transmitter Modules
1990-11-01
Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2013-01-01
This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266
NASA Astrophysics Data System (ADS)
Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.
2017-11-01
Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (<3cm -1 ), a high internal efficiency (94%) and a low transparency current density (100A/cm2). For an AR-HR coated ridge Fabry Perot laser, we obtain a power of 230mW with M2=1.3. An optical power of 150mW was obtained at 854nm wavelength, 20°C for AR-HR coated devices. We obtain a single spatial mode emission with M2=1.21 and a SMSR over 30dB, both at 150mW. DFB Lasers at 852.12nm, corresponding to the D2 caesium transition, were then realised with a power of 40mW, 37°C for uncoated devices. The SMSR is over 30dB and the M2=1.33 at 40mW. Furthermore, the preliminary results of the linewidth obtained with a Fabry Perot interferometer give a value of less than 2MHz.
Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.
2010-01-01
We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Near-field analysis of metallic DFB lasers at telecom wavelengths.
Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R
2013-05-06
We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.
Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang
2017-12-01
A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.
Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.
Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F
2013-05-06
Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.
NASA Astrophysics Data System (ADS)
Zhou, Daibing; Zhang, Ruikang; Wang, Huitao; Wang, Baojun; Bian, Jing; An, Xin; Zhao, Lingjuan; Zhu, Hongliang; Ji, Chen; Wang, Wei
2014-11-01
Monolithically integrated electroabsorption modulated lasers (EML) are widely being used in the optical fiber communication systems, due to their low chip, compact size and good compatible with the current communication systems. In this paper, we investigated the effect of Zinc diffusion on extinction ratio of electroabsorption modulator (EAM) integrated with distributed feedback laser (DFB). EML was fabricated by selective area growth (SAG) technology. The MQW structure of different quantum energy levels was grown on n-type InP buffer layer with 150nm thick SiO2 parallel stripes mask by selective area metal-organic chemical vapor deposition (MOCVD). A 35nm photoluminescence wavelength variation was observed between the laser area (λPL=1535nm) and modulator area (λPL=1500nm) by adjusting the dimension of parallel stripes. The grating (λ=1550nm) was fabricated in the selective area. The device was mesa ridge structure, which was constituted of the DFB laser, isolation gap and modulator. The length of every part is 300μm, 50μm, and 150μm respectively. Two samples were fabricated with the same structure and different p-type Zn-doped concentration, the extinction ratio of heavy Zn-doped device is 12.5dB at -6V. In contrast, the extinction ratio of light Zn-doped device is 20dB at -6V, that was improved for approximate 60%. The different Zn diffusion depth into the MQW absorption layer was observed by Secondary ion mass spectrometer (SIMS). The heavy Zn-doped device diffused into absorption layer deeper than the light Zn-doped device, which caused the large non-uniformity of the electric field in the MQW layer. So the extinction ratio characteristics can be improved by optimizing the Zn-doped concentration of p-type layer.
DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses
NASA Technical Reports Server (NTRS)
Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.
2014-01-01
The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
NASA Astrophysics Data System (ADS)
Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2015-01-01
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.
Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser
NASA Astrophysics Data System (ADS)
Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.
2008-06-01
A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.
All-optical noise reduction of fiber laser via intracavity SOA structure.
Ying, Kang; Chen, Dijun; Pan, Zhengqing; Zhang, Xi; Cai, Haiwen; Qu, Ronghui
2016-10-10
We have designed a unique intracavity semiconductor optical amplifier (SOA) structure to suppress the relative intensity noise (RIN) for a fiber DFB laser. By exploiting the gain saturation effect of the SOA, a maximum noise suppression of 30 dB around the relaxation oscillation frequency is achieved, and the whole resonance relaxation oscillation peak completely disappears. Moreover, via a specially designed intracavity SOA structure, the optical intensity inside the SOA will be in a balanced state via the oscillation in the laser cavity, and the frequency noise of the laser will not be degraded with the SOA.
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory
2017-11-01
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.
Distributed feedback interband cascade lasers with top grating and corrugated sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Feng; Stocker, Michael; Pham, John
Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
Realization of pure frequency modulation of DFB laser via combined optical and electrical tuning.
Tian, Chao; Chen, I-Chun Anderson; Park, Seong-Wook; Martini, Rainer
2013-04-08
In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.
A new and efficient theoretical model to analyze chirped grating distributed feedback lasers
NASA Astrophysics Data System (ADS)
Arif, Muhammad
Threshold conditions of a distributed feedback (DFB) laser with a linearly chirped grating are investigated using a new and efficient method. DFB laser with chirped grating is found to have significant effects on the lasing characteristics. The coupled wave equations for these lasers are derived and solved using a power series method to obtain the threshold condition. A Newton- Raphson routine is used to solve the threshold conditions numerically to obtain threshold gain and lasing wavelengths. To prove the validity of this model, it is applied to both conventional index-coupled and complex- coupled DFB lasers. The threshold gain margins are calculated as functions of the ratio of the gain coupling to index coupling (|κg|/|κ n|), and the phase difference between the index and gain gratings. It was found that for coupling coefficient |κ|l < 0.9, the laser shows a mode degeneracy at particular values of the ratio |κ g|/|κn|, for cleaved facets. We found that at phase differences π/2 and 3π/2, between the gain and index grating, for an AR-coated complex-coupled laser, the laser becomes multimode and a different mode starts to lase. We also studied the effect of the facet reflectivity (both magnitude and phase) on the gain margin of a complex- coupled DFB laser. Although, the gain margin varies slowly with the magnitude of the facet reflectivity, it shows large variations as a function of the phase. Spatial hole burning was found to be minimum at phase difference nπ, n = 0, 1, ... and maximum at phase differences π/2 and 3π/2. The single mode gain margin of an index-coupled linearly chirped CG-DFB is calculated for different chirping factors and coupling constants. We found that there is clearly an optimum chirping for which the single mode gain margin is maximum. The gain margins were calculated also for different positions of the cavity center. The effect of the facet reflectivities and their phases on the gain margin was investigated. We found the gain margin is maximum and the Spatial Hole Burning (SHB) is minimum for the cavity center at the middle of the laser cavity. Effect of chirping on the threshold gain, gain margin and spatial hole burning (SHB) for different parameters, such as the coupling coefficients, facet reflectivities, etc., of these lasers are studied. Single mode yield of these lasers are calculated and compared with that of a uniform grating DFB laser.
Development of an advanced uncooled 10-Gb DFB laser for volume manufacture
NASA Astrophysics Data System (ADS)
Burns, Gordon; Charles, Paul M.
2003-03-01
Optical communication systems operating at 10Gbit/s such as 10Gigabit Ethernet are becoming more and more important in Local Area Networks (LAN) and Metropolitan Area Networks (MAN). This market requires optical transceivers of low cost, size and power consumption. This drives a need for uncooled DFB lasers directly modulated at 10Gbit/s. This paper describes the development of a state of the art uncooled high speed DFB laser which is capable of being manufactured in high volume at the low cost demanded by the GbE market. A DFB laser was designed by developing technological building blocks within the 'conventional" InGaAsP materials system, using existing well proven manufacturing processes modules wherever possible, limiting the design risk to a few key areas where innovation was required. The temperature and speed performance of the InGaAsP SMQW active layer system was carefully optimized and then coupled with a low parasitic lateral confinement system. Using concurrent engineering, new processes were demonstrated to have acceptable process capability within a manufacturing fabrication environment, proving their ability to support high volume manufacturing requirements. The DFB laser fabricated was shown to operate at 100C chip temperature with an open eye at 10Gbit/s operation (with an extinction ratio >5dB). Up to 90C operation this DFB shows threshold current as low as 29mA, optical power as high as 13mW and it meets the 10Gb scaled Ethernet mask with extinction ratio >6dB. It was found that the high temperature dynamic behavior of these lasers could not be fully predicted from static test data. A production test strategy was therefore followed where equipment was designed to fully test devices/subassemblies at 100C and up to 20Gbit/s at key points in the product build. This facilitated the rapid optimisation of product yields upon manufacturing ramp up and minimization of product costs. This state of the art laser is now transferred into volume manufacture.
InGaAlAs RW-based electro-absorption-modulated DFB-lasers for high-speed applications
NASA Astrophysics Data System (ADS)
Moehrle, Martin; Klein, Holger; Bornholdt, Carsten; Przyrembel, Georges; Sigmund, Ariane; Molzow, Wolf-Dietrich; Troppenz, Ute; Bach, Heinz-Gunter
2014-05-01
Electro-absorption modulated 10G and 25G DFB lasers (EML) are key components in transmission systems for long reach (up to 10 km) and extended reach (up to 80 km) applications. The next generation Ethernet will most likely be 400 Gb/s which will require components with even higher bandwidth. Commercially available EMLs are regarded as high-cost components due to their separate epitaxial butt-coupling growth process to separately optimize the DFB laser and the electro-absorption modulator (EAM). Alternatively the selective area growth (SAG) technique is used to achieve different MQW bandgaps in the DFB and EAM section of an EML. However for a lot of applications an emission wavelength within a narrow wavelength window is required enforcing a temperature controlled operation. All these applications can be covered with the developed EML devices that use a single InGaAlAs MQW waveguide for both the DFB and the EAM enabling a low-cost fabrication process similar to a conventional DFB laser diode. It will be shown that such devices can be used for 25Gb/s and 40Gb/s applications with excellent performance. By an additional monolithic integration of an impedance matching circuit the module fabrication costs can be reduced but also the modulation bandwidth of the devices can be further enhanced. Up to 70Gb/s modulation with excellent eye openings can be achieved. This novel approach opens the possibility for 100Gb/s NRZ EMLs and thus 4x100Gb/s NRZ EML-based transmitters in future. Also even higher bitrates seem feasible using more complex modulation formats such as e.g. DMT and PAM.
Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform
NASA Astrophysics Data System (ADS)
Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.
2018-02-01
We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristanic, Daniela; Schwarz, Benedikt, E-mail: benedikt.schwarz@tuwien.ac.at; Reininger, Peter
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} atmore » 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.« less
NASA Astrophysics Data System (ADS)
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Characteristics research on self-amplified distributed feedback fiber laser
NASA Astrophysics Data System (ADS)
Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding
2014-09-01
A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li
2017-05-07
Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.
Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.
2013-01-01
We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.
NASA Astrophysics Data System (ADS)
Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.
2014-03-01
Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of < 3mm-mrad. The EU project BRIDLE (www.bridle.eu) is developing novel diode laser sources for such systems, and several technological advances are sought. For increased system brightness and optimal ber-coupling the diode lasers should operate with reduced BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with < 50% effciency at output power, Pout < 6 W, with BPP < 1.8 mm-mrad and offV 95 36 . The emission wavelength is about 970 nm and the spectral width is < 0.7 nm (95% power). The BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
DFB Lasers Between 760 nm and 16 μm for Sensing Applications
Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes
2010-01-01
Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Coherent perfect rotation theory: connections with, and consequences beyond, the anti-laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Zhou, Chuanhong; Baker, Michael
2014-05-01
Coherent Perfect Rotation (CPR) phenomena are a reversible generalization of the anti-laser. By evaluating CPR in a broad variety of common optical systems, including optical cavities and DFB and DBR structures, we illustrate its unique threshold and resonance features. This study builds intuition critical to assessing the utility of CPR in optical devices, and we detail it in a concrete application.
NASA Technical Reports Server (NTRS)
Hsieh, H.-H.; Fonstad, C. G.
1980-01-01
Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.
Multiperiod-grating surface-emitting lasers
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor)
1992-01-01
Surface-emitting distributed feedback (DFB) lasers are disclosed with hybrid gratings. A first-order grating is provided at one or both ends of the active region of the laser for retroreflection of light back into the active region, and a second-order or nonresonant grating is provided at the opposite end for coupling light out perpendicular to the surfaces of the laser or in some other selected direction. The gratings may be curved to focus light retroreflected into the active region and to focus light coupled out to a point. When so focused to a point, the DFB laser may be part of a monolithic read head for a laser recorded disk, or an optical coupler into an optical fiber.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Packaging and testing of multi-wavelength DFB laser array using REC technology
NASA Astrophysics Data System (ADS)
Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia
2014-02-01
Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.
NASA Technical Reports Server (NTRS)
Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.
1995-01-01
Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.
Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2017-02-01
Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth
NASA Astrophysics Data System (ADS)
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-04-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
Pattern dependence in high-speed Q-modulated distributed feedback laser.
Zhu, Hongli; Xia, Yimin; He, Jian-Jun
2015-05-04
We investigate the pattern dependence in high speed Q-modulated distributed feedback laser based on its complete physical structure and material properties. The structure parameters of the gain section as well as the modulation and phase sections are all taken into account in the simulations based on an integrated traveling wave model. Using this model, we show that an example Q-modulated DFB laser can achieve an extinction ratio of 6.8dB with a jitter of 4.7ps and a peak intensity fluctuation of less than 15% for 40Gbps RZ modulation signal. The simulation method is proved very useful for the complex laser structure design and high speed performance optimization, as well as for providing physical insight of the operation mechanism.
2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers
NASA Astrophysics Data System (ADS)
Deninger, Anselm J.; Roggenbuck, A.; Schindler, S.; Preu, S.
2015-03-01
To date, exploiting the full bandwidth of state-of-the-art InGaAs photomixers for generation and detection of continuous-wave (CW) THz radiation (typ. ~50 GHz to ~3 THz) required complex and costly external-cavity diode lasers with motorized resonator control. Distributed feedback (DFB) lasers, by contrast, are compact and inexpensive, but the tuning range per diode is limited to ~600 GHz at 1.5 μm. In this paper, we show that a combination of three DFB diodes covers the complete frequency range from 0 - 2750 GHz without any gaps. In combination with InGaAs-based photomixers for terahertz generation and detection, the system achieves a dynamic range of > 100 dB at 56 GHz, 64 dB at 1000 GHz, and 26 dB at 2500 GHz. A field-programmable gate array (FPGA)-based lock-in amplifier permits a flexible adjustment of the integration time from 0.5 ms to 600 ms. Employing an optimized "fast scan" mode, a spectrum of ~1200 GHz - the bandwidth of each subset of two lasers - and 40 MHz steps is acquired in less than one minute, still maintaining a reasonable dynamic range. To the best of our knowledge, the bandwidth of 2.75 THz presents a new record for DFB-based CW-terahertz systems.
NASA Astrophysics Data System (ADS)
Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim
2017-02-01
Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.
Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Weidner, R.; Richter, D.; Tittel, F. K.; Limpert, J.
2000-01-01
A compact, portable and robust room temperature CH4 sensor is reported. By difference frequency mixing a 500 mW alpha-DFB diode laser at 1066 nm and an erbium-doped fiber amplified 1574 nm DFB diode laser in periodically poled lithium niobate up to 7 (mu)W of narrowband radiation at 3.3 microns is generated. Real-time monitoring of CH4 over a 7 day period using direct absorption in an open-path multipass cell (L = 36 m) demonstrates a detection precision of +/- 14 ppb.
Optimization of cw-QC lasers for Doppler and sub-Doppler molecular spectroscopy
NASA Astrophysics Data System (ADS)
Kelly, James F.; Disselkamp, Robert S.; Sams, Robert L.; Blake, Thomas A.; Sharpe, Steven W.; Richter, Dirk A.; Fried, Alan
2002-09-01
Inter-subband (Type I) quantum-cascade (QC) lasers have shown the potential to generate tunable mid-IR radiation with narrow intrinsic linewidths (< 160 KHz in 15 mSec sweeps) and excellent amplitude stability (< 3 ppm averaged over minutes). Our bench-scale efforts to develop the Type I distributed feedback (DFB)-QC lasers for fieldable atmospheric chemistry campaigns, where multipass (Herriot or White) cells are used to enhance path-length, have not yet realized performance to the low intrinsic noise levels seen in these devices. By comparison, many operational systems' levels of noise-equivalent-absorbance (NEA) using Pb-salt lasers can routinely achieve at least one-order of magnitude better cw-performance, and with much lower powers. We have found that instability effets from weak back-scattered laser light -primarily from the Herriot cell- results in feedback-implicated technical noise well above the thermal and shot-noise of standard IR detectors. Of more fundamental concern is the fact that planar-stripe DFB-QC lasers undergo beam steering and transverse spatial-mode competitions during current tuning. It is the development of fully automated sub-ppbV sensitive IR chem-sensors. It is possible to reach low-ppm levels of absorptance change-detection (ΔI/I0) over small wavelength regions with careful alignment to 100 M Herriott cells, but extreme care in spatial filtering is critical. However in the case of optical configurations which preclude significant optical feedback and need for stringent mode coupling alignments, the cw-DFB-QC lasers show great promise to do high resolution sub-Doppler spectroscopy. By serendipitous events, a varient of 'mode- or level-crossing' spectroscopy was probably rediscovered, which may allow very high resolution, sub-Doppler features and/or hyperfine alignments to be probed with 'uni-directional' topologies. We will primarily discuss the basic features of the 'uni-directional' sub-Doppler spectroscopy concept in this report. It shows potential to be exploitable in multi-pass cells or ring configurations. The phenomena of satuation 'dips' in molecular transitions appear to be very accessible with sinusoidally current-modulated DFB-QC lasers. Observations of sub-Doppler structures, either induced by residual AM 'pulsation dips' and/or hyperfine level-crossing effects (due to weak Zeeman splittings by the earth's B-field) can be recovered with good contrast. If this phenomena is indeed implicated with long-lived coherent hyperfine alignments, due perhaps to coherent population trapping in 'dark-states,' then sub-Doppler signals from saturated 'level-crossings' can potentially be seen without recourse to expensive polarization optics, nor elaborate beam shaping and isolation techniques.
Influence of the UV-induced fiber loss on the distributed feedback fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi
2003-06-01
It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.
Linearization of microwave photonic link based on nonlinearity of distributed feedback laser
NASA Astrophysics Data System (ADS)
Kang, Zi-jian; Gu, Yi-ying; Zhu, Wen-wu; Fan, Feng; Hu, Jing-jing; Zhao, Ming-shan
2016-02-01
A microwave photonic link (MPL) with spurious-free dynamic range (SFDR) improvement utilizing the nonlinearity of a distributed feedback (DFB) laser is proposed and demonstrated. First, the relationship between the bias current and nonlinearity of a semiconductor DFB laser is experimentally studied. On this basis, the proposed linear optimization of MPL is realized by the combination of the external intensity Mach-Zehnder modulator (MZM) modulation MPL and the direct modulation MPL with the nonlinear operation of the DFB laser. In the external modulation MPL, the MZM is biased at the linear point to achieve the radio frequency (RF) signal transmission. In the direct modulation MPL, the third-order intermodulation (IMD3) components are generated for enhancing the SFDR of the external modulation MPL. When the center frequency of the input RF signal is 5 GHz and the two-tone signal interval is 10 kHz, the experimental results show that IMD3 of the system is effectively suppressed by 29.3 dB and the SFDR is increased by 7.7 dB.
10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings
NASA Astrophysics Data System (ADS)
Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.
2018-02-01
Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.
Modulation of frequency doubled DFB-tapered diode lasers for medical treatment
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.
2017-02-01
The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.
NASA Astrophysics Data System (ADS)
Osowski, Mark Louis
With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao; Hosoda, Takashi; Shterengas, Leon
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-10-18
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Compact DFB laser modules with integrated isolator at 935 nm
NASA Astrophysics Data System (ADS)
Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.
2018-02-01
New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth.
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-12-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm 2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
Evaluation of 2.1μm DFB lasers for space applications
NASA Astrophysics Data System (ADS)
Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.
2017-11-01
This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
DBR laser with nondynamic plasma grating formed by focused ion beam implanted dopants
NASA Technical Reports Server (NTRS)
Boenke, Myra M.; Wu, M. C.; Wang, Shyh; Clark, William M., Jr.; Stevens, Eugene H.
1989-01-01
A static plasma grating has been demonstrated experimentally (Wu et al., 1988) in a large-optical-cavity focused-ion-beam-distributed-Bragg-reflector (FIB-DBR) GaAlAs/GaAs laser diode. The grating is formed by implanting stripes of dopants with a focused ion beam. The dopants ionize to form periodic fluctuations in the carrier concentration which, through the Kramers-Kronig relations, form an index grating. A model of the grating strength for optimizaton of the laser design is developed and presented. The computed results show that the coupling coefficient k can be increased by more than an order of magnitude over the 15/cm experimentally. Therefore, FIB-DBR or FIB-distributed-feedback (DFB) lasers with performance comparable to that of conventional DBR (or DFB) lasers can be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.
1989-12-01
Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less
Tan, Song; Liu, Wan-feng; Wang, Li-jun; Zhang, Jin-chuan; Li, Lu; Liu, Jun-qi; Liu, Feng-qi; Wang, Zhan-guo
2012-05-01
There have been considerable interests in methane detection based on infrared absorption spectroscopy for industrial and environment monitoring. The authors report on the realization of photoacoustic detection of methane (CH4) using mid-infrared distributed-feedback quantum cascade laser (DFB-QCL). The absorption line at 1316.83 cm(-1) was selected for CH4 detection, which can be reached by the self-manufactured DFB-QCL source operating in pulsed mode near 7.6 microm at room-temperature. The CH4 gas is filled to a Helmholtz resonant photoacoustic cell, which was equipped with a commercial electret microphone. The DFB-QCL was operated at 234 Hz with an 80 mW optical peak power. A detection limit of 189 parts per billion in volume was derived when the signal-to-noise ratio equaled 1.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
Understanding temperature tuning of the all polymer co-extruded laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, Jim; Aviles, Michael; Dawson, Nathan; Petrus, Joshua; Mazzocco, Anthony; Singer, Ken; Baer, Eric; Song, Hyunmin
2012-10-01
We investigate the effects of elevated temperatures on a few types of all-polymer multilayer films that were fabricated using a co-extrusion melt-process technique. We report on the anisotropic thermal expansion of the multilayer films, which affects the photonic crystal structure via constituent wise induced anisotropic strains and a change in the relative refractive indices. In addition to the characterization of these films in the temperature range of approximately 20-95 degrees C, we show the application to non-contact temperature sensing and wavelength tuning of all polymer Distributed FeedBack (DFB) lasers and Distributed Bragg Reflector (DBR) lasers.
NASA Astrophysics Data System (ADS)
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Unidirectional photonic wire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.
Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less
Unidirectional photonic wire laser
Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.; ...
2017-08-07
Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-03-01
A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
Merzendorfer, Hans; Kim, Hee Shin; Chaudhari, Sujata S; Kumari, Meera; Specht, Charles A; Butcher, Stephen; Brown, Susan J; Manak, J Robert; Beeman, Richard W; Kramer, Karl J; Muthukrishnan, Subbaratnam
2012-04-01
Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin) are in wide use to control various insect pests. Although this class of compounds is known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader insight into the mechanism underlying the insecticidal effects of benzoylphenyl urea compounds, we conducted a comprehensive study with the model beetle species and stored product pest Tribolium castaneum (red flour beetle) utilizing genomic and proteomic approaches. DFB was added to a wheat flour-based diet at various concentrations and fed to larvae and adults. We observed abortive molting, hatching defects and reduced chitin amounts in the larval cuticle, the peritrophic matrix and eggs. Electron microscopic examination of the larval cuticle revealed major structural changes and a loss of lamellate structure of the procuticle. We used a genomic tiling array for determining relative expression levels of about 11,000 genes predicted by the GLEAN algorithm. About 6% of all predicted genes were more than 2-fold up- or down-regulated in response to DFB treatment. Genes encoding enzymes involved in chitin metabolism were unexpectedly unaffected, but many genes encoding cuticle proteins were affected. In addition, several genes presumably involved in detoxification pathways were up-regulated. Comparative 2D gel electrophoresis of proteins extracted from the midgut revealed 388 protein spots, of which 7% were significantly affected in their levels by DFB treatment as determined by laser densitometry. Mass spectrometric identification revealed that UDP-N-acetylglucosamine pyrophosphorylase and glutathione synthetase were up-regulated. In summary, the red flour beetle turned out to be a good model organism for investigating the global effects of bioactive materials such as insect growth regulators and other insecticides. The results of this study recapitulate all of the different DFB-induced symptoms in a single model insect, which have been previously found in several different insect species, and further illustrate that DFB treatment causes a wide range of effects at the molecular level. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Matsuoka, N.; Yamaguchi, S.; Nanri, K.; Fujioka, T.; Richter, D.; Tittel, F. K.
2001-01-01
A Yb fiber laser pumped cw narrow-linewidth tunable mid-IR source based on a difference frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal for trace gas detection was demonstrated. A high power Yb fiber laser and a distributed feedback (DFB) laser diode were used as DFG pump sources. This source generated mid-IR at 3 microns with a powers of 2.5 microW and a spectral linewidth of less than 30 MHz. A frequency tuning range of 300 GHz (10 cm-1) was obtained by varying the current and temperature of the DFB laser diode. A high-resolution NH3 absorption Doppler-broadened spectrum at 3295.4 cm-1 (3.0345 microns) was obtained at a cell pressure of 27 Pa from which a detection sensitivity of 24 ppm m was estimated.
Sun, Xiankai; Yariv, Amnon
2008-06-09
We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing
NASA Astrophysics Data System (ADS)
Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing
2014-12-01
In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi
2015-08-01
We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.
Zhu, Huan; Zhu, Haiqing; Wang, Fangfang; Chang, Gaolei; Yu, Chenren; Yan, Quan; Chen, Jianxin; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Tang, Zhou; Chen, Pingping; Lu, Wei; Xu, Gangyi; He, Li
2018-01-22
A terahertz master-oscillation power-amplifier quantum cascade laser (THz-MOPA-QCL) is demonstrated where a grating coupler is employed to efficiently extract the THz radiation. By maximizing the group velocity and eliminating the scattering of THz wave in the grating coupler, the residue reflectivity is reduced down to the order of 10 -3 . A buried DFB grating and a tapered preamplifier are proposed to improve the seed power and to reduce the gain saturation, respectively. The THz-MOPA-QCL exhibits single-mode emission, a single-lobed beam with a narrow divergence angle of 18° × 16°, and a pulsed output power of 136 mW at 20 K, which is 36 times that of a second-order DFB laser from the same material.
Sub-kHz Linewidth GaSb Semiconductor Diode Lasers Operating Near 2 Micrometers
NASA Technical Reports Server (NTRS)
Bagheri, Mahmood; Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Forouhar, Siamak
2012-01-01
We report on the phase noise properties of DFB lasers operating near 2.0 microns. Measured noise spectra indicate intrinsic laser linewidths below 1 kHz. An effective linewidth of less than 200 kHz for 5 ms measurement times is estimated.
Terahertz light-emitting graphene-channel transistor toward single-mode lasing
NASA Astrophysics Data System (ADS)
Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi
2018-03-01
A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.
NASA Astrophysics Data System (ADS)
Liu, Lijuan; Zhang, Guiyang; Kong, Xiaobo; Liu, Yonggang; Xuan, Li
2018-01-01
A high conversion efficiency distributed feedback (DFB) laser from a dye-doped holographic polymer dispersed liquid crystal (HPDLC) transmission grating structure was reported. The alignment polyimide (PI) films were used to control the orientation of the phase separated liquid crystals (LCs) to increase the refractive index difference between the LC and the polymer, so it can provide better light feedback. The lasing wavelength located at 645.8 nm near the maximum of the amplified spontaneous emission (ASE) spectrum with the lowest threshold 0.97 μ J/pulse and the highest conversion efficiency 1.6% was obtained. The laser performance under electric field were also investigated and illustrated. The simple configuration, one-step fabrication organic dye laser shows the potential to realize ultra-low cost plastic lasers.
NASA Astrophysics Data System (ADS)
Zheng, Chuan-Tao; Huang, Jian-Qiang; Ye, Wei-Lin; Lv, Mo; Dang, Jing-Min; Cao, Tian-Shu; Chen, Chen; Wang, Yi-Ding
2013-11-01
A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of -0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0-100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.
Terahertz plasmonic laser radiating in an ultra-narrow beam
Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...
2016-07-07
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less
Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang
2016-01-25
A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.
NASA Astrophysics Data System (ADS)
Talla Mbé, Jimmi Hervé; Woafo, Paul
2018-03-01
We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-07-27
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.
NASA Astrophysics Data System (ADS)
Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong
2017-10-01
In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.
Tunable organic distributed feedback dye laser device excited through Förster mechanism
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Hinode, Taiki
2017-03-01
Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.
Camposeo, Andrea; Del Carro, Pompilio; Persano, Luana; Cyprych, Konrad; Szukalski, Adam; Sznitko, Lech; Mysliwiec, Jaroslaw; Pisignano, Dario
2014-10-28
Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.
Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm
NASA Astrophysics Data System (ADS)
Gabrysch, M.; Corsi, C.; Pavone, F. S.; Inguscio, M.
1997-07-01
One single semiconductor distributed-feedback (DFB) laser is used to demonstrate the possibility of simultaneous detection of two different molecular species. Direct absorption and low-wavelength modulation (LWM) spectroscopy were employed to investigate weak overtone transitions of CO2 and CO at a wavelength of 5=1578 nm. Sensitivity measurements under different conditions have been performed and the detection limit of the apparatus was measured to be less than 10 mTorr over a 1-m path length. In addition, we measured for the first time environmentally and spectroscopically relevant self-broadening and nitrogen-broadening coefficients for CO2 and CO in this spectral region and we discuss different possibilities for increasing the sensitivity of the apparatus.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD
NASA Astrophysics Data System (ADS)
Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi
2017-04-01
The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.
NASA Technical Reports Server (NTRS)
Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.
2001-01-01
The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer
NASA Astrophysics Data System (ADS)
Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei
2017-06-01
We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.
Liew, S K; Carlson, N W
1992-05-20
A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.
Spectrally high performing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Toor, Fatima
Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.
High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.
Wan, Wenqiang; Huang, Wenbin; Pu, Donglin; Qiao, Wen; Ye, Yan; Wei, Guojun; Fang, Zongbao; Zhou, Xiaohong; Chen, Linsen
2015-12-14
We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 μJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.
NASA Astrophysics Data System (ADS)
Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther
2016-03-01
A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-01-01
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342
Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep
2016-10-15
We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.
42.8 Gb/s ASK homodyne receiver using standard DFB lasers
NASA Astrophysics Data System (ADS)
Becker, D.; Mohr, D.; Datta, S.; Wree, C.; Bhandare, S.; Joshi, A.
2009-05-01
Optical synchronous coherent detection is attracting greater attention within the defense and security community because it allows linear recovery both of the amplitude and phase of optical signals. Fiber-based transmission impairments such as chromatic dispersion and polarization mode dispersion can be compensated in the electrical domain. Additionally, synchronous detection offers the potential of improved receiver sensitivity and extended reach versus direct or interferometric detection schemes. 28 Gbaud/112 Gb/s and 42.8 Gbaud transmissions are now being considered in fiber networks worldwide. Due to the lack of broadband high frequency components centered at IF values of 56 GHz and 86 GHz, respectively, the coherent heterodyne approach is not viable for these baud rates. The homodyne approach remains one of the choices available to fully exploit the advantages of synchronous coherent detection at these transmission data rates. In order to implement the homodyne receiver, optical phase locking between the signal and local oscillator laser (LO) is required. Digital approaches for this task rely upon very complex, fast, and high power-consumption chips. A homodyne receiver using an analog approach for phase locking would allow for increased system simplicity at a lower cost. Use of commercial-off-the-shelf (COTS) DFB lasers embedded within the receiver would also increase system feasibility for defense applications. We demonstrate synchronous demodulation of a 42.8 Gbaud signal using an analog optical phase-locked loop. The homodyne system was optimized to use COTS DFB lasers having an aggregate linewidth of ~2 MHz. We also analyze the impact of uncompensated phase noise on receiver performance.
1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product
NASA Technical Reports Server (NTRS)
Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.
2002-01-01
Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.
NASA Astrophysics Data System (ADS)
Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech
2017-09-01
We present an experimental realization of the optical frequency locked loop applied to long-term frequency difference stabilization of broad-line DFB lasers along with a new independent method to characterize relative phase fluctuations of two lasers. The presented design is based on a fast photodiode matched with an integrated phase-frequency detector chip. The locking setup is digitally tunable in real time, insensitive to environmental perturbations and compatible with commercially available laser current control modules. We present a simple model and a quick method to optimize the loop for a given hardware relying exclusively on simple measurements in time domain. Step response of the system as well as phase characteristics closely agree with the theoretical model. Finally, frequency stabilization for offsets within 4-15 GHz working range achieving <0.1 Hz long-term stability of the beat note frequency for 500 s averaging time period is demonstrated. For these measurements we employ an I/Q mixer that allows us to precisely and independently measure the full phase trace of the beat note signal.
NASA Astrophysics Data System (ADS)
Legg, Thomas; Farries, Mark
2017-02-01
Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya
2018-02-01
The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.
Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli
2015-01-27
Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.
Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G
2013-02-11
We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.
On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles
NASA Astrophysics Data System (ADS)
Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim
2018-01-01
Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Aida, Kazuo; Sugie, Toshihiko
2011-12-12
We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigler, C.; Kirch, J. D.; Mawst, L. J.
2014-03-31
Resonant coupling of the transverse-magnetic polarized (guided) optical mode of a quantum-cascade laser (QCL) to the antisymmetric surface-plasmon modes of 2nd-order distributed-feedback (DFB) metal/semiconductor gratings results in strong antisymmetric-mode absorption. In turn, lasing in the symmetric mode, that is, surface emission in a single-lobe far-field beam pattern, is strongly favored over controllable ranges in grating duty cycle and tooth height. By using core-region characteristics of a published 4.6 μm-emitting QCL, grating-coupled surface-emitting (SE) QCLs are analyzed and optimized for highly efficient single-lobe operation. For infinite-length devices, it is found that when the antisymmetric mode is resonantly absorbed, the symmetric mode hasmore » negligible absorption loss (∼0.1 cm{sup −1}) while still being efficiently outcoupled, through the substrate, by the DFB grating. For finite-length devices, 2nd-order distributed Bragg reflector (DBR) gratings are used on both sides of the DFB grating to prevent uncontrolled reflections from cleaved facets. Equations for the threshold-current density and the differential quantum efficiency of SE DFB/DBR QCLs are derived. For 7 mm-long, 8.0 μm-wide, 4.6 μm-emitting devices, with an Ag/InP grating of ∼39% duty cycle, and ∼0.22 μm tooth height, threshold currents as low as 0.45 A are projected. Based on experimentally obtained internal efficiency values from high-performance QCLs, slope efficiencies as high as 3.4 W/A are projected; thus, offering a solution for watt-range, single-lobe CW operation from SE, mid-infrared QCLs.« less
Radio-Frequency Down-Conversion via Sampled Analog Optical Links
2010-08-09
temporal intensity Popt(ω) includes intensity noise quantities arising from the optical source (e.g. laser intensity noise, amplified spontaneous emission...nm distributed feedback laser RF Down-Conversion via Sampled Links 5 (DFB, EM4, Inc.) the output of which is modulated via a low-biased Mach-Zehnder...Figure 5 (a). For comparison purposes the RF gain of one arm of the balanced link (utilizing a continuous- wave laser source) is measured and
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-06-22
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K
2018-01-04
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin
2018-01-01
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-01-01
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%. PMID:28640187
Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers.
Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-02
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5 o and 1.94 o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers
NASA Astrophysics Data System (ADS)
Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-01
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
NASA Astrophysics Data System (ADS)
Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.
2018-01-01
Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.
Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repasky, Kevin
2014-02-01
A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun
2014-11-01
The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.
NASA Astrophysics Data System (ADS)
Gotti, Riccardo; Prevedelli, Marco; Kassi, Samir; Marangoni, Marco; Romanini, Daniele
2018-02-01
We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at μbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.
NASA Astrophysics Data System (ADS)
Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.
2017-12-01
We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.
Fiber Laser methane sensor with the function of self-diagnose
NASA Astrophysics Data System (ADS)
Li, Yan-fang; Wei, Yu-bin; Shang, Ying; Wang, Chang; Liu, Tong-yu
2012-02-01
Using the technology of tunable diode laser absorption spectroscopy and the technology of micro-electronics, a fiber laser methane sensor based on the microprocessor C8051F410 is given. In this paper, we use the DFB Laser as the light source of the sensor. By tuning temperature and driver current of the DFB laser, we can scan the laser over the methane absorption line, Based on the Beer-Lambert law, through detect the variation of the light power before and after the absorption we realize the methane detection. It makes the real-time and online detection of methane concentration to be true, and it has the advantages just as high accuracy, immunity to other gases , long calibration cycle and so on. The sensor has the function of adaptive gain and self-diagnose. By introducing digital potentiometers, the gain of the photoelectric conversion operational amplifier can be controlled by the microprocessor according to the light power. When the gain and the conversion voltage achieve the set value, then we can consider the sensor in a fault status, and then the software will alarm us to check the status of the probe. So we improved the dependence and the stability of the measured results. At last we give some analysis on the sensor according the field application and according the present working, we have a look of our next work in the distance.
Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency
NASA Astrophysics Data System (ADS)
Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.
2016-03-01
The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.
The influence of grating shape formation fluctuation on DFB laser diode threshold condition
NASA Astrophysics Data System (ADS)
Bao, Shiwei; Song, Qinghai; Xie, Chunmei
2018-03-01
Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ , and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.
The influence of grating shape formation fluctuation on DFB laser diode threshold condition
NASA Astrophysics Data System (ADS)
Bao, Shiwei; Song, Qinghai; Xie, Chunmei
2018-06-01
Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ, and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.
Laser Setup for Volume Diffractive Optical Elements Recording in Photo-Thermo-Refractive Glass
2016-04-14
Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of...3 1b 2 3 a b Fig. 14. Schematic of a DBR (a) and DFB (b) lasers in Yb doped PTR glass. 1a and 1b – dichroic beam splitters with HR at 1066 nm and HT
Large depth high-precision FMCW tomography using a distributed feedback laser array
NASA Astrophysics Data System (ADS)
DiLazaro, Thomas; Nehmetallah, George
2018-02-01
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
Optoelectronics for Optically Controlled Phased-Array Systems
1991-11-01
Equation (1) holds for a Fabry - Perot (FP) laser as well as a DFB laser. Furthermore, gain clamping requires that hg(n)+ ( I - h)g(n,) - g,, (2) 4-2 where...and (3.) gain-lever, with a low-Q Fabry - Perot inserted before detector. Care was taken to ensure that the DC photocurrents were nearly identical in all...operating the laser cw and scanning the Fabry - Perot . The results are shown in Fig. 4(a) and (b). In these plots, the three curves are slightly offset
NASA Astrophysics Data System (ADS)
Li, Ya-Jie; Wang, Jia-Qi; Guo, Lu; Chen, Guang-Can; Li, Zhao-Song; Yu, Hong-Yan; Zhou, Xu-Liang; Wang, Huo-Lei; Chen, Wei-Xi; Pan, Jiao-Qing
2018-04-01
Not Available Supported by the National Key Research and Development Program of China under Grant No 2017YFB0405301, and the National Natural Science Foundation of China under Grant Nos 61604144 and 61504137.
NASA Astrophysics Data System (ADS)
Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.
2015-10-01
We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.
Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V
2012-07-02
We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.
Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.
2012-01-01
The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.
Qualification of an evaluated butterfly-packaged DFB laser designed for space applications
NASA Astrophysics Data System (ADS)
Tornow, S.; Stier, C.; Buettner, T.; Laurent, T.; Kneier, M.; Bru, J.; Lien, Y.
2017-11-01
An extended qualification program has proven the quality of a previously evaluated semiconductor laser diode, which is intended to be used in a subsystem for the GAIA mission. We report on results of several reliability tests performed in subgroups. The requirements of the procurement specification with respect to reliability and desired manufacturing processes were confirmed. This is an example for successful collaboration between component supplier, system integrator and payload responsible party.
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp
NASA Astrophysics Data System (ADS)
Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei
2018-01-01
Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.
Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang
2009-03-30
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.
NASA Astrophysics Data System (ADS)
Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey
2018-05-01
In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.
Tsutsumi, Naoto; Hirano, Yoshinori; Kinashi, Kenji; Sakai, Wataru
2018-06-12
The fluorescent properties of dyes and fluorophores in condensed matter significantly affect the laser performance of organic dye lasers and fluorescent polymer lasers. Concentration quenching of fluorescence is commonly observed in condensed matter. Several approaches have been presented to suppress such quenching, such as the use of a dendrimer and the use of effective energy transfer in a guest-host system. The enhanced fluorescence of rhodamine 6G (R6G) dye on a vinylidene fluoride polymer is an alternative method for enhancing laser performance because of the roughness of the P(VDF-TrFE) surface and the interaction between polar β-crystals of P(VDF-TrFE) and R6G dye. In this paper, a significant improvement in slope efficiency (SE) is demonstrated without a significant depression in the lasing threshold for distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers fabricated using an R6G-dispersed cellulose acetate (CA) matrix spin-coated onto a copolymer of vinylidene fluoride and trifluoroethylene P(VDF-TrFE) thin film. SEs of 3.4 and 1.3% were measured for DBR and DFB laser devices with CA/R6G on a P(VDF-TrFE) thin film, respectively, whereas an SE of less than 1.0% was measured for both corresponding laser devices without a P(VDF-TrFE) thin film. From the aspect of simple fabrication procedures, repeatability in device fabrication and performance, stability of the device, time for device fabrication, the present approach is the most preferable way for industrial applications, requiring only the additional step of spin-coating of a P(VDF-TrFE) thin film.
Imaging of gaseous oxygen through DFB laser illumination
NASA Astrophysics Data System (ADS)
Cocola, L.; Fedel, M.; Tondello, G.; Poletto, L.
2016-05-01
A Tunable Diode Laser Absorption Spectroscopy setup with Wavelength Modulation has been used together with a synchronous sampling imaging sensor to obtain two-dimensional transmission-mode images of oxygen content. Modulated laser light from a 760nm DFB source has been used to illuminate a scene from the back while image frames were acquired with a high dynamic range camera. Thanks to synchronous timing between the imaging device and laser light modulation, the traditional lock-in approach used in Wavelength Modulation Spectroscopy was replaced by image processing techniques, and many scanning periods were averaged together to allow resolution of small intensity variation over the already weak absorption signals from oxygen absorption band. After proper binning and filtering, the time-domain waveform obtained from each pixel in a set of frames representing the wavelength scan was used as the single detector signal in a traditional TDLAS-WMS setup, and so processed through a software defined digital lock-in demodulation and a second harmonic signal fitting routine. In this way the WMS artifacts of a gas absorption feature were obtained from each pixel together with intensity normalization parameter, allowing a reconstruction of oxygen distribution in a two-dimensional scene regardless from broadband transmitted intensity. As a first demonstration of the effectiveness of this setup, oxygen absorption images of similar containers filled with either oxygen or nitrogen were acquired and processed.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
NASA Astrophysics Data System (ADS)
Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang
2017-09-01
Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology
NASA Astrophysics Data System (ADS)
Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei
2014-12-01
A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.
Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-01-15
We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.
High power and single mode quantum cascade lasers.
Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome
2016-05-16
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers.
Gasulla, I; Capmany, J
2008-05-26
We have successfully demonstrated an error-free transmission of 10 x 20 Gb/s 200 GHz-spaced ITU channels through a 5 km link of 62.5-microm core-diameter graded-index multimode silica fiber. The overall figure corresponds to an aggregate bit rate per length product of 1 Tb/s x km, the highest value ever reported to our knowledge. Successful transmission is achieved by a combination of low-linewidth DFB lasers and the central launch technique.
Bechmann, Renée Katrin; Lyng, Emily; Westerlund, Stig; Bamber, Shaw; Berry, Mark; Arnberg, Maj; Kringstad, Alfhild; Calosi, Piero; Seear, Paul J
2018-05-01
Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0 °C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5 °C and pH 7.6). Two weeks' exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW + DFB. In OAW + DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW + DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW + DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW + DFB than DFB larvae. A single day exposure at 4 days after hatching did not affect DFB larvae, but high mortality was observed for OAW + DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.
2011-12-01
A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period indicate that the CO2 DIAL has an accuracy of ±20 parts per million (PPM).
NASA Astrophysics Data System (ADS)
Le, Loan T.
Over the span of more than 20 years of development, the Quantum Cascade (QC) laser has positioned itself as the most viable mid-infrared (mid-IR) light source. Today's QC lasers emit watts of continuous wave power at room temperature. Despite significant progress, the mid-IR region remains vastly under-utilized. State-of-the-art QC lasers are found in high power defense applications and detection of trace gases with narrow absorption lines. A large number of applications, however, do not require so much power, but rather, a broadly tunable laser source to detect molecules with broad absorption features. As such, a QC laser that is broadly tunable over the entire biochemical fingerprinting region remains the missing link to markets such as non- invasive biomedical diagnostics, food safety, and stand-off detection in turbid media. In this thesis, we detail how we utilized the inherent flexibility of the QC design space to conceive a new type of laser with the potential to bridge that missing link of the QC laser to large commercial markets. Our design concept, the Super Cascade (SC) laser, works contrary to conventional laser design principle by supporting multiple independent optical transitions, each contributing to broadening the gain spectrum. We have demonstrated a room temperature laser gain medium with electroluminescence spanning 3.3-12.5 ?m and laser emission from 6.2-12.5 ?m, the record spectral width for any solid state laser gain medium. This gain bandwidth covers the entire biochemical fingerprinting region. The achievement of such a spectrally broad gain medium presents engineering challenges of how to optimally utilize the bandwidth. As of this work, a monolithi- cally integrated array of Distributed Feedback QC (DFB-QC) lasers is one of the most promising ways to fully utilize the SC gain bandwidth. Therefore, in this thesis, we explore ways of improving the yield and ease of fabrication of DFB-QC lasers, including a re-examination of the role of current spreading in QC geometry.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Tajima, T.; Seyama, M.
2018-02-01
We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.
NASA Astrophysics Data System (ADS)
Roy, Anirban; Upadhyay, Abhishek; Chakraborty, Arup Lal
2016-05-01
The concentration of atmospheric pollutants and greenhouse gases needs to be precisely monitored for sustainable industrial development and to predict the climate shifts caused by global warming. Such measurements are made on a continuous basis in ecologically sensitive and urban areas in the advanced countries. Tunable diode laser spectroscopy (TDLS) is the most versatile non-destructive technology currently available for remote measurements of multiple gases with very high selectivity (low cross-sensitivity), very high sensitivity (on the order of ppm and ppb) and under hazardous conditions. We demonstrate absolute measurements of acetylene, methane and carbon dioxide using a fielddeployable fully automated TDLS system that uses calibration-free 2f wavelength modulation spectroscopy (2f WMS) techniques with sensitivities of low ppm levels. A 40 mW, 1531.52 nm distributed feedback (DFB) diode laser, a 10 mW, 1650 nm DFB laser and a 1 mW, 2004 nm vertical cavity surface emitting laser (VCSEL) are used in the experiments to probe the P9 transition of acetylene, R4 transition of methane and R16 transition of carbon dioxide respectively. Data acquisition and on-board analysis comprises a Raspberry Pi-based embedded system that is controllable over a wireless connection. Gas concentration and pressure are simultaneously extracted by fitting the experimental signals to 2f WMS signals simulated using spectroscopic parameters obtained from the HITRAN database. The lowest detected concentration is 11 ppm for acetylene, 275 ppm for methane and 285 ppm for carbon dioxide using a 28 cm long single-pass gas cell.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Generation of a CW local oscillator signal using a stabilized injection locked semiconductor laser
NASA Astrophysics Data System (ADS)
Pezeshki, Jonah Massih
In high speed-communications, it is desirable to be able to detect small signals while maintaining a low bit-error rate. Conventional receivers for high-speed fiber optic networks are Amplified Direct Detectors (ADDs) that use erbium-doped fiber amplifiers (EDFAs) before the detector to achieve a suitable sensitivity. In principle, a better method for obtaining the maximum possible signal to noise ratio is through the use of homodyne detection. The major difficulty in implementing a homodyne detection system is the generation of a suitable local oscillator signal. This local oscillator signal must be at the same frequency as the received data signal, as well as be phase coherent with it. To accomplish this, a variety of synchronization techniques have been explored, including Optical Phase-Lock Loops (OPLL), Optical Injection Locking (OIL) with both Fabry-Perot and DFB lasers, and an Optical Injection Phase-Lock Loop (OIPLL). For this project I have implemented a method for regenerating a local oscillator from a portion of the received optical signal. This regenerated local oscillator is at the same frequency, and is phase coherent with, the received optical signal. In addition, we show that the injection locking process can be electronically stabilized by using the modulation transfer ratio of the slave laser as a monitor, given either a DFB or Fabry-Perot slave laser. We show that this stabilization technique maintains injection lock (given a locking range of ˜1GHz) for laser drift much greater than what is expected in a typical transmission system. In addition, we explore the quality of the output of the slave laser, and analyze its suitability as a local oscillator signal for a homodyne receiver.
New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications
NASA Astrophysics Data System (ADS)
Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim
2018-02-01
The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.
Quantum cascade lasers, systems, and applications in Europe
NASA Astrophysics Data System (ADS)
Lambrecht, Armin
2005-03-01
Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.
DFB laser - External modulator fiber optic delay line for radar applications
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1989-09-01
A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.
2011-02-28
Meeting of Combustion, Atlanta, Georgia, paper 2A18, March 20-23, 2011. 9.2 Web Releases Sirjean, B., Dames, A., Sheen, D.A., You, X.-Q., Sung, C...was no significant interfering absorption or emission. IR diode laser absorption of CO2 and H2O: The recent commercial availability of DFB...distributed feedback) IR diode lasers in the wavelength vicinity of 2.5-2.7 microns has allowed the development of a new CO2 and H2O absorption diagnostics
NASA Technical Reports Server (NTRS)
Kosterev, A. A.; Tittel, F. K.; Durante, W.; Allen, M.; Kohler, R.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Cho, A. Y.
2002-01-01
We report the first application of pulsed, near-room-temperature quantum cascade laser technology to the continuous detection of biogenic CO production rates above viable cultures of vascular smooth muscle cells. A computer-controlled sequence of measurements over a 9-h period was obtained, resulting in a minimum detectable CO production of 20 ppb in a 1-m optical path above a standard cell-culture flask. Data-processing procedures for real-time monitoring of both biogenic and ambient atmospheric CO concentrations are described.
NASA Astrophysics Data System (ADS)
Yazdandoust, Fatemeh; Tatenguem Fankem, Hervé; Milde, Tobias; Jimenez, Alvaro; Sacher, Joachim
2018-02-01
We report the development of a platform, based-on a Field-Programmable Gate Arrays (FPGAs) and suitable for Time-Division-Multiplexed DFB lasers. The designed platform is subsequently combined with a spectroscopy setup, for detection and quantification of species in a gas mixture. The experimental results show a detection limit of 460 ppm, an uncertainty of 0.1% and a computation time of less than 1000 clock cycles. The proposed system offers a high level of flexibility and is applicable to arbitrary types of gas-mixtures.
Multi-species trace gas analysis with dual-wavelength quantum cascade laser
NASA Astrophysics Data System (ADS)
Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas
2015-04-01
Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013). [2] J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, 'Dual-wavelength quantum cascade laser for trace gas spectroscopy,' Applied Physics Letters 105, 161109-161109-4 (2014).
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej
2016-09-06
The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.
High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.; Sigler, C.; Kirch, J. D.
2016-03-21
Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical modemore » to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.« less
Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory
2010-12-15
create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and
Water Vapour Effects in Mass Measurement
NASA Astrophysics Data System (ADS)
Khélifa, N.
2008-01-01
Water vapour density inside the mass comparator enclosure is a critical parameter whose fluctuations during mass weighing can lead to errors in the determination of an unknown mass. To monitor them, a method using DFB laser diode in the near infrared has been proposed and tested. Preliminary results of our observation of water vapour sorption and de-sorption processes from the walls and the mass standard are reported.
Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.
Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun
2006-09-01
The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.
Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej
2016-01-01
The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30–300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10−9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm. PMID:27608024
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Quantum cascade laser-based sensor system for nitric oxide detection
NASA Astrophysics Data System (ADS)
Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.
2015-01-01
Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jatana, Gurneesh; Geckler, Sam; Koeberlein, David
We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less
NASA Astrophysics Data System (ADS)
Engin, Doruk; Chuang, Ti; Litvinovitch, Slava; Storm, Mark
2017-08-01
Fibertek has developed and demonstrated an ideal high-power; low-risk; low-size, weight, and power (SWaP) 2051 nm laser design meeting the lidar requirements for satellite-based global measurement of carbon dioxide (CO2). The laser design provides a path to space for either a coherent lidar approach being developed by NASA Jet Propulsion Laboratory (JPL)1,2 or an Integrated Path Differential Lidar (IPDA) approach developed by Harris Corp using radio frequency (RF) modulation and being flown as part of a NASA Earth Venture Suborbital Mission—NASA's Atmospheric Carbon and Transport - America.3,4 The thulium (Tm) fiber laser amplifies a <500 kHz linewidth distributed feedback (DFB) laser up to 25 W average power in a polarization maintaining (PM) fiber. The design manages and suppresses all deleterious non-linear effects that can cause linewidth broadening or amplified spontaneous emission (ASE) and meets all lidar requirements. We believe the core laser components, architecture, and design margins can support a coherent or IPDA lidar 10-year space mission. With follow-on funding Fibertek can adapt an existing space-based Technology Readiness Level 6 (TRL-6), 20 W erbium fiber laser package for this Tm design and enable a near-term space mission with an electrical-to-optical (e-o) efficiency of <20%. A cladding-pumped PM Tm fiber-based amplifier optimized for high efficiency and high-power operation at 2051 nm is presented. The two-stage amplifier has been demonstrated to achieve 25 W average power and <16 dB polarization extinction ratio (PER) out of a single-mode PM fiber using a <500 kHz linewidth JPL DFB laser5-7 and 43 dB gain. The power amplifier's optical conversion efficiency is 53%. An internal efficiency of 58% is calculated after correcting for passive losses. The two-stage amplifier sustains its highly efficient operation for a temperature range of 5-40°C. The absence of stimulated Brillouin scattering (SBS) for the narrow linewidth amplification shows promise for further power scaling.
Scanned-wavelength diode laser sensors for harsh environments
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sanders, Scott T.; Zhou, Xin; Ma, Lin; Mattison, Daniel W.; Hanson, Ronald K.
2002-09-01
Diode laser absorption offers the possibility of high-speed, robust, and rugged sensors for a wide variety of practical applications. Pressure broadening complicates absorption measurements of gas temperature and species concentrations in high-pressure, high-temperature practical environments. More agile wavelength scanning can enable measurements of temperature and species concentrations in flames and engines as demonstrated by example measurements using wavelength scanning of a single DFB in laboratory flames or a vertical cavity surface emitting laser (VCSEL) in a pulse detonation engine environment. Although the blending of multiple transitions by pressure broadening complicates the atmospheric pressure spectrum of C2H4 fuel, a scanned wavelength strategy enables quantitative measurement of fuel/oxidizer stoichiometry. Wavelength-agile scanning techniques enable high-speed measurements in these harsh environments.
Advanced injection seeder for various applications: form LIDARs to supercontinuum sources
NASA Astrophysics Data System (ADS)
Grzes, Pawel
2017-12-01
The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.
Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro
2015-04-01
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
A CO trace gas detection system based on continuous wave DFB-QCL
NASA Astrophysics Data System (ADS)
Dang, Jingmin; Yu, Haiye; Sun, Yujing; Wang, Yiding
2017-05-01
A compact and mobile system was demonstrated for the detection of carbon monoxide (CO) at trace level. This system adopted a high-power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at ∼22 °C as excitation source. Wavelength modulation spectroscopy (WMS) as well as second harmonic detection was used to isolate complex, overlapping spectral absorption features typical of ambient pressures and to achieve excellent specificity and high detection sensitivity. For the selected P(11) absorption line of CO molecule, located at 2099.083 cm-1, a limit of detection (LoD) of 26 ppb by volume (ppbv) at atmospheric pressure was achieved with a 1 s acquisition time. Allan deviation analysis was performed to investigate the long term performance of the CO detection system, and a measurement precision of 3.4 ppbv was observed with an optimal integration time of approximate 114 s, which verified the reliable and robust operation of the developed system.
Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L
2015-10-01
Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-01-01
The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.;
2017-01-01
We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.
Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang
2016-01-01
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082
Long microwave delay fiber-optic link for radar testing
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1990-05-01
A long fiberoptic delay line is used as a radar repeater to improve radar testing capabilities. The first known generation of 152 microsec delayed ideal target at X-band (10 GHz) frequencies having the phase stability and signal-to-noise ratio (SNR) needed for testing modern high-resolution Doppler radars is demonstrated with a 31.6-km experimental externally modulated fiberoptic link with a distributed-feedback (DFB) laser. The test application, link configuration, and link testing are discussed.
NASA Astrophysics Data System (ADS)
Fuchs, Erica R. H.; Bruce, E. J.; Ram, R. J.; Kirchain, Randolph E.
2006-08-01
The monolithic integration of components holds promise to increase network functionality and reduce packaging expense. Integration also drives down yield due to manufacturing complexity and the compounding of failures across devices. Consensus is lacking on the economically preferred extent of integration. Previous studies on the cost feasibility of integration have used high-level estimation methods. This study instead focuses on accurate-to-industry detail, basing a process-based cost model of device manufacture on data collected from 20 firms across the optoelectronics supply chain. The model presented allows for the definition of process organization, including testing, as well as processing conditions, operational characteristics, and level of automation at each step. This study focuses on the cost implications of integration of a 1550-nm DFB laser with an electroabsorptive modulator on an InP platform. Results show the monolithically integrated design to be more cost competitive over discrete component options regardless of production scale. Dominant cost drivers are packaging, testing, and assembly. Leveraging the technical detail underlying model projections, component alignment, bonding, and metal-organic chemical vapor deposition (MOCVD) are identified as processes where technical improvements are most critical to lowering costs. Such results should encourage exploration of the cost advantages of further integration and focus cost-driven technology development.
High channel count and high precision channel spacing multi-wavelength laser array for future PICs.
Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang
2014-12-09
Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Shuman, T.; Chuang, T.; Hair, J. W.; Refaat, T. F.; Ismail, S.; Kooi, S. A.; Notari, A.
2014-12-01
Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere (UTLS) where water vapor has significant and long term impacts on the Earth's radiation budget. NASA Langley has fostered the technology development with Fibertek, Inc. to develop frequency agile and high power (> 3 W) pulsed lasers using similar architectures in the 1645 nm and 935 nm spectral bands for DIAL measurements of CH4 and H2O, respectively. Both systems utilize high power 1 kHz pulse repetition frequency Nd:YAG lasers to generate high power laser emission at the desired wavelength via optical parametric oscillators (OPO). The CH4 OPO, currently in its final build stage in a SBIR Phase II program has demonstrated >2 W average power with injection seeding from a distributed feedback (DFB) laser during risk reduction experiments. The H2O OPO has demonstrated high power operation (>2 W) during the SBIR Phase I program while being injection seeded with a DFB laser, and is currently funded via an SBIR Phase II to build a robust system for future integration into an airborne water vapor DIAL system capable of profiling from the boundary layer up to the UTLS. Both systems have demonstrated operation with active OPO wavelength control to allow for optimization of the DIAL measurements for operation at different altitudes and geographic regions. An update on the progress of the CH4 and H2O laser development will be presented which will focus on key laser characteristics such as pulse energy, frequency agility and spectral purity. DIAL simulations will also be presented based on the expected and measured laser characteristics and system parameters in anticipation of future system(s) development.
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
Jatana, Gurneesh; Geckler, Sam; Koeberlein, David; ...
2016-09-01
We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less
Plasmonic distributed feedback lasers at telecommunications wavelengths.
Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T
2011-08-01
We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
Improving the Fabrication of Semiconductor Bragg Lasers
NASA Astrophysics Data System (ADS)
Chen, Eric Ping Chun
Fabrication process developments for Bragg reflection lasers have been optimized in this thesis using resources available to the group. New e-beam lithography and oxide etch recipes have been developed to minimize sidewall roughness and residues. E-beam evaporated metal contacts for semiconductor diode laser utilizing oblique angle deposition have also been developed in-house for the first time. Furthermore, improvement in micro-loading effect of DFB laser etching has been demonstrated where the ratio of tapered portion of the sidewall to total etch depth is reduced by half, from 33% to 15%. Electrical, optical and thermal performance of the fabricated lasers are characterized. Comparing the results to previous generation lasers, average dynamic resistance is decreased drastically from 14 Ohms to 7 Ohms and threshold current density also reduced from 1705A/cm2 to 1383A/ cm2. Improvement in laser performance is result of reduced loss from optimized fabrication processes. BRL bow-tie tapered lasers is then fabricated for the first time and output power of 18mW at 200mA input is measured. Benefiting from the increased effective area and better carrier utilization, reduction in threshold current density from 1383A/cm 2 to 712A/cm2 is observed.
NASA Astrophysics Data System (ADS)
Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.
2017-03-01
We present a design for a 4 U (20 cm × 20 cm × 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...
2016-01-05
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
Widely tunable telecom MEMS-VCSEL for terahertz photomixing.
Haidar, Mohammad Tanvir; Preu, Sascha; Paul, Sujoy; Gierl, Christian; Cesar, Julijan; Emsia, Ali; Küppers, Franko
2015-10-01
We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.
Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.
2018-02-01
VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.
Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi
Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less
Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers
Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; ...
2017-03-24
Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less
NASA Astrophysics Data System (ADS)
Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian
2017-04-01
Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.
NASA Astrophysics Data System (ADS)
Hayat, Ahmad; Bacou, Alexandre; Rissons, Angelique; Mollier, Jean-Claude
2009-02-01
We present here a 1.55 μm single mode Vertical-Cavity Surface-Emitting Laser (VCSEL) based low phasenoise ring optoelectronic (OEO) oscillator operating at 2.49 GHz for aerospace, avionics and embedded systems applications. Experiments using optical fibers of different lengths have been carried out to obtain optimal results. A phase-noise measurement of -107 dBc/Hz at an offset of 10 kHz from the carrier is obtained. A 3-dB linewidth of 16 Hz for this oscillator signal has been measured. An analysis of lateral mode spacing or Free Spectral Range (FSR) as a function of fiber length has been carried out. A parametric comparison with DFB Laser-based and multimode VCSEL-based opto-electronic oscillators is also presented.
Quantum cascade laser based sensor for open path measurement of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Deng, Hao; Sun, Juan; Liu, Ningwu; Ding, Junya; Chao, Zhou; Zhang, Lei; Li, Jingsong
2017-02-01
A sensitive open-path gas sensor employing a continuous-wave (CW) distributed feedback (DFB) quantum cascade laser (QCL) and direct absorption spectroscopy (DAS) was demonstrated for simultaneously measurements of atmospheric CO and N2O. Two interference free absorption lines located at 2190.0175 cm-1 and 2190.3498 cm-1 were selected for CO and N2O concentration measurements, respectively. The Allan variance analysis technique was performed to investigate the long-term performance of the QCL sensor system. The results indicate that a detection limit of 9.92 ppb for CO and 7.7 ppb for N2O with 1-s integration time were achieved, which can be further improved to 1.5 ppb and 1.1 ppb by increasing the average time up to 80 s.
Recurrent Circuitry for Balancing Sleep Need and Sleep.
Donlea, Jeffrey M; Pimentel, Diogo; Talbot, Clifford B; Kempf, Anissa; Omoto, Jaison J; Hartenstein, Volker; Miesenböck, Gero
2018-01-17
Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed feedback InGaN/GaN laser diodes
NASA Astrophysics Data System (ADS)
Slight, Thomas J.; Watson, Scott; Yadav, Amit; Grzanka, Szymon; Stanczyk, Szymon; Docherty, Kevin E.; Rafailov, Edik; Perlin, Piotr; Najda, Steve; Leszczyński, Mike; Kelly, Anthony E.
2018-02-01
We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length.
Terahertz plasmonic lasers with narrow beams and large tunability
NASA Astrophysics Data System (ADS)
Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil
2017-02-01
Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.
NASA Astrophysics Data System (ADS)
Deshayes, Yannick; Verdier, Frederic; Bechou, Laurent; Tregon, Bernard; Danto, Yves; Laffitte, Dominique; Goudard, Jean Luc
2004-09-01
High performance and high reliability are two of the most important goals driving the penetration of optical transmission into telecommunication systems ranging from 880 nm to 1550 nm. Lifetime prediction defined as the time at which a parameter reaches its maximum acceptable shirt still stays the main result in terms of reliability estimation for a technology. For optoelectronic emissive components, selection tests and life testing are specifically used for reliability evaluation according to Telcordia GR-468 CORE requirements. This approach is based on extrapolation of degradation laws, based on physics of failure and electrical or optical parameters, allowing both strong test time reduction and long-term reliability prediction. Unfortunately, in the case of mature technology, there is a growing complexity to calculate average lifetime and failure rates (FITs) using ageing tests in particular due to extremely low failure rates. For present laser diode technologies, time to failure tend to be 106 hours aged under typical conditions (Popt=10 mW and T=80°C). These ageing tests must be performed on more than 100 components aged during 10000 hours mixing different temperatures and drive current conditions conducting to acceleration factors above 300-400. These conditions are high-cost, time consuming and cannot give a complete distribution of times to failure. A new approach consists in use statistic computations to extrapolate lifetime distribution and failure rates in operating conditions from physical parameters of experimental degradation laws. In this paper, Distributed Feedback single mode laser diodes (DFB-LD) used for 1550 nm telecommunication network working at 2.5 Gbit/s transfer rate are studied. Electrical and optical parameters have been measured before and after ageing tests, performed at constant current, according to Telcordia GR-468 requirements. Cumulative failure rates and lifetime distributions are computed using statistic calculations and equations of drift mechanisms versus time fitted from experimental measurements.
NASA Astrophysics Data System (ADS)
Neto, B.; Klingler, A.; Reis, C.; Dionísio, R. P.; Nogueira, R. N.; Teixeira, A. L. J.; André, P. S.
2011-03-01
In this paper, we propose a method to mitigate the temporal power transients arising from Erbium doped fiber amplifiers (EDFAs) on packeted/bursty scenario. The technique, applicable on hybrid WDM/TDM-PON for extended reach, is based on a low power clamping provided by a distributed feedback (DFB) laser and a fiber Bragg grating (FBG). An improvement in the data signal Q factor was achieved keeping the clamping control signal with a low power, accompanied by a maximum reduction in the gain excursion of 1.12 dB.
Simple refractometer based on in-line fiber interferometers
NASA Astrophysics Data System (ADS)
Esteban, Ó.; Martínez Manuel, R.; Shlyagin, M. G.
2015-09-01
A very simple but accurate optical fiber refractometer based on the Fresnel reflection in the fiber tip and two in-line low-reflective mirrors for light intensity referencing is reported. Each mirror was generated by connecting together 2 fiber sections with FC/PC and FC/APC connectors using the standard FC/PC mating sleeve. For the sensor interrogation, a standard DFB diode laser pumped with a sawtooth-wave current was used. A resolution of 6 x 10-4 was experimentally demonstrated using different liquids. A simple sensor construction and the use of low cost components make the reported system interesting for many applications.
Weldon, Vincent; McInerney, David; Phelan, Richard; Lynch, Michael; Donegan, John
2006-04-01
Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
Multi-gas sensing with quantum cascade laser array in the mid-infrared region
NASA Astrophysics Data System (ADS)
Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie
2017-05-01
Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.
Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water
NASA Astrophysics Data System (ADS)
Orghici, R.; Willer, U.; Gierszewska, M.; Waldvogel, S. R.; Schade, W.
2008-02-01
A fiber optic approach for the determination of the carbon dioxide concentration in the gas or fluid phase during sequestration, as well as for the sensing of the explosive TNT is described. The sensor consists of a quartz glass multimode fiber with core diameter of 200 μm and is based on the evanescent field principle. Cladding and jacket of the fiber are removed in the sensing portion, therefore interaction between light within the fiber and the surrounding medium is possible. A single-mode distributed feedback (DFB) laser diode with an emission wavelength around λ= 1.57 μm and a frequency doubled passively Q-switched Cr4+:Nd3+:YAG microchip laser (λ= 1064 nm)are used as light sources. The experimental setup and the sensitivity of the evanescent field sensor are characterized.
NASA Astrophysics Data System (ADS)
Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej
2016-11-01
We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.
Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh
2018-04-30
This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei, E-mail: donglei@sxu.edu.cn; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006; Li, Chunguang
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH{sub 4} sensor with a small footprint (32 × 20 × 17 cm{sup 3}) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH{sub 4} concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for amore » 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH{sub 4} sensor system.« less
Multi-species trace gas sensing with dual-wavelength QCLs
NASA Astrophysics Data System (ADS)
Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas
2018-06-01
Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.
The use of mHealth to deliver tailored messages reduces reported energy and fat intake
Ambeba, Erica J.; Ye, Lei; Sereika, Susan M.; Styn, Mindi A.; Acharya, Sushama D.; Sevick, Mary Ann; Ewing, Linda J.; Conroy, Molly B.; Glanz, Karen; Zheng, Yaguang; Goode, Rachel W.; Mattos, Meghan; Burke, Lora E.
2016-01-01
Background Evidence supports the role of feedback in reinforcing motivation for behavior change. Feedback that provides reinforcement has the potential to increase dietary self-monitoring and enhance attainment of recommended dietary intake. Objective To examine the impact of daily feedback (DFB) messages, delivered remotely, on changes in dietary intake. Methods A secondary analysis of the SMART trial, a single-center, 24-month randomized clinical trial of behavioral treatment for weight loss. Participants included 210 obese adults (mean body mass index=34.0 kg/m2) who were randomized to either a paper diary (PD), personal digital assistant (PDA), or PDA plus daily, tailored feedback messages (PDA+FB). To determine the role of daily tailored feedback in dietary intake, we compared the self-monitoring with daily feedback group (DFB, n=70) to the self-monitoring without daily feedback group (No-DFB, n=140). All participants received a standard behavioral intervention for weight loss. Self-reported changes in dietary intake were compared between the DFB and No-DFB groups and were measured at baseline, 6, 12, 18, and 24 months. Linear mixed modeling was used to examine percent changes in dietary intake from baseline. Results Compared to the No-DFB group, the DFB group achieved a larger reduction in energy (−22.8% vs. −14.0%, p=0.02) and saturated fat (−11.3% vs. −0.5%, p=0.03) intake, and a trend toward a greater decrease in total fat intake (−10.4% vs. −4.7%, p=0.09). There were significant improvements over time in carbohydrate intake and total fat intake for both groups (p’s<0.05). Conclusion Daily, tailored feedback messages, designed to target energy and fat intake and delivered remotely in real-time using mobile devices, may play an important role in the reduction of energy and fat intake. PMID:24434827
Quantum Cascade Lasers Modulation and Applications
NASA Astrophysics Data System (ADS)
Luzhansky, Edward
The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.
Development a low-cost carbon monoxide sensor using homemade CW-DFB QCL and board-level electronics
NASA Astrophysics Data System (ADS)
Dang, Jingmin; Yu, Haiye; Zheng, Chuantao; Wang, Lijun; Sui, Yuanyuan; Wang, Yiding
2018-05-01
A mid-infrared sensor was demonstrated for the detection of carbon monoxide (CO) at trace level. In order to reduce cost, a homemade continuous-wave mode distributed feedback quantum cascade laser (CW-DFB QCL), a mini gas cell with 1.6-m optical length, and some self-development electronic modules were adopted as excitation source, absorption pool, and signal controlling and processing tool, respectively. Wavelength modulation spectroscopy (WMS) and phase sensitive detection (PSD) techniques as well as wavelet filtering software algorithm were used to reduce the influence of light source fluctuation and system noise and to improve measurement precision and sensitivity. Under the selected P(11) absorption line located at 2099.083 cm-1, a limit of detection (LoD) of 26 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1-s acquisition time. Allan deviation was used to characterize the long-term performance of the CO sensor, and a measurement precision of ∼3.4 ppbv was observed with an optimal integration time of ∼114 s. As a field measurement, a continuous monitoring on indoor CO concentration for a period of 24 h was conducted, which verified the reliable and robust operation of the developed sensor.
A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Nyga, S.; Mertin, J.; Höfer, M.; Hoffmann, H.-D.
2017-03-01
The spectral stability of a previously reported Ho:YLF single frequency pulsed laser oscillator emitting at 2051 nm is drastically improved by utilizing a narrow linewidth Optically Pumped Semiconductor Laser (OPSL) as a seed for the oscillator. The oscillator is pumped by a dedicated gain-switched Tm:YLF laser at 1890 nm. The ramp-and-fire method is employed for generating single frequency emission. The heterodyne technique is used to analyze the spectral properties. The laser is designed to meet a part of the specifications for future airborne or space borne LIDAR detection of CO2. Seeding with a DFB diode and with an OPSL are compared. With OPSL seeding an Allan deviation of the centroid of the spectral distribution of 38 kHz and 517 kHz over 10 seconds and 60 milliseconds of sampling time for single pulses is achieved. The spectral width is approximately 30 MHz. The oscillator emits 2 mJ pulse energy with 50 Hz pulse repetition frequency (PRF) and 20 ns pulse duration. The optical to optical efficiency of the Ho:YLF oscillator is 10 % and the beam quality is diffraction limited. To our knowledge this is the best spectral stability demonstrated to date for a Ho:YLF laser with millijoule pulse energy and nanosecond pulse duration.
Laser-based sensor for a coolant leak detection in a nuclear reactor
NASA Astrophysics Data System (ADS)
Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.
2010-08-01
Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.
Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom
2017-04-01
We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.
NASA Astrophysics Data System (ADS)
Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.
2017-05-01
A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.
HAI: A new TDLAS hygrometer for the HALO research aircraft
NASA Astrophysics Data System (ADS)
Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker
2010-05-01
Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2013-11-10
Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.
NASA Astrophysics Data System (ADS)
Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru
2017-12-01
In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.
2017-05-01
A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.
Li, Chunguang; Dong, Lei; Zheng, Chuantao; Lin, Jun; Wang, Yiding
2018-01-01
A ppbv-level quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane (C2H6) sensor was demonstrated by using a 3.3 μm continuous-wave (CW), distributed feedback (DFB) interband cascade laser (ICL). The ICL was employed for targeting a strong C2H6 absorption line located at 2996.88 cm−1 in its fundamental absorption band. Wavelength modulation spectroscopy (WMS) combined with the second harmonic (2f) detection technique was utilized to increase the signal-to-noise ratio (SNR) and simplify data acquisition and processing. Gas pressure and laser frequency modulation depth were optimized to be 100 Torr and 0.106 cm−1, respectively, for maximizing the 2f signal amplitude. Performance of the QEPAS sensor was evaluated using specially prepared C2H6 samples. A detection limit of 11 parts per billion in volume (ppbv) was obtained with a 1-s integration time based on an Allan-Werle variance analysis, and the detection precision can be further improved to ~1.5 ppbv by increasing the integration time up to 230 s. PMID:29495610
NASA Astrophysics Data System (ADS)
Maamary, Rabih; Fertein, Eric; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Chen, Changshui; Chen, Weidong
2017-07-01
We report on the measurements of the effective line intensities of the ν1 fundamental band of trans-nitrous acid (trans-HONO) in the infrared near 3600 cm-1 (2.78 μm). A home-made widely tunable laser spectrometer based on difference-frequency generation (DFG) was used for this study. The strengths of 28 well-resolved absorption lines of the ν1 band were determined by scaling their absorption intensities to the well referenced absorption line intensity of the ν3 band of trans-HONO around 1250 cm-1 recorded simultaneously with the help of a DFB quantum cascade laser (QCL) spectrometer. The maximum measurement uncertainty of 12% in the line intensities is mainly determined by the uncertainty announced in the referenced line intensities, while the measurement precision in frequency positions of the absorption lines is better than 6×10-4 cm-1. The cross-measurement carried out in the present work allows one to perform intensity calibration using well referenced line parameters.
Optical frequency stabilization in infrared region using improved dual feed-back loop
NASA Astrophysics Data System (ADS)
Ružička, B.; Číp, O.; Lazar, J.
2007-03-01
Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.
2013-06-01
With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.
What's in your Douglas-fir bark?
M. Gabriela Buamscha; James E. Altland
2008-01-01
Douglas-fir bark is a common waste product of forest industry, and has potential use as a substrate in container nurseries. Douglas-fir bark (DFB) is strongly acidic and contains amounts of phosphorus, potassium, iron, copper and manganese within or above the levels recommended for growing container crops. As the pH of DFB decreases, electrical conductivity and amounts...
NASA Technical Reports Server (NTRS)
Burris, John
2011-01-01
We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.
Near-IR laser frequency standard stabilized using FM-spectroscopy
NASA Astrophysics Data System (ADS)
Ružička, Bohdan; Číp, Ondřej; Lazar, Josef
2006-02-01
At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O
2011-09-06
Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-07-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100more » cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented.« less
Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection
NASA Astrophysics Data System (ADS)
Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.
2015-01-01
Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.
NASA Astrophysics Data System (ADS)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.
2016-06-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (˜10 wn) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges greater than 100 wn, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (˜100 wn) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.
A coal mine multi-point fiber ethylene gas concentration sensor
NASA Astrophysics Data System (ADS)
Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu
2015-03-01
Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
NASA Astrophysics Data System (ADS)
Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing
2017-02-01
We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.
NASA Astrophysics Data System (ADS)
Goddard, Lynford
2005-12-01
Low cost access to optical communication networks is needed to satisfy the rapidly increasing demands of home-based high-speed Internet. Existing light sources in the low-loss 1.2--1.6mum telecommunication wavelength bandwidth are prohibitively expensive for large-scale deployment, e.g. incorporation in individual personal computers. Recently, we have extended the lasing wavelength of room-temperature CW GaInNAs(Sb) lasers grown monolithically on GaAs by MBE up to 1.52mum in an effort to replace the traditional, more expensive, InP-based devices. Besides lower cost wafers, GaInNAs(Sb) opto-electronic devices have fundamental material advantages over InP-based devices: a larger conduction band offset which reduces temperature sensitivity and enhances differential gain, a lattice match to a material with a large refractive index contrast, i.e. AlAs, which decreases the necessary number of mirror pairs in DBRs for VCSELs, and native oxide apertures for current confinement. High performance GaInNAs(Sb) edge-emitting lasers, VCSELs, and DFB lasers have been demonstrated throughout the entire telecommunication band. In this work, we analyze the intrinsic properties of the GaInNAsSb material system, e.g. recombination, gain, band structure and renormalization, and efficiency. Theoretical modeling is performed to calculate a map of the bandgap and effective masses for various material compositions. We also present device performance results, such as: room temperature CW threshold densities below 450A/cm2, quantum efficiencies above 50%, and over 425mW of total power from a SQW laser when mounted epi-up and minimally packaged. These results are generally 2--4x better than previous world records for GaAs based devices at 1.5mum. The high CW power and low threshold exhibited by these SQW lasers near 1.5mum make feasible many novel applications, such as broadband Raman fiber amplifiers and uncooled WDM at the chip scale. Device reliability of almost 500 hours at 200mW CW output power has also been demonstrated. Comparative experiments using innovative characterization techniques, such as: the multiple section absorption/gain method to explore the band structure, as well as the Z-parameter to analyze the dominant recombination processes, have identified the physical mechanisms responsible for improved performance. Also, by measuring the temperature dependence of relevant laser parameters, we have been able to simulate device operation while varying temperature and device geometry.
High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Nagasawa, C.; Shibata, Y.
2009-12-01
Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M2 ≥1.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder wavelength for each oscillation pulse. The on-line and off-line wavelengths were injected into the OPO cavity through its output mirror. The injection seeder could be automatically switched by applying the TTL trigger to an optical fiber switch. A typical power of 8mW was injected into the cavity. The OPO cavity length was controlled as follows. A slope voltage was applied to the piezoelectric element mounted on the cavity mirror. If the longitudinal mode of the cavity was closed at the wavelength of the injection seeder, the electrical signal monitored by the photodiode would be maximized. The CW laser beam was injected from the output coupler to control the oscillation wavelength. The maximum output energy of 12mJ at 400 Hz was observed at 35mJ of pumping laser energy. The slope efficiency was 43.7%. This output energy and this repetition rate were the highest achieved so far. No damage was observed even after 1 h of operation. Therefore higher-energy operations can be expected with this device if the beam quality of the pumping laser is improved. This work was financially supported by the System Development Program for Advanced Measurement and Analysis by the JST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.
2005-12-01
Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Priormore » to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).« less
8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.
Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R
2017-11-27
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.
Multi-species laser absorption sensors for in situ monitoring of syngas composition
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.
2014-04-01
Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.
Isotope-selective sensor for medical diagnostics based on PAS
NASA Astrophysics Data System (ADS)
Wolff, M.; Groninga, H. G.; Harde, H.
2005-06-01
Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Of the permanently increasing number of non-invasive 13C-breath tests, the Urea Breath Test for detection of Helicobacter pylori is the most prominent. However, many recent developments go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up based on Photoacoustic Spectroscopy. Using a wavelength-modulated DFB-diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive isotope-selective measurements on CO2. Detection limits for 13CO2 of a few ppm and for the variation of the 13CO2 concentration of approximately 1% were achieved.
MPI investigation for 40G NRZ link with low-RL cable assemblies
NASA Astrophysics Data System (ADS)
Satake, Toshiaki; Berdinskikh, Tatiana; Thongdaeng, Rutsuda; Faysanyo, Pitak; Gurreri, Michael
2017-01-01
Bit Error Ratio (BER) dependence on received power was studied for 40Gb/s NRZ short optical fiber transmission, including a series of four low return loss (RL 21dB) and low insertion loss (IL 0.1dB) connections. The calculated power penalty (PP) was 0.15dB for BER 10-11. Although the fiber length was within DFB laser's coherent length of 100m and the multi path interference (MPI) value was 34.3dB, no PP of BER was observed. There was no PP due to low MPI probably because the polarization of the signal pulses were not aligned for optical interference, indicating that NRZ systems have a high resistance to MPI.
Thermal Signature Identification System (TheSIS)
NASA Technical Reports Server (NTRS)
Merritt, Scott; Bean, Brian
2015-01-01
We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715
Investigation of mode partition noise in Fabry-Perot laser diode
NASA Astrophysics Data System (ADS)
Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping
2014-09-01
Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.
NASA Astrophysics Data System (ADS)
Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.
2017-12-01
Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.
All-optical analog comparator.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-08-23
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical '1' or '0' by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-01-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function. PMID:27550874
NASA Astrophysics Data System (ADS)
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-08-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.
Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy
Klein, Alexander; Witzel, Oliver; Ebert, Volker
2014-01-01
We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508
[The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].
Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun
2005-12-01
Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.
High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator
NASA Technical Reports Server (NTRS)
Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute
2000-01-01
With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.
Hybrid semiconductor fiber lasers for telecommunications
NASA Astrophysics Data System (ADS)
Khalili, Alireza
2006-12-01
Highly stable edge emitting semiconductor lasers are of utmost importance in most telecommunications applications where high-speed data transmission sets strict limits on the purity of the laser signal. Unfortunately, most edge emitting semiconductor lasers, unlike gaseous or solid-state laser sources, operate with many closely spaced axial modes, which accounts for the observed instability and large spikes in the output spectrum of such lasers. Consequently, in most telecom applications distributed feedback (DFB) or distributed Bragg reflector (DBR) techniques are used to ensure stability and single-frequency operation, further adding to the cost and complexity of such lasers. Additionally, coupling of the highly elliptical output beam of these lasers to singlemode fibers complicates the packaging procedure and sub-micron alignment of various optical components is often necessary. Utilizing the evanescent coupling between a semiconductor antiresonant reflecting optical waveguide (ARROW) and a side polished fiber, this thesis presents an alternative side-coupled laser module that eliminates the need for the cumbersome multi-component alignment processes of conventional laser packages, and creates an inherent mode selection mechanism that guarantees singlemode radiation into the fiber without any gratings. We have been able to demonstrate the first side-coupled fiber semiconductor laser in this technology, coupling more than 3mW of power at 850nm directly into a 5/125mum singlemode fiber. This mixed-cavity architecture yields a high thermal stability (˜0.06nm/°C), and negligible spectral spikes are observed. Theoretical background and simulation results, as well as several supplementary materials are also presented to further rationalize the experimental data. A side-coupled light-emitter and pre-amplifier are also proposed and discussed. We also study different architectures for attaining higher efficiency, higher output power, and wavelength tunability in such lasers. Finally, we discuss possible venues for integration of these side-coupled devices in a telecommunication system. Approved for publication.
NASA Astrophysics Data System (ADS)
Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.
2018-02-01
Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.
A compact QCL based methane and nitrous oxide sensor for environmental and medical applications.
Jahjah, Mohammad; Ren, Wei; Stefański, Przemysław; Lewicki, Rafał; Zhang, Jiawei; Jiang, Wenzhe; Tarka, Jan; Tittel, Frank K
2014-05-07
A methane (CH4) and nitrous oxide (N2O) sensor based on a sensitive, selective and well established technique of quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for environmental and biomedical measurements. A thermoelectrically cooled (TEC) distributed feedback quantum cascade laser (DFB-QCL), capable of continuous wave (CW) mode hop free emission in the 7.83 μm wavelength range, was used as an excitation source. For the targeted CH4 and N2O absorption lines located at 1275.04 cm(-1) and 1275.49 cm(-1) detection limits (1σ) of 13 ppbv and 6 ppbv were achieved with a 1 second data acquisition time, respectively. Environmental data of CH4 and N2O mixing ratios acquired using the QEPAS sensor system are also reported.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2008-07-07
We experimentally demonstrated linewidth-tolerant 10-Gbit/s (2.5-Gsymbol/s) 16-quadrature amplitude modulation (QAM) by using a distributed-feedback laser diode (DFB-LD) with a linewidth of 30 MHz. Error-free operation, a bit-error rate (BER) of <10(-9) was achieved in transmission over 120 km of standard single mode fiber (SSMF) without any dispersion compensation. The phase-noise canceling capability provided by a pilot-carrier and standard electronic pre-equalization to suppress inter-symbol interference (ISI) gave clear 16-QAM constellations and floor-less BER characteristics. We evaluated the BER characteristics by real-time measurement of six (three different thresholds for each I- and Q-component) symbol error rates (SERs) with simultaneous constellation observation.
Operation of a homeostatic sleep switch.
Pimentel, Diogo; Donlea, Jeffrey M; Talbot, Clifford B; Song, Seoho M; Thurston, Alexander J F; Miesenböck, Gero
2016-08-18
Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.
QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.
Ma, Yufei; Lewicki, Rafał; Razeghi, Manijeh; Tittel, Frank K
2013-01-14
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a state-of-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm(-1), a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection, respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed.
8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser
Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...
2017-11-13
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less
NASA Astrophysics Data System (ADS)
Ma, Liuhao; Wang, Zhen; Cheong, Kin-Pang; Ning, Hongbo; Ren, Wei
2018-06-01
We report the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for the simultaneous temperature and H2O concentration measurements in combustion environments. Two continuous-wave distributed-feedback quantum cascade lasers (DFB-QCLs) at 5.27 and 10.53 µm were used to exploit the strong H2O transitions (1897.52 and 949.53 cm-1) at high temperatures. The injection current of each QCL was modulated at sub-GHz or GHz to generate the three-tone radiation and the dispersion signal was detected by the radio-frequency down-conversion heterodyning. The peak-to-peak ratio of the two H2O dispersion spectra exhibits a monotonic relationship with temperature over the temperature range of 1000-3000 K, indicating the capability of performing two-line thermometry using laser dispersion spectroscopy. We measured the temperatures of CH4/air flames at different equivalence ratios ( Φ = 0.8-1.2), yielding a good agreement with the corresponding thermocouple measurements. In addition, one-dimensional kinetic modeling coupled with a detailed chemical kinetic mechanism (GRI 3.0) was conducted to compare with the measured H2O concentrations using HPSDS. Finally, we demonstrated HPSDS is immune to optical power fluctuations by measuring the dispersion spectra at varied incident laser powers.
NASA Astrophysics Data System (ADS)
Chao, Xing; Jeffries, Jay B.; Hanson, Ronald K.
2013-03-01
A real-time, in situ CO sensor using 2.3 μm DFB diode laser absorption, with calibration-free wavelength-modulation-spectroscopy, was demonstrated for continuous monitoring in the boiler exhaust of a pulverized-coal-fired power plant up to temperatures of 700 K. The sensor was similar to a design demonstrated earlier in laboratory conditions, now refined to accommodate the harsh conditions of utility boilers. Measurements were performed across a 3 m path in the particulate-laden economizer exhaust of the coal-fired boiler. A 0.6 ppm detection limit with 1 s averaging was estimated from the results of a continuous 7-h-long measurement with varied excess air levels. The measured CO concentration exhibited expected inverse trends with the excess O2 concentration, which was varied between 1 and 3 %. Measured CO concentrations ranged between 6 and 200 ppm; evaluation of the data suggested a dynamic range from 6 to 10,000 ppm based on a minimum signal-to-noise ratio of ten and maximum absorbance of one. This field demonstration of a 2.3 μm laser absorption sensor for CO showed great potential for real-time combustion exhaust monitoring and control of practical combustion systems.
Nwaboh, Javis Anyangwe; Pratzler, Sonja; Werhahn, Olav; Ebert, Volker
2017-05-01
We report a new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor for absolute measurements of H 2 O in methane, ethane, propane, and low CO 2 natural gas. The sensor is operated with a 2.7 µm DFB laser, equipped with a high pressure single pass gas cell, and used to measure H 2 O amount of substance fractions in the range of 0.31-25 000 µmol/mol. Operating total gas pressures are up to 5000 hPa. The sensor has been characterized, addressing the traceability of the spectrometric results to the SI and the evaluation of the combined uncertainty, following the guide to the expression of uncertainty in measurement (GUM). The relative reproducibility of H 2 O amount of substance fraction measurements at 87 µmol/mol is 0.26% (0.23 µmol/mol). The maximum precision of the sensor was determined using a H 2 O in methane mixture, and found to be 40 nmol/mol for a time resolution of 100 s. This corresponds to a normalized detection limit of 330 nmol mol -1 ·m Hz -1/2 . The relative combined uncertainty of H 2 O amount fraction measurements delivered by the sensor is 1.2%.
Evidence of Skill and Strategy in Daily Fantasy Basketball.
Evans, Brent A; Roush, Justin; Pitts, Joshua D; Hornby, Adam
2018-03-27
Using hand-collected data from DraftKings.com, a major daily fantasy sports website, we analyze draft selections of thousands of participants in daily fantasy basketball (DFB). In our study, the first thorough examination of DFB, we show that DFB is a game in which skill is necessary for success. Using econometric analysis, we find that winning participants utilize different strategies than losing participants; for example, winning participants more frequently select NBA rookies and international players. We also find that participants paying to enter more lineups in a given contest earn profits far more often than those entering few lineups, indicating that the number of lineups entered can serve as a proxy for skill. Additionally, we provide a thorough discussion of industry characteristics, prior literature, and gameplay, which should help readers familiarize themselves with this burgeoning fantasy sports variant. This study should further the literature on the contentious activity, which has been outlawed in many U.S. states and continues to elicit controversy.
Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Zhou, X.-Z.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the central plasma sheet (CPS) in relation to dipolarization events. Distributions in the CPS within the dipolarized flux bundle (DFB) that follows the passage of a dipolarization front typically show two opposing low subthermal-energy beams with a ring-like component perpendicular to the magnetic field at about twice the thermal energy. The dominance of the perpendicular anisotropy and a field-aligned peak at lower energy agree qualitatively with ion distribution functions derived from "Time History of Events and Macroscale Interactions during Substorms" observations. At locations somewhat off the equatorial plane the field-aligned peaks are shifted by a field-aligned component of the bulk flow, such that one peak becomes centered near zero net velocity, which makes it less likely to be observed. The origins of the field-aligned peaks are low-energy lobe (or near plasma sheet boundary layer) regions, while the ring distribution originates mostly from thermal plasma sheet particles on extended field lines. The acceleration mechanisms are also quite different: the beam ions are accelerated first by the E × B drift motion of the DFB and then by a slingshot effect of the earthward convecting DFB (akin to first-order Fermi, type B, acceleration), which causes an increase in field-aligned speed. In contrast, the ring particles are accelerated by successive, betatron-like acceleration after entering the high electric field region of an earthward propagating DFB.
Yamada, Yoshihito; Ueda, Yuhki; Nakamura, Aki; Kanayama, Shoji; Tamura, Rie; Hashimoto, Kei; Matsumoto, Tatsumi; Ishii, Ritsuko
2018-04-01
Atopic dermatitis (AD)-like dermatitis can be induced by repeated topical application of an ointment containing Dermatophagoides farinae body (Dfb) extract in NC/Nga mice. This AD-like murine model also exhibits a biphasic increase in the number of scratching behaviour after topical application of Dfb ointment. In this study, we investigated the possible mechanisms underlying the scratching behaviour in each phase. An increase in the content of mast cell-derived mediators such as histamine and 5-hydroxytryptamine in the lesional skin and increased vascular permeability were observed in the early phase after the Dfb ointment application. Chlorpheniramine (H 1 receptor antagonist) and cromoglycate (mast cell stabilizer) reduced the scratching behaviour in the early phase but not that in the later phase. Furthermore, the content of various endogenous pruritogens such as interleukin-31 and thymic stromal lymphopoietin in the lesional skin was increased 1 or 24 hours after the Dfb ointment application. Elevated expression of proteinase-activated receptor-2 (PAR-2) was also observed in the epidermis. Finally, gabexate (serine protease inhibitor) reduced the scratching behaviour in both phases, and anti-PAR2 antibody also showed a tendency to reduce both scratching behaviours. These findings suggest that immediate-type allergic reactions caused by mast cell degranulation and PAR-2 activation by proteases are involved in the scratching behaviour in this AD-like model. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method
NASA Astrophysics Data System (ADS)
Merritt, Scott
2015-03-01
NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.
NASA Astrophysics Data System (ADS)
Wu, Shih-Ying; Fix, Samantha M.; Arena, Christopher B.; Chen, Cherry C.; Zheng, Wenlan; Olumolade, Oluyemi O.; Papadopoulou, Virginie; Novell, Anthony; Dayton, Paul A.; Konofagou, Elisa E.
2018-02-01
Focused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet’s sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core. Therefore, in this study, octafluoropropane (OFP) and decafluorobutane (DFB) nanodroplets were used both in vitro for assessing their relative vaporization efficiency with high-speed microscopy, and in vivo for delivering molecules with a size relevant to proteins (40 kDa dextran) to the murine brain. It was found that at low pressures (300-450 kPa), OFP droplets vaporized into a greater number of microbubbles compared to DFB droplets at higher pressures (750-900 kPa) in the in vitro study. In the in vivo study, successful delivery was achieved with OFP droplets at 300 kPa and 450 kPa without evidence of cavitation damage using ¼ dosage, compared to DFB droplets at 900 kPa where histology indicated tissue damage due to inertial cavitation. In conclusion, the vaporization efficiency of nanodroplets positively impacted the amount of molecules delivered to the brain. The OFP droplets due to the higher vaporization efficiency served as better acoustic agents to deliver large molecules efficiently to the brain compared with the DFB droplets.
Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit
2016-10-03
Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Angelopoulos, V.; Zhang, Xiao-Jia; Turner, D. L.; Gabrielse, C.; Runov, A.; Li, Jinxing; Funsten, H. O.; Spence, H. E.
2016-02-01
Dipolarizing flux bundles (DFBs) are small flux tubes (typically <3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the premidnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field 3 times stronger than that of the injectionless half. All DFB injections are dispersionless within the temporal resolution considered (11 s). Our findings suggest that these injections are ushered or produced locally by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.
Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R
2016-12-01
A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pourdavoud, Neda; Riedl, Thomas J.
2016-09-01
Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.
NASA Astrophysics Data System (ADS)
Krzempek, Karol; Soboń, Grzegorz; Dudzik, Grzegorz; Sotor, Jaroslaw; Abramski, Krzysztof M.
2014-02-01
We present a method of generating mid-IR radiation by means of nonlinear difference frequency generation (DFG) effects occurring in periodically polled lithium niobate (PPLN) crystals using an all-fiber dual-wavelength amplifier. The presented mid-IR laser source incorporates an unique double-clad (DC) Erbium and Ytterbium (Er-Yb) doped amplifier stage capable of simultaneous amplification of both wavelengths required in the DFG process - 1064 nm and 1550 nm. The amplifier delivered more than 23.7 dB and 14.4 dB of amplification for 1550 nm and 1064 nm wavelength, low power, off-the-shelf, fiber pigtailed, distributed feedback (DFB) laser diodes, respectively. The dual-wavelength amplifier parameters crucial for the DFG process were investigated, including long-term power and polarization instabilities and optical spectrum characteristics of both amplified wavelengths. The DFG setup used a single collimator radiation delivery scheme and an 40 mm long MgO doped PPLN crystal. In effect the DFG source was capable of generating 1.14 mW of radiation centered around 3.4 μm. The overall performance of the mid-IR source was elaborated by performing sensitive Tunable Diode Laser Absorption Spectroscopy (TDLAS) detection of methane (CH4) in ambient air on an free-space optical path-length of 8 m. The measured detection limit of the sensor was 26 ppbv with a 1σ SNR of 69.
Xu, Hongsong; Wang, Guanyu; Ma, Jun; Jin, Long; Oh, Kyunghwan; Guan, Bai-Ou
2018-04-30
A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz 1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.
Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A
2018-05-17
A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzaei, B.; Silva, J. R. G.; Hayton, D.
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less
Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm
Ren, Wei; Luo, Longqiang; Tittel, Frank K.
2015-12-31
Here, we report the development of a formaldehyde (H 2CO) trace gas sensor using a continuous wave (CW), thermoelectrically-cooled (TEC), distributed-feedback interband cascade laser (DFB-ICL) at 3.6 μm. Wavelength modulation spectroscopy was used to detect the second harmonic spectra of a strong H 2CO absorption feature centered at 2778.5 cm -1 (3599 nm) in its ν 1 fundamental vibrational band. A compact and novel multipass cell (7.6-cm physical length and 32-ml sampling volume) was implemented to achieve an effective optical path length of 3.75 m. A minimum detection limit of 6 parts per billion (ppb) at an optimum gas pressuremore » of 200 Torr was achieved with a 1-s data acquisition time. An Allan-Werle deviation analysis was performed to investigate the long-term stability of the sensor system and a 1.5 ppb minimum detectable concentration could be achieved by averaging up to 140 s. Absorption interference eeffects from atmospheric H 2O (2%) and CH 4(5 ppm) were also analyzed in this work and proved to be insignificant for the current sensor configuration.« less
Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Wei; Luo, Longqiang; Tittel, Frank K.
Here, we report the development of a formaldehyde (H 2CO) trace gas sensor using a continuous wave (CW), thermoelectrically-cooled (TEC), distributed-feedback interband cascade laser (DFB-ICL) at 3.6 μm. Wavelength modulation spectroscopy was used to detect the second harmonic spectra of a strong H 2CO absorption feature centered at 2778.5 cm -1 (3599 nm) in its ν 1 fundamental vibrational band. A compact and novel multipass cell (7.6-cm physical length and 32-ml sampling volume) was implemented to achieve an effective optical path length of 3.75 m. A minimum detection limit of 6 parts per billion (ppb) at an optimum gas pressuremore » of 200 Torr was achieved with a 1-s data acquisition time. An Allan-Werle deviation analysis was performed to investigate the long-term stability of the sensor system and a 1.5 ppb minimum detectable concentration could be achieved by averaging up to 140 s. Absorption interference eeffects from atmospheric H 2O (2%) and CH 4(5 ppm) were also analyzed in this work and proved to be insignificant for the current sensor configuration.« less
Engineering of Semiconductor Nanocrystals for Light Emitting Applications
Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato
2016-01-01
Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794
NASA Astrophysics Data System (ADS)
Biedron, William S.
1995-11-01
Since 1990 there has been a rapid increase in the demand for communication services, especially local and wide area network (LAN/WAN) oriented services. With the introduction of the DFB laser transmitter, hybrid-fiber-coax (HFC) cable plant designs, ATM transport technologies and rf modems, new LAN/WAN services can now be defined and marketed to residential and business customers over existing cable TV systems. The term metropolitan area network (MAN) can be used to describe this overall network. This paper discusses the technical components needed to provision these services as well as provides some perspectives on integration issues. Architecture at the headend and in the backbone is discussed, as well as specific service definitions and the technology issues associated with each. The TCP/IP protocol is suggested as a primary protocol to be used throughout the MAN.
NASA Astrophysics Data System (ADS)
Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.
2015-01-01
A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.
Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.
Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li
2014-11-17
All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output.
Compact Laser-Based Sensors for Monitoring and Control of Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Hanson, Ronald K.; Jeffries, Jay B.
2003-01-01
Research is reported on the development of sensors for gas turbine combustor applications that measure real-time gas temperature using near-infrared water vapor absorption and concentration in the combustor exhaust of trace quantities of pollutant NO and CO using mid-infrared absorption. Gas temperature is extracted from the relative absorption strength of two near-infrared transitions of water vapor. From a survey of the water vapor absorption spectrum, two overtone transitions near 1800 nm were selected that can be rapidly scanned in wavelength by injection current tuning a single DFB diode laser. From the ratio of the absorbances on these selected transitions, a path-integrated gas temperature can be extracted in near-real time. Demonstration measurements with this new temperature sensor showed that combustor instabilities could be identified in the power spectrum of the temperature versus time record. These results suggest that this strategy is extremely promising for gas turbine combustor control applications. Measurements of the concentration of NO and CO in the combustor exhaust are demonstrated with mid-infrared transitions using thermo-electrically cooled, quantum cascade lasers operating near 5.26 and 4.62 microns respectively. Measurements of NO are performed in an insulated exhaust duct of a C2H4-air flame at temperatures of approximately 600 K. CO measurements are performed above a rich H2-air flame seeded with CO2 and cooled with excess N2 to 1150 K. Using a balanced ratiometric detection technique a sensitivity of 0.36 ppm-m was achieved for NO and 0.21 ppm-m for CO. Comparisons between measured and predicted water-vapor and CO2 interference are discussed. The mid-infrared laser quantum cascade laser technology is in its infancy; however, these measurements demonstrate the potential for pollutant monitoring in exhaust gases with mid-IR laser absorption.
NASA Astrophysics Data System (ADS)
Ma, Liu Hao; Lau, Lok Yin; Ren, Wei
2017-03-01
We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.
Real-time CO2 sensor for the optimal control of electronic EGR system
NASA Astrophysics Data System (ADS)
Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul
2013-12-01
In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.
NASA Astrophysics Data System (ADS)
Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell
2018-05-01
A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.
Yang, Gabsik; Cheon, Se-Yun; Chung, Kyung-Sook; Lee, Sung-Jin; Hong, Chul-Hee; Lee, Kyung-Tae; Jang, Dae-Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; An, Hyo-Jin
2015-09-01
Solanum tuberosum L. cv Jayoung (JY) is a potato with dark purple flesh and contains substantial amounts of polyphenols. In this study, we evaluated the therapeutic effects of S. tuberosum L. cv JY in a mouse model of Dermatophagoides farinae body (Dfb)-induced atopic dermatitis (AD). The ethanol extract of the peel of JY (EPJ) ameliorated Dfb-induced dermatitis severity, serum levels of immunoglobulin E (IgE) and thymus and activation-regulated chemokine. Histological analysis of the skin also revealed that EPJ treatment significantly decreased mast cell infiltration. The suppression of dermatitis by EPJ treatment was accompanied by a decrease in the skin levels of type 2 helper T-cell cytokines such as interleukin (IL)-4, IL-5, and IL-13. The induction of thymic stromal lymphopoietin, which leads to a systemic Th2 response, was also decreased in the skin by EPJ. Nuclear translocation of nuclear factor-κB p65 was decreased by EPJ in Dfb-induced NC/Nga mice. The protein expression of filaggrin in the AD-like skin lesions was restored by EPJ treatment. These results suggested that EPJ may be a potential therapeutic tool for the treatment of AD.
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
Development of a fast temperature sensor for combustion gases using a single tunable diode laser
NASA Astrophysics Data System (ADS)
Zhou, X.; Jeffries, J. B.; Hanson, R. K.
2005-09-01
The 12 best NIR water transition line pairs for temperature measurements with a single DFB laser in flames are determined by systematic analysis of the HITRAN simulation of the water spectra in the 1-2 μm spectral region. A specific line pair near 1.4 μm was targeted for non-intrusive measurements of gas temperature in combustion systems using a scanned-wavelength technique with wavelength modulation and 2f detection. This sensor uses a single diode laser (distributed-feedback), operating near 1.4 μm and is wavelength scanned over a pair of H2O absorption transitions (7154.354 cm-1 & 7153.748 cm-1) at a 2 kHz repetition rate. The wavelength is modulated (f=500 kHz) with modulation amplitude a=0.056 cm-1. Gas temperature is inferred from the ratio of the second harmonic signals of the two selected H2O transitions. The fiber-coupled-single-laser design makes the system compact, rugged, low cost and simple to assemble. As part of the sensor development effort, design rules were applied to optimize the line selection, and fundamental spectroscopic parameters of the selected transitions were determined via laboratory measurements including the temperature-dependent line strength, self-broadening coefficients, and air-broadening coefficients. The new sensor design includes considerations of hardware and software to enable fast data acquisition and analysis; a temperature readout rate of 2 kHz was demonstrated for measurements in a laboratory flame at atmospheric pressure. The combination of scanned-wavelength and wavelength-modulation minimizes interference from emission and beam steering, resulting in a robust temperature sensor that is promising for combustion control applications.
Dynamics of polyelectrolyte adsorption on surfaces: Applications in the detection of iron in water
NASA Astrophysics Data System (ADS)
Gammana, Madhira N.
Layer by layer (LbL) self assembly is a simple multilayer thin (nanometer scale) film fabricating technique. The mechanism of film growth remains a topic of much controversy. For example, several models have been proposed to explain the origin of linear and exponential film growth that are attributed to differences in the dynamic processes that occur at the molecular level during film formation. The problem is that there are no methods that directly measure the dynamics of polymer formation during LbL film formation. In this thesis, I describe the essential elements of an ATR-IR spectroscopic method that was developed to enable measurement of the dynamics of the mass adsorbed and polyelectrolyte conformation during the formation of PEM's. In particular, I followed the sequential adsorption of Sodium polyacrylate (NaPA) and Poly (diallyldimethylammonium) chloride (PDADMAC) from deionized (DI) water and as a function of ionic strength to show that polymer diffusion occurs between layers when adsorbed from DI water. In contrast, a denser layer occurs with no polymer interdiffusion for deposition from 0.02M ionic strength solutions of NaPA and PDADMAC. While the mass deposited increased with ionic strength, linear multilayer growth in films were observed in all cases. This finding disputes a common viewpoint that interdiffusion of polymer layers is a key feature of exponential film growth. The theme of polymer layer adsorption was used in the detection of Fe 3+ in seawater. A new approach, developed previously in Tripp's group, utilized "vertical amplification" in which a block copolymer assembled on membranes provided multiple anchoring points extending from the surface for attaching a siderophore, desferrioxamine B (DFB). The Fe3+ chelates with the siderophore producing a red color that can be quantified by visible spectroscopy. However, the rate of Fe3+ uptake was found to be dependent on flow rate. The origin of this flow rate dependence was identified by the work presented in this thesis. It was found that the amount and rate of Fe3+ uptake was dependent on the relative size of each block in the polymer and the degree of reaction of DFB with the adsorbed layer. In particular, higher amounts and higher rates were obtained when the density of DFB was lowered. This shows that the DFB was sterically hindered from forming a hexacoordinate complex with Fe3+ by the presence of neighboring DFB molecules. This is a key factor that needs to be considered in developing Fe3+ detection systems based on siderophores anchored to surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jeremy Benjamin
2014-07-01
In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less
A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification
NASA Astrophysics Data System (ADS)
Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do
A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.
NASA Astrophysics Data System (ADS)
Kossakovski, Dmitri; Solomatine, Iouri V.; Morozov, Nikolai; Ilchenko, Vladimir S.
2004-06-01
The evolution of optical networks calls for denser channel grids and increased number of channels. Additionally, there is a system architecture benefit to eliminate the banks of DFB lasers that act as light sources for individual channels, and use instead a single multi-wavelength source. We have demonstrated a compact multi-wavelength optical source (MWS) for 12.5 GHz DWDM. At least 16 channels are observed within 3 dB optical power bandwidth with optical spectrum contrast ratio exceeding 28 dB. The source is based on a coupled opto-electronic oscillator (COEO) with an optical whispering gallery mode (WGM) microresonator. Free spectral range of the resonator determines the spacing of the optical channels in the MWS. The spacing can be scaled up or down depending on design requirements. The resonator is robustly packaged and fiber pigtailed. In the RF domain the MWS acts as oscillator with operational frequency of 12.5 GHz.
Biosensing Using Microring Resonator Interferograms
Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu
2014-01-01
Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ∼30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10−4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 μm and height of 0.26 μm. PMID:24434876
Du, Zhenhui; Wan, Jiaxin; Li, Jinyi; Luo, Gang; Gao, Hong; Ma, Yiwen
2017-01-01
Detection of methyl mercaptan (CH3SH) is essential for environmental atmosphere assessment and exhaled-breath analysis. This paper presents a sensitive CH3SH sensor based on wavelength modulation spectroscopy (WMS) with a mid-infrared distributed feedback interband cascade laser (DFB-ICL). Multicomponent spectral fitting was used not only to enhance the sensitivity of the sensor but also to determine the concentration of interferents (atmospheric water and methane). The results showed that the uncertainties in the measurement of CH3SH, H2O, and CH4 were less than 1.2%, 1.7% and 2.0%, respectively, with an integration time of 10 s. The CH3SH detection limit was as low as 7.1 ppb with an integration time of 295 s. Overall, the reported sensor, boasting the merits of high sensitivity, can be used for atmospheric methyl mercaptan detection, as well as multiple components detection of methyl mercaptan, water, and methane, simultaneously. PMID:28212311
Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.
Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun
2015-07-27
A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.
A miniaturized laser-Doppler-system in the ear canal
NASA Astrophysics Data System (ADS)
Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.
2013-03-01
Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a length of 5 mm.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.
Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J
2012-01-16
We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-06-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.
Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.
Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris
2005-07-15
We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.
Generation of a widely spaced optical frequency comb using an amplitude modulator pair
NASA Astrophysics Data System (ADS)
Gunning, Fatima C. G.; Ellis, Andrew D.
2005-06-01
Multi-wavelength sources are required for wavelength division multiplexed (WDM) optical communication systems, and typically a bank of DFB lasers is used. However, large costs are involved to provide wavelength selected sources and high precision wavelength lockers. Optical comb generation is attractive solution, minimizing the component count and improving wavelength stability. In addition, comb generation offers the potential for new WDM architectures, such as coherent WDM, as it preserves the phase relation between the generated channels. Complex comb generation systems have been introduced in the past, using fibre ring lasers [1] or non-linear effects within long fibres [2]. More recently, simpler set-ups were proposed, including hybrid amplitude-phase modulation schemes [3-5]. However, the narrow line spacing of these systems, typically 17 GHz, restricts their use to bit rates up to 10 Gbit/s. In this paper, we propose and demonstrate a simple method of comb generation that is suitable for bit rates up to 42.667 Gbit/s. The comb generator was composed of two Mach-Zehnder modulators (MZM) in series, each being driven with a sinusoidal wave at 42.667 GHz with a well-defined phase relationship. As a result, 7 comb lines separated by 42.667 GHz were generated from a single source, when amplitude up to 2.2 Vp was applied to the modulators, giving flatness better than 1 dB. By passively multiplexing 8 source lasers with the comb generator and minimising inter-modulator dispersion, it was possible to achieve a multi-wavelength transmitter with 56 channels, with flatness better than 1.2 dB across 20 nm (2.4 THz).
InP-based monolithically integrated 1310/1550nm diplexer/triplexer
NASA Astrophysics Data System (ADS)
Silfvenius, C.; Swillo, M.; Claesson, J.; Forsberg, E.; Akram, N.; Chacinski, M.; Thylén, L.
2008-11-01
Multiple streams of high definition television (HDTV) and improved home-working infrastructure are currently driving forces for potential fiber to the home (FTTH) customers [1]. There is an interest to reduce the cost and physical size of the FTTH equipment. The current fabrication methods have reached a cost minimum. We have addressed the costchallenge by developing 1310/(1490)/1550nm bidirectional diplexers, by monolithic seamless integration of lasers, photodiodes and wavelength division multiplexing (WDM) couplers into one single InP-based device. A 250nm wide optical gain profile covers the spectrum from 1310 to 1550nm and is the principal building block. The device fabrication is basically based on the established configuration of using split-contacts on continuos waveguides. Optical and electrical cross-talks are further addressed by using a Y-configuration to physically separate the components from each other and avoid inline configurations such as when the incoming signal travels through the laser component or vice versa. By the eliminated butt-joint interfaces which can reflect light between components or be a current leakage path and by leaving optically absorbing (unpumped active) material to surround the components to absorb spontaneous emission and nonintentional reflections the devices are optically and electrically isolated from each other. Ridge waveguides (RWG) form the waveguides and which also maintain the absorbing material between them. The WDM functionality is designed for a large optical bandwidth complying with the wide spectral range in FTTH applications and also reducing the polarization dependence of the WDM-coupler. Lasing is achieved by forming facet-free, λ/4-shifted, DFB (distributed feedback laser) lasers emitting directly into the waveguide. The photodiodes are waveguide photo-diodes (WGPD). Our seamless technology is also able to array the single channel diplexers to 4 to 12 channel diplexer arrays with 250μm fiber port waveguide spacing to comply with fiber optic ribbons. This is an important feature in central office applications were small physical space is important.
NASA Astrophysics Data System (ADS)
Humphries, Seth David
Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.
NASA Astrophysics Data System (ADS)
MacLeod, Neil A.; Weidmann, Damien
2016-05-01
High sensitivity detection, identification and quantification of chemicals in a stand-off configuration is a highly sought after capability across the security and defense sector. Specific applications include assessing the presence of explosive related materials, poisonous or toxic chemical agents, and narcotics. Real world field deployment of an operational stand-off system is challenging due to stringent requirements: high detection sensitivity, stand-off ranges from centimeters to hundreds of meters, eye-safe invisible light, near real-time response and a wide chemical versatility encompassing both vapor and condensed phase chemicals. Additionally, field deployment requires a compact, rugged, power efficient, and cost-effective design. To address these demanding requirements, we have developed the concept of Active Coherent Laser Spectrometer (ACLaS), which can be also described as a middle infrared hyperspectral coherent lidar. Combined with robust spectral unmixing algorithms, inherited from retrievals of information from high-resolution spectral data generated by satellitebased spectrometers, ACLaS has been demonstrated to fulfil the above-mentioned needs. ACLaS prototypes have been so far developed using quantum cascade lasers (QCL) and interband cascade lasers (ICL) to exploit the fast frequency tuning capability of these solid state sources. Using distributed feedback (DFB) QCL, demonstration and performance analysis were carried out on narrow-band absorbing chemicals (N2O, H2O, H2O2, CH4, C2H2 and C2H6) at stand-off distances up to 50 m using realistic non cooperative targets such as wood, painted metal, and bricks. Using more widely tunable external cavity QCL, ACLaS has also been demonstrated on broadband absorbing chemicals (dichloroethane, HFC134a, ethylene glycol dinitrate and 4-nitroacetanilide solid) and on complex samples mixing narrow-band and broadband absorbers together in a realistic atmospheric background.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
[Trace detection of ammonia at 1.531 microm].
Jia, Hui; Guo, Xiao-Yong; Cai, Ting-Dong; Zhao, Wei-Xiong; Wang, Lei; Tan, Tu; Zhang, Wei-Jun; Gao, Xiao-Ming
2009-12-01
A compact instrument based on the off-axis integrated-cavity output spectroscopy (ICOS) technology was developed for sensitive measurements of gas mixing ratios (ammonia in air) at room temperature by using fiber-coupled distributed feedback (DFB) diode laser operating at 1.531 microm. The absorption line of ammonia at 6 528.764 cm(-1) was chosen for trace detection. The mirrors' effective reflectivity R2 of 0.996 9 was first calibrated by carbon dioxide under this condition, and the cavity 35.8 cm in length as an absorption cell could yield an optical path of presumably 115.46 m. As a result, a minimum detectable concentration of approximately 2.66 ppmv (S/N-3) at the total pressure of 100 torr was obtained. Then the lock-in amplifier was added in the system to acquire the second harmonic signal by combination of wavelength modulation technology, which could better suppress background noise and improve the signal-to-noise ratio, and a detection limit of 0.293 ppmv (S/N-3) was achieved eventually. This work demonstrated the potential of the system for a range of atmospheric species sensing in the future.
New optical analyzer for 13C-breath test
NASA Astrophysics Data System (ADS)
Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich
2008-04-01
Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.
Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S
Wu, Hongpeng; Dong, Lei; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang
2015-01-01
A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3) and hydrogen sulfide (H2S). Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature. PMID:26506351
Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar
2002-02-01
Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.
The structure of antimalarial dispiro-1,2,4-trioxolanes: A density functional approach
NASA Astrophysics Data System (ADS)
Moroni, L.; Salvi, P. R.
2006-02-01
Ab initio DF/B3-LYP/cc-pVDZ calculations have been performed on three dispiro-1,2,4-trioxolane systems ( 2)-( 4). Interest in these systems comes from the fact that a water-soluble derivative of ( 3), known as OZ277, has been synthesized and identified as antimalarial drug with activity superior to those of semisynthetic artemisinins. Structural data have been obtained regarding the atomic arrangement around the peroxide bond for the three systems. Making reference to ( 3), two conformers have been calculated depending on the axial or equatorial bond of spirocyclohexane with the peroxide oxygen of 1,2,4-trioxolane. In particular, while the peroxide oxygen on the spiroadamantane side is sterically hindered for both the axial and the equatorial conformer, the peroxide oxygen on the spirocyclohexane side is more accessible to external attack when the conformer is axial than when is equatorial.
NASA Technical Reports Server (NTRS)
Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping
2012-01-01
We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and determines the atmospheric pressure by minimizing the error between the observations and model. We first demonstrated our airborne lidar during flights during summer 2010. We made several improvements and made measurements during the Ascends flights during July 2011. More information about the technique, lidar instrument, airborne measurements, and pressure estimates will be described in the presentation.
Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi
2014-01-01
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3 −. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3 − conditions, and further enhanced under NO3 − limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3 − during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3 − as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis. PMID:25000295
Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi
2014-01-01
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.
NASA Astrophysics Data System (ADS)
Twining, B. S.; Jacquot, J. E.; Rauschenberg, S.; Enright, J.; Marchetti, A.; Cohen, N.; Brown, M.; Parker, C.; Bruland, K. W.
2016-02-01
Iron is a critical micronutrient that controls primary production in large swaths of the global ocean. Experiments with laboratory cultures indicate that phytoplankton differ in their ability to compete for and store Fe in response to varying ambient Fe concentrations. However there are very few measurements of the physiological responses of natural phytoplankton populations to gradients in Fe availability. Incubation experiments were conducted off the coast of California and Oregon at two sites characterized by a 10-fold difference in dissolved Fe (0.3 and 3 nM). In each experiment, incubation water was amended with either dissolved Fe (5-10 nM), the model siderophore desferrioxamine B (DFB; 200 nM), or left unamended. Iron contents of three abundant diatom groups (Chaetoceros sp. and large and small pennate diatoms) were monitored by synchrotron X-ray fluorescence, along with dissolved and bulk particulate trace metals and macronutrients over the course of 3 days. Transcriptomic samples were also collected at daily timepoints to assess molecular responses. Added dissolved Fe was drawn down in both experiments, while DFB appeared to solubilize a fraction of ambient particulate Fe in the high-Fe experiment. Iron quotas of unamended diatoms were nearly 10-fold higher under high-Fe conditions. Quotas increased in response to added Fe in both experiments, but the magnitude of changes varied between diatom taxa. DFB additions resulted in reduced Fe quotas in the low-Fe incubation, since cells were presumably forced to use internal Fe stores to support growth. These data demonstrate significant plasticity in the abilities of phytoplankton to take advantage of changing micronutrient inputs. Quota data will be compared to transcript abundance data to ascertain mechanisms of Fe quota maintenance.
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Zhang, X. J.; Turner, D. L.; Gabrielse, C.; Runov, A.; Funsten, H. O.; Spence, H. E.
2015-12-01
Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background field. Although DFBs are known to accelerate particles to create energetic particle injections, their acceleration mechanism and importance in generating injections inside geosynchronous orbit remain open questions. To answer these questions, we investigate DFBs in the inner magnetosphere by conducting a statistical study with data from the Van Allen Probes. The results show that just like DFBs outside geosynchronous orbit, those inside that orbit occur most often in the pre-midnight sector. Half the DFBs are accompanied by energetic particle injection. Statistically, DFBs with injection have an electric field three times that of those without. All the injections accompanying DFBs appear dispersionless within the temporal and energy resolution considered. These findings suggest that the injections are ushered or locally produced by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.
Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.
2010-12-01
We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. Reference (1) D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.
Laser Heterodyne Radiometer for Sensitive Detection of CO2 and CH4
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Miller, J. Houston
2011-01-01
We propose to develop an inexpensive, miniaturized, passive laser heterodyne radiometer (LHR) using commercially available telecommunications laser components to measure two significant carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). This instrument would operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach that supports the Decadal Survey. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In a laser heterodyne radiometer, the weak input signal is light that has undergone absorption by a trace gas. The local oscillator is a laser at a near-by frequency - in this case a low-cost distributed feedback (DFB) telecommunications laser. These two light waves are superimposed in either a beamsplitter or in a fiber coupler (as is the case in this design). The signals are mixed in the detector, and the RF beat frequency is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. A schematic of the progression of the LHR development project is shown in the figure below. At the center (within the dashed line), light from the local oscillator is superimposed upon light that has undergone absorption by a trace gas, in a single mode fiber coupler. Superimposed light is mixed in a fast photoreceiver, and the beat signal is analyzed for changes in absorption. The left portion of the figure depicts a progression of light sources that pass through the trace gas, increasing in complexity in the downward direction. On the right side of the figure, RF signal processing progresses from a commercially available spectrum analyzer to a RF receiver, and finally to an RF filter bank to deconvolute portions of the beat frequency more heavily weighted for different altitudes.
Demonstration of an ethane spectrometer for methane source identification.
Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E
2014-07-15
Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.
Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations
NASA Astrophysics Data System (ADS)
Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.
2017-09-01
We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.
Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery
NASA Astrophysics Data System (ADS)
Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed
2011-01-01
Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.
Realization of Ultra-High Spectral Purity with the Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Yao, Steve; Maleki, Lute; Ji, Yu; Dick, John
2000-01-01
Recent results with the Opto-Electronic Oscillator (OEO) have led to the realization of very high spectral purity. Experimental results have produced a performance characterized by a noise as low as by -50 dBc/Hz at 10 Hz for a 10 GHz OEO. The unit was built in a compact package containing an integrated DFB laser and the modulator. This performance is significant because the oscillator is free running, and since the noise in an OEO is independent of the oscillation frequency, the same result can also be obtained at higher frequencies. The result also demonstrates that high frequency, high performance, low cost, and miniature OEO can be realized with the integrated photonic technology. We have also developed a novel carrier suppression technique to reduce the 1/f phase noise of the oscillator even further. The technique is based on the use of a long fiber delay, in place of the high Q cavity, to implement carrier suppression. Our preliminary experimental results indicate an extra 10 to 20 dB phase noise reduction of the OEO with this novel technique. Further noise reduction beyond this value is expected with improved circuit design and longer reference fiber.
Measuring bacterial growth by refractive index tapered fiber optic biosensor.
Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein
2010-12-02
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.
2010-09-01
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.
NASA Technical Reports Server (NTRS)
Chen, Y.; Mahaffy P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B. Sherwood; Lacrampe-Couloume, G.; Onstott, T.C.
2014-01-01
A compact Near Infrared Continuous Wave Cavity Ring-Down Spectrometer (near-IR-cw-CRDS) was developed as a candidate for future planetary surface missions. The optical cavity was made of titanium with rugged quartz windows to protect the delicate super cavity from the harsh environmental changes that it would experience during space flight and a Martian surface mission. This design assured the long-term stability of the system. The system applied three distributed feedback laser diodes (DFB-LD), two of which were tuned to the absorption line peaks of (sup 12)CH4 and (sup 13)CH4 at 6046.954 inverse centimeters and 6049.121 inverse centimeters, respectively. The third laser was tuned to a spectral-lines-free region for measuring the baseline cavity loss. The multiple laser design compensated for typical baseline drift of a CRDS system and, thus, improved the overall precision. A semiconductor optical amplifier (SOA) was used instead of an Acousto-Optic Module (AOM) to initiate the cavity ring-down events. It maintained high acquisition rates such as AOM, but consumed less power. High data acquisition rates combined with improved long-term stability yielded precise isotopic measurements in this near-IR region even though the strongest CH4 absorption line in this region is 140 times weaker than that of the strongest mid-IR absorption band. The current system has a detection limit of 1.4 times 10( sup –12) inverse centimeters for (sup 13)CH4. This limit corresponds to approximately 7 parts per trillion volume of CH4 at 100 Torrs. With no further improvements the detection limit of our current near IR-cw-CRDS at an ambient Martian pressure of approximately 6 Torrs (8 millibars) would be 0.25 parts per billion volume for one 3.3 minute long analysis.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Ebert, V.
2014-07-01
Large systematic errors in absorption spectrometers (AS) can be caused by ‘parasitic’ optical absorption (parA) outside the measurement region. In particular, calibration-free direct tunable diode laser AS (dTDLAS) can take advantage of an effective parA-compensation to provide correct absolute values. However, parA also negatively affects calibrated AS in calibration frequency and stability. A common strategy to suppress parA in TDLAS systems is to fiber-couple the light source and even the detector. However, this can be a critical approach if the TDL spectrometer is validated/calibrated under laboratory conditions in ambient humidity and used afterwards in much drier and variable conditions, for example in aircrafts. This paper shows that, e.g., ‘hermetically sealed’ butterfly packages, despite fiber coupling, can possess fixed as well as variable parA sections. Two new methods for absolute parA-quantification in dTDLAS were developed, including a novel, fiber-coupled, parA-free I0-detector for permanent parA-monitoring. Their dependences on ambient humidity/pressure and temporal behavior were studied. For the example of a 1.4 µm dTDLAS hygrometer SEALDH-II with a commercial DFB-laser module and an extractive 1.5 m path cell, we quantified the parA-induced signal offsets and their dependence on cell pressure. The conversion of parA-uncertainty into H2O signal uncertainty was studied and an updated uncertainty budget including parA-uncertainty was derived. The studies showed that parA in commercial laser modules can cause substantial, systematic concentration offsets of ≈25 ppmv fixed and ≈100 ppmv variable offsets for one meter absorption path. Applying our parA-quantification techniques these offsets could be compensated by a factor of 20 to an overall offset uncertainty of 4.5 ppmv m-1. Finally, we developed an innovative, integrated, µ-pumped closed-loop air drying unit for the parA minimization and temporal stabilization in airborne laser hygrometers. This compact and light weight dryer eliminates the variable parA by ambient humidity in less than 120 min and is well suited for airborne applications as it fulfils all airborne operation and safety restrictions.
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent
2012-01-01
We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth measurement. Aerosols induce a radiative effect that is an important modulator of regional carbon cycles. Changes in the diffuse radiative flux fraction (DRF) due to aerosol loading have the potential to alter the terrestrial carbon exchange.
USDA-ARS?s Scientific Manuscript database
In the Pacific Northwest (PNW) container crops are grown in soilless substrates that contain different percentages of Douglas-fir bark (DFB), sphagnum peat moss and pumice. Previous research conducted by Gabriel et al. found varying combinations and ratios of these components result in differing phy...
Ramos, Miguel A; Sousa, Nadine R; Franco, Albina R; Costa, Vítor; Oliveira, Rui S; Castro, Paula M L
2013-01-01
Diflubenzuron (DFB) is an insecticide commonly used to control forest pests. The objectives of this study were to assess the effect of diflubenzuron on the development of Pinus pinaster seedlings and Pisolithus tinctorius under laboratory conditions and to study the possible protective role of this ectomycorrhizal fungus against the effects of diflubenzuron. In vitro experiments revealed that diflubenzuron inhibited fungal growth at all tested concentrations (0.01, 0.1, 1, 10 and 100 mg L(-1)). Root growth was inhibited at the two highest diflubenzuron concentrations. The activity of the antioxidant defence system of non-inoculated P. pinaster increased at 1 and 10 mg DFB kg(-1) substrate, and inoculation increased the threshold to the highest concentration. The protective role of the ectomycorrhizal fungus was seen in the increase of CAT activity. This study revealed that despite causing no mortality, diflubenzuron has the ability to cause sub-lethal damage to P. pinaster. The disproportionate use of this insecticide may lead to higher amounts of its residues in soil and the biosphere, endangering trees, fungi and their symbiosis.
NASA Astrophysics Data System (ADS)
Andrejeva, Anna; Gardner, Adrian M.; Tuttle, William D.; Wright, Timothy G.
2016-03-01
We give a description of the phenyl-ring-localized vibrational modes of the ground states of the para-disubstituted benzene molecules including both symmetric and asymmetric cases. In line with others, we quickly conclude that the use of Wilson mode labels is misleading and ambiguous; we conclude the same regarding the related ones of Varsányi. Instead we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of para-difluorobenzene (pDFB). Since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules, we apply the Mulliken labelling under C2v symmetry. By studying the variation of the vibrational wavenumbers with mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. Particularly interesting are pairs of vibrations that evolve from in- and out-of-phase motions in pDFB to more localized modes in asymmetric molecules. We consider the para isomers of the following: the symmetric dihalobenzenes, xylene, hydroquinone, the asymmetric dihalobenzenes, halotoluenes, halophenols and cresol.
NASA Astrophysics Data System (ADS)
Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud
2017-02-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.
Fiber optic system design for vehicle detection and analysis
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir
2016-04-01
Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.
Moser, Harald; Pölz, Walter; Waclawek, Johannes Paul; Ofner, Johannes; Lendl, Bernhard
2017-01-01
The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H 2 S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH 4 ) matrix of up to 1000 ppmv together with a varying H 2 S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H 2 S targeting the absorption line at 1247.2 cm -1 was found to be 8.419 × 10 -10 cm -1 Hz -1/2 , and a limit of detection (LOD) of 150 ppbv H 2 S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H 2 S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H 2 S and CH 4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.
NASA Astrophysics Data System (ADS)
Budinov, Daniel; Clements, Robert; Rae, Cameron F.; Moncrieff, John B.; Jack, James W.
2016-12-01
Developments in the remote detection of trace gases in the atmosphere using Differential Absorption Lidar have been driven largely by improvements in two key technologies: lasers and detectors. We have designed and built a narrow linewidth pulsed laser source with a well-controlled output wavelength and sufficient pulse energy to measure the concentration profile of CO2 and CH4 to a range in excess of 4km. We describe here the initial measurements of concentration profiles recorded with this instrument. The system is built around a custom-designed Newtonian telescope with a 40cm diameter primary mirror. Laser sources and detectors attach directly to the side of the telescope allowing for flexible customization with a range of additional equipment. The instrument features an all-solid-state laser source based on an optical parametric oscillator (OPO) pumped by an YLF based diode-laser pumped solid-state laser and seeded by a tuned DFB seed. This provides a range of available wavelengths suitable for DIAL within the 1.5-1.6 μm spectral region. The output of the OPO is beam expanded and transmitted coaxially from the receiver telescope. A gas cell within the laser source controls the seed wavelength and allows the wavelength to be tuned to match a specific absorption feature of the selected gas species. The source can be rapidly tuned between the on-line and off-line wavelengths to make a DIAL measurement of either CO2 or CH4 The receiver is based on an InGaAs avalanche photodetector. Whilst photodiode detectors are a low-cost solution their limited sensitivity restricts the maximum range over which a signal can be detected. The receiver signal is digitised for subsequent processing to produce a sightline concentration profile. The instrument is mounted on a robust gimballed mount providing full directional movement within the upper hemisphere. Both static pointing and angular scan modes are available. Accurate angular position is available giving the sightline vector and supporting the interpretation of the concentration profile. Initial measurements have been made in the planetary boundary layer above the City of Edinburgh and these will be presented and discussed. Earlier measurements demonstrated that the signal from atmospheric scatter could be detected at ranges in excess of 6km. The later measurements have shown scatter signals at greater ranges, but with increasing noise at the longer ranges. This is expected as the signal decreases with the inverse of the range whereas the noise remains effectively constant. Range resolved concentration profiles for sightline vectors lying within an angular sector have been used to create a 3D map of concentration for that volume. This will be presented and discussed.
R.A. Progar; N. Sturdevant; M.J. Rinella
2010-01-01
Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) (DFB) causes considerable mortality to Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in western North American forests. We evaluated the use of semiochemical-baited multiple-funnel traps for the protection of small, high-value stands of trees, such as those occurring...
USDA-ARS?s Scientific Manuscript database
Douglas fir [Pseudotsuga menziesii Mirb.(Franco)] bark (DFB), sphagnum peat moss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties o...
Vijayakumar, Balakrishnan; Velmurugan, Devadasan
2013-12-01
Endo-1,4-Xylanase II is an enzyme which degrades the linear polysaccharide beta-1,4-xylan into xylose. This enzyme shows highest enzyme activity around 55 °C, even without being stabilized by the disulphide bridges. A set of nine high resolution crystal structures of Xylanase II (1.11-1.80 Å) from Trichoderma reesei were selected and analyzed in order to identify the invariant water molecules, ion pairs and water-mediated ionic interactions. The crystal structure (PDB-id: 2DFB) solved at highest resolution (1.11 Å) was chosen as the reference and the remaining structures were treated as mobile molecules. These structures were then superimposed with the reference molecule to observe the invariant water molecules using 3-dimensional structural superposition server. A total of 37 water molecules were identified to be invariant molecules in all the crystal structures, of which 26 invariant molecules have hydrogen bond interactions with the back bone of residues and 21 invariant water molecules have interactions with side chain residues. The structural and functional roles of these water molecules and ion pairs have been discussed. The results show that the invariant water molecules and ion pairs may be involved in maintaining the structural architecture, dynamics and function of the Endo-1,4-Xylanase II.
Application of long-period-grating sensors to respiratory plethysmography.
Allsop, Thomas; Carroll, Karen; Lloyd, Glynn; Webb, David J; Miller, Martin; Bennion, Ian
2007-01-01
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from approximately 7-nm m to approximately 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%.
USDA-ARS?s Scientific Manuscript database
Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin®) are in wide use to control various insect pests. Although compounds in this class are known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader i...
Industrial integration of high coherence tunable VECSEL in the NIR and MIR
NASA Astrophysics Data System (ADS)
Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud
2016-03-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
Yang, Fei; Tanaka, Mari; Wataya-Kaneda, Mari; Yang, Lingli; Nakamura, Ayumi; Matsumoto, Shoji; Attia, Mostafa; Murota, Hiroyuki; Katayama, Ichiro
2014-08-01
Atopic dermatitis (AD), a chronic inflammatory skin disease characterized by relapsing eczema and intense prurigo, requires effective and safe pharmacological therapy. Recently, rapamycin, an mTOR (mammalian target of rapamycin) inhibitor, has been reported to play a critical role in immune responses and has emerged as an effective immunosuppressive drug. In this study, we assessed whether inhibition of mTOR signalling could suppress dermatitis in mice. Rapamycin was topically applied to inflamed skin in a murine AD model that was developed by repeated topical application of Dermatophagoides farina body (Dfb) extract antigen twice weekly for 7 weeks in NC/Nga mice. The efficacy of topical rapamycin treatment was evaluated immunologically and serologically. Topical application of rapamycin reduced inflammatory cell infiltration in the dermis, alleviated the increase of serum IgE levels and resulted in a significant reduction in clinical skin condition score and marked improvement of histological findings. In addition, increased mTOR phosphorylation in the lesional skin was observed in our murine AD model. Topical application of rapamycin ointment inhibited Dfb antigen-induced dermatitis in NC/Nga mice, promising a new therapy for atopic dermatitis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Photoacoustic sensor for VOCs: first step towards a lung cancer breath test
NASA Astrophysics Data System (ADS)
Wolff, Marcus; Groninga, Hinrich G.; Dressler, Matthias; Harde, Hermann
2005-08-01
Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Specifically, the optical analysis of breath is an extraordinarily promising technique. Spectroscopic sensors for the non-invasive 13C-breath tests (the Urea Breath Test for detection of Helicobacter pylori is most prominent) are meanwhile well established. However, recent research and development go beyond gastroenterological applications. Sensitive and selective detection of certain volatile organic compounds (VOCs) in a patient's breath, could enable the diagnosis of diseases that are very difficult to diagnose with contemporary techniques. For instance, an appropriate VOC biomarker for early-stage bronchial carcinoma (lung cancer) is n-butane (C4H10). We present a new optical detection scheme for VOCs that employs an especially compact and simple set-up based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. Employing a wavelength-modulated distributed feedback (DFB) diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive and selective measurements on butane. A detection limit for butane in air in the ppb range was achieved. In subsequent research the sensitivity will be successively improved to match the requirements of the medical application. Upon optimization, our photoacoustic sensor has the potential to enable future breath tests for early-stage lung cancer diagnostics.
Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.
Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu
2009-06-15
In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.
2015-12-10
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...structures. These analyses provide parametric representations of weld temperature histories that can be adopted as input data to various types of
2015-12-10
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...202) 767-2601 Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of
Total internal reflection laser tools and methods
Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.
2016-02-02
There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.
Laser-induced periodic annular surface structures on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Brelet, Yohann; Forestier, Benjamin
2013-06-24
We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.
Micro and Nano-mediated 3D Cardiac Tissue Engineering
2011-10-01
Engineering Dr. M. Gibb, Head of Cardiology, Carle Hospital Dr. Sherrie Clark, UIUC swine species veterinarian 7 Year 3 Project Goals Interface DFB...engineering and regenerative medicine in the 1990s to accommodate for the shortage of organ donors. Today, the shortage still exists and the development...medicine in the 1990s to accommodate for the shortage of organ donors. Today, the shortage still exists and the development of tissue equivalents has
NASA Astrophysics Data System (ADS)
Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying
2017-10-01
Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution. Benefitting from the use of QCL and HWG, the sensor is simple and compact. Moreover, the concentration inversion algorithm is simple and suitable for embedding into the microprocessor to form a more compact and miniaturized system. The absolute measurement based on DAS without calibration can reduce the influence of light variation on measurement which may attribute to the instability of electrocircuit, optical path and laser source. Therefore, the sensor based on HWG gas cell is very well suited for sensitive and real-time monitoring ammonia in the atmosphere. Furthermore, this sensor provides the capabilities for improved the in-situ gas-phase NH3 sensing relevant for emission source characterization and exhaled breath measurements.
Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.
2012-12-01
Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length relates to the poorly understood bulking process where feedback mechanisms working to progressively increase sediment concentrations likely operate. The apparent length dependence revealed in this study requires a shift in thought about the conditions leading to debris flow generation in catchments dominated by unconsolidated and transportable material.
NASA Astrophysics Data System (ADS)
Csontos, J.; Toth, Z.; Pápa, Z.; Budai, J.; Kiss, B.; Börzsönyi, A.; Füle, M.
2016-06-01
In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium-sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs-200 ps) and a dye-KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78-80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.
NASA Astrophysics Data System (ADS)
Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin
2018-06-01
Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.
Dezfoli, Amir Reza Ansari; Hwang, Weng-Sing; Huang, Wei-Chin; Tsai, Tsung-Wen
2017-01-01
There are serious questions about the grain structure of metals after laser melting and the ways that it can be controlled. In this regard, the current paper explains the grain structure of metals after laser melting using a new model based on combination of 3D finite element (FE) and cellular automaton (CA) models validated by experimental observation. Competitive grain growth, relation between heat flows and grain orientation and the effect of laser scanning speed on final micro structure are discussed with details. Grains structure after laser melting is founded to be columnar with a tilt angle toward the direction of the laser movement. Furthermore, this investigation shows that the grain orientation is a function of conduction heat flux at molten pool boundary. Moreover, using the secondary laser heat source (SLHS) as a new approach to control the grain structure during the laser melting is presented. The results proved that the grain structure can be controlled and improved significantly using SLHS. Using SLHS, the grain orientation and uniformity can be change easily. In fact, this method can help us to produce materials with different local mechanical properties during laser processing according to their application requirements. PMID:28134347
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Formation of propagation invariant laser beams with anamorphic optical systems
NASA Astrophysics Data System (ADS)
Soskind, Y. G.
2015-03-01
Propagation invariant structured laser beams play an important role in several photonics applications. A majority of propagation invariant beams are usually produced in the form of laser modes emanating from stable laser cavities. This work shows that anamorphic optical systems can be effectively employed to transform input propagation invariant laser beams and produce a variety of alternative propagation invariant structured laser beam distributions with different shapes and phase structures. This work also presents several types of anamorphic lens systems suitable for transforming the input laser modes into a variety of structured propagation invariant beams. The transformations are applied to different laser mode types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian field distributions. The influence of the relative azimuthal orientation between the input laser modes and the anamorphic optical systems on the resulting transformed propagation invariant beams is presented as well.
NASA Astrophysics Data System (ADS)
Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun
2016-04-01
Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.
NASA Astrophysics Data System (ADS)
Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong
2017-12-01
In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.
NASA Astrophysics Data System (ADS)
Romashevskiy, S. A.; Ashitkov, S. I.; Ovchinnikov, A. V.; Kondratenko, P. S.; Agranat, M. B.
2016-06-01
The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.
NASA Astrophysics Data System (ADS)
Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.
2017-11-01
In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.
Prototyping of Dental Structures Using Laser Milling
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.
2016-02-01
The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
Fiber optic interferometer as a security element
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Cubik, Jakub; Zavodny, Petr; Novak, Martin; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir
2016-04-01
Interferometric sensors can be categorized as highly sensitive and precise devices with series inconsiderable benefits from the possibility of using standard telecommunication fibers. They can be measured even small changes in the deformation of shapes in time, changes in temperature, pressure, voltage, vibration, electric field, etc. The basic idea, which is described in this article is the usage of the interferometer as a security and monitoring component, which offers a solution for securing of closed spaces, especially before unwanted entries. Its primary task is to detect intrusions - disrupting the integrity of the transparent window area due to vibration response. The base of the solution is a Mach-Zehnder interferometer, which consists of two arms in the power distribution ratio of 1:1, consisting of the SM optical fiber excited by a DFB laser. The interferometer is working on the wavelength of 1550 nm. The resulting signal is registered as a result of interference of optical beams from the reference and sensor arm. Realized measuring scheme was terminated optical receiver comprising PbSe detector. Below described experimental measurements have shown that implemented interferometer has a sufficient value of the signal to noise ratio (SNR) and is able to detect very weak signals in a wide frequency range from tens of Hz to kHz units. The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by retesting the assembled prototype.
Control and Optimization Tools for Systems Governed by Nonlinear Partial Differential Equations
2006-09-06
parameter a) leading to a J&(a) f VST (X, y; a). ih dFb. aai Jrb where ST= aT " caai This sensitivity variable, along with s,, =-u and s = _-•p satisfy...with respect to the parameter ai: p(sU-Vu+u-Vsu) = --Vsp+V-.T(s)-pgI0sT+f, v.s =O0 pC (Su. VT + u VST ) V (KVST) +±q where we have assumed, among other
NASA Astrophysics Data System (ADS)
Papadopoulos, Antonis; Skoulas, Evangelos; Tsibidis, George D.; Stratakis, Emmanuel
2018-02-01
A comparative study is performed to explore the periodic structure formation upon intense femtosecond-pulsed irradiation of dielectrics with radially and azimuthally polarised beams. Laser conditions have been selected appropriately to produce excited carriers with densities below the optical breakdown threshold in order to highlight the role of phase transitions in surface modification mechanisms. The frequency of the laser-induced structures is calculated based on a theoretical model that comprises estimation of electron density excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. The influence of the laser wavelength in the periodicity of the structures is also unveiled. The decreased energy absorption for azimuthally polarised beams yields periodic structures with smaller frequencies which are more pronounced as the number of laser pulses applied to the irradiation spot increases. Similar results are obtained for laser pulses of larger photon energy and higher fluences. All induced periodic structures are oriented parallel to the laser beam polarisation.
Effects of laser fluence on silicon modification by four-beam laser interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Le; Li, Dayou; JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU
2015-12-21
This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, andmore » the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.« less
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
NASA Astrophysics Data System (ADS)
Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice
2016-06-01
A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.
Visualization of evolving laser-generated structures by frequency domain tomography
NASA Astrophysics Data System (ADS)
Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael
2011-10-01
We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.
Laser-induced structure formation on stretched polymer foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter
2007-04-15
Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.
III-V/II-VI Hybrid Quantum Well Mid-Infrared Lasers
2005-01-25
semiconductor lasers are of great importance for many applications such as laser diode spectroscopy , pollution monitoring, low-loss optical communication...great importance for many applications such as laser diode spectroscopy, pollutant monitoring, low-losses longwavelength optical communication...InAsSb/CdMgSe laser structure 1.2. Characterization of the laser structures and interface quality (STM, EPFM etc) 1.3. Study of spontaneous and
Femtosecond laser-induced herringbone patterns
NASA Astrophysics Data System (ADS)
Garcell, Erik M.; Lam, Billy; Guo, Chunlei
2018-06-01
Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.
Nanocrystal waveguide (NOW) laser
Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.
2005-02-08
A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.
Li, Shuixing; Zhan, Lingling; Liu, Feng; Ren, Jie; Shi, Minmin; Li, Chang-Zhi; Russell, Thomas P; Chen, Hongzheng
2018-02-01
Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-induced self-organization in silicon-germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weizman, M.; Nickel, N. H.; Sieber, I.
We report on the formation of self-organized structures in thin films of silicon-germanium (Si{sub 1-x}Ge{sub x}) with 0.3
Structural dissipative solitons in passive mode-locked fiber lasers.
Komarov, Andrey; Sanchez, François
2008-06-01
On the basis of numerical simulation of fiber laser passive mode locking with anomalous dispersion we have found the dissipative solitons with powerful pedestals having oscillating structure. The pedestal structure causes a complex structural spectrum. These solitons can be multistable: with the same laser parameters the pedestals can have different structures. For some nonlinear-dispersion parameters there exist solitons with asymmetric structural pedestals moving relatively solitons with symmetric ones.
Laser processing for manufacturing nanocarbon materials
NASA Astrophysics Data System (ADS)
Van, Hai Hoang
CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.
Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer
NASA Astrophysics Data System (ADS)
Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.
2012-12-01
The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature, pressure, and species mixing ratios are defined at these boundaries. Between the boundaries, temperature is assumed to vary linearly with altitude while pressure (and thus gas density) vary exponentially. The observed spectrum at the LHR instrument will be the integration of the contributions along this light path. For any absorption measurement the signal at a particular spectral frequency is a linear combination of spectral line contributions from several species. For each species that might absorb in a spectral region, we have pre-calculated its contribution as a function of temperature and pressure. The integrated path absorption spectrum can then by calculated using the initial sun angle (from location, date, and time) and assumptions about pressure and temperature profiles from an atmospheric model. The modeled spectrum is iterated to match the experimental observation using standard multilinear regression techniques. In addition to the layer concentrations, the numerical technique also provides uncertainty estimates for these quantities as well as dependencies on assumptions inherent in the atmospheric models.
Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer
NASA Technical Reports Server (NTRS)
Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.
2012-01-01
The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature, pressure, and species mixing ratios are defined at these boundaries. Between the boundaries, temperature is assumed to vary linearly with altitude while pressure (and thus gas density) vary exponentially. The observed spectrum at the LHR instrument will be the integration of the contributions along this light path. For any absorption measurement the signal at a particular spectral frequency is a linear combination of spectral line contributions from several species. For each species that might absorb in a spectral region, we have pre-calculated its contribution as a function of temperature and pressure. The integrated path absorption spectrum can then by calculated using the initial sun angle (from location, date, and time) and assumptions about pressure and temperature profiles from an atmospheric model. The modeled spectrum is iterated to match the experimental observation using standard multilinear regression techniques. In addition to the layer concentrations, the numerical technique also provides uncertainty estimates for these quantities as well as dependencies on assumptions inherent in the atmospheric models.
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
NASA Astrophysics Data System (ADS)
Zinchik, Alexander A.; Muzychenko, Yana B.
2015-06-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.
Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng
2016-05-15
We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1 μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.
Liu, Bing-Feng; Xie, Guo-Jun; Wang, Rui-Qing; Xing, De-Feng; Ding, Jie; Zhou, Xu; Ren, Hong-Yu; Ma, Chao; Ren, Nan-Qi
2015-01-01
Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover, simultaneous hydrogen and ethanol production were achieved by coupling E. harbinese B49 and R. faecalis RLD-53 in the IDPFR. According to stoichiometry, the hydrogen and ethanol production efficiencies were 82.67% and 82.19%, respectively. Therefore, IDPFR was an effective strategy for coupling DFB and PFB to fulfill efficient energy recovery from waste biomass.
NASA Astrophysics Data System (ADS)
Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.
2017-10-01
Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.
LASERS IN MEDICINE: Structure of matrices for the transformation of laser radiation by biofractals
NASA Astrophysics Data System (ADS)
Angel'skii, O. V.; Ushenko, A. G.; Arkhelyuk, A. D.; Ermolenko, S. B.; Burkovets, D. N.
1999-12-01
The changes in the state of polarisation of laser radiation transformed by biofractal objects are examined. The orientational angular structure of the matrix elements of the operator representing the optical properties of biofractals with different morphological structures (mineralised collagen fibres and myosin bundles) is investigated. An optical model for the description of fractal laser fields under the conditions of single light scattering is proposed.
Excimer laser interaction with dentin of the human tooth
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.
1989-01-01
The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.
Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soong, Ken; Peralta, E.A.; Byer, R.L.
A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less
NASA Astrophysics Data System (ADS)
Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.
2016-06-01
In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.
Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring
NASA Astrophysics Data System (ADS)
Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés
2016-12-01
Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.
Laser Fabrication of Polymer Ferroelectric Nanostructures for Nonvolatile Organic Memory Devices.
Martínez-Tong, Daniel E; Rodríguez-Rodríguez, Álvaro; Nogales, Aurora; García-Gutiérrez, Mari-Cruz; Pérez-Murano, Francesc; Llobet, Jordi; Ezquerra, Tiberio A; Rebollar, Esther
2015-09-09
Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.
NASA Astrophysics Data System (ADS)
Tsibidis, George D.; Mimidis, Alexandros; Skoulas, Evangelos; Kirner, Sabrina V.; Krüger, Jörg; Bonse, Jörn; Stratakis, Emmanuel
2018-01-01
We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.
Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman
2017-09-01
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.
NASA Astrophysics Data System (ADS)
Kirner, S. V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; Krüger, J.; Solis, J.; Siegel, J.; Stratakis, E.; Bonse, J.
2017-12-01
Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.
Theoretical Aspects of Laser-Induced Periodic Surface Structure Formation,
1983-11-01
r AD-A134 875 UNCLASSIFIED THEORETICAL ASPECTS OF LASER -INUUCtl) PtKlUUlt bUKhALt STRUCTURE FORMATION(U) ROCHESTER UNIV NY DEPT OF CHEMISTRY M...UR0CHESTER/DC/83/TR-43 2. COVT ACCESSION NO A. TITLE (and Subllllm) Theoretical Aspects of Laser -Induced Periodic Surface Structure Formation 7...publication in Laser -Controlled Chemical Processing of Surfaces, ed. by A. W. Johnson and D. J. Ehrlich (Elsevier, New York) 19 KEY WORDS (Continue
Femtosecond laser structuring of titanium implants
NASA Astrophysics Data System (ADS)
Vorobyev, A. Y.; Guo, Chunlei
2007-06-01
In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.
NASA Astrophysics Data System (ADS)
Bufetov, Igor'A.; Bufetova, G. A.; Fyodorov, V. B.
1994-12-01
Spatial distributions of laser radiation scattered by a laser spark were determined at different laser radiation wavelengths (λ = 1060, 530, 353, and 265 nm) and gas pressures (air at 10-760 Torr). An interference structure of the cone of the scattered radiation behind the spark was detected for the first time. The structure was attributed to interference of the radiation scattered in two or more self-focusing centres in the laser-spark plasma in air. The dependences of the maximum scattering angle on the gas pressure and on the laser radiation wavelength were determined experimentally.
NASA Astrophysics Data System (ADS)
Gureev, D. M.
1994-09-01
A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.
Investigation of laser holographic interferometric techniques for structure inspection
NASA Technical Reports Server (NTRS)
Chu, W. P.
1973-01-01
The application of laser holographic interferometric techniques for nondestructive inspection of material structures commonly used in aerospace works is investigated. Two types of structures, composite plate and solid fuel rocket engine motor casing, were examined. In conducting the experiments, both CW HeNe gas lasers and Q-switched ruby lasers were used as light sources for holographic recording setups. Different stressing schemes were investigated as to their effectiveness in generating maximum deformation at regions of structural weakness such as flaws and disbonds. Experimental results on stressing schemes such as thermal stressing, pressurized stressing, transducer excitation, and mechanical impact are presented and evaluated.
NASA Astrophysics Data System (ADS)
Barsukov, D. O.; Gusakov, G. M.; Frolov, A. I.
1991-12-01
An experimental investigation was made of the dynamics of growth of periodic surface structures due to the interaction with pulsed laser radiation. Samples of Ge were subjected to laser pulses (λ = 1.06 μm, τ = 70 ns) with energy densities in the range 0.5-5.5 J/cm2. An investigation was made of the dynamics of the first-order diffraction of probe (λ = 0.53 μm) laser pulses with a time resolution 4 ns when p- and s-polarized laser radiation was incident at angles close to normal. A strong nonlinearity of the growth of such periodic surface structures was observed. The energy density from which such growth began depended on the quality of the polished Ge surface. The parameters of the dynamics of the growth of these structures were estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang
In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less
NASA Astrophysics Data System (ADS)
Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.
2011-03-01
Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.
Lateral electrochemical etching of III-nitride materials for microfabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jung
Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.
NASA Astrophysics Data System (ADS)
Fang, Wei Jin; Huang, Xu Guang; Yang, Kai; Zhang, Xiao Min
2012-09-01
We propose and demonstrate a full duplex dense-wavelength-division-multiplexing radio-over-fiber (DWDM-ROF) system for transmitting 75-GHz W-band frequency multiple-input multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) signals with 12 Gbps downstream and 6 Gbps upstream. The downstream transmitting terminal is based on a three-channels sextupling-frequency scheme using an external modulation of a distributed feedback laser diode (DFB-LD) and dual drive Mach-Zehnder modulator (DD-MZM) for carrying downstream signals. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Without using costly W-band components in the transmitter, a 12 Gbps downstream transmission system operation at 75 GHz is experimentally validated. For the downstream transmission, a power penalty of less than 3 dB was observed after a 50 km single mode fiber (SMF) and 4 m wireless transmission at a bit error rate (BER) of 3.8×10-3. For the upstream transmission, we use a commercially available 1.5 GHz bandwidth reflective semiconductor optical amplifier (RSOA) to achieve 6 Gbps upstream traffic for 16 QAM-OFDM signals. A power penalty of 3 dB was observed after a 50 km SMF transmission at a BER of 3.8×10-3. The frequency of the local oscillator is reduced due to the frequency sextupling scheme. The cost of the proposed system is largely reduced.
A Simple Laser Teaching Aid for Transverse Mode Structure Demonstration
ERIC Educational Resources Information Center
Ren, Cheng; Zhang, Shulian
2009-01-01
A teaching aid for demonstrating the transverse mode structure in lasers is described. A novel device called "multi-dimension adjustable combined cat-eye reflector" has been constructed from easily available materials to form a He-Ne laser resonator. By finely adjusting the cat-eye, the boundary conditions of the laser cavity can be altered, which…
Comparative impact analysis of laser radiation on steel grades 1045 and 5140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobankova, Olga V., E-mail: lobankovaov@gmail.com, E-mail: zilyu@yandex.ru; Zykov, Ilya Y., E-mail: lobankovaov@gmail.com, E-mail: zilyu@yandex.ru; Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru
2014-11-14
There are results of experiments with deep engraving steel grades 1045 and 5140. The deep engraving was made by laser system equipped with a pulsed ytterbium fiber laser. The objectives of the work is to evaluate the change in the structure and properties of the material in the laser exposure area. Microsections of materials have been investigated and microhardness was measured for this purpose. The optimal parameters of laser material removal were considered. It is shown that various changes occur in the metal structure, which depends on the composition of the steel. In particular, when processing with identical laser parameters,more » tempered steel 1045 remelts and its hardness changes, while steel 5140 does not change its structure.« less
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin
2017-12-01
Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.
2015-05-01
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.
NASA Astrophysics Data System (ADS)
Motrich, A. V.; Ushenko, O. G.
2018-01-01
The results of statistical dependence and correlation structures of two-dimensional Mueller matrix elements in various spectral regions of laser radiation by changes in the distribution of orientations of optical axes and birefringence of protein crystals. Namely, a two-wave ("red-blue") approach - layer of biological tissues irradiated by He-Ne laser (λ1 = 0,63μm ) and He-Cd laser (λ1 = 0,41μm )was used Conducted analysis of polarimetric sensitivity was made, a state of polarization points that contain volumetric structures of biological objects to spectral region of laser radiation was detected.
Aluminum Surface Texturing by Means of Laser Interference Metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.
2015-01-01
The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.
Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun
2017-06-01
The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.
Verhoeven, Rozemarijn S; Garcia, Andres; Robeson, RiLee; Gilger, Brian C; Culp, David; Struble, Craig; Hamm, Lee; Navratil, Tomas; Yerxa, Benjamin
Topical corticosteroids are widely used in the treatment of inflammation and pain after ocular surgery, but they possess several shortcomings, including frequent dosing and low patient adherence. We evaluated the efficacy and pharmacokinetics of ENV905 (difluprednate or DFBA) Ophthalmic Implant, a single-dose drug delivery system, compared with 0.05% Durezol. PRINT ® technology was used to fabricate ENV905 implants for either intracameral (IC) or subconjunctival (SCJ) delivery of extended-release DFBA. A postoperative inflammation model and ocular pharmacokinetics studies of ENV905 or Durezol were conducted in albino rabbits for a maximum of 12 weeks. Suppression of ocular inflammation was marked for both IC and SJC ENV905 compared with placebo, and it was superior or equivalent to that observed with QID Durezol. Concentrations of desacetyl difluprednate (DFB, active metabolite) peaked on day 1 and tapered over time for ENV905, with IC ENV905 delivering DFB to the target tissue at the time of greatest inflammation, whereas SJC produced a longer duration of exposure. Durezol eyes demonstrated consistent exposure over time with maximal exposure in the cornea. Although the pharmacokinetic profile differed for the two routes, efficacy was similar. ENV905 was well tolerated and demonstrated a robust reduction in ocular inflammation with targeted drug delivery. The results from these studies show that ENV905 provides a sustained therapeutic effect after a single dose. By resolving low patient compliance and eliminating the peaks and troughs in drug concentration, sustained drug delivery via ENV905 may further improve the overall control of postoperative inflammation and pain.
NASA Astrophysics Data System (ADS)
Bityurin, N. M.
2010-12-01
This paper considers nanostructuring of solid surfaces by nano-optical techniques, primarily by laser particle nanolithography. Threshold processes are examined that can be used for laser structuring of solid surfaces, with particular attention to laser swelling of materials. Fundamental spatial resolution issues in three-dimensional (3D) laser nanostructuring are analysed with application to laser nanopolymerisation and 3D optical information recording. The formation of nanostructures in the bulk of solids due to their structural instability under irradiation is exemplified by photoinduced formation of nanocomposites.
Granados, Eduardo; Martinez-Calderon, Miguel; Gomez, Mikel; Rodriguez, Ainara; Olaizola, Santiago M
2017-06-26
We study the fabrication of photonic surface structures in single crystal diamond by means of highly controllable direct femtosecond UV laser induced periodic surface structuring. By appropriately selecting the excitation wavelength, intensity, number of impinging pulses and their polarization state, we demonstrate emerging high quality and fidelity diamond grating structures with surface roughness below 1.4 nm. We characterize their optical properties and study their potential for the fabrication of photonic structure anti-reflection coatings for diamond Raman lasers in the near-IR.
ERIC Educational Resources Information Center
John, Phillip
1982-01-01
Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.
Direct femtosecond laser surface structuring of crystalline silicon at 400 nm
NASA Astrophysics Data System (ADS)
Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore
2018-03-01
We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.
Direct solar pumping of semiconductor lasers: A feasibility study
NASA Technical Reports Server (NTRS)
Anderson, Neal G.
1992-01-01
This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is summarized in Section 5, and information on publications resulting from this work is provided in Section 6.
Influence of ordering change on the optical and thermal properties of inflation polyethylene films
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius
2011-04-01
Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.
Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)
1987-09-01
laser diode arrays are intended to be used as an optical pump for solid state yttrium aluminum garnet (YAG) lasers. In particular, linear uniform...corresponds to about . , 8080A. Such thin layer structures, while difficult to grow by such conventional growth methods as liquid phase epitaxy ( LPE ...lower yet than for DH lasers grown by LPE . , - Conventional self-aligned stripe laser This structure is formed by growing (on an n-type GaAs substrate
Simultaneous RGB lasing from a single-chip polymer device.
Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao
2010-07-15
This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.
Human dental enamel and dentin structural effects after Er:YAG laser irradiation.
Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho
2014-05-01
Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.
Visual based laser speckle pattern recognition method for structural health monitoring
NASA Astrophysics Data System (ADS)
Park, Kyeongtaek; Torbol, Marco
2017-04-01
This study performed the system identification of a target structure by analyzing the laser speckle pattern taken by a camera. The laser speckle pattern is generated by the diffuse reflection of the laser beam on a rough surface of the target structure. The camera, equipped with a red filter, records the scattered speckle particles of the laser light in real time and the raw speckle image of the pixel data is fed to the graphic processing unit (GPU) in the system. The algorithm for laser speckle contrast analysis (LASCA) computes: the laser speckle contrast images and the laser speckle flow images. The k-mean clustering algorithm is used to classify the pixels in each frame and the clusters' centroids, which function as virtual sensors, track the displacement between different frames in time domain. The fast Fourier transform (FFT) and the frequency domain decomposition (FDD) compute the modal properties of the structure: natural frequencies and damping ratios. This study takes advantage of the large scale computational capability of GPU. The algorithm is written in Compute Unifies Device Architecture (CUDA C) that allows the processing of speckle images in real time.
NASA Astrophysics Data System (ADS)
Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng
2015-01-01
A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 < N < 10) with the pulse energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.
Periodic surface structure creation by UV femtosecond pulses on silicon
NASA Astrophysics Data System (ADS)
Gilicze, Barnabás; Moczok, Márió; Madarász, Dániel; Juhász, Nóra; Racskó, Bence; Nánai, László
2017-01-01
Laser-induced periodic surface structures are created on Si (100) and Si (111) wafers by 500 fs laser pulses at 248 nm. The periodic structure is concentric and highly regular. The spatial period is consistently varying between 1.1 µm and 3.3 µm in the radial direction. It is shown that the fluence of the irradiation at the same pulse number determines the size of the area where the periodic structure is created and for the same fluence the pulse number determines the regularity of the created grooves by melting processes. The origin of this structure is identified as the inhomogeneity of the laser beam profile caused by Fresnel diffraction close to the focal plane. Further improvement of the formation of periodic structure with femtosecond laser pulses is suggested.
Preparation of γ-Al2O3 films by laser chemical vapor deposition
NASA Astrophysics Data System (ADS)
Gao, Ming; Ito, Akihiko; Goto, Takashi
2015-06-01
γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.
NASA Astrophysics Data System (ADS)
Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2016-03-01
NMC thick films were prepared by tape-casting and subsequent ultrafast laser-structuring. The lithium distribution in electrochemically cycled and unstructured or fs laser-structured NMC cathodes was investigated by using Laser-Induced Breakdown Spectroscopy (LIBS). The main goal is to develop an optimized three dimensional cell architecture with improved electrochemical properties based on studies of the homogeneity of the local State-of-Charge. LIBS experiments were carried out using a LIBS workstation equipped with a mode-locked diode pumped solid state Nd:YAG laser operating at a wavelength of 1063 nm. The element distribution was investigated using two different techniques: element mapping and element depth-profiling of the unstructured / fs laser-structured electrode surface. Results achieved from post-mortem studies using LIBS will be presented.
NASA Astrophysics Data System (ADS)
Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib
2017-07-01
This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.
Changes in type I collagen following laser welding.
Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R
1992-01-01
Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.
Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications
NASA Technical Reports Server (NTRS)
Palfrey, S. L.; Enstrom, R. E.; Longeway, P. A.
1989-01-01
A design for a monolithic narrow-linewidth InGaAsP diode laser has been developed using a multiple-quantum-well (MQW) extended-passive-cavity distributed-Bragg-reflector (DBR) laser design. Theoretical results indicate that this structure has the potential for a linewidth of 100 kHz or less. To realize this device, a number of the fabrication techniques required to integrate low-loss passive waveguides with active regions have been developed using a DBR laser structure. In addition, the MOCVD growth of InGaAs MQW laser structures has been developed, and threshold current densities as low as 1.6 kA/sq cm have been obtained from broad-stripe InGaAs/InGaAsP separate-confinement-heterostructure MQW lasers.
Front surface structured targets for enhancing laser-plasma interactions
NASA Astrophysics Data System (ADS)
Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass
2016-10-01
We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.
Direct femtosecond laser ablation of copper with an optical vortex beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anoop, K. K.; Rubano, A.; Marrucci, L.
Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with themore » laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.« less
NASA Astrophysics Data System (ADS)
Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen
2018-04-01
Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.
Fractal bimetallic plasmonic structures obtained by laser deposition of colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Bukharov, D. N.; Arakelyan, S. M.; Kutrovskaya, S. V.; Kucherik, A. O.; Osipov, A. V.; Istratov, A. V.; Vartanyan, T. A.; Itina, T. E.; Kavokin, A. V.
2017-09-01
We produce bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. After several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness and morphology. By changing laser scanning parameters, the film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness and spacing between the particles. The transmittance spectra of the deposited films are shown to be governed by their morphology.
Dissipative Structures At Laser-Solid Interactions
NASA Astrophysics Data System (ADS)
Nanai, Laszlo
1989-05-01
The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.
Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors
NASA Astrophysics Data System (ADS)
Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash
2018-02-01
We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.
Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon
NASA Astrophysics Data System (ADS)
Puerto, Daniel; Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2016-07-01
Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N eff) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.
Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon.
Puerto, Daniel; Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2016-07-01
Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N eff) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.
NASA Astrophysics Data System (ADS)
Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.
2018-05-01
Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.
Microfabricating 3D Structures by Laser Origami
2011-11-09
10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can
2015-09-17
Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness
Laser beam generating apparatus
Warner, Bruce E.; Duncan, David B.
1993-01-01
Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).
Laser beam generating apparatus
Warner, Bruce E.; Duncan, David B.
1994-01-01
Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).
Laser-induced fine structures on silicon exposed to THz-FEL
NASA Astrophysics Data System (ADS)
Irizawa, Akinori; Suga, Shigemasa; Nagashima, Takeshi; Higashiya, Atsushi; Hashida, Masaki; Sakabe, Shuji
2017-12-01
We found the irradiation of focused linearly polarized terahertz (THz)-waves emitted from THz free-electron laser (THz-FEL) engraved fine periodic stripe structures on the surfaces of single-crystal Si wafers. The experiments were performed at several wavelengths ranging from 50 to 82 μm with a macro-pulse fluence up to 32 J/cm2. The engraved structures are considered equivalent to the laser-induced periodic surface structures (LIPSS) produced by the irradiation of a femtosecond (fs)-pulsed laser in the near-infrared (NIR) region. However, the minimum period of ˜1/25 of the wavelength in the present case of THz-FEL is surely much smaller than those reported so far by use of fs-lasers and no more explicable by the so far proposed mechanisms. The finer LIPSS confirmed by longer-wavelength laser excitation by means of THz-FEL motivates investigation into the universal mechanism of LIPSS formation, which has been under a hot debate for decades.
NASA Astrophysics Data System (ADS)
Kortàn, J.; Nohavica, D.; Sarma, J.
1988-11-01
A description is given of the fabrication and of the main properties of 1.3-μm GaInAsP lasers with a ridge (rib) waveguide structure used for lateral confinement of transverse modes and of the current. Such lasers were made by the method of ion-beam etching and self-alignment photolithography. Narrow ridges (3-5 μm) formed in this way carried Ti-Au Schottky contacts. These lasers were simple to fabricate and their threshold currents were comparable with those in much more complex lasers with buried waveguide structures.
Hosokawa, Akihiro; Kato, Yoshiteru
2011-08-01
The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.
2015-05-01
A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.
Nanostructuring of sapphire using time-modulated nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.
2017-02-01
The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.
VizieR Online Data Catalog: 42 millisecond pulsars high-precision timing (Desvignes+, 2016)
NASA Astrophysics Data System (ADS)
Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Oslowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.
2017-02-01
This paper presents the EPTA data set, up to mid-2014, that was gathered from the 'historical' pulsar instrumentations at EFF, JBO, NRT and WSRT with, respectively, the EBPP (Effelsberg-Berkeley Pulsar Processor), DFB (Digital FilterBank), BON (Berkeley-Orleans-Nancay) and PuMa (Pulsar Machine) backends. The data recorded with the newest generation of instrumentations, e.g. PSRIX at EFF (Lazarus et al., 2016MNRAS.458..868L) and PuMaII at WSRT (Karuppusamy, Stappers & van Straten 2008PASP..120..191K), will be part of a future EPTA data release. (8 data files).
NASA Astrophysics Data System (ADS)
Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam
2015-09-01
The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
Laser beam generating apparatus
Warner, B.E.; Duncan, D.B.
1993-12-28
Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.
Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi
2018-06-12
Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.
Tensile behavior of laser treated Fe-Si-B metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman
2015-10-28
Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treatedmore » metallic glass foils.« less
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
NASA Astrophysics Data System (ADS)
Feldshtein, E.; Kardapolava, M.; Dyachenko, O.
2018-05-01
In the present paper, the bonding strength of Fe-based self-fluxing alloy coating deposited by plasma spraying, gluing and laser remelting and alloying on the steel substrate have been investigated. When flame melting, a globular structure is formed. Against the background of the solid solution carbide-boride phases are clearly distinguishable, between which the Fe-Fe2B and Fe-FeB eutectic colonies are situated. Laser remelting leads to the formation of metastable structures, reinforced with dendrites, consisting of alloyed Fe-α and Fe-γ. At the low laser beam speeds the coating is melted completely with the formation of a cast structure with the dendrites. When the laser beam speed is increased, the dendritic structure gets fragmented. Structures of coatings alloyed with B4C and remelted by the laser beam vary with the increase of the spot speed. The bonding strength of coating without subsequent remelting decreases by 4-5 times in comparison with remelted. The bonding strength of the reinforced glue coating has adhesive and adhesive-cohesive character. When the load increases in the coating, microcracks develop, which gradually spread to the center of the bonding surface. For plasma coatings after laser remelting without additional alloying, the maximum bonding strength is observed with the minimum laser beam speed. With increasing the laser beam speed it decreases almost 1.5 times. In glue coatings reinforced with B4C particulates by laser remelting, the bonding strength is lower by 1.2-1.4 times in comparison with plasma coating.
Argon dye photocoagulator for microsurgery of the interior structure of the eye
NASA Astrophysics Data System (ADS)
Wolinski, Wieslaw L.; Kazmirowski, Antoni; Kesik, Jerzy; Korobowicz, Witold; Spytkowski, Wojciech
1991-08-01
Argon-dye laser photocoagulator for the microsurgery of the interior structure of the eye is described. Some technical specifications like power stability shape of the spots and the dependence of the power on the tissue vs. wavelenght for dye laser are given. Argon-dye photocoagulator was designed and constructed including argon laser tube and dye laser in Institute of Microelectronics and Optoelectronics Technical University of Warsaw.
Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing
NASA Astrophysics Data System (ADS)
Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien
2003-11-01
Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.
Han, Weina; Liu, Furong; Yuan, Yanping; Li, Xiaowei; Wang, Qingsong; Wang, Shaojun; Jiang, Lan
2018-05-04
In this study, we report polarization-dependent concentric circular periodic surface structures on Si induced by a single shot femtosecond (fs) laser pulse based on pre-processed quasi-plasmonic annular-shaped nanostructure. An abnormal annular-shaped energy deposition of the fundamental fs laser pulse can be found by using dual-wavelength superposition of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of an fs Ti:sapphire laser, which is confirmed by real beam shape detection. Based on the annular-shaped energy distribution of dual-wavelength fs laser, a concentric quasi-plasmonic corral nanostructure can be imprinted on the Au thin film. Surface plasmon polaritons (SPPs) excitations on the planar metallic nanostructures enable the manipulation of light on subwavelength scales. Thus, the pre-processed concentric quasi-plasmonic corral nanostructure can act as a precursor for the subsequent SPPs excitation and propagation by the fs laser irradiation. Using this technique, polarization-dependent semi-circular periodic surface structures on silicon can be found by the irradiation of fs laser pulse with only one shot. This research provides an additional freedom for the laser induced periodic surface structure (LIPSS) modulation based on the modulation of SPPs excitation and propagation, which plays an important role in the formation of LIPSS.
NASA Astrophysics Data System (ADS)
Han, Weina; Liu, Furong; Yuan, Yanping; Li, Xiaowei; Wang, Qingsong; Wang, Shaojun; Jiang, Lan
2018-07-01
In this study, we report polarization-dependent concentric circular periodic surface structures on Si induced by a single shot femtosecond (fs) laser pulse based on pre-processed quasi-plasmonic annular-shaped nanostructure. An abnormal annular-shaped energy deposition of the fundamental fs laser pulse can be found by using dual-wavelength superposition of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of an fs Ti:sapphire laser, which is confirmed by real beam shape detection. Based on the annular-shaped energy distribution of dual-wavelength fs laser, a concentric quasi-plasmonic corral nanostructure can be imprinted on the Au thin film. Surface plasmon polaritons (SPPs) excitations on the planar metallic nanostructures enable the manipulation of light on subwavelength scales. Thus, the pre-processed concentric quasi-plasmonic corral nanostructure can act as a precursor for the subsequent SPPs excitation and propagation by the fs laser irradiation. Using this technique, polarization-dependent semi-circular periodic surface structures on silicon can be found by the irradiation of fs laser pulse with only one shot. This research provides an additional freedom for the laser induced periodic surface structure (LIPSS) modulation based on the modulation of SPPs excitation and propagation, which plays an important role in the formation of LIPSS.
Li, Xian-Feng; Zhang, Cheng-Yun; Li, Hui; Dai, Qiao-Feng; Lan, Sheng; Tie, Shao-Long
2014-11-17
Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 μm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.
Influence of femtosecond laser produced nanostructures on biofilm growth on steel
NASA Astrophysics Data System (ADS)
Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg
2017-10-01
Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.
Laser printed interconnects for flexible electronics
NASA Astrophysics Data System (ADS)
Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas
Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.
Microreplication of laser-fabricated surface and three-dimensional structures
NASA Astrophysics Data System (ADS)
Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.
2010-12-01
The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.