NASA Astrophysics Data System (ADS)
Boakye-Boateng, Nasir Abdulai
The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.
Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar
2017-09-01
Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Masaud, Tarek
Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.
Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard
For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases duringmore » inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.« less
Simulation for Grid Connected Wind Turbines with Fluctuating
NASA Astrophysics Data System (ADS)
Ye, Ying; Fu, Yang; Wei, Shurong
This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.
Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Rui; Huang, Zhenyu; Wang, Shaobu
2015-07-30
With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKFmore » method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.« less
NASA Astrophysics Data System (ADS)
Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji
Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.
NASA Astrophysics Data System (ADS)
Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.
2016-08-01
With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.
Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...
2016-01-01
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
NASA Astrophysics Data System (ADS)
Swain, Snehaprava; Ray, Pravat Kumar
2016-12-01
In this paper a three phase fault analysis is done on a DFIG based grid integrated wind energy system. A Novel Active Crowbar Protection (NACB_P) system is proposed to enhance the Fault-ride through (FRT) capability of DFIG both for symmetrical as well as unsymmetrical grid faults. Hence improves the power quality of the system. The protection scheme proposed here is designed with a capacitor in series with the resistor unlike the conventional Crowbar (CB) having only resistors. The major function of the capacitor in the protection circuit is to eliminate the ripples generated in the rotor current and to protect the converter as well as the DC-link capacitor. It also compensates reactive power required by the DFIG during fault. Due to these advantages the proposed scheme enhances the FRT capability of the DFIG and also improves the power quality of the whole system. Experimentally the fault analysis is done on a 3hp slip ring induction generator and simulation results are carried out on a 1.7 MVA DFIG based WECS under different types of grid faults in MATLAB/Simulation and functionality of the proposed scheme is verified.
Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard
Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a largermore » reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.« less
NASA Astrophysics Data System (ADS)
Abderrahim, Iheb
Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.
Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Park, Jung-Wook
This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allowsmore » DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.« less
Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baohua; Hu, Weihao; Hou, Peng
This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less
Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm
Zhang, Baohua; Hu, Weihao; Hou, Peng; ...
2017-06-27
This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less
Energy optimization for a wind DFIG with flywheel energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com
2016-07-25
The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less
Doubly fed induction generator wind turbines with fuzzy controller: a survey.
Sathiyanarayanan, J S; Kumar, A Senthil
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.
Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey
Sathiyanarayanan, J. S.; Senthil Kumar, A.
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usman, Yasir; Kim, Jinho; Muljadi, Eduard
Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less
NASA Astrophysics Data System (ADS)
Cai, Guowei; Liu, Cheng; Yang, Deyou
2013-11-01
The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.
A new adjustable gains for second order sliding mode control of saturated DFIG-based wind turbine
NASA Astrophysics Data System (ADS)
Bounadja, E.; Djahbar, A.; Taleb, R.; Boudjema, Z.
2017-02-01
The control of Doubly-Fed induction generator (DFIG), used in wind energy conversion, has been given a great deal of interest. Frequently, this control has been dealt with ignoring the magnetic saturation effect in the DFIG model. The aim of the present work is twofold: firstly, the magnetic saturation effect is accounted in the control design model; secondly, a new second order sliding mode control scheme using adjustable-gains (AG-SOSMC) is proposed to control the DFIG via its rotor side converter. This scheme allows the independent control of the generated active and reactive power. Conventionally, the second order sliding mode control (SOSMC) applied to the DFIG, utilize the super-twisting algorithm with fixed gains. In the proposed AG-SOSMC, a simple means by which the controller can adjust its behavior is used. For that, a linear function is used to represent the variation in gain as a function of the absolute value of the discrepancy between the reference rotor current and its measured value. The transient DFIG speed response using the aforementioned characteristic is compared with the one determined by using the conventional SOSMC controller with fixed gains. Simulation results show, accurate dynamic performances, quicker transient response and more accurate control are achieved for different operating conditions.
Yang, Dejian; Kang, Moses; Muljadi, Eduard; ...
2017-11-14
This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dejian; Kang, Moses; Muljadi, Eduard
This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less
NASA Astrophysics Data System (ADS)
Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.
A DFIG Islanding Detection Scheme Based on Reactive Power Infusion
NASA Astrophysics Data System (ADS)
Wang, M.; Liu, C.; He, G. Q.; Li, G. H.; Feng, K. H.; Sun, W. W.
2017-07-01
A lot of research has been done on photovoltaic (the “PV”) power system islanding detection in recent years. As a comparison, much less attention has been paid to islanding in wind turbines. Meanwhile, wind turbines can work in islanding conditions for quite a long period, which can be harmful to equipments and cause safety hazards. This paper presents and examines a double fed introduction generation (the “DFIG”) islanding detection scheme based on feedback of reactive power and frequency and uses a trigger signal of reactive power infusion which can be obtained by dividing the voltage total harmonic distortion (the "THD") by the voltage THD of last cycle to avoid the deterioration of power quality. This DFIG islanding detection scheme uses feedback of reactive power current loop to amplify the frequency differences in islanding and normal conditions. Simulation results show that the DFIG islanding detection scheme is effective.
Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Park, Jung-Wook
2016-07-01
If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain basedmore » on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.« less
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2012-01-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2011-12-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Stability analysis of offshore wind farm and marine current farm
NASA Astrophysics Data System (ADS)
Shawon, Mohammad Hasanuzzaman
Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new-trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.
Adaptive Gain-based Stable Power Smoothing of a DFIG
Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...
2017-11-01
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Adaptive Gain-based Stable Power Smoothing of a DFIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Lee, Hyewon; Hwang, Min
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Transient stability enhancement of wind farms using power electronics and facts controllers
NASA Astrophysics Data System (ADS)
Mohammadpour, Hossein Ali
Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time. Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the network, and the frequency of the exchanged energy is below the fundamental frequency of the system. This phenomenon may cause severe damage in the wind farm, if not prevented. Therefore, this dissertation deals with the SSR phenomena in a capacitive series compensated wind farm. A DFIG-based wind farm, which is connected to a series compensated transmission line, is considered as a case study. The small-signal stability analysis of the system is presented, and the eigenvalues of the system are obtained. Using both modal analysis and time-domain simulation, it is shown that the system is potentially unstable due to the SSR mode. Then, three different possibilities for the addition of SSR damping controller (SSRDC) are investigated. The SSRDC can be added to (1) gate-controlled series capacitor (GCSC), (2) thyristor-controlled series capacitor (TCSC), or (3) DFIG rotor-side converter (RSC) and grid-side converter (GSC) controllers. The first and second cases are related to the series flexible AC transmission systems (FACTS) family, and the third case uses the DFIG back-to-back converters to damp the SSR. The SSRDC is designed using residue-based analysis and root locus diagrams. Using residue-based analysis, the optimal input control signal (ICS) to the SSRDC is identified that can damp the SSR mode without destabilizing other modes, and using root-locus analysis, the required gain for the SSRDC is determined. Moreover, two methods are discussed in order to estimate the optimum input signal to the SSRDC, without measuring it directly. In this dissertation, MATLAB/Simulink is used as a tool for modeling and design of the SSRDC, and PSCAD/EMTDC is used to perform time-domain simulation in order to verify the design process.
Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol
Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims tomore » improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.« less
Manonmani, N.; Subbiah, V.; Sivakumar, L.
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation. PMID:26516636
Manonmani, N; Subbiah, V; Sivakumar, L
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.
NASA Astrophysics Data System (ADS)
Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio
2017-11-01
Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.
Torsional vibration characteristic study of the grid-connected DFIG wind turbine
NASA Astrophysics Data System (ADS)
Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong
2017-01-01
This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.
Implementation and comparative study of control strategies for an isolated DFIG based WECS
NASA Astrophysics Data System (ADS)
Bouchiba, Nouha; Barkia, Asma; Sallem, Souhir; Chrifi-Alaoui, Larbi; Drid, Saïd; Kammoun, M. B. A.
2017-10-01
Nowadays, a global interest for renewable energy sources has been growing intensely. In particular, a wind energy has become the most popular. In case of autonomous systems, wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is widely used. In this paper, in order to control the stand-alone system outputs under wind speed and load variations, three kinds of nonlinear control strategies have been proposed, applied and compared, such as: Classical PI controller, Back-Stepping and Sliding Mode controllers. A series of experiments have been conducted to evaluate and to compare the developed controllers' dynamic performances under load demand and speed variations. The design and the implementation of different control strategies to a 1.5kW doubly fed induction machine is carried out using a dSpace DS1104 card based on MATLAB/Simulink environment. Experimental results are presented to show the validity of the implemented controllers and demonstrate the effectiveness of each controller compared with others.
Flexible $$I_{Q}\\!\\!-\\!\\!V$$ Scheme of a DFIG for Rapid Voltage Regulation of a Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Park, Jung -Wook
This paper proposes a flexible reactive current-to-voltage (I Q-V) scheme of a doubly-fed induction generator (DFIG) for the rapid voltage regulation of a wind power plant (WPP). In the proposed scheme, the WPP controller dispatches different voltage set points to the DFIGs depending on their rotor voltage margins. The DFIGs inject different reactive power with the flexible I Q-V schemes implemented in the rotor-side and grid-side converters. The I Q-V characteristic, which consists of the gain and width of a linear band and I Q capability, varies with time depending on the I Q capability of the converters and amore » voltage dip at the point of interconnection (POI). To increase the I Q capability during a fault, the active current is reduced in proportion to a voltage dip. If the I Q capability and/or the POI voltage dip are large, the I Q-V gain is set to be high, thereby providing rapid voltage regulation. To avoid an overvoltage after the fault clearance, a rapid I Q reduction scheme is implemented in the WPP and DFIG controllers. The performance of the proposed flexible scheme was verified under scenarios with various disturbances. In conclusion, the proposed scheme can help increase wind power penetration without jeopardizing voltage stability.« less
Flexible $$I_{Q}\\!\\!-\\!\\!V$$ Scheme of a DFIG for Rapid Voltage Regulation of a Wind Power Plant
Kim, Jinho; Muljadi, Eduard; Park, Jung -Wook; ...
2017-04-28
This paper proposes a flexible reactive current-to-voltage (I Q-V) scheme of a doubly-fed induction generator (DFIG) for the rapid voltage regulation of a wind power plant (WPP). In the proposed scheme, the WPP controller dispatches different voltage set points to the DFIGs depending on their rotor voltage margins. The DFIGs inject different reactive power with the flexible I Q-V schemes implemented in the rotor-side and grid-side converters. The I Q-V characteristic, which consists of the gain and width of a linear band and I Q capability, varies with time depending on the I Q capability of the converters and amore » voltage dip at the point of interconnection (POI). To increase the I Q capability during a fault, the active current is reduced in proportion to a voltage dip. If the I Q capability and/or the POI voltage dip are large, the I Q-V gain is set to be high, thereby providing rapid voltage regulation. To avoid an overvoltage after the fault clearance, a rapid I Q reduction scheme is implemented in the WPP and DFIG controllers. The performance of the proposed flexible scheme was verified under scenarios with various disturbances. In conclusion, the proposed scheme can help increase wind power penetration without jeopardizing voltage stability.« less
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Jang, Gilsoo
This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less
Ebrahimkhani, Sadegh
2016-07-01
Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
NASA Astrophysics Data System (ADS)
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.
Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen
2016-08-01
This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines
NASA Astrophysics Data System (ADS)
Khazdozian, Helena; Hadimani, Ravi; Jiles, David
2015-03-01
Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.
Optimal tracking and second order sliding power control of the DFIG wind turbine
NASA Astrophysics Data System (ADS)
Abdeddaim, S.; Betka, A.; Charrouf, O.
2017-02-01
In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).
Gayen, P K; Chatterjee, D; Goswami, S K
2016-05-01
In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter
NASA Astrophysics Data System (ADS)
Ahmed, Eshita
The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.
Energy Systems Integration News | Energy Systems Integration Facility |
Control of Power Electronics in AC Systems and Microgrids. These courses will be part of a Professional Master's Program in Power Electronics offered through the university. Get more information on the program Scheme for the Voltage Control of a DFIG-Based Wind Power Plant, IEEE Transactions on Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
2017-11-13
A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less
Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Shahab, Azin
In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.
Ananth, D V N; Nagesh Kumar, G V
2016-05-01
With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System
NASA Astrophysics Data System (ADS)
Yue, Liu; Hang, Mend
2018-01-01
With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.
Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid
2013-09-01
electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is
An FPGA Testbed for Characterizing and Mapping DOD Applications
2017-12-27
series expansion helps to linearize pitch control design for wind turbine using linear quadratic regulator (LQR) [15]. In multi-static radar system...A. Mahmud, M. A. Chowdhury, and J. Zhang, “Stability enhancement of dfig wind turbine using lqr pitch control over rated wind speed,” in 2016 IEEE...the problem of meeting payload design specifications is exacerbated by the need to identify manufacturers with interfaces that match the sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Moses; Kim, Keonhui; Muljadi, Eduard
This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dipmore » (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference.« less
Neural network based control of Doubly Fed Induction Generator in wind power generation
NASA Astrophysics Data System (ADS)
Barbade, Swati A.; Kasliwal, Prabha
2012-07-01
To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.
Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid
NASA Astrophysics Data System (ADS)
Nair S, Gayathri; Senroy, Nilanjan
2016-02-01
Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.
Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John
2016-09-01
This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Micro grid control strategy of DFIG unit based on improved DC grid connected topology
NASA Astrophysics Data System (ADS)
Zongze, Xia; Fei, Xia; Zhixiong, Yang
2017-05-01
Aiming to the application of the DFIG connected to DC-Microgrids, an improved topology for the DFIG connected to DC-Microgrids is taken into account in this thesis. The stator side loses the support of voltage and frequency of AC point of common coupling bus. A novel control method suitable to the stator side converter (SSC) and the rotor side converter (RSC) of the topology is proposed. The independent control of stator voltage and frequency, the decoupled control of power and variable speed constant frequency of DFIG are achieved in the doubly-fed induction generator connected to DC-Microgrids. which can enhance the capacity of active power transmission of DFIG during the voltage variation.
Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé
2014-05-01
This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, Morgan Mozhgan
Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated. Field reconstruction method provides high precision results at a considerably faster pace as compared to finite element method. Our results indicate that by just-in-time detection of the system unbalance and employment of the optimal rotor currents damaging torque pulsation can be effectively eliminated. The side effects of the proposed method in changing the core, copper, and silicon losses are minor and well justified when reliability of the wind generation units are considered.
NASA Astrophysics Data System (ADS)
Ma, J.; Liu, Q.
2018-02-01
This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.
Smart pitch control strategy for wind generation system using doubly fed induction generator
NASA Astrophysics Data System (ADS)
Raza, Syed Ahmed
A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.
Chen, Quan; Li, Yaoyu; Seem, John E
2015-09-01
This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan
2018-01-01
The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.
A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG
NASA Astrophysics Data System (ADS)
Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting
2018-02-01
A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.
NASA Astrophysics Data System (ADS)
Liu, Yifang; Wang, Zhijie; Li, Renfu; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu; Liu, Sanming
2017-05-01
When the grid voltage drop, over current of transient rotor and over voltage may damage the power electronic devices. The attenuation of electromagnetic torque will lead to speed up. This paper proposes an improved feed-forward control strategy and its application in the PWM converter. When the PWM converter on voltage drops, bus voltage will be more stable. So over current problems of the DFIG rotor side can be reduced, and it also can improve voltage regulation speed of the DC bus voltage and reduce the oscillation amplitude. Furthermore, the stability of doubly fed wind generator system can be improved. The simulation results verify the validity of the modified control strategy.
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
NASA Astrophysics Data System (ADS)
Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao
2015-07-01
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).
One decade of the Data Fusion Information Group (DFIG) model
NASA Astrophysics Data System (ADS)
Blasch, Erik
2015-05-01
The revision of the Joint Directors of the Laboratories (JDL) Information Fusion model in 2004 discussed information processing, incorporated the analyst, and was coined the Data Fusion Information Group (DFIG) model. Since that time, developments in information technology (e.g., cloud computing, applications, and multimedia) have altered the role of the analyst. Data production has outpaced the analyst; however the analyst still has the role of data refinement and information reporting. In this paper, we highlight three examples being addressed by the DFIG model. One example is the role of the analyst to provide semantic queries (through an ontology) so that vast amount of data available can be indexed, accessed, retrieved, and processed. The second idea is reporting which requires the analyst to collect the data into a condensed and meaningful form through information management. The last example is the interpretation of the resolved information from data that must include contextual information not inherent in the data itself. Through a literature review, the DFIG developments in the last decade demonstrate the usability of the DFIG model to bring together the user (analyst or operator) and the machine (information fusion or manager) in a systems design.
Kushimura, Yukie; Azuma, Yumiko; Mizuta, Ikuko; Muraoka, Yuuka; Kyotani, Akane; Yoshida, Hideki; Tokuda, Takahiko; Mizuno, Toshiki; Yamaguchi, Masamitsu
2018-05-08
Charcot-Marie-Tooth disease (CMT) is the most common hereditary neuropathy, and more than 80 CMT-causing genes have been identified to date. CMT4J is caused by a loss-of-function mutation in the Factor-Induced-Gene 4 (FIG4) gene, the product of which plays important roles in endosome-lysosome homeostasis. We hypothesized that Mammalian sterile 20-like kinase (MST) 1 and 2, tumor-suppressor genes, are candidate modifiers of CMT4J. We therefore examined the interaction between dFIG4 and Hippo (hpo), Drosophila counterparts of FIG4 and MSTs, respectively, using the Drosophila CMT4J model with the knockdown of dFIG4. The loss-of-function allele of hpo improved the rough eye morphology, locomotive dysfunction accompanied by structural defects in the presynaptic terminals of motoneurons, and the enlargement of lysosomes caused by the knockdown of dFIG4. Therefore, we identified hpo as a modifier of phenotypes induced by the knockdown of dFIG4. These results in Drosophila may provide an insight into the pathogenesis of CMT4J and contribute toward the development of disease-modifying therapy for CMT. We also identified the regulation of endosome-lysosome homeostasis as a novel probable function of Hippo/MST.
NASA Astrophysics Data System (ADS)
Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.
2017-08-01
This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.
FDI based on Artificial Neural Network for Low-Voltage-Ride-Through in DFIG-based Wind Turbine.
Adouni, Amel; Chariag, Dhia; Diallo, Demba; Ben Hamed, Mouna; Sbita, Lassaâd
2016-09-01
As per modern electrical grid rules, Wind Turbine needs to operate continually even in presence severe grid faults as Low Voltage Ride Through (LVRT). Hence, a new LVRT Fault Detection and Identification (FDI) procedure has been developed to take the appropriate decision in order to develop the convenient control strategy. To obtain much better decision and enhanced FDI during grid fault, the proposed procedure is based on voltage indicators analysis using a new Artificial Neural Network architecture (ANN). In fact, two features are extracted (the amplitude and the angle phase). It is divided into two steps. The first is fault indicators generation and the second is indicators analysis for fault diagnosis. The first step is composed of six ANNs which are dedicated to describe the three phases of the grid (three amplitudes and three angle phases). Regarding to the second step, it is composed of a single ANN which analysis the indicators and generates a decision signal that describes the function mode (healthy or faulty). On other hand, the decision signal identifies the fault type. It allows distinguishing between the four faulty types. The diagnosis procedure is tested in simulation and experimental prototype. The obtained results confirm and approve its efficiency, rapidity, robustness and immunity to the noise and unknown inputs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Etude et simulation de la MADA
NASA Astrophysics Data System (ADS)
Defontaines, Remi
Over the past ten years, the production of electric energy using wind turbines has increased eight times. This production of energy is in full expansion, and different means are now at the dispositions of researchers to finally explore it to the maximum. The DFIG is a type of wind turbine that has been the object of numerous studies over the past several years. This wind turbine functions with the speed of the wind. Its principle particularity is that it is constituted of an asynchronous machine, a wound-rotor and is capable of providing active power to the network by the stator and the rotor. This structure permits a good performance over a wide range of wind speeds, at a reasonable cost. It manages to be cost-effective because it uses weakly dimensioned power converters. Despite its advantages, there is a problem: its connection to the network. The electric network is not always stable; it regularly suffers voltage damage (low voltage, unbalance or overvoltage). This damage can result in fault from poor quality in the machine, and this damages or even destroys the power converters. To avoid this issue, the wind turbine disconnects from the network when it undergoes deterioration. The goal of this research is to find a strategy that allows the wind turbine to function even when the network voltage deteriorates, which in turn results in avoiding disconnection and therefore the loss of electrical power.
Reactive power planning under high penetration of wind energy using Benders decomposition
Xu, Yan; Wei, Yanli; Fang, Xin; ...
2015-11-05
This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less
Harmonic analysis and suppression in hybrid wind & PV solar system
NASA Astrophysics Data System (ADS)
Gupta, Tripti; Namekar, Swapnil
2018-04-01
The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.
Optimal control for wind turbine system via state-space method
NASA Astrophysics Data System (ADS)
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on using type 1 servo system that depends on the full state feedback variables and tracking error. The LQR improves the transient stability and time response of the wind turbine system in all three-disturbance scenarios. The results of both methods are deeply explained in the simulation section.
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.
Integration of permanent magnet synchronous generator wind turbines into power grid
NASA Astrophysics Data System (ADS)
Abedini, Asghar
The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.
NASA Astrophysics Data System (ADS)
Yousefian, Reza
This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.
Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple
NASA Astrophysics Data System (ADS)
Fei, Xia; Yang, Zhixiong; Zongze, Xia
2017-05-01
Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.
Lidar-based Research and Innovation at DTU Wind Energy - a Review
NASA Astrophysics Data System (ADS)
Mikkelsen, T.
2014-06-01
As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.
2015-08-14
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind... Register on February 18, 2011, announcing the availability for public comment of draft Land-Based Wind... Guidelines are intended to supersede the Service's 2003 voluntary, interim guidelines for land-based wind...
Evaluation model of wind energy resources and utilization efficiency of wind farm
NASA Astrophysics Data System (ADS)
Ma, Jie
2018-04-01
Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.
2014 Distributed Wind Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orell, A.; Foster, N.
2015-08-01
The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted formore » nearly 80% of United States-based manufacturers' sales.« less
77 FR 19683 - Proposed Information Collection; Land-Based Wind Energy Guidelines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
...-FF09F20000] Proposed Information Collection; Land-Based Wind Energy Guidelines AGENCY: Fish and Wildlife..., on an emergency basis, our request to collect information associated with the Land- Based Wind Energy... proposed wind energy facilities may have on wildlife and their habitat. OMB approved our request and...
Magneto-thermal Disk Winds from Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng
2016-02-01
The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.
NASA Astrophysics Data System (ADS)
Bieniek, Andrzej
2017-10-01
The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.
Security region-based small signal stability analysis of power systems with FSIG based wind farm
NASA Astrophysics Data System (ADS)
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Satellite SAR applied in offhore wind resource mapping: possibilities and limitations
NASA Astrophysics Data System (ADS)
Hasager, C. B.
Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations is presented. The study is based on a series of more than 60 ERS-2 SAR satellite scenes from the Horns Rev in the North Sea. The wind climate from the coastline and 80 km offshore is mapped in detail with a resolution of 400 m by 400 m grid cells. Spatial variations in wind speed as a function of wind direction and fetch are observed and discussed. The satellite wind fields are compared to in-situ observations from a tall offshore meteorological mast at which wind speed at 4 levels are analysed. The mast is located 14 km offshore and the wind climate is observed continously since May 1999. For offshore wind resource mapping the SAR-based wind field maps can constitute an alternative to in-situ observations and a practical method is developed for applied use in WAsP (Wind Atlas Analysis and Application Program). The software is the de facto world standard tool used for prediction of wind climate and power production from wind turbines and wind farms. The possibilities and limitations on achieving offshore wind resource estimates using SAR-based wind fields in lieu of in-situ data are discussed. It includes a presentation of the footprint area-averaging techniques tailored for SAR-based wind field maps. Averaging techniques are relevant for the reduction of noise apparent in SAR wind speed maps. Acknowledgments: Danish Research Agency (SAT-WIND Sagsnr. 2058-03-0006) for funding, ESA (EO-1356, AO-153) for ERS-2 SAR scenes, and Elsam Engineering A/S for in-situ met-data.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
..., wildlife and their habitats resulting from construction, operation and maintenance of land-based, wind... these draft Guidelines for all wind turbines, including community scale operations. All comments we...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Bri-Mathias
2016-04-08
The primary objective of this work was to create a state-of-the-art national wind resource data set and to provide detailed wind plant output data for specific sites based on that data set. Corresponding retrospective wind forecasts were also included at all selected locations. The combined information from these activities was used to create the Wind Integration National Dataset (WIND), and an extraction tool was developed to allow web-based data access.
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boissonnade, A; Hossain, Q; Kimball, J
Since the mid-l980's, assessment of the wind and tornado risks at the Department of Energy (DOE) high and moderate hazard facilities has been based on the straight wind/tornado hazard curves given in UCRL-53526 (Coats, 1985). These curves were developed using a methodology that utilized a model, developed by McDonald, for severe winds at sub-tornado wind speeds and a separate model, developed by Fujita, for tornado wind speeds. For DOE sites not covered in UCRL-53526, wind and tornado hazard assessments are based on the criteria outlined in DOE-STD-1023-95 (DOE, 1996), utilizing the methodology in UCRL-53526; Subsequent to the publication of UCRL53526,more » in a study sponsored by the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory developed tornado wind hazard curves for the contiguous United States, NUREG/CR-4461 (Ramsdell, 1986). Because of the different modeling assumptions and underlying data used to develop the tornado wind information, the wind speeds at specified exceedance levels, at a given location, based on the methodology in UCRL-53526, are different than those based on the methodology in NUREG/CR-4461. In 1997, Lawrence Livermore National Laboratory (LLNL) was funded by the DOE to review the current methodologies for characterizing tornado wind hazards and to develop a state-of-the-art wind/tornado characterization methodology based on probabilistic hazard assessment techniques and current historical wind data. This report describes the process of developing the methodology and the database of relevant tornado information needed to implement the methodology. It also presents the tornado wind hazard curves obtained from the application of the method to DOE sites throughout the contiguous United States.« less
Research on the winding losses based on finite element method for transformer
NASA Astrophysics Data System (ADS)
Li, Wenpeng; Lai, Wenqing; Ye, Ligang; Luo, Hanwu; Luo, Changjiang; Cui, Shigang; Wang, Yongqiang
2018-04-01
Transformer loss can cause the transformer to overheat. Under the action of high frequency current, the loss of transformer windings will be aggravated due to proximity effect and skin effect. In this paper, a three-dimensional model of high frequency transformer windings is established. Considering of the proximity effect and skin effect, the eddy current effects loss in the transformer windings are simulated based on finite element method. And the winding losses of the transformer windings are obtained under different arrangements. The influence of the winding layout on the winding losses is given. Finally, the trend of winding loss with current frequency, winding thickness and inter layer spacing is obtained through calculation. The winding loss initially decreases as the thickness of the winding increases, but when it reaches a certain level, this reduction becomes insignificant.
NASA Technical Reports Server (NTRS)
Romere, Paul O.; Brown, Steve Wesley
1995-01-01
Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
Wavelet analysis for wind fields estimation.
Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Draxl, Caroline; Hopson, Thomas
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less
Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Skillman, W. C.
1979-01-01
A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.
NASA Astrophysics Data System (ADS)
Archer, Cristina; Ghaisas, Niranjan
2015-04-01
The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.
Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction
NASA Astrophysics Data System (ADS)
Lindhorst, S.; Betzler, C.
2017-12-01
The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.
Analysis of economic benefit of wind power based on system dynamics
NASA Astrophysics Data System (ADS)
Zhao, Weibo; Han, Yaru; Niu, Dongxiao
2018-04-01
The scale of renewable power generation, such as wind power, has increased gradually in recent years. Considering that the economic benefits of wind farms are affected by many dynamic factors. The dynamic simulation model of wind power economic benefit system is established based on the system dynamics method. By comparing the economic benefits of wind farms under different setting scenarios through this model, the impact of different factors on the economic benefits of wind farms can be reflected.
A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie
Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
An Evaluation of Wind Turbine Technology at Peterson Air Force Base
2005-03-01
by the wind speed. Darrieus turbines are ordinarily inexpensive and are used for electricity generation and irrigation. One advantage to a...AN EVALUATION OF WIND TURBINE TECHNOLOGY...02 AN EVALUATION OF WIND TURBINE TECHNOLOGY AT PETERSON AIR FORCE BASE THESIS Presented to the Faculty Department of
Land-Based Wind Research | Wind | NREL
blades. Technology Research Validation and Certification NREL engineers provide wind industry blades stacked on their sides in a large parking lot ready for shipment. Manufacturing and Supply Chain safety vests and hardhats standing near a land-based wind turbine shaft with its blades on the ground in
Lessons learned from Ontario wind energy disputes
NASA Astrophysics Data System (ADS)
Fast, Stewart; Mabee, Warren; Baxter, Jamie; Christidis, Tanya; Driver, Liz; Hill, Stephen; McMurtry, J. J.; Tomkow, Melody
2016-02-01
Issues concerning the social acceptance of wind energy are major challenges for policy-makers, communities and wind developers. They also impact the legitimacy of societal decisions to pursue wind energy. Here we set out to identify and assess the factors that lead to wind energy disputes in Ontario, Canada, a region of the world that has experienced a rapid increase in the development of wind energy. Based on our expertise as a group comprising social scientists, a community representative and a wind industry advocate engaged in the Ontario wind energy situation, we explore and suggest recommendations based on four key factors: socially mediated health concerns, the distribution of financial benefits, lack of meaningful engagement and failure to treat landscape concerns seriously. Ontario's recent change from a feed-in-tariff-based renewable electricity procurement process to a competitive bid process, albeit with more attention to community engagement, will only partially address these concerns.
Wavelet Analysis for Wind Fields Estimation
Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699
NASA Astrophysics Data System (ADS)
Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman
2015-02-01
Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.
NASA Technical Reports Server (NTRS)
Bateman, Don
1991-01-01
Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.
1999-02-20
958.88 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 3008.96 BASE= 958.88 SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE... SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE (DEGREES) 1.0344 MET. WIND WIND LAYER WIND SPEED WIND DIRECTION SIGMA OF SIGMA OF NO
A summary of wind power prediction methods
NASA Astrophysics Data System (ADS)
Wang, Yuqi
2018-06-01
The deterministic prediction of wind power, the probability prediction and the prediction of wind power ramp events are introduced in this paper. Deterministic prediction includes the prediction of statistical learning based on histor ical data and the prediction of physical models based on NWP data. Due to the great impact of wind power ramp events on the power system, this paper also introduces the prediction of wind power ramp events. At last, the evaluation indicators of all kinds of prediction are given. The prediction of wind power can be a good solution to the adverse effects of wind power on the power system due to the abrupt, intermittent and undulation of wind power.
NASA Astrophysics Data System (ADS)
Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.
2015-04-01
The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... resulting from construction, operation, and maintenance of land-based wind energy facilities. DATES: These...) established the Wind Turbine Guidelines Advisory Committee (Committee) under the Federal Advisory Committee... concern over certain issues such as the effects of wind turbine noise on wildlife, these issues have not...
SASS measurements of the Ku-band radar signature of the ocean
NASA Technical Reports Server (NTRS)
Schroeder, L. C.; Grantham, W. L.; Mitchell, J. L.; Sweet, J. L.
1982-01-01
SeaSat-A Satellite Scatterometer (SASS) measurements of normalized radar cross section (NRCS) have been merged with high quality surface-wind fields based on in situ, to create a large data base of NRCS-wind signature data. These data are compared to the existing NRCS-wind model used by the SASS to infer winds. Falso-color maps of SASS NRCS and ocean winds from multiple orbits show important synoptic trends.
LOKI WIND CORRECTION COMPUTER AND WIND STUDIES FOR LOKI
which relates burnout deviation of flight path with the distributed wind along the boost trajectory. The wind influence function was applied to...electrical outputs. A complete wind correction computer system based on the influence function and the results of wind studies was designed.
SeaWinds Global Coverage with Detail of Hurricane Floyd
2000-05-07
The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.
Wind Resource Assessment | Wind | NREL
Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can
Research on large-scale wind farm modeling
NASA Astrophysics Data System (ADS)
Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng
2017-01-01
Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2542-000] Prairie Rose Wind, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... Rose Wind, LLC's application for market-based rate authority, with an accompanying rate schedule...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2461-000] Pheasant Run Wind, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... Run Wind, LLC's application for market-based rate authority, with an accompanying rate schedule...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1725-000] Hardscrabble Wind Power LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Hardscrabble Wind Power LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... Wind Power, LLC's application for market-based rate authority, with an accompanying rate schedule... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-17-000] Niagara Wind Power, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Qiao
2012-05-29
The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less
Wind for Schools: A Wind Powering America Project
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
NASA Astrophysics Data System (ADS)
Mittelmeier, N.; Blodau, T.; Steinfeld, G.; Rott, A.; Kühn, M.
2016-09-01
Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated statistical signals based on multiple measurement devices. The significance of these new signals on power production is demonstrated for two wind farms with met masts and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load.
Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst
2016-05-01
Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
The wind power prediction research based on mind evolutionary algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Base drag prediction on missile configurations
NASA Technical Reports Server (NTRS)
Moore, F. G.; Hymer, T.; Wilcox, F.
1993-01-01
New wind tunnel data have been taken, and a new empirical model has been developed for predicting base drag on missile configurations. The new wind tunnel data were taken at NASA-Langley in the Unitary Wind Tunnel at Mach numbers from 2.0 to 4.5, angles of attack to 16 deg, fin control deflections up to 20 deg, fin thickness/chord of 0.05 to 0.15, and fin locations from 'flush with the base' to two chord-lengths upstream of the base. The empirical model uses these data along with previous wind tunnel data, estimating base drag as a function of all these variables as well as boat-tail and power-on/power-off effects. The new model yields improved accuracy, compared to wind tunnel data. The new model also is more robust due to inclusion of additional variables. On the other hand, additional wind tunnel data are needed to validate or modify the current empirical model in areas where data are not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less
Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.
Suomi, Irene; Vihma, Timo
2018-04-23
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.
Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities
2018-01-01
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided. PMID:29690647
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
Jason M. Forthofer; Bret W. Butler; Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw; Richard D. Stratton; Kyle S. Shannon; Natalie S. Wagenbrenner
2014-01-01
The effect of fine-resolution wind simulations on fire growth simulations is explored. The wind models are (1) a wind field consisting of constant speed and direction applied everywhere over the area of interest; (2) a tool based on the solution of the conservation of mass only (termed mass-conserving model) and (3) a tool based on a solution of conservation of mass...
A method for data base management and analysis for wind tunnel data
NASA Technical Reports Server (NTRS)
Biser, Aileen O.
1987-01-01
To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.
Airborne Wind Profiling Algorithm for Doppler Wind LIDAR
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)
2015-01-01
Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1885-000] Oregon Trail Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Oregon Trail Wind Park, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2904-000] Settlers Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Settlers Trail Wind Farm, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2905-000] Pioneer Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Trail Wind Farm, LLC's application for market-based rate authority, with an accompanying rate tariff...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... Wind Farm, LLC's application for market-based rate authority, with an accompanying rate schedule... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-18-000] Big Blue Wind Farm, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... proceeding of Flat Water Wind Farm, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-39-000] Flat Water Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1184-000] Blackstone Wind Farm II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Blackstone Wind Farm, LLCs application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3391-000] Dempsey Ridge Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Ridge Wind Farm, LLC's application for market-based rate authority, with an accompanying rate tariff...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-421-000] Heritage Garden Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Heritage Garden Wind Farm I, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2108-000] Heritage Stoney Corners Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...-referenced proceeding, of Heritage Stoney Corners Wind Farm I, LLC's application for market- based rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Wind Farm II LLC's application for market-based rate authority, with an accompanying rate tariff... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2935-000] Paulding Wind Farm II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2112-000] Blue Creek Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding, of Blue Creek Wind Farm, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1673-000] Synergics Roth Rock North Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...-referenced proceeding of Synergics Roth Rock North Wind Energy, LLC's application for market- based rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1637-000] Synergics Roth Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...-referenced proceeding of Synergics Roth Rock Wind Energy, LLC's application for market-based rate authority...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3959-000] Post Rock Wind Power Project, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Rock Wind Power Project, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-24
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-70-000] Texas Dispatchable Wind 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Texas Dispatchable Wind 1 LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-956-000] Vantage Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Vantage Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1829-000] Shooting Star Wind Project, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Shooting Star Wind Project, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2765-000] Elk Wind Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Elk Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2313-000] Laurel Hill Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For... Laurel Hill Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-645-000] California Ridge Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... California Ridge Wind Energy LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2200-000] Mehoopany Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2657-000] Milford Wind Corridor Phase II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding Milford Wind Corridor Phase II, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1883-000] Milner Dam Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Milner Dam Wind Park, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1887-000] Thousand Springs Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Thousand Springs Wind Park, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1894-000] Yahoo Creek Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Yahoo Creek Wind Park, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2462-000] Pheasant Run Wind II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Run Wind II, LLC's application for market-based rate authority, with an accompanying rate schedule...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3377-000] Horseshoe Bend Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Bend Wind, LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1893-000] Salmon Falls Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Salmon Falls Wind Park, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-975-000] Juniper Canyon Wind Power, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Juniper Canyon Wind Power, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2201-000] Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request for... proceeding of Evergreen Wind Power III, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
...Power Wind Holdings, Inc.'s application for market-based rate authority, with an accompanying rate... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3405-000] EverPower Wind Holdings, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...
UDE-based control of variable-speed wind turbine systems
NASA Astrophysics Data System (ADS)
Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang
2017-01-01
In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
Investigation on installation of offshore wind turbines
NASA Astrophysics Data System (ADS)
Wang, Wei; Bai, Yong
2010-06-01
Wind power has made rapid progress and should gain significance as an energy resource, given growing interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resources, offshore wind energy resources are more promising candidates for development. Sea winds are generally stronger and more reliable and with improvements in technology, the sea has become a hot spot for new designs and installation methods for wind turbines. In the present paper, based on experience building offshore wind farms, recommended foundation styles have been examined. Furthermore, wave effects have been investigated. The split installation and overall installation have been illustrated. Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed. This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.
Study on typhoon characteristic based on bridge health monitoring system.
Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang
2014-01-01
Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.
Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.
2017-12-01
Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
NASA Technical Reports Server (NTRS)
Curto, Paul A. (Inventor); Brown, Gerald E. (Inventor); Zysko, Jan A. (Inventor)
2001-01-01
The present invention is a two-part wind advisory system comprising a ground station at an airfield and an airborne unit placed inside an aircraft. The ground station monitors wind conditions (wind speed, wind direction, and wind gust) at the airfield and transmits the wind conditions and an airfield ID to the airborne unit. The airborne unit identifies the airfield by comparing the received airfield ID with airfield IDs stored in a database. The airborne unit also calculates the headwind and crosswind for each runway in both directions at the airfield using the received wind conditions and runway information stored in the database. The airborne unit then determines a recommended runway for takeoff and landing operations of the aircraft based on th runway having the greatest headwind value and displays the airfield ID, wind conditions, and recommended runway to the pilot. Another embodiment of the present invention includes a wireless internet based airborne unit in which the airborne unit can receive the wind conditions from the ground station over the internet.
NASA Technical Reports Server (NTRS)
Belt, Carol L.; Fuelberg, Henry E.
1984-01-01
The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
An evaluation of the wind chill factor: its development and applicability.
Bluestein, M
1998-04-01
The wind chill factor has become a standard meteorologic term in cold climates. Meteorologic charts provide wind chill temperatures meant to represent the hypothetical air temperature that would, under conditions of no wind, effect the same heat loss from unclothed human skin as does the actual combination of air temperature and wind velocity. As this wind chill factor has social and economic significance, an investigation was conducted on the development of this factor and its applicability based on modern heat transfer principles. The currently used wind chill factor was found to be based on a primitive study conducted by the U.S. Antarctic Service over 50 years ago. The resultant equation for the wind chill temperature assumes an unrealistic constant skin temperature and utilizes heat transfer coefficients that differ markedly from those obtained from equations of modern convective heat transfer methods. The combined effect of these two factors is to overestimate the effect of a given wind velocity and to predict a wind chill temperature that is too low.
Grid Integration of Offshore Wind | Wind | NREL
. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource
NASA Technical Reports Server (NTRS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.;
2012-01-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.
2011-12-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.
2012-02-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1177-000] Meadow Lake Wind Farm IV LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Meadow Lake Wind Farm IV LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER10-1176-000] Meadow Lake Wind Farm III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Meadow Lake Wind Farm III LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-295-000] NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... NaturEner Rim Rock Wind Energy, LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1400-000] Flat Ridge 2 Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
... proceeding, of Dry Lake Wind Power II LLC application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1720-000] Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
NASA Technical Reports Server (NTRS)
Romere, Paul O.; Brown, Steve Wesley
1995-01-01
Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
Seasonal patterns of wind stress and wind stress curl over the Gulf of Mexico
NASA Astrophysics Data System (ADS)
de Velasco, Guillermo Gutiérrez; Winant, Clinton D.
1996-08-01
Meteorological observations from an array of stations deployed along the periphery of the Gulf of Mexico, between 1990 and 1993, are used to describe the seasonal fluctuations in patterns of atmospheric variables from a contemporary set of measurements. Seasonal maps of wind stress based on these measurements resemble wind stress maps based on ship observations, as published by Elliott [1979], rather than maps based on analyses of numerical weather forecasts, as published by Rhodes et al. [1989], particularly near the western boundary of the gulf. Seasonal maps of wind stress curl are characterized by positive curls over the western and southwestern gulf. The central result of this study is to document the important role of the mountain chain which extends along the southwestern section of the gulf in channeling the wind toward the Isthmus of Tehuantepec.
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
Overview and Meteorological Validation of the Wind Integration National Dataset toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Clifton, A.
2015-04-13
The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.
2008-05-01
At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
NASA Technical Reports Server (NTRS)
Usry, J. W.
1983-01-01
Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.
Chen, Chunyi; Yang, Huamin
2017-11-01
The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.
Black start research of the wind and storage system based on the dual master-slave control
NASA Astrophysics Data System (ADS)
Leng, Xue; Shen, Li; Hu, Tian; Liu, Li
2018-02-01
Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, R.; Fields, J.; Roberts, J. O.
The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projectsmore » where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.« less
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
Worldwide wind/diesel hybrid power system study: Potential applications and technical issues
NASA Astrophysics Data System (ADS)
King, W. R.; Johnson, B. L., III
1991-04-01
The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.
-specific analysis can be used to assess the risk induced by loss of a wind turbine blade. The study used for different wind turbine configurations. The authors used assumptions specific to the National Wind ., failure rate for wind turbine rotors) are based on a 13-year-old report on wind turbines installed in
Wind Sensing and Modeling | Grid Modernization | NREL
Simulation at the turbine, wind plant, and regional scales for resource prospecting, resource assessment Sensing and Modeling Wind Sensing and Modeling NREL's wind sensing and modeling work supports the deployment of wind-based generation technologies for all stages of a plant's life, from resource estimates to
Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Flinn, Clay
2012-01-01
Launch directors need to know upper-level wind forecasts. We developed an Excel-based GUI to display upper-level winds: (1) Rawinsonde at CCAFS, (2) Wind profilers at KSC, (3) Model point data at CCAFS.
NASA Technical Reports Server (NTRS)
Susko, M.; Kaufman, J. W.
1973-01-01
The percentage levels of wind speed differences are presented computed from sequential FPS-16 radar/Jimsphere wind profiles. The results are based on monthly profiles obtained from December 1964 to July 1970 at Cape Kennedy, Florida. The profile sequences contain a series of three to ten Jimspheres released at approximately 1.5-hour intervals. The results given are the persistence analysis of wind speed difference at 1.5-hour intervals to a maximum time interval of 12 hours. The monthly percentage of wind speed differences and the annual percentage of wind speed differences are tabulated. The percentage levels are based on the scalar wind speed changes calculated over an altitude interval of approximately 50 meters and printed out every 25 meters as a function of initial wind speed within each five-kilometer layer from near sea level to 20 km. In addition, analyses were made of the wind speed difference for the 0.2 to 1 km layer as an aid for studies associated with take-off and landing of the space shuttle.
Onshore Wind Farms: Value Creation for Stakeholders in Lithuania
NASA Astrophysics Data System (ADS)
Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas
With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2008-01-01
The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.
Analysis of vector wind change with respect to time for Vandenberg Air Force Base, California
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1978-01-01
A statistical analysis of the temporal variability of wind vectors at 1 km altitude intervals from 0 to 27 km altitude taken from a 10-year data sample of twice-daily rawinsode wind measurements over Vandenberg Air Force Base, California is presented.
A two-fluid model of the solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, O.; Leer, E.; Holzer, T. E.
1992-01-01
A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Li, Zhenghan; Li, Xinyang
2018-04-30
Real time transverse wind estimation contributes to predictive correction which is used to compensate for the time delay error in the control systems of adaptive optics (AO) system. Many methods that apply Shack-Hartmann wave-front sensor to wind profile measurement have been proposed. One of the obvious problems is the lack of a fundamental benchmark to compare the various methods. In this work, we present the fundamental performance limits for transverse wind estimator from Shack-Hartmann wave-front sensor measurements using Cramér-Rao lower bound (CRLB). The bound provides insight into the nature of the transverse wind estimation, thereby suggesting how to design and improve the estimator in the different application scenario. We analyze the theoretical bound and find that factors such as slope measurement noise, wind velocity and atmospheric coherence length r 0 have important influence on the performance. Then, we introduced the non-iterative gradient-based transverse wind estimator. The source of the deterministic bias of the gradient-based transverse wind estimators is analyzed for the first time. Finally, we derived biased CRLB for the gradient-based transverse wind estimators from Shack-Hartmann wave-front sensor measurements and the bound can predict the performance of estimator more accurately.
NASA Astrophysics Data System (ADS)
Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.
2016-12-01
Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction of power production and wake velocity field associated with the turbine array.
Solar Corona/Wind Composition and Origins of the Solar Wind
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.
2014-12-01
Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Bourassa, M. A.
2016-12-01
The study compares and analyses the characteristics of synoptic storms in the Subpolar North Atlantic over the time period from 2000 through 2009 derived from reanalysis data sets and scatterometer-based gridded wind products. The analysis is performed for ocean 10-m winds derived from the following wind data sets: NCEP/DOE AMIP-II reanalysis (NCEPR2), NCAR/CFSR, Arctic System Reanalysis (ASR) version 1, Cross-Calibrated Multi-Platform (CCMP) wind product versions 1.1 and recently released version 2.0 prepared by the Remote Sensing Systems, and QuikSCAT. A cyclone tracking algorithm employed in this study for storm identification is based on average vorticity fields derived from the wind data. The study discusses storm characteristics such as storm counts, trajectories, intensity, integrated kinetic energy, spatial scale. Interannal variability of these characteristics in the data sets is compared. The analyses demonstrates general agreement among the wind data products on the characteristics of the storms, their spatial distribution and trajectories. On average, the NCEPR2 storms are more energetic mostly due to large spatial scales and stronger winds. There is noticeable interannual variability in the storm characteristics, yet no obvious trend in storms is observed in the data sets.
Low current extended duration spark ignition system
Waters, Stephen Howard; Chan, Anthony Kok-Fai
2005-08-30
A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.
Flapping wing applied to wind generators
NASA Astrophysics Data System (ADS)
Colidiuc, Alexandra; Galetuse, Stelian; Suatean, Bogdan
2012-11-01
The new conditions at the international level for energy source distributions and the continuous increasing of energy consumption must lead to a new alternative resource with the condition of keeping the environment clean. This paper offers a new approach for a wind generator and is based on the theoretical aerodynamic model. This new model of wind generator helped me to test what influences would be if there will be a bird airfoil instead of a normal wind generator airfoil. The aim is to calculate the efficiency for the new model of wind generator. A representative direction for using the renewable energy is referred to the transformation of wind energy into electrical energy, with the help of wind turbines; the development of such systems lead to new solutions based on high efficiency, reduced costs and suitable to the implementation conditions.
2016-04-30
focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and increasing their efficiency at...of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem, there are multiple choices...The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind turbine with and without an
A peaking-regulation-balance-based method for wind & PV power integrated accommodation
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Li, Nan; Liu, Jun
2018-02-01
Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.
Capacity expansion model of wind power generation based on ELCC
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Wu, Shengyu
2018-02-01
Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.
Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.
2012-04-01
We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1329-000] Wildcat Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Wildcat Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1925-000] Patton Wind Farm, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Patton Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1739-000] Bethel Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bethel Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1740-000] Rippey Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Rippey Wind...
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.
2002-01-01
An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.
NASA Technical Reports Server (NTRS)
Kemp, N. D.
1983-01-01
Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.
Ship-borne measurements of aerosol optical depth over remote oceans and its dependence on wind speed
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P. L.; Quinn, P.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S. A.; Radionov, V. F.
2011-12-01
Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. Sea-salt aerosol production, being a major source of aerosol over remote oceans, depends on surface wind speed. Recently in a number of publications the effect of wind speed on aerosol optical depth (AOD) has been presented utilizing coastal, island-based and satellite-based AOD measurements. However, the influence of wind speed on the columnar optical depth is still poorly understood, because not all factors and precursors influencing AOD dependence can be accounted for. The Maritime Aerosol Network (a component of AERONET) data archive provides an excellent opportunity to analyze in depth a relationship between ship-based AOD measurements and wind speed. We considered only data presumably not influenced by urban/industrial continental sources, dust outbreaks, biomass burning, or glaciers and pack ice. Additional restrictions imposed on the data set were acceptance of only points taken not closer than two degrees from the nearest landmass. We present analyses on the effect of surface (deck-level) wind speed (acquired onboard, modeled by NCEP, measured from satellite) on AOD and its spectral dependence. Latitudinal comparison of measured onboard and modeled wind speeds showed relatively small bias, which was higher at high latitudes. Instantaneous AOD measurements and daily means yielded similar relationships with various wind speed subsets (instantaneous ship-based and NCEP, averaged over previous 24 hours, steady, satellite retrieved). We compared regression statistics of optical parameters versus wind speed presented in various papers and based on various satellite and sunphotometer measurements. Overall, despite certain scatter, the current work and a majority of publications showed consistent patterns, with the AOD versus wind speed (range 2-16 m/s) dependence close to linear.
PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs
2011-09-01
PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs R. J. WERLINK...number. 1. REPORT DATE SEP 2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE PZT Active Frequency Based Wind Blade Fatigue ...18 Abstract: This paper summarizes NASA PZT Health Monitoring System results previously reported for 9 meter blade Fatigue loading to failure
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system
NASA Astrophysics Data System (ADS)
Petrila, Diana; Muntean, Nicolae
2012-09-01
This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.
Cross-wind profiling based on the scattered wave scintillation in a telescope focus.
Banakh, V A; Marakasov, D A; Vorontsov, M A
2007-11-20
The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.
Wind turbine rotor simulation using the actuator disk and actuator line methods
NASA Astrophysics Data System (ADS)
Tzimas, M.; Prospathopoulos, J.
2016-09-01
The present paper focuses on wind turbine rotor modeling for loads and wake flow prediction. Two steady-state models based on the actuator disk approach are considered, using either a uniform thrust or a blade element momentum calculation of the wind turbine loads. A third model is based on the unsteady-state actuator line approach. Predictions are compared with measurements in wind tunnel experiments and in atmospheric environment and the capabilities and weaknesses of the different models are addressed.
Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-12-01
The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.
An Investigation of Instantaneous Plume Rise from Rocket Exhaust
1996-12-01
METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.5054 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET. WIND WIND LAYER WIND SPEED...SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.6911 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET...TIME (SECS) 368.08 FIRST MIXING LAYER HEIGHT- (METERS) TOP = 210.62 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR
NASA Astrophysics Data System (ADS)
Xiao, Yan; Li, Yaoyu; Rotea, Mario A.
2016-09-01
The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.
Analytical Model for Mean Flow and Fluxes of Momentum and Energy in Very Large Wind Farms
NASA Astrophysics Data System (ADS)
Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando
2018-01-01
As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land-atmosphere coupling or air-water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.
Resolving Environmental Effects of Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Karin C; DeGeorge, Elise M; Copping, Andrea E.
Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries,more » and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.« less
[A pathogenesis study of tic disorder in children based on pathogen incubation theory].
Zhou, Ya-bing; Wu, Min
2007-11-01
Pathogen incubation theory includes "no manifestation after infection" and "manifestation after incubation". Clinical data showed that the incidence and recurrence of tic disorders in children had a strong relevance to six exogenous factors. The pathogenesis is similar to the pathogenic mechanism based on incubation of pathogen theory, so we proposed a theory of "tic disorder induced by incubation of pathogen". Pathogenic wind can be classified into exterior wind and endogenous wind. Pathogenic wind is more apt to move, rise and migrate. The characteristics of pathogenic wind, especially easy mobility, determine the symptoms and signs of tic disorder, for pathogenic wind can be characterized by vibration and involuntary movement such as convulsion and tremor. If exogenous pathogenic wind moves into half-exterior and half-interior phase from the exterior, both the exterior and interior syndromes should be treated at the same time. We should regulate the function of the liver and the lung, expel pathogenic wind by dispersing the lung, and calm endogenous wind by removing obstruction in the collaterals and soothing the liver.
NASA Astrophysics Data System (ADS)
Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan
2016-09-01
The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Flight in low-level wind shear
NASA Technical Reports Server (NTRS)
Frost, W.
1983-01-01
Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.
NASA Astrophysics Data System (ADS)
Nelson, L. L.
1982-05-01
The Bureau of Reclamation (Bureau) conducted studies for a wind turbine field of 100 MW at a site near Medicine Bow, WY, one of the windiest areas in the United States. The wind turbine system would be electrically interconnected to the existing Federal power grid through the substation at Medicine Bow. Power output from the wind turbines would thus be integrated with the existing hydroelectric system, which serves as the energy storage system. An analysis based on 'willingness to pay' was developed. Based on information from the Department of Energy's Western Area Power Administration (Western), it was assumed that 90 mills per kWh would represent the 'willingness to pay' for onpeak power, and 45 mills per kWh for offpeak power. The report concludes that a 100-MW wind field at Medicine Bow has economic and financial feasibility. The Bureau's construction of the Medicine Bow wind field could demonstrate to the industry the feasibility of wind energy.
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
NASA Astrophysics Data System (ADS)
Echavarria, E.; Tomiyama, T.; van Bussel, G. J. W.
2007-07-01
The objective of this on-going research is to develop a design methodology to increase the availability for offshore wind farms, by means of an intelligent maintenance system capable of responding to faults by reconfiguring the system or subsystems, without increasing service visits, complexity, or costs. The idea is to make use of the existing functional redundancies within the system and sub-systems to keep the wind turbine operational, even at a reduced capacity if necessary. Re-configuration is intended to be a built-in capability to be used as a repair strategy, based on these existing functionalities provided by the components. The possible solutions can range from using information from adjacent wind turbines, such as wind speed and direction, to setting up different operational modes, for instance re-wiring, re-connecting, changing parameters or control strategy. The methodology described in this paper is based on qualitative physics and consists of a fault diagnosis system based on a model-based reasoner (MBR), and on a functional redundancy designer (FRD). Both design tools make use of a function-behaviour-state (FBS) model. A design methodology based on the re-configuration concept to achieve self-maintained wind turbines is an interesting and promising approach to reduce stoppage rate, failure events, maintenance visits, and to maintain energy output possibly at reduced rate until the next scheduled maintenance.
A New Non-gaussian Turbulent Wind Field Generator to Estimate Design-Loads of Wind-Turbines
NASA Astrophysics Data System (ADS)
Schaffarczyk, A. P.; Gontier, H.; Kleinhans, D.; Friedrich, R.
Climate change and finite fossil fuel resources make it urgent to turn into electricity generation from mostly renewable energies. One major part will play wind-energy supplied by wind-turbines of rated power up to 10 MW. For their design and development wind field models have to be used. The standard models are based on the empirical spectra, for example by von Karman or Kaimal. From investigation of measured data it is clear that gusts are underrepresented in such models. Based on some fundamental discoveries of the nature of turbulence by Friedrich [1] derived from the Navier-Stokes equation directly, we used the concept of Continuous Time Random Walks to construct three dimensional wind fields obeying non-Gaussian statistics. These wind fields were used to estimate critical fatigue loads necessary within the certification process. Calculations are carried out with an implementation of a beam-model (FLEX5) for two types of state-of-the-art wind turbines The authors considered the edgewise and flapwise blade-root bending moments as well as tilt moment at tower top due to the standard wind field models and our new non-Gaussian wind field model. Clear differences in the loads were found.
NASA Astrophysics Data System (ADS)
Kiliyanpilakkil, Velayudhan Praju
Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.
A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation
NASA Astrophysics Data System (ADS)
Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming
2018-03-01
This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability
NASA Astrophysics Data System (ADS)
Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun
2016-06-01
In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.
Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; ...
2016-01-01
This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less
A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models
NASA Astrophysics Data System (ADS)
Pan, Yang; Archer, Cristina L.
2018-04-01
To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2108-000] North Wind Turbines, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization November 16, 2010. This is a supplemental notice in the above-referenced proceeding, of North Wind Turbines, LLC's...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1150-000] Alta Wind X, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Alta Wind X...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, R.
This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-01-01
This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.
Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering
NASA Astrophysics Data System (ADS)
Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.
2016-12-01
Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.
76 FR 10578 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... Numbers: ER11-2904-000. Applicants: Settlers Trail Wind Farm, LLC. Description: Settlers Trail Wind Farm, LLC submits tariff filing per 35.12: Settlers Trail Wind Farm, LLC, Market-Based Rate Tariff to be... Time on Thursday, March 10, 2011. Docket Numbers: ER11-2905-000. Applicants: Pioneer Trail Wind Farm...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
...] Wind Turbine Guidelines Advisory Committee; Teleconference Line Available for Public Meeting AGENCY... Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee (Committee) meeting on... Service's Draft Land-Based Wind Energy Guidelines. DATES: The meeting will take place on April 27, 2011...
76 FR 38677 - Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting and Webcast
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...] Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting and Webcast AGENCY: Fish and... Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee (Committee) meeting in... presentation and discussion of the Service's Draft Land-Based Wind Energy Guidelines. DATES: The meeting and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
...] Wind Turbine Guidelines Advisory Committee; Announcement of Public Teleconference and Webcast AGENCY..., the U.S. Fish and Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee...-based wind energy facilities. All Committee members serve without compensation. In accordance with the...
76 FR 358 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
..., 2011. Docket Numbers: ER11-2466-000. Applicants: Juniper Canyon Wind Power LLC. Description: Juniper Canyon Wind Power LLC submits tariff filing per 35.37: Revisions to Market-Based Rate Tariff to be... Wind Power LLC. Description: Klondike Wind Power LLC submits tariff filing per 35.37: Revisions to...
Examination of the wind speed limit function in the Rothermel surface fire spread model
Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel
2013-01-01
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...
Method and apparatus for wind turbine braking
Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE
2009-02-10
A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.
Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-05-01
Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.
A new method for wind speed forecasting based on copula theory.
Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu
2018-01-01
How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Li; Han, Ting-Ting; Li, Tao; Ji, Ya-Qin; Bai, Zhi-Peng; Wang, Bin
2012-07-01
Due to the lack of a prediction model for current wind erosion in China and the slow development for such models, this study aims to predict the wind erosion of soil and the dust emission and develop a prediction model for wind erosion in Tianjin by investigating the structure, parameter systems and the relationships among the parameter systems of the prediction models for wind erosion in typical areas, using the U.S. wind erosion prediction system (WEPS) as reference. Based on the remote sensing technique and the test data, a parameter system was established for the prediction model of wind erosion and dust emission, and a model was developed that was suitable for the prediction of wind erosion and dust emission in Tianjin. Tianjin was divided into 11 080 blocks with a resolution of 1 x 1 km2, among which 7 778 dust emitting blocks were selected. The parameters of the blocks were localized, including longitude, latitude, elevation and direction, etc.. The database files of blocks were localized, including wind file, climate file, soil file and management file. The weps. run file was edited. Based on Microsoft Visualstudio 2008, secondary development was done using C + + language, and the dust fluxes of 7 778 blocks were estimated, including creep and saltation fluxes, suspension fluxes and PM10 fluxes. Based on the parameters of wind tunnel experiments in Inner Mongolia, the soil measurement data and climate data in suburbs of Tianjin, the wind erosion module, wind erosion fluxes, dust emission release modulus and dust release fluxes were calculated for the four seasons and the whole year in suburbs of Tianjin. In 2009, the total creep and saltation fluxes, suspension fluxes and PM10 fluxes in the suburbs of Tianjin were 2.54 x 10(6) t, 1.25 x 10(7) t and 9.04 x 10(5) t, respectively, among which, the parts pointing to the central district were 5.61 x 10(5) t, 2.89 x 10(6) t and 2.03 x 10(5) t, respectively.
NASA Astrophysics Data System (ADS)
Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong
2017-10-01
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotrell, J.; Stehly, T.; Johnson, J.
The average size of land based wind turbines installed in the United States has increased dramatically over time. As a result wind turbines are facing new transportation and logistics barriers that limit the size of utility scale land based wind turbines that can be deployed in the United States. Addressing these transportation and logistics barriers will allow for even further increases in U.S. turbine size using technologies under development for offshore markets. These barriers are important because larger taller turbines have been identified as a path to reducing the levelized cost of energy for electricity. Additionally, increases in turbine sizemore » enable the development of new low and moderate speed markets in the U.S. In turn, wind industry stakeholder support, market stability, and ultimately domestic content and manufacturing competitiveness are potentially affected. In general there is very little recent literature that characterizes transportation and logistics barriers and their effects on U.S. wind markets and opportunities. Accordingly, the objective of this paper is to report the results of a recent NREL study that identifies the barriers, assesses their impact and provides recommendations for strategies and specific actions.« less
Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun
Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.
Disturbance observer based pitch control of wind turbines for disturbance rejection
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Chen, Xu; Tang, Jiong
2016-04-01
In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.
Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.
Banakh, Victor A; Marakasov, Dimitrii A
2007-10-01
Reconstruction of the wind profile from the statistics of intensity fluctuations of an optical beam propagating in a turbulent atmosphere is considered. The equations for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of a Gaussian beam are obtained. The algorithms of wind profile retrieval from the spatiotemporal intensity spectrum are described and the results of end-to-end computer experiments on wind profiling based on the developed algorithms are presented. It is shown that the developed algorithms allow retrieval of the wind profile from the turbulent optical beam intensity fluctuations with acceptable accuracy in many practically feasible laser measurements set up in the atmosphere.
Wind for Schools Project Power System Brief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-08-01
This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.
Excitation system for rotating synchronous machines
Umans, Stephen D.; Driscoll, David J.
2002-01-01
A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2192-000] Red Mesa Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization December 1, 2010. This is a supplemental notice in the above-referenced proceeding of Red Mesa Wind, LLC's application for...
Wind in the forests of southeast Alaska and guides for reducing damage.
A.S. Harris
1999-01-01
Alaska based on the literature and the author's experience. Storm winds resulting in damage to forest stands are described, and some ecological and management considerations of wind that are of concern to forest managers are reviewed. The author made a general reconnaissance of forest conditions on Prince of Wales Island and adjacent islands based on forest-type...
A local-circulation model for Darrieus vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Masse, B.
1986-04-01
A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
A scatterometer is a radar that measures the normalized radar cross section sigma(sup 0) of the Earth's surface. Over the ocean this signal is related to the wind via the geophysical model function (GMF). The objective of wind scatterometry is to estimate the wind vector field from sigma(sup 0) measurements; however, there are many subtleties that complicate this problem-making it difficult to obtain a unique wind field estimate. Conventionally, wind estimation is split into two stages: a wind retrieval stage in which several ambiguous solutions are obtained, and an ambiguity removal stage in which ambiguities are chosen to produce an appropriate wind vector field estimate. The most common approach to wind field estimation is to grid the scatterometer swath into wind vector cells and estimate wind vector ambiguities independently for each cell. Then, field wise structure is imposed on the solution by an ambiguity selection routine. Although this approach is simple and practical, it neglects field wise structure in the retrieval step and does not account for the spatial correlation imposed by the sampling. This makes it difficult to develop a theoretically appropriate noise versus resolution trade-off using pointwise retrieval. Fieldwise structure may be imposed in the retrieval step using a model-based approach. However, this approach is generally only practical if a low order wind field model is applied, which may discard more information than is desired. Furthermore, model-based approaches do not account for the structure imposed by the sampling. A more general fieldwise approach is to estimate all the wind vectors for all the WVCs simultaneously from all the measurements. This approach can account for structure of the wind field as well as structure imposed by the sampling in the wind retrieval step. Williams and Long in 2010 developed a fieldwise retrieval method based on maximum a posteriori estimation (MAP). This MAP approach can be extended to perform a noise versus resolution trade-off, and deal with ambiguity selection. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed.
2010 Cost of Wind Energy Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.; Hand, M.; Maples, B.
2012-04-01
This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.
2010 Cost of Wind Energy Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.; Hand, M.; Maples, B.
2012-04-01
This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.
Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin
2000-01-01
The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.
Exploring the nearshore marine wind profile from field measurements and numerical hindcast
NASA Astrophysics Data System (ADS)
del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.
2012-12-01
Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.
NASA Astrophysics Data System (ADS)
Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu
2018-01-01
The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.
Impact of Lidar Wind Sounding on Mesoscale Forecast
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)
2001-01-01
An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RICH, LAUREN
2013-09-30
A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe's Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.
Operating wind turbines in strong wind conditions by using feedforward-feedback control
NASA Astrophysics Data System (ADS)
Feng, Ju; Sheng, Wen Zhong
2014-12-01
Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.
Water-Based Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.
2006-01-01
Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).
Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments
NASA Astrophysics Data System (ADS)
Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.
2017-05-01
In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.
A GEOS-Based OSSE for the "MISTiC Winds" Concept
NASA Technical Reports Server (NTRS)
McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.;
2018-01-01
The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.
Double-Edge Molecular Measurement of Lidar Wind Profiles in the VALID Campaign
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Flesia, Cristina; Lolli, Simone; Hirt, Christian
2000-01-01
We have developed a transportable container based direct detection Doppler lidar based on the double-edge molecular technique. The pulsed solid state system was built at the University of Geneva. It was used to make range resolved measurements of the atmospheric wind field as part of the VALID campaign at the Observatoire de Haute Provence in Provence, France in July 1999. Comparison of our lidar wind measurements, which were analyzed without knowledge of the results of rawinsonde measurements made under the supervision of ESA, show good agreement with these rawinsondes. These are the first Doppler lidar field measurements made with an eyesafe direct detection molecular-based system at 355 nm and serve as a demonstrator for future spaceborne direct detection wind systems such as the Atmospheric Dynamics mission. Winds are an important contributor to sea surface temperature measurements made with the Tropical Rainfall Measuring Mission (TRMM) and also affect the TRMM rainfall estimates.
Predicting Near-surface Winds with WindNinja for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.
2016-12-01
WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.
2009-01-01
NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.
Wind Shear Identification with the Retrieval Wind of Doppler Wearth Radar
NASA Astrophysics Data System (ADS)
Zhou, S.; Cui, Y.; Zheng, H.; Zhang, T.
2018-05-01
A new method, which based on the wind field retrieval algorithm of Volume Velocity Process (VVP), has been used to identified the intensity of wind shear occurred in a severe convection process in Guangzhou. The intensity of wind shear's strength shown that new cells would be more likely to generate in areas where the magnitude generally larger than 3.0 m/(s*km). Moreover, in the areas of potential areas of rainfall, the wind shear's strength would larger than 4.5 m/(s*km). This wind shear identify method is very helpful to forecasting severe convections' moving and developments.
System frequency support of permanent magnet synchronous generator-based wind power plant
NASA Astrophysics Data System (ADS)
Wu, Ziping
With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.
Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.
2005-01-01
approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the design problem tractable. The results of the reliability-based designs performed in this paper show that large decreases in the probability of stress-based failure can be realized with only small sacrifices in the ability of the wind tunnel model to represent the displacements of the full-scale vehicle.
Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)
NASA Technical Reports Server (NTRS)
Adelfang, Stanley I.
2008-01-01
Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.
NASA Astrophysics Data System (ADS)
Kishore, Ravi Anant; Priya, Shashank
2013-03-01
In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Wind Powering America's Regional Stakeholder Meetings and Priority State Reports: FY11 Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-06-01
Beginning in 2010, DOE conducted an assessment of Wind Powering America (WPA) activities to determine whether the methods the department had used to help grow the wind industry to provide 2% of the nation's electrical energy should be the same methods used to achieve 20% of the nation's energy from wind (as described in the report 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply). After the assessment, it was determined that the initiative's state-based activities should be phased out as part of a shift to regional-based approaches. To assist with this transition, WPA hosted amore » series of 1-day regional meetings at six strategic locations around the country and a single teleconference for island states, U.S. territories, and remote communities. This report summarizes the results of the inaugural regional meetings and the state reports with a focus on ongoing wind deployment barriers in each region.« less
Wind Powering America's Regional Stakeholder Meetings and Priority State Reports: FY11 Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian
2013-06-01
Beginning in 2010, DOE conducted an assessment of Wind Powering America (WPA) activities to determine whether the methods the department had used to help grow the wind industry to provide 2% of the nation's electrical energy should be the same methods used to achieve 20% of the nation's energy from wind (as described in the report 20% Wind Energy by 2030: Increasing Wind Energy's Contribution toU.S. Electricity Supply). After the assessment, it was determined that the initiative's state-based activities should be phased out as part of a shift to regional-based approaches. To assist with this transition, WPA hosted a seriesmore » of 1-day regional meetings at six strategic locations around the country and a single teleconference for island states, U.S. territories, and remote communities.This report summarizes the results of the inaugural regional meetings and the state reports with a focus on ongoing wind deployment barriers in each region.« less
Oceanographic and meteorological research based on the data products of SEASAT
NASA Technical Reports Server (NTRS)
Pierson, W. J. (Principal Investigator)
1983-01-01
De-aliased SEASAT SASS vector winds obtained during the GOASEX (Gulf of Alaska SEASAT Experiment) program were processed to obtain superobservations centered on a one degree by one degree grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. Each grid point of the synoptic field provides the mean synoptic east-west and north-south wind components plus estimates of the standard deviations of these means. These superobservations winds are then processed further to obtain synoptic scale vector winds stress fiels, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations for each grid point value. The resulting fields appear to be consistant over large distances and to agree with, for example, geostationary cloud images obtained concurrently. Their quality is far superior to that of analyses based on conventional data.
Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric J.; Riva, Alberto D.; Hethey, Janos
This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on bothmore » existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.« less
Gradient-Based Optimization of Wind Farms with Different Turbine Heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean
NASA Technical Reports Server (NTRS)
Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.
1984-01-01
The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.
A large-eddy simulation based power estimation capability for wind farms over complex terrain
NASA Astrophysics Data System (ADS)
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
NASA Technical Reports Server (NTRS)
McCormack, J.; Hoppel, K.; Kuhl, D.; de Wit, R.; Stober, G.; Espy, P.; Baker, N.; Brown, P.; Fritts, D.; Jacobi, C.;
2016-01-01
We present a study of horizontal winds in the mesosphere and lower thermosphere (MLT) during the boreal winters of 2009-2010 and 2012-2013 produced with a new high-altitude numerical weather prediction (NWP) system. This system is based on a modified version of the Navy Global Environmental Model (NAVGEM) with an extended vertical domain up to approximately 116 km altitude coupled with a hybrid four-dimensional variational (4DVAR) data assimilation system that assimilates both standard operational meteorological observations in the troposphere and satellite-based observations of temperature, ozone and water vapor in the stratosphere and mesosphere. NAVGEM-based MLT analyzed winds are validated using independent meteor radar wind observations from nine different sites ranging from 69 deg N-67 deg S latitude. Time-averaged NAVGEM zonal and meridional wind profiles between 75 and 95 km altitude show good qualitative and quantitative agreement with corresponding meteor radar wind profiles. Wavelet analysis finds that the 3-hourly NAVGEM and 1-hourly radar winds both exhibit semi-diurnal, diurnal, and quasi-diurnal variations whose vertical profiles of amplitude and phase are also in good agreement. Wavelet analysis also reveals common time-frequency behavior in both NAVGEM and radar winds throughout the Northern extra tropics around the times of major stratospheric sudden warmings (SSWs) in January 2010 and January 2013, with a reduction in semi-diurnal amplitudes beginning around the time of a mesospheric wind reversal at 60 deg N that precedes the SSW, followed by an amplification of semi-diurnal amplitudes that peaks 10-14 days following the onset of the mesospheric wind reversal. The initial results presented in this study demonstrate that the wind analyses produced by the high altitude NAVGEM system accurately capture key features in the observed MLT winds during these two boreal winter periods.
Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan
2008-12-01
Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.
Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.
McAllister, Therese P; Wang, Naiyu; Ellingwood, Bruce R
2018-05-01
ASCE 7 is moving toward adopting load requirements that are consistent with risk-informed design goals characteristic of performance-based engineering (PBE). ASCE 7-10 provided wind maps that correspond to return periods of 300, 700, and 1,700 years for Risk Categories I, II, and combined III/IV, respectively. The risk targets for Risk Categories III and IV buildings and other structures (designated as essential facilities) are different in PBE. The reliability analyses reported in this paper were conducted using updated wind load data to (1) confirm that the return periods already in ASCE 7-10 were also appropriate for risk-informed PBE, and (2) to determine a new risk-based return period for Risk Category IV. The use of data for wind directionality factor, K d , which has become available from recent wind tunnel tests, revealed that reliabilities associated with wind load combinations for Risk Category II structures are, in fact, consistent with the reliabilities associated with the ASCE 7 gravity load combinations. This paper shows that the new wind maps in ASCE 7-16, which are based on return periods of 300, 700, 1,700, and 3,000 years for Risk Categories I, II, III, and IV, respectively), achieve the reliability targets in Section 1.3.1.3 of ASCE 7-16 for nonhurricane wind loads.
Security, protection, and control of power systems with large-scale wind power penetration
NASA Astrophysics Data System (ADS)
Acharya, Naresh
As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system instabilities. It is important for the system operator to be aware of such limiting events during system operation and be prepared to take proper control actions. This can be achieved by incorporating the wind farm tripping status for each contingency as part of the static security assessment. A methodology to calculate voltages at the wind farm buses during a worst case line fault is proposed, which, along with the protection settings of wind turbines, can be used to determine the tripping of wind farms. The proposed algorithm is implemented in MATLAB and tested with MidAmerican Energy reduced network. The result shows that a large amount of wind capacity can be tripped due to a fault in the lines. Therefore, the technique will find its application in the static security assessment where each line fault can be associated with the tripping of wind farms as determined from the proposed method. A probabilistic framework to handle the uncertainty in day-ahead forecast error in order to correctly assess the steady-state security of the power system is presented. Stochastic simulations are conducted by means of Latin hypercube sampling along with the consideration of correlations. The correlation is calculated from the historical distribution of wind power forecast errors. The results from the deterministic simulation based on point forecast and the stochastic simulation show that security assessment based solely on deterministic simulations can lead to incorrect assessment of system security. With stochastic simulations, each outcome can be assigned a probability and the decision regarding control actions can be made based on the associated probability.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2522-000] Top of the World Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization September 10, 2010. This is a supplemental notice in the above-referenced proceeding of Top of the World Wind...
Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds
NASA Astrophysics Data System (ADS)
Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.
2018-01-01
This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.
Improving the FLORIS wind plant model for compatibility with gradient-based optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew
The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less
Zhang, Haiyan; Fan, Jiangwen; Cao, Wei; Harris, Warwick; Li, Yuzhe; Chi, Wenfeng; Wang, Suizi
2018-10-15
Soil erosion caused by wind is a serious environmental problem that results in land degradation and threatens sustainable development. Accurately evaluating wind erosion dynamics is important for reducing the hazard of wind erosion. Separating the climatic and anthropogenic causes of wind erosion can improve the understanding of its driving mechanisms. Based on meteorological, remote sensing and field observation data, we applied the Revised Wind Erosion Equation (RWEQ) to simulate wind erosion in Inner Mongolia, China from 1990 to 2015. We used the variable control method by input of the average climate conditions to calculate human-induced wind erosion. The difference between natural wind erosion and human-induced wind erosion was determined to assess the effect of climate change on wind erosion. The results showed that the wind erosion modulus had a remarkable decline with a slope of 52.23 t/km 2 /a from 1990 to 2015. During 26 years, the average wind erosion for Inner Mongolia amounted to 63.32 billion tons. Wind erosion showed an overall significant decline of 49.23% and the partial severer erosion hazard significantly increased by 7.11%. Of the significant regional decline, 40.72% was caused by climate changes, and 8.51% was attributed to ecological restoration programs. For the significant regional increases of wind erosion, 4.29% was attributed to climate changes and 2.82% to human activities, mainly overgrazing and land use/cover changes. During the study, the driving forces in Inner Mongolia of wind erosion dynamics differed spatially. Timely monitoring based on multi-source data and highlighting the importance of positive human activities by increasing vegetation coverage for deserts, reducing grazing pressure on grasslands, establishing forests as windbreaks and optimizing crop planting rotations of farmlands can all act to reduce and control wind erosion. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Scott A.
This research has two areas of focus. The first area is to investigate offshore wind turbine (OWT) designs, for use in the Maryland offshore wind area (MOWA), using intensive modeling techniques. The second focus area is to investigate a way to detect damage in wind turbine towers and small electrical components.
Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.
This poster summarizes results from the first published investigation into the detailed makeup of the wind energy workforce as well as a glance at the educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce allow the private sector, educational institutions, and federal and state governments to make better informed workforce-related decisions based on the current data and future projections.
A Study of Wind Turbine Comprehensive Operational Assessment Model Based on EM-PCA Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Minqiang; Xu, Bin; Zhan, Yangyan; Ren, Danyuan; Liu, Dexing
2018-01-01
To assess wind turbine performance accurately and provide theoretical basis for wind farm management, a hybrid assessment model based on Entropy Method and Principle Component Analysis (EM-PCA) was established, which took most factors of operational performance into consideration and reach to a comprehensive result. To verify the model, six wind turbines were chosen as the research objects, the ranking obtained by the method proposed in the paper were 4#>6#>1#>5#>2#>3#, which are completely in conformity with the theoretical ranking, which indicates that the reliability and effectiveness of the EM-PCA method are high. The method could give guidance for processing unit state comparison among different units and launching wind farm operational assessment.
Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling
Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.
2015-01-01
Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless, considering a GDEM2 hs-derived wind sheltering potential improved the modeled lake temperature root mean square error for non-forested lakes by 0.72 °C compared to a commonly used wind sheltering model based on lake area alone. While results from this study show promise, the limitations of near-global GDEM2 data in timeliness, temporal and spatial resolution, and vertical accuracy were apparent. As hydrodynamic modeling and high-resolution topographic mapping efforts both expand, future remote sensing-derived vegetation structure data must be improved to meet wind sheltering accuracy requirements to expand our understanding of lake processes.
Wind for Schools Project Curriculum Brief (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-08-01
The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and relatedmore » components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.« less
Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1
NASA Astrophysics Data System (ADS)
Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.
2016-09-01
This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.
Quantifying uncertainties in wind energy assessment
NASA Astrophysics Data System (ADS)
Patlakas, Platon; Galanis, George; Kallos, George
2015-04-01
The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.
6. VIEW OF FIVEFOOT WIND TUNNEL WITH AIR STRAIGHTENER AND ...
6. VIEW OF FIVE-FOOT WIND TUNNEL WITH AIR STRAIGHTENER AND OPERATOR STATION IN FOREGROUND (1991). - Wright-Patterson Air Force Base, Area B, Building No. 19, Five-Foot Wind Tunnel, Dayton, Montgomery County, OH
75 FR 74030 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
.... Applicants: Yahoo Creek Wind Park, LLC. Description: Yahoo Creek Wind Park, LLC submits tariff filing per 35.17(b): Yahoo Creek Wind Park Supplement No. 1 to Market Based Rate Application to be effective 11/5...
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.
2012-01-01
We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.
An airport wind shear detection and warning system using Doppler radar: A feasibility study
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Blick, E. F.; Elmore, K. L.
1981-01-01
A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.
Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)
2015-01-01
Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.
FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization
Jonkman, Jason M.; Jonkman, Bonnie J.
2016-10-03
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
FAST modularization framework for wind turbine simulation: full-system linearization
NASA Astrophysics Data System (ADS)
Jonkman, J. M.; Jonkman, B. J.
2016-09-01
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test
NASA Astrophysics Data System (ADS)
Huang, Yifeng; Yang, Jixin
The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.
Robust optimization-based DC optimal power flow for managing wind generation uncertainty
NASA Astrophysics Data System (ADS)
Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn
2012-11-01
Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.
Research and analysis on response characteristics of bracket-line coupling system under wind load
NASA Astrophysics Data System (ADS)
Jiayu, Zhao; Qing, Sun
2018-01-01
In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.
Enhancing the LVRT Capability of PMSG-Based Wind Turbines Based on R-SFCL
NASA Astrophysics Data System (ADS)
Xu, Lin; Lin, Ruixing; Ding, Lijie; Huang, Chunjun
2018-03-01
A novel low voltage ride-through (LVRT) scheme for PMSG-based wind turbines based on the Resistor Superconducting Fault Current Limiter (R-SFCL) is proposed in this paper. The LVRT scheme is mainly formed by R-SFCL in series between the transformer and the Grid Side Converter (GSC), and basic modelling has been discussed in detail. The proposed LVRT scheme is implemented to interact with PMSG model in PSCAD/EMTDC under three phase short circuit fault condition, which proves that the proposed scheme based on R-SFCL can improve the transient performance and LVRT capability to consolidate grid connection with wind turbines.
WindTalker: A P2P-Based Low-Latency Anonymous Communication Network
NASA Astrophysics Data System (ADS)
Zhang, Jia; Duan, Haixin; Liu, Wu; Wu, Jianping
Compared with traditional static anonymous communication networks, the P2P architecture can provide higher anonymity in communication. However, the P2P architecture also leads to more challenges, such as route, stability, trust and so on. In this paper, we present WindTalker, a P2P-based low-latency anonymous communication network. It is a pure decentralized mix network and can provide low-latency services which help users hide their real identity in communication. In order to ensure stability and reliability, WindTalker imports “seed nodes” to help a peer join in the P2P network and the peer nodes can use gossip-based protocol to exchange active information. Moreover, WindTalker uses layer encryption to ensure the information of relayed messages cannot be leaked. In addition, malicious nodes in the network are the major threat to anonymity of P2P anonymous communication, so WindTalker imports a trust mechanism which can help the P2P network exclude malicious nodes and optimize the strategy of peer discovery, tunnel construction, and relaying etc. in anonymous communications. We deploy peer nodes of WindTalker in our campus network to test reliability and analyze anonymity in theory. The network measurement and simulation analysis shows that WindTalker can provide low-latency and reliable anonymous communication services.
Near real time wind energy forecasting incorporating wind tunnel modeling
NASA Astrophysics Data System (ADS)
Lubitz, William David
A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.
Wind Characterization for the Assessment of Collision Risk During Flight Level Changes
NASA Technical Reports Server (NTRS)
Carreno, Victor; Chartrand, Ryan
2009-01-01
A model of vertical wind gradient is presented based on National Oceanic and Atmospheric Administration (NOAA) wind data. The objective is to have an accurate representation of wind to be used in Collision Risk Models (CRM) of aircraft procedures. Depending on how an aircraft procedure is defined, wind and the different characteristics of the wind will have a more severe or less severe impact on distances between aircraft. For the In-Trail Procedure, the non-linearity of the vertical wind gradient has the greatest impact on longitudinal distance. The analysis in this paper extracts standard deviation, mean, maximum, and linearity characteristics from the NOAA data.
Economics of wind energy for irrigation pumping
NASA Astrophysics Data System (ADS)
Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.
1980-07-01
The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, K.
This poster highlights the various wildlife-wind collaboratives (specific to wildlife-wind turbine interaction research) that currently exist. Examples of collaboratives are included along with contact information, objectives, benefits, and ways to advance the knowledge base.
Common Risk Criteria Standards for National Test Ranges
2017-09-01
critical assets. Equipment and facilities that comprise part of an on- or off-base renewable energy system, such as wind turbine generation facilities...to be protected. As an example, for a wind turbine farm, the unit component would be a single wind turbine . A unit component can be considered...functionality of the larger system to which the unit component belongs. For example, a single wind turbine is a unit component of a wind turbine farm. A
NASA Astrophysics Data System (ADS)
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun
2016-08-01
A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.
Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-04-01
Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.
Investigation of wind behaviour around high-rise buildings
NASA Astrophysics Data System (ADS)
Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil
2017-09-01
A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.
Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data
NASA Technical Reports Server (NTRS)
Molod, Andrea M.; Salmun, H.; Dempsey, M
2015-01-01
An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.
Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development
Kiesecker, Joseph M.; Evans, Jeffrey S.; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R.; Kunz, Thomas H.; Naugle, Dave; Nibbelink, Nathan P.; Niemuth, Neal D.
2011-01-01
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation. PMID:21533285
Win-win for wind and wildlife: a vision to facilitate sustainable development.
Kiesecker, Joseph M; Evans, Jeffrey S; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R; Kunz, Thomas H; Naugle, Dave; Nibbelink, Nathan P; Niemuth, Neal D
2011-04-13
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
NASA Astrophysics Data System (ADS)
Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.
2012-12-01
Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.
Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej
2017-09-01
The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.
Wind energy potential analysis in Al-Fattaih-Darnah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com
2016-03-29
In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity.more » The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.« less
Wind tunnel tests for wind pressure distribution on gable roof buildings.
Jing, Xiao-kun; Li, Yuan-qi
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.
NASA Astrophysics Data System (ADS)
Wei, Xianglin; Duan, Yuewei; Liu, Yongxue; Jin, Song; Sun, Chao
2018-05-01
The demand for efficient and cost-effective renewable energy is increasing as traditional sources of energy such as oil, coal, and natural gas, can no longer satisfy growing global energy demands. Among renewable energies, wind energy is the most prominent due to its low, manageable impacts on the local environment. Based on meteorological data from 2006 to 2014 and multi-source satellite data (i.e., Advanced Scatterometer, Quick Scatterometer, and Windsat) from 1999 to 2015, an assessment of the onshore and offshore wind energy potential in Jiangsu Province was performed by calculating the average wind speed, average wind direction, wind power density, and annual energy production (AEP). Results show that Jiangsu has abundant wind energy resources, which increase from inland to coastal areas. In onshore areas, wind power density is predominantly less than 200 W/m2, while in offshore areas, wind power density is concentrates in the range of 328-500 W/m2. Onshore areas comprise more than 13,573.24 km2, mainly located in eastern coastal regions with good wind farm potential. The total wind power capacity in onshore areas could be as much as 2.06 x 105 GWh. Meanwhile, offshore wind power generation in Jiangsu Province is calculated to reach 2 x 106 GWh, which is approximately four times the electricity demand of the entire Jiangsu Province. This study validates the effective application of Advanced Scatterometer, Quick Scatterometer, and Windsat data to coastal wind energy monitoring in Jiangsu. Moreover, the methodology used in this study can be effectively applied to other similar coastal zones.
NASA Astrophysics Data System (ADS)
Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane
2017-07-01
We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
ERIC Educational Resources Information Center
Krogh, Carmen M. E.; Gillis, Lorrie; Kouwen, Nicholas; Aramini, Jeff
2011-01-01
Industrial wind turbines have been operating in many parts of the globe. Anecdotal reports of perceived adverse health effects relating to industrial wind turbines have been published in the media and on the Internet. Based on these reports, indications were that some residents perceived they were experiencing adverse health effects. The purpose…
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The United States Air Force (USAF) is investigating whether to install wind turbines to provide a supplemental source of electricity at Vandenberg Air Force Base (VAFB) near Lompoc, California. As part of that investigation, VAFB sought assistance from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to provide a preliminary characterization of the potential risk to wildlife resources (mainly birds and bats) from wind turbine installations. With wind power development expanding throughout North America and Europe, concerns have surfaced over the number of bird fatalities associated with wind turbines. Guidelines developed for the wind industry by the Nationalmore » Wind Coordinating Committee (NWCC) recommend assessing potential impacts to birds, bats, and other potentially sensitive resources before construction. The primary purpose of an assessment is to identify potential conflicts with sensitive resources, to assist developers with identifying their permitting needs, and to develop strategies to avoid impacts or to mitigate their effects. This report provides a preliminary (Phase I) biological assessment of potential impacts to birds and bats that might result from construction and operation of the proposed wind energy facilities on VAFB.« less
Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul; Aho, Jake; Gebraad, Pieter
2016-08-01
This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power controlmore » in waked conditions but also the potential methods for improving this performance.« less
Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control
NASA Astrophysics Data System (ADS)
Schlipf, David; Raach, Steffen
2016-09-01
This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.
NASA Astrophysics Data System (ADS)
KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.
2015-12-01
The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.
NASA Technical Reports Server (NTRS)
Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
10. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...
10. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
9. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...
9. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
11. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...
11. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
NREL Software Models Performance of Wind Plants (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
2018-03-01
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
NASA Astrophysics Data System (ADS)
Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid
2017-05-01
This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.
Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine
NASA Astrophysics Data System (ADS)
Suppioni, Vinicius; P. Grilo, Ahda
2013-10-01
In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.
Efficient Third Harmonic Generation for Wind Lidar Applications
NASA Technical Reports Server (NTRS)
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
A compact multi-wire-layered secondary winding for Tesla transformer.
Zhao, Liang; Su, Jian-Cang; Li, Rui; Wu, Xiao-Long; Xu, Xiu-Dong; Qiu, Xu-Dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-Cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 10 4 pulses, which proves the feasibility of the MWL secondary winding.
A compact multi-wire-layered secondary winding for Tesla transformer
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian-cang; Li, Rui; Wu, Xiao-long; Xu, Xiu-dong; Qiu, Xu-dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 104 pulses, which proves the feasibility of the MWL secondary winding.
NASA Astrophysics Data System (ADS)
Befort, Daniel J.; Kruschke, Tim; Leckebusch, Gregor C.
2017-04-01
Tropical Cyclones over East Asia have huge socio-economic impacts due to their strong wind fields and large rainfall amounts. Especially, the most severe events are associated with huge economic losses, e.g. Typhoon Herb in 1996 is related to overall losses exceeding 5 billion US (Munich Re, 2016). In this study, an objective tracking algorithm is applied to JRA55 reanalysis data from 1979 to 2014 over the Western North Pacific. For this purpose, a purely wind based algorithm, formerly used to identify extra-tropical wind storms, has been further developed. The algorithm is based on the exceedance of the local 98th percentile to define strong wind fields in gridded climate data. To be detected as a tropical cyclone candidate, the following criteria must be fulfilled: 1) the wind storm must exist for at least eight 6-hourly time steps and 2) the wind field must exceed a minimum size of 130.000km2 for each time step. The usage of wind information is motivated to focus on damage related events, however, a pre-selection based on the affected region is necessary to remove events of extra-tropical nature. Using IBTrACS Best Tracks for validation, it is found that about 62% of all detected tropical cyclone events in JRA55 reanalysis can be matched to an observed best track. As expected the relative amount of matched tracks increases with the wind intensity of the event, with a hit rate of about 98% for Violent Typhoons, above 90% for Very Strong Typhoons and about 75% for Typhoons. Overall these results are encouraging as the parameters used to detect tropical cyclones in JRA55, e.g. minimum area, are also suitable to detect TCs in most CMIP5 simulations and will thus allow estimates of potential future changes.
Design and Performance of a Miniature Lidar Wind Profiler (MLWP)
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Miodek, Mariusz J.
1998-01-01
The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars lander and perhaps find its own niche in terrestrial applications due to its potential low cost an small size.
NASA Technical Reports Server (NTRS)
Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.
1974-01-01
The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
NASA Astrophysics Data System (ADS)
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
A parameter study of the two-fluid solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.
1992-01-01
A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.
2016-09-14
angular Flame Measurements and Analysis in a Supersonic Wind Tunnel Using Fiber-Based Endoscopes This paper reports new measurements and analysis made in...the Research Cell 19 super- sonic wind -tunnel facility housed at the Air Force Research Laboratory. The measure- ments include planar chemiluminescence...ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 14, 2015; final manuscript received July 30
Influence of winding construction on starter-generator thermal processes
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-01-01
Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.
Deployment of Wind Turbines in the Built Environment: Risks, Lessons, and Recommended Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian; Fields, Jason; Oteri, Frank
Built-environment wind turbine (BEWT) projects are wind energy projects that are constructed on, in, or near buildings, as shown below. These projects present an opportunity for distributed, low-carbon generation combined with highly visible statements on sustainability, but the BEWT niche of the wind industry is still developing and is relatively less mature than the utility-scale wind or conventional ground-based distributed wind sectors. This poster investigates the current state of the BEWT industry by reviewing available literature on BEWT projects as well as interviewing project owners on their experiences deploying and operating the technology.
NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-10-01
NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.
Gear-box fault detection using time-frequency based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odgaard, Peter Fogh; Stoustrup, Jakob
2015-01-01
Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less
Typhoon air-sea drag coefficient in coastal regions
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua
2015-02-01
The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.
Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo
2014-01-01
The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
An expert system for wind shear avoidance
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Stratton, D. Alexander
1990-01-01
A study of intelligent guidance and control concepts for protecting against the adverse effects of wind shear during aircraft takeoffs and landings is being conducted, with current emphasis on developing an expert system for wind shear avoidance. Principal objectives are to develop methods for assessing the likelihood of wind shear encounter (based on real-time information in the cockpit), for deciding what flight path to pursue (e.g., takeoff abort, landing go-around, or normal climbout or glide slope), and for using the aircraft's full potential for combating wind shear. This study requires the definition of both deterministic and statistical techniques for fusing internal and external information , for making go/no-go decisions, and for generating commands to the manually controlled flight. The program has begun with the development of the WindShear Safety Advisor, an expert system for pilot aiding that is based on the FAA Windshear Training Aid; a two-volume manual that presents an overview , pilot guide, training program, and substantiating data provides guidelines for this initial development. The WindShear Safety Advisor expert system currently contains over 200 rules and is coded in the LISP programming language.
Legal requirements for human-health based appeals of wind energy projects in ontario.
Engel, Albert M
2014-01-01
In 2009, the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario's Environmental Review Tribunal as well as Ontario's courts has been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.
2014-01-01
Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric wind environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured wind data obtained prior to the assessment. However, the pre-launch measured winds may not represent the wind environment during the vehicle ascent. Uncertainty in the UL winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Without historical data, theoretical wind models must be used, which can result in inaccurate wind placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle wind placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into winds that might damage or destroy the vehicle. A large sample of measured wind profiles best characterizes the wind change environment. These historical databases consist of a certain number of wind pairs, where two wind profile measurements spaced by the time period of interest define a pair.
Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel
NASA Astrophysics Data System (ADS)
Rees, David
2012-07-01
As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.
NASA Astrophysics Data System (ADS)
Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.
1988-09-01
The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.
Model for energy transfer in the solar wind: Model results
NASA Technical Reports Server (NTRS)
Barnes, A. A., Jr.; Hartle, R. E.
1972-01-01
A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.
Vandenberg Air Force Base Pressure Gradient Wind Study
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.
2013-01-01
Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.
NASA Astrophysics Data System (ADS)
Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong
2016-06-01
A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.
Chung, King
2012-01-01
The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.
High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities
NASA Astrophysics Data System (ADS)
Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki
Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.
Introduction to Voigt's wind power plant. [energy conversion efficiency
NASA Technical Reports Server (NTRS)
Tompkin, J.
1973-01-01
The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.
14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...
14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...
13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). WrightPatterson ...
3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Predicting wind-driven waves in small reservoirs
USDA-ARS?s Scientific Manuscript database
The earthen levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. The design of bank protection measures relies on adequate prediction of wave characteristics based on wind conditions and fetch length. Current formulations are ba...
Assessment of Ports for Offshore Wind Development in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa
As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carryingmore » out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventional cargo handling. As a result, most U.S. ports will likely require soil strength improvements before they can fully support offshore wind project construction. As U.S. ports and offshore wind developers look to work together on specific projects, they will encounter synergies and challenges. The challenges they face will include identifying sources of funding for the facility improvements required, and addressing ports’ typical desire to engage in long-term partnerships on the order of 10-20 years. Early projects will especially feel these challenges as they set the precedent for these partnerships in the United States. This study seeks to provide information about gaps, costs, and opportunities to aid these discussions.« less
The Impact of Coastal Terrain on Offshore Wind and Implications for Wind Energy
NASA Astrophysics Data System (ADS)
Strobach, Edward Justin
The development of offshore wind energy is moving forward as one of several options for carbon-free energy generation along the populous US east coast. Accurate assessments of the wind resource are essential and can significantly lower financing costs that have been a barrier to development. Wind resource assessment in the Mid-Atlantic region is challenging since there are no long-term measurements of winds across the rotor span. Features of the coastal and inland terrain, such as such as the Appalachian mountains and the Chesapeake Bay, are known to lead to complex mesoscale wind regimes onshore, including low-level jets (LLJs), downslope winds and sea breezes. Little is known, however, about whether or how the inland physiography impacts the winds offshore. This research is based on the first comprehensive set of offshore wind observations in the Maryland Wind Energy Area gathered during a UMBC measurement campaign. The presentation will include a case study of a strong nocturnal LLJ that persisted for several hours before undergoing a rapid breakdown and loss of energy to smaller scales. Measurements from an onshore wind profiler and radiosondes, together with North American Regional Analysis (NARR) and a high resolution Weather Research and Forecast (WRF) model simulation, are used to untangle the forcing mechanisms on synoptic, regional and local scales that led to the jet and its collapse. The results suggest that the evolution of LLJs were impacted by a downslope wind from the Appalachians that propagated offshore riding atop a shallow near-surface boundary layer across the coastal plain. Baroclinic forcing from low sea surface temperatures (SSTs) due to coastal upwelling is also discussed. Smaller scale details of the LLJ breakdown are analyzed using a wave/mean flow/turbulence interaction approach. The case study illustrates several characteristics of low-level winds offshore that are important for wind energy, including LLJs, strong wind shear, turbulence and rapid changes in the wind, so-called "ramp events". A 3-year survey based on NARR analyses is used to estimate the likelihood that similar events could occur under the same meteorological conditions.
Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Zack; Deborah Hanley; Dora Nakafuji
This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Studymore » (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.« less
Director, Operational Test and Evaluation FY 2014 Annual Report
2015-01-01
Federal Departments and Agencies. Mitigation measures such as curtailment of wind turbine operations during test periods, identification of alternative...impact of wind turbines on ground-based and airborne radars, and this investment may help mitigate interference of wind turbines with test range...Frequency Active (SURTASS CLFA) Test Plan Tactical Unmanned Aircraft System Tactical Common Data Link (Shadow) FOT&E OTA Test Plan Tempest Wind 2014
Secure Automated Microgrid Energy System (SAMES)
2016-12-01
with embedded algorithm to share power between each other; • Wind Turbine (WT) Simulator, max 80 kW (4×20 kW), 480 V, Running Wind Generation...Temp, Rain, Wind ........................ 39 Figure 22. Point Loma, Box and Whisker Plot, Hourly Sum of Consumption ............................ 40...Figure 27. Coronado, Consumption vs Average Daily SD Temp, Rainfall, Wind ....................... 44 Figure 28. Naval Base Point Loma, One Line, Solar
McCallum, Lindsay C; Whitfield Aslund, Melissa L; Knopper, Loren D; Ferguson, Glenn M; Ollson, Christopher A
2014-02-15
The past five years has seen considerable expansion of wind power generation in Ontario, Canada. Most recently worries about exposure to electromagnetic fields (EMF) from wind turbines, and associated electrical transmission, has been raised at public meetings and legal proceedings. These fears have not been based on any actual measurements of EMF exposure surrounding existing projects but appear to follow from worries from internet sources and misunderstanding of the science. The study was carried out at the Kingsbridge 1 Wind Farm located near Goderich, Ontario, Canada. Magnetic field measurements were collected in the proximity of 15 Vestas 1.8 MW wind turbines, two substations, various buried and overhead collector and transmission lines, and nearby homes. Data were collected during three operational scenarios to characterize potential EMF exposure: 'high wind' (generating power), 'low wind' (drawing power from the grid, but not generating power) and 'shut off' (neither drawing, nor generating power). Background levels of EMF (0.2 to 0.3 mG) were established by measuring magnetic fields around the wind turbines under the 'shut off' scenario. Magnetic field levels detected at the base of the turbines under both the 'high wind' and 'low wind' conditions were low (mean = 0.9 mG; n = 11) and rapidly diminished with distance, becoming indistinguishable from background within 2 m of the base. Magnetic fields measured 1 m above buried collector lines were also within background (≤ 0.3 mG). Beneath overhead 27.5 kV and 500 kV transmission lines, magnetic field levels of up to 16.5 and 46 mG, respectively, were recorded. These levels also diminished rapidly with distance. None of these sources appeared to influence magnetic field levels at nearby homes located as close as just over 500 m from turbines, where measurements immediately outside of the homes were ≤ 0.4 mG. The results suggest that there is nothing unique to wind farms with respect to EMF exposure; in fact, magnetic field levels in the vicinity of wind turbines were lower than those produced by many common household electrical devices and were well below any existing regulatory guidelines with respect to human health.
What Factors Explain Harmful Algal Blooms of Dinophysis Along the Texas Coast?
NASA Astrophysics Data System (ADS)
Replogle, L.; Henrichs, D.; Campbell, L.
2016-02-01
The toxic dinoflagellate Dinophysis ovum is one of the harmful algal species that bloom along the Texas coast. Blooms of D. ovum can be explained by several factors that work together to cause bloom initiation. This work utilized image counts collected by the Imaging FlowCytobot (IFCB) at Port Aransas, TX and modeled winds from the European Centre for Medium-range Weather Forecasts. Based on a previous study of another dinoflagellate species, it was hypothesized that winds will be highly correlated with harmful algal bloom (HAB) years versus non-HAB years for D. ovum. Weak northerly winds and downwelling along the coast will be associated with HAB years, while strong northerly or southerly winds will be associated with non-HAB years. In non-HAB years, wind-driven currents caused by upcoast or strongly flowing downcoast winds will result in northward or southward movement of D. ovum cells. In HAB years, weaker downcoast winds will allow for accumulation of D. ovum at the coast. Results showed that weak downcoast, along-shore winds occurred in the weeks preceding HAB events in 2008, 2010, 2011, 2012 and 2014, and likely contributed to the accumulation of Dinophysis cells along the Texas coast. When winds moved upcoast or strongly downcoast in the weeks preceding bloom months, Dinophysis blooms did not occur. Additional factors (e.g. sea surface temperature, surface-based runoff, El Niño Southern Oscillation, North Atlantic Oscillation and salinity) were analyzed to better define a favorable environment for bloom formation. Sea surface temperature and surface based runoff were significantly correlated with bloom occurrence, whereas El Niño Southern Oscillation and the North Atlantic Oscillation were not.
Characteristics of Wind Generated Waves in the Delaware Estuary
NASA Astrophysics Data System (ADS)
Chen, J. L.; Ralston, D. K.; Geyer, W. R.; Chant, R. J.; Sommerfield, C. K.
2016-02-01
Coastal marshes provide important services for human uses such as fishery industry, recreation, ports and marine operations. Bombay Hook Wildlife Refuge, located along the western shore of the Delaware Estuary, has experienced substantial loss of salt marsh in recent decades. To evaluate the importance of different mechanisms which cause observed shoreline retreat, wave gauges were deployed along the dredged navigation channel and shoreline in the Delaware Estuary. A coupled wave and circulation modeling system (SWAN/ROMS) based on the most recent bathymetry (last updated 2013) is validated with waves observed during both calm and energetic conditions in November 2015. Simulation results based on different model parameterizations of whitecapping, bottom friction and the wind input source are compared. The tendency of observed wave steepness is more similar to a revised whitecapping source term [Westhuysen, 2007] than the default in SWAN model. Both model results and field data show that the generation/dissipation of waves in the Delaware estuary is determined by the local wind speed and channel depth. Whitecapping-induced energy dissipation is dominant in the channel, while dissipation due to bottom friction and depth-induced breaking become important on lateral shoals. To characterize the effects of wind fetch on waves in estuaries more generally, simulations with an idealized domain and varying wind conditions are compared and the results are expressed in terms of non-dimensional parameters. The simulations based on a 10m-depth uniform idealized channel show that the dissipation of waves is mainly controlled by whitecapping in all wind conditions. Under strong wind conditions (wind speed >10m/s) the effect of bottom friction becomes important so the simulated wave heights are no longer linearly correlated with wind speed.
Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock
NASA Astrophysics Data System (ADS)
Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.
2015-12-01
The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.
Review of Recent Development of Dynamic Wind Farm Equivalent Models Based on Big Data Mining
NASA Astrophysics Data System (ADS)
Wang, Chenggen; Zhou, Qian; Han, Mingzhe; Lv, Zhan’ao; Hou, Xiao; Zhao, Haoran; Bu, Jing
2018-04-01
Recently, the big data mining method has been applied in dynamic wind farm equivalent modeling. In this paper, its recent development with present research both domestic and overseas is reviewed. Firstly, the studies of wind speed prediction, equivalence and its distribution in the wind farm are concluded. Secondly, two typical approaches used in the big data mining method is introduced, respectively. For single wind turbine equivalent modeling, it focuses on how to choose and identify equivalent parameters. For multiple wind turbine equivalent modeling, the following three aspects are concentrated, i.e. aggregation of different wind turbine clusters, the parameters in the same cluster, and equivalence of collector system. Thirdly, an outlook on the development of dynamic wind farm equivalent models in the future is discussed.
Relationship between wind speed and gas exchange over the ocean
NASA Technical Reports Server (NTRS)
Wanninkhof, Rik
1992-01-01
A quadratic dependence of gas exchange on wind speed is employed to analyze the relationship between gas transfer and wind speed with particular emphasizing variable and/or low wind speeds. The quadratic dependence is fit through gas-transfer velocities over the ocean determined by methods based on the natural C-14 disequilibrium and the bomb C-14 inventory. The variation in the CO2 levels is related to these mechanisms, but the results show that other causes play significant roles. A weaker dependence of gas transfer on wind is suggested for steady winds, and long-term averaged winds demonstrate a stronger dependence in the present model. The chemical enhancement of CO2 exchange is also shown to play a role by increasing CO2 fluxes at low wind speeds.
Converter topologies and control
Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick
2018-05-01
An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.
Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines
McLaren, James D.
2012-01-01
A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843
Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.
McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem
2012-09-01
A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.
Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses
NASA Technical Reports Server (NTRS)
Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric
2008-01-01
The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.
Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin
2018-04-24
The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.
Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller
NASA Astrophysics Data System (ADS)
Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2016-09-01
In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).
NASA Astrophysics Data System (ADS)
May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.
2011-08-01
Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.
6. CLOSEUP VIEW OF TENFOOT WIND TUNNEL (1991). WrightPatterson ...
6. CLOSE-UP VIEW OF TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Vortex Advisory System Safety Analysis : Volume 1. Analytical Model
DOT National Transportation Integrated Search
1978-09-01
The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...
Vortex Advisory System : Volume 1. Effectiveness for Selected Airports.
DOT National Transportation Integrated Search
1980-05-01
The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...
The management submodel of the Wind Erosion Prediction System
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...
The Legacy of Admiral Beaufort
ERIC Educational Resources Information Center
Heidorn, Keith
1978-01-01
Francis Beaufort was a British naval officer who developed a wind force scale based on the effect of wind strength on frigate sails. Over the years, this scale has been modified, and today it is used internationally to describe the speed of the wind using numerical equivalents. (MA)
77 FR 44607 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
...-000. Applicants: Evergreen Wind Power, LLC. Description: Revisions to Market-Based Rate Tariff to be.... Docket Numbers: ER12-2268-000. Applicants: Evergreen Wind Power III, LLC. Description: Revisions to.... Applicants: Canadian Hills Wind, LLC. Description: Amendment to MBR Application and Tariff Revision to be...
Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851
NASA Astrophysics Data System (ADS)
Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo
2005-11-01
A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musial, Walter; Beiter, Philipp; Tegen, Suzanne
This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existingmore » site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.« less
A preliminary benefit-cost study of a Sandia wind farm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.
In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm.more » Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.« less
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
U.S. Hail Frequency and the Global Wind Oscillation
NASA Astrophysics Data System (ADS)
Gensini, Vittorio A.; Allen, John T.
2018-02-01
Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchak, David; Cochran, Jaquelin; Deshmukh, Ranjit
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important tomore » achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.« less
Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405
Power control for direct-driven permanent magnet wind generator system with battery storage.
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.
NASA Astrophysics Data System (ADS)
Ahmed, Mustafa Wasir; Baishya, Manash Jyoti; Sharma, Sasanka Sekhor; Hazarika, Manash
2018-04-01
This paper presents a detecting system on power transformer in transformer winding, core and on load tap changer (OLTC). Accuracy of winding deformation is determined using kNN based classifier. Winding deformation in power transformer can be measured using sweep frequency response analysis (SFRA), which can enhance the diagnosis accuracy to a large degree. It is suggested that in the results minor deformation faults can be detected at frequency range of 1 mHz to 2 MHz. The values of RCL parameters are changed when faults occur and hence frequency response of the winding will change accordingly. The SFRA data of tested transformer is compared with reference trace. The difference between two graphs indicate faults in the transformer. The deformation between 1 mHz to 1kHz gives winding deformation, 1 kHz to 100 kHz gives core deformation and 100 kHz to 2 MHz gives OLTC deformation.
Filament winding technique, experiment and simulation analysis on tubular structure
NASA Astrophysics Data System (ADS)
Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.
2018-04-01
Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.
Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation
Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal
2016-01-01
This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531
Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.
Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal
2016-12-23
This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.
This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less
NASA Astrophysics Data System (ADS)
Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.
2018-04-01
Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.
Coherent Doppler Wind Lidar Technology for Space Based Wind Measurements Including SPARCLE
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.
1999-01-01
It has been over 30 years since coherent lidar systems first measured wind velocity, and over 20 years since the "ultimate application" of measuring Earth's winds from space was conceived. Coherent or heterodyne optical detection involves the combination (or mixing) of the returned optical field with a local oscillator (LO) laser's optical field on the optical detector. This detection technique yields the benefits of dramatically improved signal-to-noise ratios; insensitivity to detector noise, background light and multiply scattered light; reduction of the returned signal's dynamic range; and preservation of the optical signal spectrum for electronic and computer processing. (Note that lidar systems are also referred to as optical radar, laser radar, and LADAR systems.) Many individuals, agencies, and countries have pursued the goal of space-based wind measurements through technology development, experiments, field campaigns and studies.
DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, Cameron; Capps, Scott
Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfiremore » Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.« less
Determination of the wind power systems load to achieve operation in the maximum energy area
NASA Astrophysics Data System (ADS)
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A.; Peiffer, Antoine; Schlipf, David
This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
...; Rockland Wind Farm, LLC This is a supplemental notice in the above-referenced proceeding of Rockland Wind Farm, LLC's application for market-based rate authority, with an accompanying rate tariff, noting that...
NASA Astrophysics Data System (ADS)
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-07-01
The study focuses on vibration response based health monitoring for an operating wind turbine, which features time-dependent dynamics under environmental and operational uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based Structural Health Monitoring framework postulated in a companion paper is adopted and assessed. The assessment is based on vibration response signals obtained from a simulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals originates from the continually evolving, due to blade rotation, inertial properties, as well as the wind characteristics, while uncertainty is introduced by random variations of the wind speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six distinct structural states, including the healthy state and five types of damage/fault in the tower, the blades, and the transmission, with each one of them characterized by four distinct levels. Random vibration response modeling and damage diagnosis are illustrated, along with pertinent comparisons with state-of-the-art diagnosis methods. The results demonstrate consistently good performance of the GMM-RC model based framework, offering significant performance improvements over state-of-the-art methods. Most damage types and levels are shown to be properly diagnosed using a single vibration sensor.
Innovative fiber-laser architecture-based compact wind lidar
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ
2016-03-01
This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.
A probabilistic neural network based approach for predicting the output power of wind turbines
NASA Astrophysics Data System (ADS)
Tabatabaei, Sajad
2017-03-01
Finding the authentic predicting tools of eliminating the uncertainty of wind speed forecasts is highly required while wind power sources are strongly penetrating. Recently, traditional predicting models of generating point forecasts have no longer been trustee. Thus, the present paper aims at utilising the concept of prediction intervals (PIs) to assess the uncertainty of wind power generation in power systems. Besides, this paper uses a newly introduced non-parametric approach called lower upper bound estimation (LUBE) to build the PIs since the forecasting errors are unable to be modelled properly by applying distribution probability functions. In the present proposed LUBE method, a PI combination-based fuzzy framework is used to overcome the performance instability of neutral networks (NNs) used in LUBE. In comparison to other methods, this formulation more suitably has satisfied the PI coverage and PI normalised average width (PINAW). Since this non-linear problem has a high complexity, a new heuristic-based optimisation algorithm comprising a novel modification is introduced to solve the aforesaid problems. Based on data sets taken from a wind farm in Australia, the feasibility and satisfying performance of the suggested method have been investigated.
Simulation of stochastic wind action on transmission power lines
NASA Astrophysics Data System (ADS)
Wielgos, Piotr; Lipecki, Tomasz; Flaga, Andrzej
2018-01-01
The paper presents FEM analysis of the wind action on overhead transmission power lines. The wind action is based on a stochastic simulation of the wind field in several points of the structure and on the wind tunnel tests on aerodynamic coefficients of the single conductor consisting of three wires. In FEM calculations the section of the transmission power line composed of three spans is considered. Non-linear analysis with deadweight of the structure is performed first to obtain the deformed shape of conductors. Next, time-dependent wind forces are applied to respective points of conductors and non-linear dynamic analysis is carried out.
The solar wind-magnetosphere-ionosphere system
Lyon
2000-06-16
The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.
Optimization of wind plant layouts using an adjoint approach
King, Ryan N.; Dykes, Katherine; Graf, Peter; ...
2017-03-10
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins.« less
Optimization of wind plant layouts using an adjoint approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Ryan N.; Dykes, Katherine; Graf, Peter
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins.« less
-based and offshore wind turbines. He also guides projects aimed at verifying, validating, and applying developing, verifying, and validating simulation models for offshore wind turbines. He is the principal investigator for a DOE-funded project to improve the modeling of offshore floating wind system dynamics. He
Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Newman, Jennifer
Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less
Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E. I.
The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. Thismore » conference poster outlines the elements of the new Wind Vision.« less
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai
2005-01-01
Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.
NASA Astrophysics Data System (ADS)
hassanpour Adeh, E.; Higgins, C. W.
2014-12-01
Wind turbines have been introduced as an energy source that does not require a large expenditure of water. However, recent simulation results indicate that wind turbines increase evaporation rates from the nearby land. In this research the effect of wind energy on irrigated agriculture is determined using a Surface Energy Balance Algorithm (SEBAL) on Landsat data spanning a 30 year interval. The analysis allows the characterization of evapotranspiration (ET) before and after wind turbine installations. The time history of ET from Landsat data will be presented for several major wind farms across the US. These data will be used to determine the impact on water demand due to presence of wind turbines.
NASA Astrophysics Data System (ADS)
Ferger, R.; Machens, U.
1985-05-01
A one-family house was equipped with a combined solar and wind energy system plus a night storage heater to measure the seasonal complementary contribution of wind and solar energy to energy demand. Project implementation, problems encountered and modifications to the initial system are described. Meteorological and operational data and house consumption data were recorded on computer-based measuring system. Data on the combined effects of and interdependence between solar collector and wind energy converter are discussed.
NASA Technical Reports Server (NTRS)
Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai
2004-01-01
Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
A rotor-aerodynamics-based wind estimation method using a quadrotor
NASA Astrophysics Data System (ADS)
Song, Yao; Luo, Bing; Meng, Qing-Hao
2018-02-01
Attempts to estimate horizontal wind by the quadrotor are reviewed. Wind estimations are realized by utilizing the quadrotor’s thrust change, which is caused by the wind’s effect on the rotors. The basis of the wind estimation method is the aerodynamic formula for the rotor’s thrust, which is verified and calibrated by experiments. A hardware-in-the-loop simulation (HILS) system was built as a testbed; its dynamic model and control structure are demonstrated. Verification experiments on the HILS system proved that the wind estimation method was effective.
The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects
Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah
2016-01-01
Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.
Wind Power Potential at Abandoned Mines in Korea
NASA Astrophysics Data System (ADS)
jang, M.; Choi, Y.; Park, H.; Go, W.
2013-12-01
This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.
Power Performance Verification of a Wind Farm Using the Friedman's Test.
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L
2016-06-03
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
Power Performance Verification of a Wind Farm Using the Friedman’s Test
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.
2016-01-01
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628
Sampling Of SAR Imagery For Wind Resource Assesment
NASA Astrophysics Data System (ADS)
Badger, Merete; Badger, Jake; Hasager, Charlotte; Nielsen, Morten
2010-04-01
Wind resources over the sea can be assessed from a series of wind fields retrieved from Envisat ASAR imagery, or other SAR data. Previous wind resource maps have been produced through random sampling of 70 or more satellite scenes over a given area of interest followed by fitting of a Weibull function to the data. Here we introduce a more advanced sampling strategy based on wind class methodology that is normally applied in Risø DTU’s numerical modeling of wind resources. The aim is to obtain a more representative data set using fewer satellite SAR scenes. The new sampling strategy has been applied within a wind and solar resource assessment study for the United Arab Emirates (UAE) and also for wind resource mapping over a domain in the North Sea, as part of the EU- NORSEWInD project (2008-2012).
Wind measurements by electromagnetic probes
NASA Technical Reports Server (NTRS)
Susko, Michael
1989-01-01
The operation and performance characteristics of the Marshall Space Flight Center's Radar Wind Profiler, designed to provide measurement of the wind in the troposphere, are discussed. The Radar Wind Profiler uses a technology similar to that used in conventional Doppler radar systems, except the frequency is generally lower, antenna is larger, and dwell time is much longer. Its primary function is to monitor the vertical wind profile prior to launch of the Space Shuttle at more frequency intervals and nearer to launch time than is presently possible with the conventional balloon systems. A new wind profile will be obtained on the order of every 15 min based on an average of five wind profiles measured every 3 min at a height interval of 150 m to 20 km. The most significant features of the Radar Wind Profiler are the continuity in time and reliability.
Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.
NASA Astrophysics Data System (ADS)
Osczevski, Randall J.
2000-12-01
Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.
The Great Plains Wind Power Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John
2014-01-30
This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texasmore » Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.« less
Fault Diagnosis System of Wind Turbine Generator Based on Petri Net
NASA Astrophysics Data System (ADS)
Zhang, Han
Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.
NASA Astrophysics Data System (ADS)
Gallant, Joseph
2002-02-01
The distinctive shape of the Eiffel Tower is based on simple physics and is designed so that the maximum torque created by the wind is balanced by the torque due to the Tower's weight. We use this idea to generate an equation for the shape of the Tower. The solution depends only on the width of the base and the maximum wind pressure. We parametrize the wind pressure and reproduce the shape of the Tower. We also discuss some of the Tower's interesting history and characteristics.
Lidar for Wind and Optical Turbulence Profiling
NASA Astrophysics Data System (ADS)
Fastig, Shlomo; Porat, Omer; Englander, Abraham; Sprung, Detlev; Stein, Karin U.; Sucher, Erik
2018-04-01
A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Kipp, H. W.
1974-01-01
Wind tunnel tests were conducted to determine the aerodynamic heating created by gaps in the reusable surface insulation (RSI) thermal protection system (TPS) for the space shuttle. The effects of various parameters of the RSI on convective heating characteristics are described. The wind tunnel tests provided a data base for accurate assessment of gap heating. Analysis and correlation of the data provide methods for predicting heating in the RSI gaps on the space shuttle.
Global Reference Atmosphere Model (GRAM)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Blocker, Rhonda; Justus, C. G.
1993-01-01
4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.
Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations
This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of de...
Environmental Assessment for Proposed Utility Corridors at Edwards Air Force Base, California
2016-07-01
AFB. Coordinating with local communities will serve to ensure all communications towers, wind turbines , residential development and other...Minimis Thresholds in Nonattainment Areas ...................................................................... 35 Table 3-4 Wind Erodibility...125 Table 4-3 Summary of Cultural Resources Associated with Proposed Utility Corridors ........................ 126 Table 4-4 Wind