Sample records for dft calculations molecular

  1. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  2. Spectroscopic and molecular structure investigation of 2-furanacrylic acid monomer and dimer using HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Ghalla, H.; Issaoui, N.; Govindarajan, M.; Flakus, H. T.; Jamroz, M. H.; Oujia, B.

    2014-02-01

    In the present work, we reported a combined experimental and theoretical study on molecular structure and vibrational spectra of 2-furanacrylic acid (abbreviated as 2FAA). The FT-IR and FT-Raman spectra of 2FAA have been recorded in the regions 4000-400 and 4000-100 cm-1. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The monomer and dimer structures of the title molecule have been obtained from Hartree-Fock (HF) and density functional theory (DFT) B3LYP methods with 6-311++G(d,p) as basis set calculations. The vibrational frequencies were calculated by DFT method and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. Intermolecular OH⋯O hydrogen bonds are discussed in dimer structure of the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. A study on the electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. In addition, Milliken atomic charges, possible charge transfer, natural bond orbital (NBO) and AIM topological analysis were performed. Moreover, molecular electrostatic potential (MEP) and the thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  3. Ferrocenyl-substituted dinuclear Cu(II) complex: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity

    NASA Astrophysics Data System (ADS)

    Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail

    2016-02-01

    A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.

  4. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  5. Localized-overlap approach to calculations of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Rob, Fazle

    Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.

  6. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  7. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  8. Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Saravanan, R. R.; Seshadri, S.; Gunasekaran, S.; Mendoza-Meroño, R.; Garcia-Granda, S.

    2015-03-01

    Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT-B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.

  9. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  10. Conformational stability, vibrational spectra, molecular structure, NBO and HOMO-LUMO analysis of 5-nitro-2-furaldehyde oxime based on DFT calculations.

    PubMed

    Arivazhagan, M; Jeyavijayan, S; Geethapriya, J

    2013-03-01

    The FTIR and FT-Raman spectra of 5-nitro-2-furaldehyde oxime (NFAO) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The total energies of different conformations have been obtained from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The computational results identify the most stable conformer of NFAO as the C1 form. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of NFAO is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. Besides, molecular electrostatic potential (MEP), HOMO and LUMO analysis, and several thermodynamic properties were performed by the DFT method. Mulliken's net charges have been calculated and compared with the natural atomic charges. Ultraviolet-visible spectrum of the title molecule has also been calculated using TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory

    NASA Astrophysics Data System (ADS)

    Issaoui, Noureddine; Ghalla, Houcine; Muthu, S.; Flakus, H. T.; Oujia, Brahim

    2015-02-01

    In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed.

  12. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory.

    PubMed

    Issaoui, Noureddine; Ghalla, Houcine; Muthu, S; Flakus, H T; Oujia, Brahim

    2015-02-05

    In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Solvent effects on the properties of hyperbranched polythiophenes.

    PubMed

    Torras, Juan; Zanuy, David; Aradilla, David; Alemán, Carlos

    2016-09-21

    The structural and electronic properties of all-thiophene dendrimers and dendrons in solution have been evaluated using very different theoretical approaches based on quantum mechanical (QM) and hybrid QM/molecular mechanics (MM) methodologies: (i) calculations on minimum energy conformations using an implicit solvation model in combination with density functional theory (DFT) or time-dependent DFT (TD-DFT) methods; (ii) hybrid QM/MM calculations, in which the solute and solvent molecules are represented at the DFT level as point charges, respectively, on snapshots extracted from classical molecular dynamics (MD) simulations using explicit solvent molecules, and (iii) QM/MM-MD trajectories in which the solute is described at the DFT or TD-DFT level and the explicit solvent molecules are represented using classical force-fields. Calculations have been performed in dichloromethane, tetrahydrofuran and dimethylformamide. A comparison of the results obtained using the different approaches with the available experimental data indicates that the incorporation of effects associated with both the conformational dynamics of the dendrimer and the explicit solvent molecules is strictly necessary to satisfactorily reproduce the properties of the investigated systems. Accordingly, QM/MM-MD simulations are able to capture such effects providing a reliable description of electronic properties-conformational flexibility relationships in all-Th dendrimers.

  14. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  15. Length dependence of electron transport through molecular wires--a first principles perspective.

    PubMed

    Khoo, Khoong Hong; Chen, Yifeng; Li, Suchun; Quek, Su Ying

    2015-01-07

    One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off-resonant tunneling in the systems under investigation. Calculations show that the tunneling decay constant beta is a robust quantity that does not depend on details of the contact geometry, provided that the same contact geometry is used for all molecular lengths considered. However, because conductance is sensitive to contact geometry, values of beta obtained by considering conductance values where the contact geometry is changing with the molecular junction length can be quite different. Experimentally measured values of beta in general compare well with beta obtained using DFT + Sigma and GW transport calculations, while discrepancies can be attributed to changes in the experimental contact geometries with molecular length. This review also summarizes experimental and theoretical efforts towards finding perfect molecular wires with high conductance and small beta values.

  16. DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.

    2014-08-01

    The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.

  17. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  18. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

  19. Synthesis and DFT calculations of some 2-aminothiazoles

    NASA Astrophysics Data System (ADS)

    Rezania, Jafar; Behzadi, Hadi; Shockravi, Abbas; Ehsani, Morteza; Akbarzadeh, Elahe

    2018-04-01

    A series of 2-aminothiazole derivatives have been synthesized by the reaction of acetyl compounds with thiourea and iodine as catalyst under solvent-free condition, a green chemistry method. The quantum chemical calculations at the DFT/B3LYP level of theory in gas phase were carried out for starting acetyl derivatives. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and related reactivity descriptor of acetyl derivatives, as well as, enthalpy of reactions are calculated in order to investigate the reaction properties of acetyl compounds and yields of the reactions. The calculated reactivity descriptors are well correlated to activity of different acetyl derivatives.

  20. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile

    NASA Astrophysics Data System (ADS)

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal

    2015-04-01

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.

  1. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  2. Molecular structure and vibrational spectra of Irinotecan: a density functional theoretical study.

    PubMed

    Chinna Babu, P; Sundaraganesan, N; Sudha, S; Aroulmoji, V; Murano, E

    2012-12-01

    The solid phase FTIR and FT-Raman spectra of Irinotecan have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d) as basis set. The vibrational frequencies were calculated for Irinotecan by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared spectrum was also simulated from the calculated intensities. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. On the computation of molecular surface correlations for protein docking using fourier techniques.

    PubMed

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  4. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less

  5. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Tanuja, D

    2012-11-01

    In this work, the experimental and theoretical study on the molecular structure and vibrational spectra of 2,4,5-trichloroaniline (C(6)H(4)NCl(3), abbreviated as 2,4,5-TClA) were studied. The FT-IR and FT-Raman spectra were recorded. The molecular geometry and vibrational frequencies in the ground state were calculated by using the Hartree-Fock (HF) and density functional theory (DFT) methods (B3LYP) with 6-311++G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of 2,4,5-TClA with calculated results by HF and DFT indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4,5-TClA molecule may have microscopic nonlinear optical (NLO) behavior with non-zero values. Mulliken atomic charges of 2,4,5-TClA was calculated and compared with aniline and chlorobenzene molecules. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Sathe, V G; Milton Franklin Benial, A

    2014-08-14

    The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Conformational, vibrational spectroscopic and quantum chemical studies on 5-methoxyindole-3-carboxaldehyde: A DFT approach

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin

    2018-04-01

    Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.

  9. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    DTIC Science & Technology

    2017-10-31

    of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms

  10. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione

    NASA Astrophysics Data System (ADS)

    Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep

    2018-07-01

    The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.

  11. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.

    PubMed

    Cho, Yeonchoo; Cho, Woo Jong; Youn, Il Seung; Lee, Geunsik; Singh, N Jiten; Kim, Kwang S

    2014-11-18

    CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.

  12. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method.

    PubMed

    Xu, Zhongnan; Joshi, Yogesh V; Raman, Sumathy; Kitchin, John R

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  13. Single molecule conductivity: the role of junction-orbital degeneracy in the artificially high currents predicted by ab initio approaches.

    PubMed

    Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S

    2004-10-08

    A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies.

  14. Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone

    NASA Astrophysics Data System (ADS)

    Sroczyński, Dariusz; Malinowski, Zbigniew

    2017-12-01

    The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.

  15. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile.

    PubMed

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal

    2015-04-05

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Sweetman, A. M.; Lekkas, I.; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2015-02-01

    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images.

  17. Spectroscopic (FT-IR, FT-Raman) and quantum mechanical studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Savithiri, S.; Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Bharanidharan, S.; Saleem, H.

    2015-02-01

    In this study, the molecular structure and vibrational spectra of 3t-pentyl2r,6c-diphenylpiperidin-4-one thiosemicarbazone (PDPOTSC) were studied. The ground-state molecular geometry was ascertained by using the density functional theory (DFT)/B3LYP method using 6-31++G(d,p) as a basis set. The vibrational (FT-IR and FT-Raman) spectra of PDPOTSC were computed using DFT/B3LYP and HF methods with 6-31++G(d,p) basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED ⩾ 10%) of the vibrational modes, calculated with scaled quantum mechanics (SQM) methods PQS program. The electrical dipole moment (μ) and first hyperpolarizability (βo) values have been computed using DFT/B3LYP and HF methods. The calculated result (βo) shows that the title molecule might have nonlinear optical (NLO) behavior. Atomic charges of C, N, S and molecular electrostatic potential (MEP) were calculated using B3LYP/6-31G++(d,p). The HOMO-LUMO energies were calculated and natural bonding orbital (NBO) analysis has also been carried out.

  18. A conceptual DFT study of the molecular properties of glycating carbonyl compounds.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Several glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties. In particular, the chemical reactivity descriptors that arise from conceptual density functional theory and chemical reactivity theory have been calculated through a [Formula: see text]SCF protocol. The validity of the KID (Koopmans' in DFT) procedure has been checked by comparing the reactivity descriptors obtained from the values of the HOMO and LUMO with those calculated through vertical energy values. The reactivity sites have been determined by means of the calculation of the Fukui function indices, the condensed dual descriptor [Formula: see text] and the electrophilic and nucleophilic Parr functions. The glycating power of the studied compounds have been compared with the same property for simple carbohydrates.Graphical abstractSeveral glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties, the chemical reactivity descriptors and the validity of the KID (Koopmans' in DFT) procedure.

  19. DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shahabi, Dana; Tavakol, Hossein

    2017-10-01

    In this study, noncovalent interactions between Fluoxetine (FX) and different carbon nanotubes (CNTs) or sulfur doped carbon nanotubes (SCNTs) were fully considered using DFT, natural bond orbital (NBO) and molecular docking calculations. Two different CNTs (and SCNTs) with 7,7 and 8,8 chiralities were considered as the adsorbents and the adsorption of FX by these adsorbents were studied in two cases: into the nanotubes and on their surfaces. The results of DFT and NBO calculations proposed that the 8,8 nanotubes are more suitable adsorbents for FX because the energies of their adsorptions are minimum. Population: analyses were also proposed that the adsorption of FX by SCNTs lead to more changes in electronic and sensing properties than the adsorption by CNTs. Moreover, the adsorption energies, obtained from molecular docking calculations (using 94 different models), proposed that the adsorption of FX into (versus out of) the nanotubes, adsorption processes by double-walled or triple-walled (versus single-walled) nanotubes and the adsorption by nanotubes with 8,8 chiralities are the most favorable adsorption processes.

  20. Pseudopotential for ab initio calculations of uranium compounds

    NASA Astrophysics Data System (ADS)

    Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.

    2018-01-01

    The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker-Teter-Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.

  1. Benchmarking the Bethe–Salpeter Formalism on a Standard Organic Molecular Set

    PubMed Central

    2015-01-01

    We perform benchmark calculations of the Bethe–Salpeter vertical excitation energies for the set of 28 molecules constituting the well-known Thiel’s set, complemented by a series of small molecules representative of the dye chemistry field. We show that Bethe–Salpeter calculations based on a molecular orbital energy spectrum obtained with non-self-consistent G0W0 calculations starting from semilocal DFT functionals dramatically underestimate the transition energies. Starting from the popular PBE0 hybrid functional significantly improves the results even though this leads to an average −0.59 eV redshift compared to reference calculations for Thiel’s set. It is shown, however, that a simple self-consistent scheme at the GW level, with an update of the quasiparticle energies, not only leads to a much better agreement with reference values, but also significantly reduces the impact of the starting DFT functional. On average, the Bethe–Salpeter scheme based on self-consistent GW calculations comes close to the best time-dependent DFT calculations with the PBE0 functional with a 0.98 correlation coefficient and a 0.18 (0.25) eV mean absolute deviation compared to TD-PBE0 (theoretical best estimates) with a tendency to be red-shifted. We also observe that TD-DFT and the standard adiabatic Bethe–Salpeter implementation may differ significantly for states implying a large multiple excitation character. PMID:26207104

  2. Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.

  3. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    NASA Astrophysics Data System (ADS)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  4. Interaction between benzenedithiolate and gold: classical force field for chemical bonding.

    PubMed

    Leng, Yongsheng; Krstić, Predrag S; Wells, Jack C; Cummings, Peter T; Dean, David J

    2005-06-22

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  5. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    PubMed

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. DFT calculations on molecular structure, spectral analysis, multiple interactions, reactivity, NLO property and molecular docking study of flavanol-2,4-dinitrophenylhydrazone

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra Kumar; Singh, Ashok Kumar

    2017-02-01

    A new flavanol-2,4-dinitrophenylhydrazone (FDNP) was synthesized and its structure was confirmed by FT-IR, FT-Raman, 1H NMR, mass spectrometry and elemental analysis. All quantum chemical calculations were carried out at level of density functional theory (DFT) with B3LYP functional using 6-311++ G (d,p) basis atomic set. UV-Vis absorption spectra for the singlet-singlet transition computed for fully optimized ground state geometry using Time-Dependent-Density Functional Theory (TD-DFT) with CAM-B3LYP functional was found to be in consistent with that of experimental findings. Analysis of vibrational (FT-IR and FT-Raman) spectrum and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. HOMO-LUMO analysis was performed and reactivity descriptors were calculated. Calculated global electrophilicity index (ω = 7.986 eV) shows molecule to be a strong electrophile. 1H NMR chemical shift calculated with the help of gauge-including atomic orbital (GIAO) approach shows agreement with experimental data. Various intramolecular interactions were analysed by AIM approach. DFT computed total first static hyperpolarizability (β0 = 189.03 × 10-30 esu) indicates that title molecule can be used as attractive future NLO material. Solvent induced effects on the NLO properties studied by using self-consistent reaction field (SCRF) method shows that β0 value increases with increase in solvent polarity. To study the thermal behaviour of title molecule, thermodynamic properties such as heat capacity, entropy and enthalpy change at various temperatures have been calculated and reported. Molecular docking results suggests title molecule to be a potential kinase inhibitor and might be used in future for designing of new anticancer drug.

  7. The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method

    DOE PAGES

    Ma, Jie; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...

    2016-06-30

    We apply a recently developed Wannier-Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. These results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.

  8. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  9. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: a DFT computational study.

    PubMed

    Tanak, Hasan; Marchewka, Mariusz K; Drozd, Marek

    2013-03-15

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of N-H···O, N-H···N and O-H···O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Spectroscopic (FT-IR, FT-Raman and UV-Visible) investigations, NMR chemical shielding anisotropy (CSA) parameters of 2,6-Diamino-4-chloropyrimidine for dye sensitized solar cells using density functional theory.

    PubMed

    Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K

    2015-02-05

    The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  12. Communication: Density functional theory embedding with the orthogonality constrained basis set expansion procedure

    NASA Astrophysics Data System (ADS)

    Culpitt, Tanner; Brorsen, Kurt R.; Hammes-Schiffer, Sharon

    2017-06-01

    Density functional theory (DFT) embedding approaches have generated considerable interest in the field of computational chemistry because they enable calculations on larger systems by treating subsystems at different levels of theory. To circumvent the calculation of the non-additive kinetic potential, various projector methods have been developed to ensure the orthogonality of molecular orbitals between subsystems. Herein the orthogonality constrained basis set expansion (OCBSE) procedure is implemented to enforce this subsystem orbital orthogonality without requiring a level shifting parameter. This scheme is a simple alternative to existing parameter-free projector-based schemes, such as the Huzinaga equation. The main advantage of the OCBSE procedure is that excellent convergence behavior is attained for DFT-in-DFT embedding without freezing any of the subsystem densities. For the three chemical systems studied, the level of accuracy is comparable to or higher than that obtained with the Huzinaga scheme with frozen subsystem densities. Allowing both the high-level and low-level DFT densities to respond to each other during DFT-in-DFT embedding calculations provides more flexibility and renders this approach more generally applicable to chemical systems. It could also be useful for future extensions to embedding approaches combining wavefunction theories and DFT.

  13. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sundaraganesan, N.; Manoharan, S.

    2009-10-01

    Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.

  14. Synthesis, characterization and DFT studies of two new silver(I) complexes with 3,4-lutidine

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; Assem, Rania; Abu-Youssef, Morsy A. M.; Kassem, Taher S.

    2015-04-01

    The synthesis, characterization and molecular structure of two new Ag(I) complexes with 3,4-lutidine (34lut) have been reported. The [Ag(34lut)3(OAC)]; 1 and [Ag(34lut)2(TFA)]; 2 complexes, where OAC and TFA are acetate and trifluoroacetate respectively, have been characterized using elemental analysis, FTIR, NMR and mass spectra. Their molecular structures were calculated using DFT quantum chemical calculations. Both 1 and 2 were found to have distorted tetrahedral geometry around the Ag(I). The spectroscopic properties of the studied complexes have been calculated using the same level of theory. The Infrared vibrational frequencies of the COO stretches confirmed that the OAC is monodentate in 1 while the TFA is bidentate in 2. The calculated polarizability (α0) and HOMO-LUMO energy gap (ΔE) values indicated that 1 has higher NLO activity than 2. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The calculated 1H NMR chemical shift values using GIAO approach showed good correlations with the experimental data. The interaction energies using the second order perturbation theory have been used to study the different intramolecular charge transfer interactions in the studied complexes. The NBO calculations indicated that both the Agsbnd O bonds are almost identical in 2 but not in 1.

  15. Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: Application to silicon dioxide

    DOE PAGES

    Sjostrom, Travis; Crockett, Scott

    2015-09-02

    The liquid regime equation of state of silicon dioxide SiO 2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing amore » new liquid regime equation of state table for SiO 2.« less

  16. Synthesis of 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3, 5-dioxohepta-1, 6-dienyl)-2-methoxyphenyl 4-fluorobenzoate, a novel monoester derivative of curcumin, its experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap

    2016-04-01

    Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.

  17. Melting slope of MgO from molecular dynamics and density functional theory

    NASA Astrophysics Data System (ADS)

    Tangney, Paul; Scandolo, Sandro

    2009-09-01

    We combine density functional theory (DFT) with molecular dynamics simulations based on an accurate atomistic force field to calculate the pressure derivative of the melting temperature of magnesium oxide at ambient pressure—a quantity for which a serious disagreement between theory and experiment has existed for almost 15 years. We find reasonable agreement with previous DFT results and with a very recent experimental determination of the slope. We pay particular attention to areas of possible weakness in theoretical calculations and conclude that the long-standing discrepancy with experiment could only be explained by a dramatic failure of existing density functionals or by flaws in the original experiment.

  18. Comparison of electron transport calculations in warm dense matter using the Ziman formula

    DOE PAGES

    Burrill, D. J.; Feinblum, D. V.; Charest, M. R. J.; ...

    2016-02-10

    The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to the accurate, but expensive Kohn–Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. As a result, the comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KS-DFT-MD results, but at a fraction of the computational cost.

  19. Synthesis, theoretical studies and molecular docking of a novel chlorinated tetracyclic: (Z/E)-3-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde

    NASA Astrophysics Data System (ADS)

    Sultan, Mujeeb A.; Almansour, Abdulrahman I.; Pillai, Renjith Raveendran; Kumar, Raju Suresh; Arumugam, Natarajan; Armaković, Stevan; Armaković, Sanja J.; Soliman, Saied M.

    2017-12-01

    (Z/E)-3-(1,8-Dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde 2 has been investigated experimentally and theoretically. The Wittig reaction of 1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carbaldehyde 1 and (triphenylphosphoranylidene) acetaldehyde in toluene under reflux conditions resulted in compound 2. Spectroscopic characterization of compound 2 was performed by the Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectroscopy techniques. Density functional theory (DFT) calculations were conducted to study various global and local reactive properties. The spectra were also obtained by DFT calculations and corresponding comparisons were performed to validate the level of theory. Using DFT calculations, reactivity has been studied based on frontier molecular orbitals, charge distribution, average local ionization energies, Fukui functions, and bond dissociation energies for hydrogen abstraction. Molecular dynamics simulations have been used to investigate the influence of water as a solvent for compound 2. Finally, compound 2 was docked into the central and allosteric binding sites of the serotonin transporter enzyme and was found to be a good candidate as an antidepressant-like compound.

  20. Insight into the C-F bond mechanism of molecular analogs for antibacterial drug design.

    PubMed

    Liu, Junna; Lv, Biyu; Liu, Huaqing; Li, Xin; Yin, Weiping

    2018-06-01

    The activities of biological molecules usually rely on both of intra-molecular and intermolecular interactions between their function groups. These interactions include interonic attraction theory, Van der Waal's forces and the function of geometry on the individual molecules, whether they are naturally or synthetic. The purpose of this study was to evaluate the antibacterial activity of C-F bond compound using combination of experiments verification and theoretical calculation. We target on the insect natural products from the maggots of Chrysomyis megacephala Fabricius. Based on density functional theory(DFT) and B3LYP method, a theoretical study of the C-F bond on fluoride was designed to explore compounds 2 and 4 antibacterial structure-activity relationship. With the progress in DFT, first-principle calculation based on DFT has gradually become a routine method for drug design, quantum chemistry and other science fields.

  1. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  2. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), Fukui function, antimicrobial and molecular docking study of (E)-1-(3-bromobenzylidene)semicarbazide by DFT method

    NASA Astrophysics Data System (ADS)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.

    2017-02-01

    The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.

  4. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach.

    PubMed

    Cecchet, F; Lis, D; Caudano, Y; Mani, A A; Peremans, A; Champagne, B; Guthmuller, J

    2012-03-28

    The knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular, DFT calculations have been carried out on three classes of models for the aliphatic chains. The first class of models consists of aliphatic chains, containing from 3 to 12 carbon atoms, in which only one methyl group can freely vibrate, while the rest of the chain is frozen by a strong overweight of its C and H atoms. This enables us to localize the probed vibrational modes on the methyl group. In the second class, only one methyl group is frozen, while the entire remaining chain is allowed to vibrate. This enables us to analyse the influence of the aliphatic chain on the methyl stretching vibrations. Finally, the dodecanethiol (DDT) molecule is considered, for which the effects of two dielectrics, i.e. n-hexane and n-dodecane, are investigated. Moreover, DDT calculations are also carried out by using different exchange-correlation (XC) functionals in order to assess the DFT approximations. Using the DFT IR vectors and Raman tensors, the SFG spectrum of DDT has been simulated and the orientation of the methyl group has then been deduced and compared with that obtained using an analytical approach based on a bond additivity model. This analysis shows that when using DFT molecular properties, the predicted orientation of the terminal methyl group tends to converge as a function of the alkyl chain length and that the effects of the chain as well as of the dielectric environment are small. Instead, a more significant difference is observed when comparing the DFT-based results with those obtained from the analytical approach, thus indicating the importance of a quantum chemical description of the hyperpolarizability tensor elements of the methyl group. © 2012 IOP Publishing Ltd

  5. One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Sethi, Arun; Singh, Ranvijay Pratap

    2016-08-01

    A novel Curcumin-NSAIDs prodrug 4-((1E, 3Z, 6E)-3-hydroxy-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,3-trienyl)-2-methoxyphenyl-2-(4-isobutylphenyl) propanoate (2) derivative was synthesized by Steglich esterification in high yield and characterized with the help of 1H, 13C NMR, 1H-1H COSY, UV, FT-IR spectroscopy and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using two different basis set 6-31G (d, p) and 6-311G (d, p). Conformational analysis of 2 was carried out to determine the most stable conformation. Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global and local reactivity descriptors were calculated to study the reactive site within molecule. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability value has been calculated to describe the nonlinear optical (NLO) property of the synthesized compound. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity.

  6. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  7. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline

    NASA Astrophysics Data System (ADS)

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C.; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E.

    2015-10-01

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.

  8. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  9. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.

    PubMed

    Dieterich, Johannes M; Werner, Hans-Joachim; Mata, Ricardo A; Metz, Sebastian; Thiel, Walter

    2010-01-21

    Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol(-1). The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.

  10. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.

    2018-03-01

    Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.

  11. Study on conformational stability, molecular structure, vibrational spectra, NBO, TD-DFT, HOMO and LUMO analysis of 3,5-dinitrosalicylic acid by DFT techniques

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayabharathi, J.; Ayyapan, S.; Amalanathan, M.; Oudayakumar, K.; Herman, Ignatius A.

    2015-02-01

    In this work we analyzed the vibrational spectra of 3,5-dinitrosalicylic acid (3,5DNSA) molecule. The total energy of eight possible conformers can be calculated by Density Functional Theory with 6-31G(d,p) as basis set to find the most stable conformer. Computational result identify the most stable conformer of 3,5DNSA is C6. The assignments of the vibrational spectra have been carried out by computing Total Energy Distribution (TED). The molecular geometry, second order perturbation energies and Electron Density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites for 3,5-DNSA molecular analyzed on the basis of Natural Bond Orbital (NBO) analysis. The formation of inter and intramolecular hydrogen bonding between sbnd OH and sbnd COOH group gave the evidence for the formation of dimer formation for 3,5-DNSA molecule. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra.

  12. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  13. Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin

    2017-05-01

    Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.

  14. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells

    NASA Astrophysics Data System (ADS)

    El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.

    2018-05-01

    Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.

  15. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  16. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  17. Plane-Wave DFT Methods for Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.

    A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.

  18. Molecular structure, vibrational spectra, NBO analysis, first hyperpolarizability, and HOMO-LUMO studies of 2-amino-4-hydroxypyrimidine by density functional method

    NASA Astrophysics Data System (ADS)

    Jeyavijayan, S.

    2015-04-01

    This study is a comparative analysis of FTIR and FT-Raman spectra of 2-amino-4-hydroxypyrimidine. The total energies of different conformations have been obtained from DFT (B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The barrier of planarity between the most stable and planar form is also predicted. The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for the molecule using the B3LYP density functional theory (DFT) method. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. Reliable vibrational assignments were made on the basis of total energy distribution (TED) along with scaled quantum mechanical (SQM) method. The stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecule have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides, molecular electrostatic potential (MEP), Mulliken's charges analysis, and several thermodynamic properties were performed by the DFT method.

  19. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih

    2014-06-05

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih

    2014-06-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  1. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.

    2014-10-01

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  2. Multiphase aluminum equations of state via density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Travis; Crockett, Scott; Rudin, Sven

    2016-10-03

    We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics, and orbital-free DFT are employed. Our results are then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We also provide extensive comparison with experiment, and based on this we also provide amore » slightly modified equation of state for the aluminum 6061 alloy.« less

  3. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  4. Calculation of the vibrational spectra of betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, Miroslaw; Koput, Jacek

    1997-02-01

    The molecular geometries of betaine hydrochloride, BET·HCl, and free protonated betaine, BET·H +, were calculated with the 6-31G(d,p) basis set at the SCF, MP2 and DFT levels of theory. At the SCF level, the minimum energy corresponds to the ionic pair, B +Htctdot;A -, however, the equilibrium Otctdot;Cl distance is 0.14 Å shorter than the X-ray value. Inclusion of the correlation effects, both at the MP2 and DFT levels, predicts a minimum energy for the molecular complex, Btctdot;H-A, with the equilibrium Otctdot;Cl distance close to the experimental value. The frequencies and intensities of the vibrational bands of BET·HCl, BET·DCl and BET·H + were calculated at the SCF and DFT levels and compared with the solid IR spectra. All measured IR bands were interpreted in term of the calculated vibrational modes. The rms deviations between the experimental and calculated SCF frequencies were 21 and 29 cm -1 for BET·HCl and BET·DCl, respectively. The computed band intensities agree qualitatively with the experimental data. The coupling of the CO stretching and OH bending modes are discussed. The summation bands are probably enhanced in intensity by Fermi resonance with the fundamentals responsible for the main ν(OH) (ν(OD) absorption region.

  5. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul

    2016-03-01

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  6. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). Formore » the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.« less

  7. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less

  8. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  9. Raman spectra and DFT calculations for botryococcene and methylsqualene hydrocarbons from the B race of the green microalga Botryococcus braunii

    NASA Astrophysics Data System (ADS)

    Tatli, Mehmet; Chun, Hye Jin; Camp, Charles H.; Li, Jingting; Cicerone, Marcus T.; Shih, Wei-Chuan; Laane, Jaan; Devarenne, Timothy P.

    2017-11-01

    Botryococcus braunii, a green colonial microalga, is a prodigious producer of liquid hydrocarbon oils that can be used as renewable feedstocks for producing combustion engine fuels. The B race of B. braunii mainly produces the triterpene hydrocarbons known as botryococcenes, which have over twenty known structures. Minor hydrocarbons in the B race include the triterpene methylsqualenes. Here we report an examination of the molecular structure for ten botryococcenes and five methylsqualenes using Raman spectroscopy and density functional theory (DFT) calculations in an effort to distinguish between these structurally similar molecules by spectroscopic approaches. The DFT calculations show that these molecules have between 243 and 271 vibrational frequencies. A comparison of the experimental Raman spectroscopy and DFT calculations indicates several spectral regions such as those for ν(Cdbnd C) stretching, CH2/CH3 bending, and ring bending can be used to distinguish between these molecules. In an extension of this analysis, a broadband coherent anti-Stokes Raman spectroscopy (BCARS) analysis was used to clearly distinguish between several botryococcenes isomers.

  10. Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Zainuri, D. Alwani; Arshad, Suhana; Khalib, N. Che; Razak, I. Abdul; Pillai, Renjith Raveendran; Sulaiman, S. Fariza; Hashim, N. Shafiqah; Ooi, K. Leong; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-01-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system with P21/c space group with the unit cell parameters of a = 16.147 (2) Å, b = 14.270 (2) Å, c = 5.9058 (9) Å, β = 92.577 (3)° and Z = 4. The molecular geometry obtained from X-Ray structure determination was optimized by Density Functional Theory (DFT) using B3LYP/6-31G+(d, p)/Lanl2dz(f) method in the ground state. The IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. In order to investigate local reactivity properties of the title molecule, we have conducted DFT calculations of average local ionization energy surface and Fukui functions which were mapped to the electron density surface. In order to predict the open air stability and possible degradation properties, within DFT approach, we have also calculated bond dissociation energies. 1H and 13C NMR spectra were recorded and chemical shifts were calculated theoretically and compared with the experimental values. In addition, in vitro antimicrobial results show that the title compound has great potential of antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus bacteria and antifungal activity against Candida albicans in comparison to some reported chalcone derivatives. Antioxidant studies revealed the highest metal chelating activity of this compound.

  11. Crystallochromy of perylene pigments: Interference between Frenkel excitons and charge-transfer states

    NASA Astrophysics Data System (ADS)

    Gisslén, Linus; Scholz, Reinhard

    2009-09-01

    The optical properties of perylene-based pigments are arising from the interplay between neutral molecular excitations and charge transfer between adjacent molecules. In the crystalline phase, these excitations are coupled via electron and hole transfer, two quantities relating directly to the width of the conduction and valence band in the crystalline phase. Based on the crystal structure determined by x-ray diffraction, density-functional theory (DFT) and Hartree-Fock are used for the calculation of the electronic states of a dimer of stacked molecules. The resulting transfer parameters for electron and hole are used in an exciton model for the coupling between Frenkel excitons and charge-transfer states. The deformation of the positively or negatively charged molecular ions with respect to the neutral ground state is calculated with DFT and the geometry in the optically excited state is deduced from time-dependent DFT and constrained DFT. All of these deformations are interpreted in terms of the elongation of an effective internal vibration which is used subsequently in the exciton model for the crystalline phase. A comparison between the calculated dielectric function and the observed optical spectra allows to deduce the relative energetic position of Frenkel excitons and the charge-transfer state involving stack neighbors, a key parameter for various electronic and optoelectronic device applications. For five out of six perylene pigments studied in the present work, this exciton model results in excellent agreement between calculated and observed optical properties.

  12. Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations.

    PubMed

    Zhong, Aimin; Zhang, Yuexing; Bian, Yongzhong

    2010-11-01

    The molecular structures, molecular orbitals, atomic charges, electronic absorption spectra, and infrared (IR) and Raman spectra of a series of substituted metal-free phthalocyanine compounds with four (1, 3, 5, 7) or eight (2, 4, 6, 8) methoxyl (1, 2, 5, 6) or methylthio groups (3, 4, 7, 8) on the nonperipheral (1-4) or peripheral positions (5-8) of the phthalocyanine ring are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculated structural parameters and simulated electronic absorption and IR spectra are compared with the X-ray crystallography structures and the experimentally observed electronic absorption and IR spectra of the similar molecules, and good agreement between the calculated and experimental results is found. The substitution of the methoxyl or methylthio groups at the nonperipheral positions of the phthalocyanine ring has obvious effects on the molecular structure and spectroscopic properties of the metal-free phthalocyanine. Nonperipheral substitution has a more significant influence than peripheral substitution. The substitution effect increases with an increase in the number of substituents. The methylthio group shows more significant influence than the methoxyl group, despite the stronger electron-donating property of the methoxyl group than the methylthio group. The octa-methylthio-substituted metal-free phthalocyanine compounds have nonplanar structures whose low-lying occupied molecular orbitals and electronic absorption spectra are significantly changed by the substituents. The present systematical study will be helpful for understanding the relationship between structures and properties in phthalocyanine compounds and designing phthalocyanines with typical properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Synthesis, molecular structure, vibrational spectroscopy, optical investigation and DFT study of a novel hybrid material: 3,3‧-diammoniumdiphenylsulfone hexachloridostannate monohydrate

    NASA Astrophysics Data System (ADS)

    Kessentini, A.; Dammak, T.; Belhouchet, M.

    2017-12-01

    In his work we investigate a new halogenotin (IV) organic inorganic material. The structure, determined by single-crystal X-ray diffraction at 293 K of 3,3‧-diammoniumdiphenylsulfone hexachloridostannate monohydrate abbreviated 3,3‧(DDS)SnCl6, can be viewed as inorganic layers built from (SnCl6)2- octahedra and H2O molecules, between which, the organic entities [C12H14N2O2S]2+ are inserted. Experimental room-temperature X-ray studies were supported by theoretical methods using density functional theory (DFT). The detailed examination of the vibrational spectra of our material was correlated by DFT calculation using the unit cell parameters obtained from the experiment data. The optical properties in the UV-visible region have been explored by the UV-visible absorption. This material shows a single absorption band centred at 325 nm (318 eV). The energy difference between Occupied, HOMO and Lowest Unoccupied, LUMO orbital which is called energy gap can be used to predict the strength and stability of metal complexes, as well as in determining molecular electrical transport properties. For the calculation of excitation energies in the optical studies we used Time-Dependent Density Functional Theory (TD-DFT). In addition, Mulliken population method and molecular electrostatic potential (MEP) of the title material have been theoretically studied by GAUSSIAN 03 package.

  14. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  15. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  16. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2017-09-01

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals—HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  17. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    PubMed

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  18. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase andmore » liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.« less

  19. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  20. Performance of quantum Monte Carlo for calculating molecular bond lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF.more » The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.« less

  1. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline.

    PubMed

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E

    2015-10-05

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana M.; Kratzer, Peter

    2017-01-01

    Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

  3. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  4. Molecular structure, NMR, UV-Visible, vibrational spectroscopic and HOMO, LUMO analysis of (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine by DFT method

    NASA Astrophysics Data System (ADS)

    Alphonsa, A. Therasa; Loganathan, C.; Anand, S. Athavan Alias; Kabilan, S.

    2016-02-01

    We have synthesized (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine (PM6). It was characterized using FT-IR, FT-Raman, 1H NMR, 13C NMR techniques. To interpret the experimental data, ab initio computations of the vibrational frequencies were carried out using the Gaussian 09 program followed by the full optimizations done using Density Functional Theory (DFT) at B3LYP/6-311 G(d,p) level. The combined use of experiments and computations allowed a firm assignment of the majority of observed bands for the compound. The calculated stretching frequencies have been found to be in good agreement with the experimental frequencies. The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs) and density of states (DOS). The absorption spectra have been computed by using time dependent density functional theory (TD-DFT). 1H and 13C NMR spectra were recorded and 1H and 13C NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. From the optimized geometry of the molecule, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMOs) of the title compound have been calculated in the ground state theoretically. The theoretical results showed good agreement with the experimental values.

  5. Synthesis, XRD crystal structure, spectroscopic characterization, local reactive properties using DFT and molecular dynamics simulations and molecular docking study of (E)-1-(4-bromophenyl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Arshad, Suhana; Raveendran Pillai, Renjith; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.; Renjith, Rishikesh; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-06-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The FT-IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. Average local ionization energies (ALIE) and Fukui functions have been used as quantum-molecular descriptors to locate the molecule sites that could be of importance from the aspect of reactivity. Degradation properties have been assessed by calculations of bond dissociation energies (BDE) for hydrogen abstraction and the rest of the single acyclic bonds, while molecular dynamics (MD) simulations were used in order to calculate radial distribution functions and determine the atoms with significant interactions with water. In order to understand how the title molecule inhibits and hence increases the catalytic efficiency of MOA-B enzyme, molecular docking study was performed to fit the title compound into the binding site of MOA-B enzyme.

  6. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  7. DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application

    NASA Astrophysics Data System (ADS)

    Dulski, Mateusz; Kempa, Marta; Kozub, Patrycja; Wójcik, Justyna; Rojkiewicz, Marcin; Kuś, Piotr; Szurko, Agnieszka; Ratuszna, Alicja; Wrzalik, Roman

    2013-03-01

    Spectral characteristics study of meso-tetraphenylporphyrin derivatives (TPP1 and TPP2) used as photosensitizers for utilization in photodynamic therapy (PDT) has been performed by density functional theory (DFT) and time dependent DFT (TD-DFT) calculations at B3LYP/6-31G(d) level of theory using PCM solvation model. The geometrical parameters of porphyrins have been studied for ground and excited-state geometry to deduce the influence of various substituents as well as solvent effect on the deformation of porphyrin ring. Two theoretical approaches - linear response (LR) and external iteration (EI) - have been performed to replicate absorption and fluorescence emission spectra. Experimental and theoretical investigations have shown that EI method reproduces the absorption energies very well for both singlet-singlet and triplet-triplet transitions, whereas the LR approach is more coherent with experimental fluorescence emission spectra. Spectral features and HOMO-LUMO band gap analysis have shown that TPP1 can be more useful in PDT. Calculations have revealed that two the highest occupied and two the lowest unoccupied molecular orbitals are responsible for the Q-band absorption and are located mainly on the porphyrin ring. In order to verify the substituent effect on the activity of tested compounds in their ground and excited states, the molecular electrostatic potential surfaces have been analyzed.

  8. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  9. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate.

    PubMed

    Sert, Yusuf; Singer, L M; Findlater, M; Doğan, Hatice; Çırak, Ç

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm(-1)) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  11. Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Amit; Deval, Vipin; Gupta, Archana; Tandon, Poonam; Patil, P. S.; Deshmukh, Prathmesh; Chaturvedi, Deepika; Watve, J. G.

    2017-02-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of the chalcone derivative 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one (2C6F2SC) is reported. Initial geometry generated from single crystal X-ray diffraction parameters was minimized at DFT level employing B3LYP/6-311++G (d,p) without any constraint to the potential energy surface. The molecule has been characterized using various experimental techniques FT-IR, FT-Raman, UV-Vis, 1H NMR, TD-THz and the spectroscopic data have been analyzed theoretically by Density Functional Theory (DFT) method. Harmonic vibrational frequencies were calculated theoretically using the optimized ground state geometry and the spectra were interpreted by means of potential energy distribution. Time Dependent Density Functional Theory (TD-DFT) has been used to calculate energies, absorption wavelengths, oscillator strengths of electronic singlet-singlet transitions. The calculated energy and oscillator strength complement with the experimental findings. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlations between the experimental 1H NMR chemical shifts and calculated GIAO shielding tensors were found. Stability of the molecule, hyperconjugative interactions and charge delocalization has been analyzed by natural bond orbital (NBO) analysis. The first order hyperpolarizability (β) of this molecular system and related properties (μ, <α> and Δα) have been calculated using the finite-field approach.

  12. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  13. Linoleic acid and its potassium and sodium salts: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gocen, Tuğba; Haman Bayarı, Sevgi; Haluk Guven, Mehmet

    2017-12-01

    Linoleic acid (cis, cis-9,12-octodecadienoic acid) is the main polyunsaturated -omega 6- essential fatty acid. The conformational behaviour of linoleic acid (LA) in the gas phase was investigated by means of density functional theory (DFT). The structures of conformers of LA were fully optimized by using the B3LYP/6-311++G(d,p) method. The theory showed that the tttttts‧CssCs‧tt conformation of LA (conformer I) is the more stable than the other conformations. Fourier Transform Infrared (FTIR) and micro-Raman spectra of pure LA in liquid form were recorded in the region 4000-450 and 3500-100 cm-1, respectively. The DFT calculations on the molecular structure and vibrational spectra of the dimer form of most stable conformer of LA were also performed using the same method. The assignment of the vibrational modes was made based on calculated potential energy distributions (PEDs). The simulated spectra of dimer form of LA are in reasonably good agreement with the experimental spectra. The sodium and potassium salts of LA were synthesized and characterized by FTIR and Raman spectroscopy, X-ray diffraction and DFT calculations. Several molecular and electronic properties of LA and its salts such as HOMO-LUMO energies, chemical hardness and electronegativity were also calculated and interpreted.

  14. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  15. Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-dl-phenylalanine by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-12-10

    The Fourier transform infrared (4000-400cm(-1)) and Fourier transform Raman (3500-50cm(-1)) spectra of 4-Chloro-dl-phenylalanine (4CLPA) were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory (DFT) method using B3LYP/6-31G(d,p) as basis set. The observed vibrational wavenumbers were compared with the calculated results. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Predicted electronic absorption spectra from TD-DFT calculation have been analyzed comparing with the UV-Vis (200-800nm) spectrum. The effects of chlorine and ethylene group substituent in benzene ring in the vibrational wavenumbers have been analyzed. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4CLPA were calculated. The Chemical reactivity and chemical potential of 4CLPA is calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbital (FMO) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  16. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less

  17. Vibrational spectra from atomic fluctuations in dynamics simulations. I. Theory, limitations, and a sample application

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul

    2004-12-01

    Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382 (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)-(d)] and [(c)-(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to additionally remove the remaining errors, which GV still shares with PMA, we refer to Paper II of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004)].

  18. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  19. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile.

    PubMed

    Sert, Yusuf; Balakit, Asim A; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A

    2014-10-15

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, (1)H and (13)C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. (1)H and (13)C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  1. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    NASA Astrophysics Data System (ADS)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  2. Spectroscopic characteristic (FT-IR, 1H, 13C NMR and UV-Vis) and theoretical calculations (MEP, DOS, HOMO-LUMO, PES, NBO analysis and keto-enol tautomerism) of new tetradentate N,N‧-bis(4-hydroxysalicylidene)-1,4-phenylenediamine ligand as chelating agent for the synthesis of dinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajaei, Iman; Mirsattari, Seyed Nezamoddin

    2018-07-01

    The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.

  3. Synthesis, spectroscopic characterization, theoretical study and anti-hepatic cancer activity study of 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate, a novel curcumin congener

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Singh, Ranvijay Pratap; Jafri, Asif; Arshad, M.; Banerjee, Monisha

    2017-08-01

    In the present work 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate (2), a novel curcumin ester was synthesized. The molecular structure and spectroscopic analysis were performed using experimental techniques like FT-IR, 1H,13C NMR, mass and UV-visible as well as theoretical calculations. The theoretical calculations were done by DFT level of theory using B3LYP/6-31G (d,p) basis set. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). The electronic properties such as frontier orbitals and band gap energies have been calculated using time dependent density functional theory (TD-DFT). The strength and nature of weak intramolecular interactions have been studied by AIM approach. Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out. The anti-hepatic cancer activity of compound 2 was also carried out.

  4. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches

    NASA Astrophysics Data System (ADS)

    Anbarasan, R.; Dhandapani, A.; Manivarman, S.; Subashchandrabose, S.; Saleem, H.

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis.

  5. Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline

    NASA Astrophysics Data System (ADS)

    Ceylan, Ümit; Tarı, Gonca Özdemir; Gökce, Halil; Ağar, Erbil

    2016-04-01

    Crystal structure of the title compound, 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, C13H12N2O2S, has been synthesized and characterized by FT-IR and UV-Vis spectrum. The compound crystallized in the monoclinic space group P 21/c with a = 11.3578 (4) Å, b = 7.4923 (2) Å, c = 14.9676 (6) Å and β = 99.589 (3)° and Z = 4 in the unit cell. The molecular geometry was also calculated using the Gaussian 03 software and structure was optimized using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set in ground state. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311++G(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. It was seen that the optimized structure was in excellent agreement with the X-ray crystal structure. The energetic behaviors of the title compound in solvent media were examined using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set applying the polarizable continuum model (PCM). In addition, the molecular orbitals (FMOs) analysis, molecular electrostatic potential (MEP), nonlinear optical and thermodynamic properties of the title compound were performed using the same methods with the 6-311++G(d,p) basis set.

  6. Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, S. G.; Azkeskin, Caner; Eşme, A.

    2018-06-01

    Imipramine hydrochloride ([H-IMI]Cl), C19H24N2.HCl, is the prototypic tricyclic antidepressant (TCA) inhibitor of norepinephrine and serotonin neuronal reuptake. The molecular structure, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, linear and non-linear optical (NLO) properties of [H-IMI]Cl have been investigated using the density functional theory (DFT) calculations with the B3LYP level at the 6‒311++G(d,p) basis set. The UV-Vis spectra for [H-IMI]Cl were experimentally studied in water and methanol. TD‒DFT calculations in water and methanol were employed to investigate the absorption wavelengths (λ), excitation energies (E), and oscillator strengths (f) for the UV-Vis analysis and the major contributions to the electronic transitions. From NBO analysis, the orbitals with the stabilization energy E(2) of 192.15 kcal/mol are π*(C5sbnd C18) as donor NBO and π*(C19sbnd C20) as acceptor NBO. The FT‒IR (4000‒400 cm-1) and FT‒Raman (3500-50 cm-1) spectra have been measured and analyzed. The assignment of bands observed vibrational spectra have been made by comparison of its calculated theoretical vibrational frequencies obtained using the DFT/B3LYP/6‒311++G(d,p) method. The detailed vibrational assignments were performed with the DFT calculation, and the potential energy distribution (PED) of [H-IMI]Cl was obtained by the Vibrational Energy Distribution Analysis 4 (VEDA4) program. The scaled frequencies resulted in good agreement with the observed spectral patterns.

  7. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  8. First-principles studies of electrical transport in nanoscale molecular junctions

    NASA Astrophysics Data System (ADS)

    Neaton, J. B.

    2008-03-01

    Understanding the conductance of individual molecular junctions is a forefront topic in theoretical nanoscience. The development of a general, efficient atomistic approach for treating an open system out of equilibrium with good accuracy, and then using it to inform experiment, is a significant open challenge in the field. Here I will describe studies where first-principles techniques, based on density functional theory (DFT) and beyond, are used to investigate some of the fundamental issues associated with single-molecule transport measurements. After a brief summary of previous work, a DFT-based scattering-state approach is presented and applied to H2 and amine-Au linked molecular junctions [1], two systems for which there exist reliable data [2]. Similar to most ab initio studies, we rely on a Landauer approach within DFT for junction conductance. Using this framework, which has proven relatively accurate for metallic point contacts, good agreement with experiment is obtained for the H2 conductance. For amine-Au linked junctions, however, the computed conductance is significantly larger than that measured,although structural trends are reproduced by the calculations. To explore this further, we draw on GW calculations of a prototypical metal-molecule contact, benzene on graphite, where interfacial polarization effects are found to drastically modify frontier orbital energies [3]. A physically motivated model self-energy correction is developed from our GW calculations,applied to the amine case, and shown to quantitatively explain the discrepancy with experiment. The importance of many-electron corrections beyond DFT for accurately computing molecular conductance and understanding experiments is thoroughly discussed. [1] S. Y. Quek et al., Nano Lett 7, 3482 (2007); K. H. Khoo et al., submitted (2007). [2] R. Smit et al., Nature 419, 906 (2002); L. Venkataraman et al., Nature 442 ,904 (2006). [3] J. B. Neaton et al., Phys. Rev. Lett. 97, 216405 (2006).

  9. Experimental (13C NMR, 1H NMR, FT-IR, single-crystal X-ray diffraction) and DFT studies on 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione.

    PubMed

    Süleymanoğlu, Nevin; Ustabaş, Reşat; Alpaslan, Yelda Bingöl; Eyduran, Fatih; Ozyürek, Cengiz; Iskeleli, Nazan Ocak

    2011-12-01

    In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H⋯O type intermolecular ve C-H⋯O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Çoşut, Bünyemin; Zorlu, Yunus; Erkovan, Mustafa; Yerli, Yusuf

    2016-02-01

    A novel manganese (II) complex with picolinic acid (pyridine 2-carboxylic acid, Hpic), namely, [Mn(pic)2(H2O)2] was prepared and its crystal structure was fully characterized by using single crystal X-ray diffraction. Picolinate (pic) ligands were coordinated to the central manganese(II) ion as bidentate N,O-donors through the nitrogen atoms of pyridine rings and the oxygen atoms of carboxylate groups forming five-membered chelate rings. The spectroscopic characterization of Mn(II) complex was performed by the applications of FT-IR, Raman, UV-vis and EPR techniques. In order to support these studies, density functional theory (DFT) calculations were carried out by using B3LYP level. IR and Raman spectra were simulated at B3LYP level, and obtained results indicated that DFT calculations generally give compatible results to the experimental ones. The electronic structure of the Mn(II) complex was predicted using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength were investigated by applying natural bond orbital (NBO) analysis. Nonlinear optical properties of Mn(II) complex were investigated by the determining of molecular polarizability (α) and hyperpolarizability (β) parameters.

  11. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.

  12. Structure and properties of some chiralanes and chirolanes

    NASA Astrophysics Data System (ADS)

    Novak, Igor

    2018-06-01

    The molecular structures, spectra and properties of six chiralanes and chirolanes (approximately spheroidal, saturated, cage hydrocarbons) have been determined by density functional theory (DFT) quantum chemistry calculations. The main features determined are: molecular geometry, partial atomic charges, standard enthalpy of formation, IR, nuclear magnetic resonance (NMR) and circular dichroism (CD) spectra. On the basis of the calculated standard enthalpies of formation and highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps, we suggest that chiralanes/chirolanes are potential synthetic targets. We have calculated the anomalously large downfield 13C-NMR shifts for endohedral carbons in the spectra of [5.5] and [5.7]chiralanes.

  13. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  14. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  15. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory.

    PubMed

    Mariappan, G; Sundaraganesan, N; Manoharan, S

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Studies on N-picolinoyl-N‧-benzothioylhydrazide and its Zn(II) complex: Synthesis, structure, antibacterial activity, thermal analysis and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kushawaha, S. K.; Dani, R. K.; Bharty, M. K.; Chaudhari, U. K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.

    2014-04-01

    A new Zn(II) complex [Zn(pbth)2] (where Hpbth = N-picolinoyl-N‧-benzothioylhydrazide) has been synthesized and characterized by elemental analyses, IR, UV-Visible and single crystal X-ray data. The distorted octahedral complex [Zn(pbth)2] crystallizes in monoclinic system with space group C2/c and is stabilized by various types of inter and intramolecular extended hydrogen bonding providing supramolecular framework. The optimized molecular geometry of N-picolinoyl-N‧-benzothioylhydrazide (Hpbth) and the zinc complex in the ground state have been calculated by using the DFT method using B3LYP functional with 6-311 G(d,p){C,H,N,O,S}/Lanl2DZ basis set. The results of the optimized molecular geometry are presented and compared with the experimental X-ray diffraction data. In addition, quantum chemical calculations of Hpbth and the complex, molecular electrostatic potential (MEP), contour map and frontier molecular orbital analysis were performed. The solid state electrical conductivity and thermal behaviour (TGA) of the complex were investigated. The bioefficacy of the complex has been examined against the growth of bacteria in vitro to evaluate its anti-microbial potential.

  17. Molecular structure, spectral studies, NBO, HOMO-LUMO profile, MEP and Mulliken analysis of 3β,6β-dichloro-5α-hydroxy-5α-cholestane

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Park, Soonheum

    2018-05-01

    The synthesis of 3β,6β-dichloro-5α-hydroxy-5α-cholestane (in general, steroidal chlorohydrin or steroidal halohydrin) and theoretical study of the structure are reported in this paper. The individuality of chlorohydrin was confirmed by FT-IR, NMR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra explained by Gaussian hybrid computational analysis theory (B3LYP) are found to be in correlation with the experimental data obtained from the various spectrophotometric techniques. The theoretical geometry optimization data were compared with the X-ray data. The vibrational bands appearing in the FT-IR are assigned with accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like NBO, HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping and dipole moment have been dealt at same level of theory. The calculated electronic spectrum of chlorohydrin is interpreted on the basis of TD-DFT calculations.

  18. DFT approach to (benzylthio)acetic acid: Conformational search, molecular (monomer and dimer) structure, vibrational spectroscopy and some electronic properties

    NASA Astrophysics Data System (ADS)

    Sienkiewicz-Gromiuk, Justyna

    2018-01-01

    The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.

  19. Supramolecular clusters and chains of 2,6-dimethylpyridine on Cu(110): Observation of dynamic configuration change with real-space surface science techniques and DFT calculations

    DOE PAGES

    Lee, Junseok; Sorescu, Dan C.; Lee, Jae -Gook; ...

    2016-02-02

    Here, the adsorption of 2,6-dimethylpyridine (2,6-DMP) on Cu(110) has been studied using low temperature scanning tunneling microscopy (LT-STM), time-of-flight electron stimulated desorption ion angular distribution (TOF-ESDIAD), and density functional theory (DFT) calculations. At low temperatures (T < ~ 150 K), the 2,6-DMP adsorbs in a flat configuration on Cu(110) producing clusters and extended domains via weak hydrogen bonding (C—H···N) with the molecular symmetry axis aligned along the < 001 > surface direction.

  20. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV-Visible investigation and optical analysis.

    PubMed

    Panneerdoss, I Joseph; Jeyakumar, S Johnson; Ramalingam, S; Jothibas, M

    2015-08-05

    In this original work, the Indium oxide (In2O3) thin film is deposited cleanly on microscope glass substrate at different temperatures by spray pyrolysis technique. The physical properties of the films are characterized by XRD, SEM, AFM and AFM measurements. The spectroscopic investigation has been carried out on the results of FT-IR, FT-Raman and UV-Visible. XRD analysis exposed that the structural transformation of films from stoichiometric to non-stoichiometric orientation of the plane vice versa and also found that, the film is polycrystalline in nature having cubic crystal structure with a preferred grain orientation along (222) plane. SEM and AFM studies revealed that, the film with 0.1M at 500°C has spherical grains with uniform dimension. The complete vibrational analysis has been carried out and the optimized parameters are calculated using HF and DFT (CAM-B3LYP, B3LYP and B3PW91) methods with 3-21G(d,p) basis set. Furthermore, NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) technique. The molecular electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, molecular electrostatic potential energy (MEP) analysis and Polarizability first order hyperpolarizability calculations are performed by time dependent DFT (TD-DFT) approach. The energy excitation on electronic structure is investigated and the assignment of the absorption bands in the electronic spectra of steady compound is discussed. The calculated HOMO and LUMO energies showed the enhancement of energy gap by the addition of substitutions with the base molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) at different temperatures are calculated and interpreted in gas phase. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. Length-Dependent Nanotransport and Charge Hopping Bottlenecks in Long Thiophene-Containing π-Conjugated Molecular Wires.

    PubMed

    Smith, Christopher E; Odoh, Samuel O; Ghosh, Soumen; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2015-12-23

    Self-assembled conjugated molecular wires containing thiophene up to 6 nm in length were grown layer-by-layer using click chemistry. Reflection-absorption infrared spectroscopy, ellipsometry and X-ray photoelectron spectroscopy were used to follow the stepwise growth. The electronic structure of the conjugated wires was studied with cyclic voltammetry and UV-vis spectroscopy as well as computationally with density functional theory (DFT). The current-voltage curves (±1 V) of the conjugated molecular wires were measured with conducting probe atomic force microscopy (CP-AFM) in which the molecular wire film bound to a gold substrate was contacted with a conductive AFM probe. By systematically measuring the low bias junction resistance as a function of length for molecules 1-4 nm long, we extracted the structure dependent tunneling attenuation factor (β) of 3.4 nm(-1) and a contact resistance of 220 kΩ. The crossover from tunneling to hopping transport was observed at a molecular length of 4-5 nm with an activation energy of 0.35 eV extracted from Arrhenius plots of resistance versus temperature. DFT calculations revealed localizations of spin densities (polarons) on molecular wire radical cations. The calculations were employed to gauge transition state energies for hopping of polarons along wire segments. Individual estimated transition state energies were 0.2-0.4 eV, in good agreement with the experimental activation energy. The transition states correspond to flattening of dihedral angles about specific imine bonds. These results open up possibilities to further explore the influence of molecular architecture on hopping transport in molecular junctions, and highlight the utility of DFT to understand charge localization and associated hopping-based transport.

  2. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structure of 4-(4-methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole.

    PubMed

    Düğdü, Esra; Ünver, Yasemin; Ünlüer, Dilek; Tanak, Hasan; Sancak, Kemal; Köysal, Yavuz; Işık, Şamil

    2013-05-01

    4-(4-Methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole (3) was synthesized from the reaction of ethyl N'-acetylacetohydrazonate (1) with 2-(4-methoxyphenyl)ethanamine (2). The structure of the title compound 3 has been inferred through IR, (1)H/(13)C NMR, mass spectrometry, elemental analyses and combination of X-ray crystallography and theoretical methods. In addition to the molecular geometry from X-ray determination, the molecular geometry and vibrational frequencies of the title compound 3 in the ground state, were calculated using the density functional method (B3LYP) with the 6-31G(d) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure and the theoretical vibrational frequencies show good agreement with experimental values. The nonlinear optical properties are also addressed theoretically. The predicted nonlinear optical properties of 3 are greater than ones of urea. In addition, DFT calculations of molecular electrostatic potentials and frontier molecular orbitals of the title compound were carried out at the B3LYP/6-31G(d) level of theory. Copyright © 2012. Published by Elsevier B.V.

  4. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    PubMed

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Vibrational Properties of Bulk Boric Acid 2A and 3T Polymorphs and Their Two-Dimensional Layers: Measurements and Density Functional Theory Calculations.

    PubMed

    Bezerra da Silva, M; Santos, R C R; Freire, P T C; Caetano, E W S; Freire, V N

    2018-02-08

    Boric acid (H 3 BO 3 ) is being used effectively nowadays in traps/baits for the management of Aedes aegypti L. and Aedes albopictus Skuse species of mosquitoes, which are the main spreading vectors worldwide for diseases such as malaria, dengue, and zika. Previously, we published results on the structural, electronic, and optical properties of its molecular triclinic H 3 BO 3 -2A and trigonal H 3 BO 3 -3T polymorphs within the framework of density functional theory (DFT). Because of the renewed importance of these materials, the focus of this work is on the vibrational properties of the bulk boric acid 2A and 3T polymorphs. We measured the infrared and Raman spectra of the former, which was accompanied and interpreted through state-of-the-art DFT calculations, supplemented by computations regarding the H 3 BO 3 molecule and two-dimensional layers based on the bulk structures. We identify/assign their normal modes and find vibrational signatures for each polymorph as well as in- and out-of-plane motions and molecular vibrations, unveiling a nice agreement between the DFT level of theory employed and our improved spectroscopic measurements in the wavenumber ranges of 400-2000 cm -1 (infrared) and 0-1500 cm -1 (Raman). We show that a dispersion-corrected DFT functional within the generalized gradient approximation (GGA) can be very accurate in describing the vibrational properties of the boric acid polymorphs. Besides, several issues left open/not clearly resolved in previously published works on the vibrational mode assignments of the bulk and 2D sheets of boric acid are explained satisfactorily. Finally, phonon dispersions and associated densities of states were also evaluated for each polymorph along with their temperature-dependent DFT-calculated entropy, enthalpy, free energy, heat capacity, and Debye temperature. In particular, our DFT calculations suggest a possible way to differentiate the 2A and 3T boric acid polymorphs through Raman spectroscopy and heat capacity measurements.

  6. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid.

    PubMed

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  8. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.

    PubMed

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-05

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spectroscopic investigation, HOMO-LUMO and NLO studies on L-histidinium maleate based on DFT approach

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Stephen, A.; Asirvatham, P. Samuel

    2017-05-01

    The molecular structure of the title compound L-Histidinium Maleate (LHM) was constructed and optimized based on Density Functional Theory method (DFT-B3LYP) with the 6-31G (d,p) basis set. The fundamental vibrational spectral assignment was analyzed with the aid of optimized structure of LHM. The study on electronic properties such as, HOMO-LUMO energies and absorption wavelength were performed using Time dependent DFT (TD-DFT) approach which reveals that energy transfer occur within the molecule. 13C NMR chemical shift values were measured using Gauge independent atomic orbital method (GIAO) and the obtained values are in good agreement with the reported experimental values. Hardness, ionization potential and electrophilicity index also calculated. The electric dipole moment (μtot) and hyperpolarizability (βtot) values of the investigated molecules were computed. The calculated value (β) was 3.7 times higher than that of urea, which confirms the LHM molecule is a potential candidate for NLO applications.

  10. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  11. Structural, vibrational, and quasiparticle band structure of 1,1-diamino-2,2-dinitroethelene from ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appalakondaiah, S.; Vaitheeswaran, G., E-mail: gvaithee@gmail.com; Lebègue, S.

    The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant incrementmore » in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.« less

  12. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    PubMed

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  13. On the molecular structure, vibrational spectra, HOMO-LUMO, molecular electrostatic potential, UV-Vis, first order hyperpolarizability, and thermodynamic investigations of 3-(4-chlorophenyl)-1-(1yridine-3-yl) prop-2-en-1-one by quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Rahmani, Rachida; Boukabcha, Nourdine; Chouaih, Abdelkader; Hamzaoui, Fodil; Goumri-Said, Souraya

    2018-03-01

    A recent experimental study has allowed synthesis of a new organic nonlinear optical material 3-(4-chlorophenyl)-1-(pyridin-3-yl)prop-2-en-1-one(CPP) with a high second harmonic generation efficiency. We apply density functional theory (DFT, GGA and B3LYP) and Hartree-Fock (HF) methods to calculate the vibrational wavenumbers. They are assigned with by using the potential energy distribution method. The calculated first hyperpolarizability of the title compound is comparable with the reported values of similar derivatives and 25 times that of the standard NLO material urea. The HOMO-LUMO calculations lead to consider GGA-PBE as the best functional to determine the electronic band gap of CPP molecule. We complete this study with assignment of the vibrational modes and perform a comparison with the experimental results. The analysis of MEP map shows that the most reactive site of the CPP molecule is the site containing the oxygen atom. Furthermore, because of the enhancement of molecular vibration within the CPP molecule, the thermodynamic parameters are increasing with the increase of temperature. The FTIR, Raman and NMR spectra are calculated using DFT approach and corroborate the experimental available data.

  14. A Molecular Electron Density Theory Study of the Chemical Reactivity of Cis- and Trans-Resveratrol.

    PubMed

    Frau, Juan; Muñoz, Francisco; Glossman-Mitnik, Daniel

    2016-12-01

    The chemical reactivity of resveratrol isomers with the potential to play a role as inhibitors of the nonenzymatic glycation of amino acids and proteins, both acting as antioxidants and as chelating agents for metallic ions such as Cu, Al and Fe, have been studied by resorting to the latest family of Minnesota density functionals. The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices, the dual descriptor f ( 2 ) ( r ) and the electrophilic and nucleophilic Parr functions. The validity of "Koopmans' theorem in DFT" has been assessed by means of a comparison between the descriptors calculated through vertical energy values and those arising from the HOMO and LUMO values.

  15. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.

    2017-04-01

    4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This suggests that the title compound might exhibit inhibitory activity against pyrrole inhibitor. To confirm the potential practical applicability of the title compound antimicrobial activity was tested against gram negative and gram positive bacteria.

  16. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations

    NASA Astrophysics Data System (ADS)

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-03-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P212121 of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity.

  17. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  18. Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV-Visible spectral studies and ab initio/DFT calculations.

    PubMed

    Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C

    2015-12-05

    FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  20. Structural, vibrational spectroscopic and quantum chemical studies on indole-3-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Premkumar, R.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The potential energy surface (PES) scan was performed for indole-3-carboxaldehyde (ICA) and the most stable optimized conformer was predicted using DFT/B3LYP method with 6-31G basis set. The vibrational frequencies of ICA were theoretically calculated by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The vibrational spectra were experimentally recorded by Fourier transform-infrared (FT-IR) and Fourier transform-Raman spectrometer (FT-Raman). The computed vibrational frequencies were scaled by scaling factors to yield a good agreement with observed vibrational frequencies. The theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of potential energy distribution (PED) calculation using VEDA 4.0 program. The molecular interaction, stability and intramolecular charge transfer of ICA were studied using frontier molecular orbitals (FMOs) analysis and Mulliken atomic charge distribution shows the distribution of the atomic charges. The presence of intramolecular charge transfer was studied using natural bond orbital (NBO) analysis.

  1. Probing the electronic structure of β,β‧-fused quinoxalino porphyrins and tetraazaanthracene-bridged bis-porphyrins with resonance Raman spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Elliott, Anastasia B. S.; Gordon, Keith C.; Khoury, Tony; Crossley, Maxwell J.

    2012-12-01

    A number of π-extended porphyrins and bis-porphyrins were characterised by resonance Raman spectroscopy and density functional theory (DFT) calculations, using both B3LYP and CAM-B3LYP functionals. Single porphyrin species, incorporating a β,β'-fused quinoxalino unit, and tetraazaanthracene-bridged bis-porphyrins were investigated. Geometry optimisation predicted all species were planar with respect to the porphyrin core(s). Comparison of experimental with simulated vibrational spectra, obtained via DFT calculations [B3LYP/6-31G(d)], verified the modelling; demonstrated by a mean absolute deviation (MAD) between experimental and calculated band positions of less than 10 cm-1. Simulated electronic transitions obtained via time-dependent DFT [TD-DFT, B3LYP and CAM-B3LYP/6-31G(d)] lay within 0.4 eV of experimental bands and calculations showed perturbation of the frontier molecular orbitals (FMOs) following substitution of the porphyrin core. The nature of transitions that were investigated experimentally via resonance Raman enhancement showed consistency with the character of calculated transitions. A wavepacket analysis of the resonance Raman intensities provided electronic parameters, such as reorganisation energy, as well as normal mode displacements (Δi) that were also consistent with the nature of the specific vibrational modes and probed optical transitions. The largest vibrational reorganisation value obtained was for the Bsh band of compound (1). This result is consistent with the greater electron density shift of the transition found from DFT and resonance Raman and also the less symmetrical nature of (1).

  2. An ab initio CASSCF study of zero field splitting fluctuations in the octet ground state of aqueous [Gd(iii)(HPDO3A)(H2O)

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Pollet, Rodolphe; Vuilleumier, Rodolphe; Kowalewski, Jozef; Odelius, Michael

    2017-12-01

    In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(iii)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field—CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.

  3. Computational studies of molecular charge transfer complexes of heterocyclic 4-methylepyridine-2-azomethine-p-benzene derivatives with picric acid and m-dinitrobenzene.

    PubMed

    Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H

    2014-01-01

    Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    PubMed

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  5. The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jie; Wang, Lin-Wang, E-mail: lwwang@lbl.gov; Liu, Zhen-Fei

    2016-06-27

    We apply a recently developed Wannier–Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. Our results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.

  6. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less

  7. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  8. Conformational, vibrational spectroscopic and nonlinear optical activity studies on N,N-Di-Boc-2-amino pyridine : A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.

  9. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  10. Spectroscopic analysis of cinnamic acid using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2015-02-01

    In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  11. Synthesis, structural and vibrational investigation on 2-phenyl-N-(pyrazin-2-yl)acetamide combining XRD diffraction, FT-IR and NMR spectroscopies with DFT calculations.

    PubMed

    Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A

    2015-01-25

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Periodic subsystem density-functional theory

    NASA Astrophysics Data System (ADS)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  13. Periodic subsystem density-functional theory.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  14. Periodic subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dualmore » approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.« less

  15. Molecular structure and the EPR calculation of the gas phase succinonitrile molecule

    NASA Astrophysics Data System (ADS)

    Kepceoǧlu, A.; Kılıç, H. Ş.; Dereli, Ö.

    2017-02-01

    Succinonitrile (i.e. butanedinitrile) is a colorless nitrile compound that can be used in the gel polymer batteries as a solid-state solvent electrolytes and has a plastic crystal structure. Prior to the molecular structure calculation of the succinonitrile molecule, the conformer analysis were calculated by using semi empirical method PM3 core type Hamiltonian and eight different conformer structures were determined. Molecular structure with energy related properties of these conformers having the lowest energy was calculated by using DFT (B3LYP) methods with 6-311++G(d,p) basis set. Possible radicals, can be formed experimentally, were modeled in this study. EPR parameters of these model radicals were calculated and then compared with that obtained experimentally.

  16. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05720a Click here for additional data file.

    PubMed Central

    Smith, J. S.

    2017-01-01

    Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set. PMID:28507695

  17. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-11-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.

  18. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  19. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    NASA Astrophysics Data System (ADS)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  20. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.

    PubMed

    García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio

    2018-06-07

    Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.

  1. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  2. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  3. Density Functional Theory (DFT) Study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-Glucose

    NASA Astrophysics Data System (ADS)

    Wungu, T. D. K.; Marsha, S. E.; Widayani; Suprijadi

    2017-07-01

    In order to find an alternative biosensor material which enables to detect the glucose level, therefore in this study, the interaction between Methacrylic Acid (MAA) based Molecularly Imprinted Polymer (MIP) with D-Glucose is investigated using the Density Functional Theory (DFT). The aim of this study is to determine whether a molecule of the MAA can be functioned as a bio-sensing of glucose. In this calculation, the Gaussian 09 with B3LYP and 631+G(d) basis sets is used to calculate all electronic properties. It is found that the interaction between a molecule of MAA and a molecule of D-Glucose was observed through the shortened distance between the two molecules. The binding energy of MAA/D-glucose and the Mulliken population analysis are investigated for checking possible interaction. From analysis, the MAA based MIP can be used as a bio-sensing material.

  4. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Fedorov, Dmitri G.; Zahariev, Federico; Schmidt, Michael W.; Kitaura, Kazuo; Gordon, Mark S.; Nakamura, Shinichiro

    2015-03-01

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.

  5. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  6. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  7. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Hamed, Maher M.; Zaki, Nadia G.; Abdou, Mohamed M.; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-01

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100 μg mL- 1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase.

  8. Crystal structure, spectral property, antimicrobial activity and DFT calculation of N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin

    2017-10-01

    N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.

  9. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms.

    PubMed

    Mohamed, Gehad G; Hamed, Maher M; Zaki, Nadia G; Abdou, Mohamed M; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-05

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100μgmL -1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  11. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  12. Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir

    NASA Astrophysics Data System (ADS)

    Fathima Rizwana, B.; Prasana, Johanan Christian; Abraham, Christina Susan; Muthu, S.

    2018-07-01

    Entecavir, a new deoxyguanine nucleoside analogue, is a selective inhibitor of the replication of the hepatitis B virus. In the present study, Quantum mechanical approach was carried out on the title compound to study the vibrational spectrum, the stability of the compound, the intermolecular and intramolecular interactions by using Density Functional Theory (DFT) with B3LYP 6-311++G(d,p) basis set. The B3LYP/DFT method was chosen because diverse studies have shown that the results obtained with it are in good agreement with those determined by other costly computational methods. The computational methods were aided by the experimental spectroscopic techniques, namely FTIR and FT Raman spectroscopies. The optimized molecular geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities were calculated. The calculated HOMO and LUMO energies were found to be -6.397 eV and -1.504 eV which indicate the charge transfer within the molecule. The maximum absorption wavelength and the band gap energy of the title compound were obtained from the UV absorption spectrum computed theoretically. Natural Bond Orbital analysis has been carried out to explain the charge transfer (or) delocalization of charge due to the intra molecular interactions. The molecule orbital contributions are studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. Molecular electrostatic potential (MEP), First order hyperpolarizability, Hirshfield surface analysis and Fukui functions calculation were also performed. From the calculations the first order hyperpolarizability was found to be 2.3854 × 10-30 esu. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures have been calculated. Molecular docking studies were made on the title compound to study the hydrogen bond interactions and the minimum binding energy was calculated.

  13. Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays.

    PubMed

    Chiniforoshan, Hossein; Tabrizi, Leila; Hadizade, Morteza; Sabzalian, Mohammad R; Chermahini, Alireza Najafi; Rezapour, Mehdi

    2014-07-15

    Zinc (II) complexes with non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (nap) and ibuprofen (ibu) were synthesized in the presence of nitrogen donor ligands (thiocyanate or azide). The complexes were characterized by elemental analysis, FT-IR, (1)H NMR and UV-Vis spectroscopes. The binding modes of the ligands in complexes were established by means of molecular modeling of the complexes, and calculation of their IR, NMR and absorption spectra at DFT (TDDFT)/B3LYP level were studied. The experimental and calculated data verified monodentate binding through the carboxylic oxygen atoms of anti-inflammatory drugs in the zinc complexes. The calculated (1)H, FT-IR and UV-Vis data are in better agreement with the experimental results, and confirm the predicted tetrahedral structures for the Zn (II) complexes. In addition to DFT calculations of complexes, natural bond orbital (NBO) was performed at B3LYP/6-31+G(d,p) level of theory. Biological studies showed the antibacterial activity of zinc complexes against Gram-positive and Gram-negative bacterial strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.

    PubMed

    Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia

    2015-01-01

    In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effective empirical corrections for basis set superposition error in the def2-SVPD basis: gCP and DFT-C

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2017-06-01

    With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.

  16. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  17. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  18. Stereoselective green synthesis and molecular structures of highly functionalized spirooxindole-pyrrolidine hybrids - A combined experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Raju Suresh; Almansour, Abdulrahman I.; Arumugam, Natarajan; Soliman, Saied M.; Kumar, Raju Ranjith; Altaf, Mohammad; Ghabbour, Hazem A.; Krishnamoorthy, Bellie Sundaram

    2018-01-01

    Highly functionalized spirooxindole-pyrrolidine hybrids have been synthesized stereoselectively through a [3 + 2] cycloaddition strategy in an ionic liquid, 1-butyl-3-methylimidazolium bromide ([bmim]Br). The structure of these spiro heterocyclic hybrids was elucidated using one and two dimensional NMR spectroscopy, single crystal X-ray crystallographic studies and Density Functional Theory (DFT) calculations. The calculated geometric parameters are in good agreement with the experimental data obtained from the X-ray structures. The Natural Bond Orbital (NBO) calculations on these molecules confirm the electron rich carbonyl oxygen and electron deficient NH groups. The 1H and 13C NMR chemical shifts calculated using GIAO method are in good agreement with the experimental data. The DFT computed polarizability values also suggest the possible NLO activity of these molecules.

  19. Experimental, DFT and molecular docking studies on 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Singh, Ravindra Kumar

    2016-10-01

    A new coumarin derivative 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol (COMSB) was synthesized and characterized with the help of 1H,13C NMR, FT-IR, FT-Raman and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. The UV-Vis spectrum studied by TD-DFT theory, with a hybrid exchange-correlation functional using Coulomb-attenuating method (CAM-B3LYP) in solvent phase gives similar pattern of bands, at energies and is consistent with that of experimental findings. The detailed analysis of vibrational (IR and Raman) spectra and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. Intra-molecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Computed first static hyperpolarizability (β0 = 8.583 × 10-30 esu) indicates non-linear optical (NLO) response of the molecule. Molecular docking studies show that the title molecule may act as potential acetylcholine esterase (AChE) inhibitor.

  20. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  1. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations.

    PubMed

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-01-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P2(1)2(1)2(1) of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Distribution of dopant ions around poly(3,4-ethylenedioxythiophene) chains: a theoretical study.

    PubMed

    Casanovas, Jordi; Zanuy, David; Alemán, Carlos

    2017-04-12

    The effect of counterions and multiple polymer chains on the properties and structure of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with ClO 4 - has been examined using density functional theory (DFT) calculations with periodic boundary conditions (PBCs). Calculations on a one-dimensional periodic model with four explicit polymer repeat units and two ClO 4 - molecules indicate that the latter are separated as much as possible, with the salt structure and band gap obtained from such ClO 4 - distribution being in excellent agreement with those determined experimentally. On the other hand, DFT calculations on periodic models that include two chains indicate that neighboring PEDOT chains are shifted along the molecular axis by a half of the repeat unit length, with dopant ions intercalated between the polymer molecules acting as cement. In order to support these structural features, classical molecular dynamics (MD) simulations have been performed on a multiphasic system consisting of 69 explicit PEDOT chains anchored onto a steel surface, explicit ClO 4 - anions embedded in the polymer matrix, and an acetonitrile phase layer onto the polymer matrix. Analyses of the radial distribution functions indicate that the all-anti conformation, the relative disposition of adjacent PEDOT chains and the distribution of ClO 4 - dopant ions are fully consistent with periodic DFT predictions. The agreement between two such different methodologies allows reinforcing the microscopic understanding of the PEDOT film structure.

  3. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur

    2016-11-01

    A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.

  5. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Large-Scale Hybrid Density Functional Theory Calculations in the Condensed-Phase: Ab Initio Molecular Dynamics in the Isobaric-Isothermal Ensemble

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  7. An ab initio study of the molecular properties of the propyne water hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Lopes, Kelson C.; Araújo, Regiane C. M. U.; Rusu, Victor H.; Ramos, Mozart N.

    2007-05-01

    We have employed ab initio MP2 and DFT/B3LYP calculations with the 6-31++G(d,p) basis set to obtain structural, electronic and vibrational properties of the H-bonded complex between propyne and water. This study has revealed that H 2O can doubly complex with propyne forming a quasi five-membered ring. The first complexation occurs through the hydrogen bond between the acid hydrogen of H 2O and the C tbnd C triple bond, whereas the second complexation involves the oxygen atom of H 2O and the in-plane hydrogen atom of the methyl group in propyne. Our calculations have shown that the H-bond lengths between H⋯π and O⋯HC) are 2.419 and 2.707 Å, respectively, employing the DFT/B3LYP calculation whereas the corresponding MP2 values are 2.373 and 2.651 Å. The binding energies including both BSSE and ZPE corrections are -6.16 and -6.72 kJ mol -1, respectively, using the DFT/B3LYP and MP2 calculations. For example, the O-H stretching frequencies of water are decreased by -60 and -29 cm -1 using the DFT/B3LYP calculation, whereas the bending frequency is increased by +15 cm -1. As expected, the infrared intensities for the stretching modes are increased after complexation, especially involving the O-H b bond forming the hydrogen bond with the C tbnd C triple bond.

  8. Spectroscopic characterization of 1-[3-(1H-imidazol-1-yl)propyl]-3-phenylthiourea and assessment of reactive and optoelectronic properties employing DFT calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    War, Javeed Ahmad; Jalaja, K.; Mary, Y. Sheena; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Srivastava, Santosh Kumar; Van Alsenoy, C.

    2017-02-01

    IR and Raman spectra of 1-[3-(1H-imidazol-1-yl)propyl]-3-phenylthiourea (HIPPT) have been recorded in the solid phase and the vibrational wave numbers are calculated theoretically by B3LYP/6-31G(d,p) (6D, 7F) method. All the fundamental vibrational modes have been assigned using potential energy distribution values and the molecular structure was analyzed in terms of parameters like bond length, bond angles and dihedral angles. The ring breathing mode of the phenyl ring is observed at 1016 cm-1 in the IR spectrum, 1014 cm-1 in the Raman spectrum and at 1014 cm-1 theoretically. The values of polarizability and hyperpolarizabilities were calculated and nonlinear optical properties are discussed. The HOMO-LUMO plot reveals the charge transfer possibilities in the molecule. The NBO analysis was computed and possible transitions were correlated with the electronic transitions. In the title compound, the imidazole ring and CH2 groups are tilted from each other and the thiourea group is tilted from the phenyl ring. Using MEP plot the electrophilic and nucleophilic regions are identified. Local reactivity properties were investigated by analysis of ALIE surfaces and Fukui functions. Oxidation and degradation properties were initially assessed by calculation of bond dissociation energies of all single acyclic bonds. Determination of atoms with pronounced interactions with water molecules was performed by calculation of radial distribution functions after molecular dynamics simulations. Chargehopping rates were calculated within Marcus semi-empiric approach, employing both DFT calculations and MD simulations. The molecular docking computational predictions were complemented by the in vitro antibacterial activity evaluation.

  9. Energetics and electronic structures of chemically decorated C60 chains

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2018-06-01

    We studied the energetics and electronic structures of one-dimensional molecular chains of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) using the density functional theory (DFT). Our DFT calculations show that the binding energies of PCBM range from 90 to 300 meV, depending on not only the intermolecular spacing but also the intermolecular arrangements owing to the interaction between functional groups and C60. The electronic structure of PCBM chains are also sensitive to the mutual arrangements of PCBM in their chain structure. The calculated effective masses of the conduction band range from 0.58 to 634.97m e, giving rise to anisotropic transport properties in their condensed phase.

  10. A density functional theory computational study of adsorption of Di-Meta-Cyano Azobenzene molecules on Si (111) surfaces

    NASA Astrophysics Data System (ADS)

    Motevalli, Benyamin; Taherifar, Neda; Wu, Bisheng; Tang, Wenxin; Liu, Jefferson Zhe

    2017-11-01

    The adsorption of di-meta-cyano azobenzene (DMC) cis and trans isomers on non-passivated and passivated Si (111) (7 × 7) surfaces is studied using density functional theory (DFT) calculations. Our results reveal that on the non-passivated surface the 12 Si adatoms are accessible to form chemical bonds with DMC molecules. Interestingly, the trans isomer forms two chemical bonds near the corner hole atom in Si (111) (7 × 7) surface, which is not observed in the widely studied metallic surfaces. The DMC isomers show significant structural distortion in the chemisorption case. The strong chemical bonds (and high bonding energy) could be detrimental to conformation switching between these two isomers under external stimuli. The physisorption case is also examined. Monte Carlo (MC) simulations with empirical force fields were employed to search about 106 different adsorption positions and DMC molecule orientations to identify the stable adsorption sites (up to six). The DFT-PBE and DFT-D2 calculations were then carried out to obtain the relaxed atomistic structures and accurate adsorption energy. We find that it is imperative to take van der Waals (vdW) interaction into account in DFT calculations. Our results show that the adsorption sites generally are encompassed by either the Si adatoms or the passivated H atoms, which could enhance the long-range dispersion interaction between DMC molecules and Si surfaces. The molecular structures of both isomers remain unchanged compared with gas phase. The obtained adsorption energy results ΔEads are moderate (0.2-0.8 eV). At some adsorption sites on the passivated surface, both isomers have similar moderate ΔEads (0.4-0.6 eV), implying promises of molecular switching that should be examined in experiments.

  11. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    NASA Astrophysics Data System (ADS)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  12. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile.

    PubMed

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-03-15

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Rankine-Hugoniot relationships for molecular crystal explosives calculated using density functional theory based molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wixom, Ryan R.; Mattsson, Thomas R.

    2011-06-01

    Density Functional Theory (DFT) has become a crucial tool for understanding the behavior of matter. The ability to perform high-fidelity calculations is most important for cases where experiments are impossible, dangerous, and/or prohibitively expensive to perform. For molecular crystals, successful use of DFT has been hampered by an inability to correctly describe the van der Waals' dominated equilibrium state. We have explored a way of bypassing this problem by using the Armiento-Mattsson 2005 (AM05) exchange-correlation functional. This functional is highly accurate for a wide range of solids, in particular in compression. Another advantage is that AM05 does not include any van der Waals' attraction. We will demonstrate the method on the PETN Hugoniot, and discuss our confidence in the results and ongoing research aimed at improvement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingcheng; Wang, Yu; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: bwang@ustc.edu.cn

    We investigate the modification of electronic properties of single cobalt phthalocyanine (CoPc) molecule by an extra Co atom co-adsorbed on Au (111) surface using scanning tunneling microscopy (STM), joint with density functional theory (DFT) calculations. By manipulating CoPc molecules using the STM tip to contact individually adsorbed Co atom, two types of relatively stable complexes can be formed, denoted as CoPc-Co(I) and CoPc-Co(II). In CoPc-Co(I), the Co atom is at an intramolecular site close to aza-N atom of CoPc, which induces significant modifications of the electronic states of CoPc, such as energy shifts and splitting of nonlocal molecular orbitals. However,more » in CoPc-Co(II) where the Co atom is underneath a benzene lobe of CoPc, it only slightly modifies the electronic states of CoPc, and mainly local characteristics of specific molecular orbitals are affected, even though CoPc-Co(II) is more stable than CoPc-Co(I). Our DFT calculations give consistent results with the experiments, and related analyses based on the molecular orbital theory reveal mechanism behind the experimental observations.« less

  15. Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gözde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, Fatma; Armaković, Stevan; Armaković, Sanja J.; Yildiz, Ilkay; Van Alsenoy, C.

    2017-08-01

    N-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex.

  16. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    PubMed

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method.

    PubMed

    Kuruvilla, Tintu K; Prasana, Johanan Christian; Muthu, S; George, Jacob; Mathew, Sheril Ann

    2018-01-05

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties. Copyright © 2017. Published by Elsevier B.V.

  18. DFT study of the effect of substitution on the molecular structure of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.

    2016-05-01

    To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.

  19. Vibrational spectroscopic studies, NLO, HOMO-LUMO and electronic structure calculations of α,α,α-trichlorotoluene using HF and DFT.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Xavier, S

    2012-08-01

    FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. (1)H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Shuttlecock-Shaped Molecular Rectifier: Asymmetric Electron Transport Coupled with Controlled Molecular Motion.

    PubMed

    Ryu, Taekhee; Lansac, Yves; Jang, Yun Hee

    2017-07-12

    A fullerene derivative with five hydroxyphenyl groups attached around a pentagon, (4-HOC 6 H 4 ) 5 HC 60 (1), has shown an asymmetric current-voltage (I-V) curve in a conducting atomic force microscopy experiment on gold. Such molecular rectification has been ascribed to the asymmetric distribution of frontier molecular orbitals over its shuttlecock-shaped structure. Our nonequilibrium Green's function (NEGF) calculations based on density functional theory (DFT) indeed exhibit an asymmetric I-V curve for 1 standing up between two Au(111) electrodes, but the resulting rectification ratio (RR ∼ 3) is insufficient to explain the wide range of RR observed in experiments performed under a high bias voltage. Therefore, we formulate a hypothesis that high RR (>10) may come from molecular orientation switching induced by a strong electric field applied between two electrodes. Indeed, molecular dynamics simulations of a self-assembled monolayer of 1 on Au(111) show that the orientation of 1 can be switched between standing-up and lying-on-the-side configurations in a manner to align its molecular dipole moment with the direction of the applied electric field. The DFT-NEGF calculations taking into account such field-induced reorientation between up and side configurations indeed yield RR of ∼13, which agrees well with the experimental value obtained under a high bias voltage.

  1. The crystallographic, spectroscopic and theoretical studies on (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol molecules

    NASA Astrophysics Data System (ADS)

    Demirtaş, Güneş; Dege, Necmi; Ağar, Erbil; Uzun, Sümeyye Gümüş

    2018-01-01

    Two new salicylideneaniline (SA) derivative compounds (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (I), and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (II), have been synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, 1H NMR, 13C NMR and theoretical methods. Both of the compounds which are Schiff base derivatives are isomer of each other. While the compound (I) crystallizes in centrosymmetric monoclinic space group P 21/c, the compound (II) crystallizes in orthorhombic space group P 212121. The theoretical parameters of the molecules have been calculated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) with 6-31G (d,p) basis set. These theoretical parameters have been compared with the experimental parameters obtained by XRD. The experimental geometries of the compounds have been superimposed with the theoretical geometries calculated by HF and DFT methods. Furthermore, the theoretical IR calculations, molecular electrostatic potential maps (MEP) and frontier molecular orbitals have been created for the compounds.

  2. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    PubMed

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  3. Spectroscopic (FTIR, FT-Raman), molecular electrostatic potential, NBO and HOMO-LUMO analysis of P-bromobenzene sulfonyl chloride based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeyavijayan, S.

    2015-02-01

    The FTIR and FT-Raman spectra of P-bromobenzene sulfonyl chloride (P-BBSC) have been recorded in the regions 4000-400 cm-1 and 3500-50 cm-1, respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method. A good agreement between experimental and calculated normal modes of vibrations has been observed. A detailed interpretation of the infrared and Raman spectra of P-BBSC is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms. The UV-vis spectral analysis of P-BBSC has also been done which confirms the charge transfer of the molecule.

  4. Approach of the Molten Salt Chemistry for Aluminium Production: High Temperature NMR Measurements, Molecular Dynamics and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Machado, Kelly; Zanghi, Didier; Sarou-Kanian, Vincent; Cadars, Sylvian; Burbano, Mario; Salanne, Mathieu; Bessada, Catherine

    In aluminum production, the electrolyte is a molten fluorides mixture typically around 1000°C. In order to have a better understanding of the industrial process, it is necessary to have a model which will describe the molten salts on a wide range of compositions and temperatures, to accurately cover all the combinations that may be encountered in an operating electrolysis vessel. The aim of this study is to describe the speciation in the electrolyte in terms of anionic species in the bulk materials far from electrodes. To determine the speciation in situ at high temperature in the absence of an electrical field, we develop an original approach combining experimental methods such as Nuclear Magnetic Resonance spectroscopy (NMR) at high temperature with Molecular Dynamics (MD) simulation coupled with first principle calculations based on Density Functional Theory (DFT). This approach allows the calculation of NMR parameters and the comparison with the experimental ones. It will be provide an additional validation and constraint of the model used for MD. We test this approach on the model NaF-AlF3 system.

  5. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Structure and electronic absorption spectra of nematogenic alkoxycinnamic acids - a comparative study based on semiempirical and DFT methods.

    PubMed

    Praveen, Pogula Lakshmi; Ojha, Durga Prasad

    2012-04-01

    Structure of nematogenic p-n-Alkoxy cinnamic acids (nOCAC) with various alkyl chain carbon atoms (n = 2, 4, 6, 8) has been optimized using density functional B3LYP with 6-31+G (d) basis set using crystallographic geometry as input. Using the optimized geometry, electronic structure of the molecules has been evaluated using the semiempirical methods and DFT calculations. Molecular charge distribution and phase stability of these systems have been analyzed based on Mulliken and Löwdin population analysis. The electronic absorption spectra of nOCAC molecules have been simulated by employing DFT method, semiempirical CNDO/S and INDO/S parameterizations. Two types of calculations have been performed for model systems containing single and double molecules of nOCAC. UV-Visible spectra have been calculated for all single molecules. The UV stability of the molecules has been discussed in light of the electronic transition oscillator strength (f). The dimer complexes of higher homologues (n = 6, 8) have also been reported to enable the comparison between single and double molecules.

  7. Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures.

    PubMed

    Kharissova, Oxana V; Osorio, Mario; Vázquez, Mario Sánchez; Kharisov, Boris I

    2012-08-01

    Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi(20)(C(5V)), Bi(24)(C(6v)), Bi(28)(C(1)), B(32)(D(3H)), Bi(60)(C(I))} and calculated their conductor properties.

  8. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Molecular structure, Hirshfeld surface analysis, theoretical investigations and nonlinear optical properties of a novel crystalline chalcone derivative: (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Pramodh, B.; Lokanath, N. K.; Naveen, S.; Naresh, P.; Ganguly, S.; Panda, J.

    2018-06-01

    In the present work, the crystal structure of a novel chalcone derivative, (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl) prop-2-en-1-one has been confirmed by X-ray diffraction studies. Hirshfeld surface analysis was carried out to explore the intermolecular interactions. From the Hirshfeld surface analysis it was observed that H⋯H (26.7%) and C⋯H (26.3%) are the major contributors to the intermolecular interactions which stabilizes the crystal structure. The coordinates were optimized using the density functional theory (DFT) calculations using B3LYP hybrid functions with 6-31G(d) basis set. The structural parameters obtained from XRD studies compliment with those calculated using DFT calculations. The HOMO and LUMO energy gap was found to be 4.1778 eV. The molecular electrostatic potential (MEP) was plotted to identify the possible reactions sites of the molecule. Further, non-linear optical (NLO) properties were investigated by calculating hyperpolarizabilities which indicate that the title compound would be a potential candidate for the NLO applications.

  10. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  11. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol.

    PubMed

    Shoba, D; Periandy, S; Karabacak, M; Ramalingam, S

    2011-12-01

    The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic characterization, reactivity study by DFT and MD approaches and molecular docking study of a novel chalcone derivative

    NASA Astrophysics Data System (ADS)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-05-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in monoclinic crystal system in P21/c space group, unit cell parameters a = 16.7629 (12) Å, b = 13.9681 (10) Å, c = 5.8740 (4) Å, β = 96.3860 (12)° and Z = 4. Hirshfeld surface analysis revealed that the molecular structure is dominated by H⋯H, C⋯H/H⋯C, Br⋯F/F⋯Br and F⋯F contacts. The FT-IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. Average local ionization energies (ALIE) and Fukui functions have been used as quantum-molecular descriptors to locate the molecule sites that could be of importance from the aspect of reactivity. Degradation properties have been assessed by calculations of bond dissociation energies (BDE) for hydrogen abstraction and the rest of the single acyclic bonds, while molecular dynamics (MD) simulations were used in order to calculate radial distribution functions and determine the atoms with significant interactions with water. In order to understand how the title molecule inhibits and hence increases the catalytic efficiency of MOA-B enzyme, molecular docking study was performed.

  13. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  14. Theoretical Study of Effect of Introducing π-Conjugation on Efficiency of Dye-Sensitized Solar Cell.

    PubMed

    Lee, Geon Hyeong; Kim, Young Sik

    2018-09-01

    In this study, phenoxazine (PXZ)-based dye sensitizers with triphenylamine (TPA) as a dual-electron donor and thiophen and benzothiadiazole (BTD) or 4,7-diethynylbenzo[c][1,2,5]thiadiazole (DEBT) as an electron acceptor (dye1, dye2, and dye3) were designed and investigated. dye3 can significantly stabilize the lowest unoccupied molecular orbital (LUMO) energy level of an organic dye. We used density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to better understand the factors responsible for the photovoltaic performance. The absorption spectrum of the dyes showed different forms because of the different energy levels of the molecular orbital (MO) of each dye and the intramolecular energy transfer (EnT). Among the three dyes, dye3 showed greater red-shift, broader absorption spectra, and higher molar extinction coefficient. These results indicate that adding a withdrawing unit and π-conjugation to a dye can result in good photovoltaic properties for dye-sensitized solar cells (DSSCs).

  15. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198; Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluatedmore » for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.« less

  16. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  17. Structures, mechanical properties, equations of state, and electronic properties of β-HMX under hydrostatic pressures: a DFT-D2 study.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; De, Suvranu

    2014-10-07

    We report the hydrostatic compression studies of the β-polymorph of a cyclotetramethylene tetranitramine (HMX) energetic molecular crystal using DFT-D2, a first-principles calculation based on density functional theory (DFT) with van der Waals (vdW) corrections. The molecular structure, mechanical properties, electronic properties, and equations of state of β-HMX are investigated. For the first time, we predict the elastic constants of β-HMX using DFT-D2 studies. The equations of state under hydrostatic compression are studied for pressures up to 100 GPa. We found that the N-N bonds along the minor axis are responsible for the sensitivity of β-HMX. The analysis of the charge distribution shows that the electronic charge is transferred from hydrogen atoms to nitro groups with the amount of 0.131 and 0.064e for the nitro groups along the minor axis and major axis, respectively, when pressure changes from 0 GPa to 100 GPa. The electronic energy band gap changes from direct at a pressure of 0 GPa to indirect at a pressure of 50 GPa and higher. The band gap decreases with respect to an increase in pressure, implying that the impact sensitivity increases with compression. Our study suggests that the van der Waals interactions are critically important in modeling the mechanical properties of this molecular crystal.

  18. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations.

    PubMed

    Michalski, J; Bryndal, I; Lorenc, J; Hermanowicz, K; Janczak, J; Hanuza, J

    2018-02-15

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z=4 with the unit cell parameters: a=12.083(7), b=12.881(6), c=8.134(3) Å and β=97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2'-C1' torsion angle takes a value -178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12μs and the Stokes shift is close to 5470cm -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  20. Molecular interactions of alcohols with zeolite BEA and MOR frameworks.

    PubMed

    Stückenschneider, Kai; Merz, Juliane; Schembecker, Gerhard

    2013-12-01

    Zeolites can adsorb small organic molecules such as alcohols from a fermentation broth. Also in the zeolite-catalyzed conversion of alcohols to biofuels, biochemicals, or gasoline, adsorption is the first step. Several studies have investigated the adsorption of alcohols in different zeolites experimentally, but computational investigations in this field have mostly been restricted to zeolite MFI. In this study, the adsorption of C1-C4 alcohols in BEA and MOR was investigated using density functional theory (DFT). Calculated adsorption geometries and the corresponding energies of the designed cluster models were comparable to periodic calculations, and the adsorption energies were in the same range as the corresponding computational and experimental values reported in the literature for zeolite MFI. Thus, BEA and MOR may be good adsorption materials for alcohols in the field of downstream processing and catalysis. Aside from the DFT calculations, adsorption isotherms were determined experimentally in this study from aqueous solutions. For BEA, the adsorption of significant amounts of alcohol from aqueous solution was observed experimentally. In contrast, MOR was loaded with only a very small amount of alcohol. Although differences were found between the affinities obtained from gas-phase DFT calculations and those observed experimentally in aqueous solution, the computational data presented here represent molecular level information on the geometries and energies of C1-C4 alcohols adsorbed in zeolites BEA and MOR. This knowledge should prove very useful in the design of zeolite materials intended for use in adsorption and catalytic processes, as it allows adsorption behavior to be predicted via judiciously designed computational models.

  1. Effect of BrU on the transition between wobble Gua-Thy and tautomeric Gua-Thy base-pairs: ab initio molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Hoshino, Ryota; Hoshiba, Yasuhiro; Danilov, Victor I.; Kurita, Noriyuki

    2013-04-01

    We investigated transition states (TS) between wobble Guanine-Thymine (wG-T) and tautomeric G-T base-pair as well as Br-containing base-pairs by MP2 and density functional theory (DFT) calculations. The obtained TS between wG-T and G*-T (asterisk is an enol-form of base) is different from TS got by the previous DFT calculation. The activation energy (17.9 kcal/mol) evaluated by our calculation is significantly smaller than that (39.21 kcal/mol) obtained by the previous calculation, indicating that our TS is more preferable. In contrast, the obtained TS and activation energy between wG-T and G-T* are similar to those obtained by the previous DFT calculation. We furthermore found that the activation energy between wG-BrU and tautomeric G-BrU is smaller than that between wG-T and tautomeric G-T. This result elucidates that the replacement of CH3 group of T by Br increases the probability of the transition reaction producing the enol-form G* and T* bases. Because G* prefers to bind to T rather than to C, and T* to G not A, our calculated results reveal that the spontaneous mutation from C to T or from A to G base is accelerated by the introduction of wG-BrU base-pair.

  2. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    NASA Astrophysics Data System (ADS)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.

  3. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  4. Investigation of antimicrobial activities, DNA interaction, structural and spectroscopic properties of 2-chloro-6-(trifluoromethyl)pyridine

    NASA Astrophysics Data System (ADS)

    Evecen, Meryem; Kara, Mehmet; Idil, Onder; Tanak, Hasan

    2017-06-01

    2-Chloro-6-(trifluoromethyl)pyridine has been characterized by FT-IR, 1H and 13C NMR experiment. FT-IR spectra of the molecule has been recorded in the 4000-400 cm-1 region. The molecular structural parameters and vibrational frequencies were computed using the HF and DFT (B3LYP, B3PW91) methods with the 6-31+G(d,p) and 6-311++G(d,p) basis sets. 1H and 13C NMR Gauge Including Atomic Orbital (GIAO) chemical shifts of the compound were calculated using the density functional method (B3LYP) with the 6-311++G(d,p) basis set. The vibrational wavenumbers and chemical shifts were compared with the experimental data of the compound. Using the TD-DFT methodology, electronic absorption spectra of the compound have been computed. Besides, solvent effects on the excitation energies and chemical shifts were carried out using the integral equation formalism of the polarisable continuum model (IEF-PCM). DFT calculations of the compound, Mulliken's charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and thermodynamic properties were also obtained theoretically. In addition, the antimicrobial activities were tested by using minimal inhibitory concentration method (MIC) and also the effect of the molecule on pBR322 plasmid DNA was monitored byagarose gel electrophoresis experiments.

  5. Quasiparticle Level Alignment for Photocatalytic Interfaces.

    PubMed

    Migani, Annapaoala; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2014-05-13

    Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.

  6. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT

    NASA Astrophysics Data System (ADS)

    Prashanth, J.; Reddy, Byru Venkatram

    2018-03-01

    The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.

  7. Quantum mechanics study of repulsive π-π interaction and flexibility of phenyl moiety in the iron azodioxide complex

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.

    2015-10-01

    In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.

  8. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    PubMed

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.

    PubMed

    Dognon, Jean-Pierre; Pyykkö, Pekka

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O.

    PubMed

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-05

    The crystal structure of (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O is built up of [NH 3 (CH 2 ) 3 NH 2 (CH 2 ) 3 NH 3 ] 3+ cations, [SbCl 5 ] 2- anions, free Cl - anions and neutral water molecules connected together by NH⋯Cl, NH⋯O and OH⋯Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    NASA Astrophysics Data System (ADS)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  12. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  13. A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies

    PubMed Central

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules. PMID:22942689

  14. Synthesis, spectroscopic characterization and crystallographic behavior of a biologically relevant novel indole-fused heterocyclic compound - Experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Brahmachari, Goutam; Banerjee, Bubun; Nurjamal, Khondekar; Kumar, Abhishek; Srivastava, Ambrish Kumar; Misra, Neeraj; Pandey, Sarvesh Kumar; Rajnikant; Gupta, Vivek K.

    2016-08-01

    The present communication deals with the eco-friendly synthesis, spectral properties and X-ray crystal structure of an indole derivative - Ethyl 2'-amino-3'-cyano-6'-methyl-5-nitro-2-oxospiro [indoline-3,4'-pyran]-5'-carboxylate. The title compound was synthesized in 87% yield. The crystal structure of the molecule is stabilized by intermolecular Nsbnd H … N, Nsbnd H … O and Csbnd H … π interactions. The molecule is organized in the crystal lattice forming sheet like structure. To interpret the experimental data, ab initio computations of the vibrational frequencies were carried out using the Gaussian 09 program followed by the full optimizations done using Density Functional Theory (DFT) at B3LYP/6-31 + G(d,p) level. The combined use of experiments and computations allowed a firm assignment of the majority of observed bands for the compound. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs) and density of states (DOS). From the optimized geometry of the molecule, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMOs) of the title compound have been calculated in the ground state theoretically. The theoretical results showed good agreement with the experimental values. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compound.

  15. Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study

    PubMed Central

    Mehmeti, Valbonë V.; Berisha, Avni R.

    2017-01-01

    The corrosion behavior of mild steel in 0.1 M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations, and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1) and Fe2O3 (1 1 1) surface. The molecules were also studied with the density functional theory (DFT), using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using DFT with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results. PMID:28971092

  16. Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy)₃ Complexes.

    PubMed

    Natori, Yoshiki; Kitagawa, Yasutaka; Aoki, Shogo; Teramoto, Rena; Tada, Hayato; Era, Iori; Nakano, Masayoshi

    2018-03-05

    The fac -Ir(ppy)₃ complex, where ppy denotes 2-phenylpyridine, is one of the well-known luminescent metal complexes having a high quantum yield. However, there have been no specific molecular design guidelines for color tuning. For example, it is still unclear how its optical properties are changed when changing substitution groups of ligands. Therefore, in this study, differences in the electronic structures and optical properties among several substituted fac -Ir(ppy)₃ derivatives are examined in detail by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. On the basis of those results, we present rational design guidelines for absorption and emission color tuning by modifying the species of substituents and their substitution positions.

  17. On the molecular and supramolecular properties of N,N‧-disubstituted iminoisoindolines: Synthesis, spectroscopy, X-ray structure and Hirshfeld surface analyses, and DFT calculations of two (E)-N,N‧-bis(aryl)iminoisoindolines (aryl = 2-tert-butylphenyl or perfluorophenyl)

    NASA Astrophysics Data System (ADS)

    Bitzer, Rodrigo S.; Visentin, Lorenzo C.; Hörner, Manfredo; Nascimento, Marco A. C.; Filgueiras, Carlos A. L.

    2017-02-01

    Supramolecular studies of iminoisoindoline-derived compounds have been prompted by their biological and photophysical properties. In this article, we report the synthesis, spectroscopy, X-ray structural characterization, and DFT study of two N,N‧-(aryl)-disubstituted 1-iminoisoindolines, namely (E)-N,N‧-bis(2-tert-butylphenyl)iminoisoindoline (2-t-BuPhimiso) and (E)-N,N‧-bis(perfluorophenyl)iminoisoindoline (F5Phimiso). Our X-ray structural analyses have shown that the isoindoline N2 atom of 2-t-BuPhimiso is slightly pyramidalized whereas the respective atom of F5Phimiso displays the expected trigonal planar geometry. The supramolecular arrangement of 2-t-BuPhimiso comprises one-dimensional chains along the [101] direction formed by Csbnd H···πarene interactions, in which the isoindoline ring behaves as a hydrogen-bond donor. For 2-t-BuPhimiso, DFT calculations at the B97-D3/6-311G** level have shown that the dimer formed by this Csbnd H···πarene contact displays a binding energy of -12.83 kcal mol-1. Product F5Phimiso assembles in the crystal state through type-I F3 synthons in addition to Csbnd H⋯F, C-Fδ-···πF+, and πarene/F-πarene/F stacking interactions. Accordingly, our DFT-D3 calculations have confirmed that these interactions synergistically play a dominating role in the crystal packing of F5Phimiso. Finally, the relative stability of the (Z) and (E) isomers of each product has been evaluated at the DFT level of theory. Our calculations have shown that the (E) forms are the most stable ones.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokár, K.; Derian, R.; Mitas, L.

    Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less

  19. DFT and experimental studies of the structure and vibrational spectra of curcumin

    NASA Astrophysics Data System (ADS)

    Kolev, Tsonko M.; Velcheva, Evelina A.; Stamboliyska, Bistra A.; Spiteller, Michael

    The potential energy surface of curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] was explored with the DFT correlation functional B3LYP method using 6-311G* basis. The single-point calculations were performed at levels up to B3LYP/6-311++G**//B3LYP/6-311G*. All isomers were located and relative energies determined. According to the calculation the planar enol form is more stable than the nonplanar diketo form. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. In addition, harmonic vibrational frequencies of the molecule were evaluated theoretically using B3LYP density functional methods. The computed vibrational frequencies were used to determine the types of molecular motions associated with each of the experimental bands observed. Our vibrational data show that in both the solid state and in all studied solutions curcumin exists in the enol form.

  20. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: electronic and vibrational properties.

    PubMed

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    NASA Astrophysics Data System (ADS)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  2. A study on the electronic spectra of some 2-azidobenzothiazoles, TD-DFT treatment.

    PubMed

    Abu-Eittah, Rafie H; El-Taher, Sabry; Hassan, Walid; Noamaan, Mahmoud

    2015-12-05

    The electronic absorption spectra of some 2-azidobenzothiazoles were measured in different solvents. The effects of solvent and substitution on the spectra were investigated. Substitution by a bromine atom and by a nitro group have significant effects on both band maxima and band intensity. Correlation between the spectra of the studied compounds and the corresponding hydrocarbons proved to be weak, whereas the correlation between the observed spectra and those calculated is adequate. Theoretical treatment of the ultraviolet spectra of the studied compounds was carried out by using the TD-DFT procedures, at the B3LYP level and the 6-311+G(∗∗) basis sets, the results compared well with the experimental values. The computed molecular orbitals of the ground state indicate that some orbitals are "localized-π" or "localized σ" molecular orbitals while the others are delocalized orbitals. The calculated functions of the excited states lead to an accurate assignment of the bands observed in the spectra. Copyright © 2015. Published by Elsevier B.V.

  3. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jerôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2004-11-12

    Flavonoids are naturally occurring phenol derivatives present in substantial amounts in a large variety of plants, fruits and vegetables daily eaten by humans. Most of these compounds exhibit several interesting biological activities, such as antiradical and antioxidant actions. Indeed, by complexation with specific enzymes, flavonoids are notably liable to metabolize molecular dioxygen. On the basis of experimental results describing oxygenolysis of the flavonoid quercetin, activated by the enzyme quercetin 2,3-dioxygenase (2,3-QD),ur attention has focused on the role of metal center in the activation of the substrate quercetin. Thus, in the present study, by means of DFT calculations at the B3LYP/ 6-31(+)G* level on model molecular systems, we describe different mechanisms for dioxygen metabolization by quercetin. Stationary points are described, and energetic and structural analyses along the reaction paths are reported. Our calculations show that the copper cation must act as an oxidant towards the substrate and that the reaction proceeds through a 1,3-cycloaddition.

  4. Study on the prediction of visible absorption maxima of azobenzene compounds

    PubMed Central

    Liu, Jun-na; Chen, Zhi-rong; Yuan, Shen-feng

    2005-01-01

    The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWF π-π=−8.1537+6.5638BL N-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible absorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital). PMID:15909349

  5. Synthesis of a novel methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(2-methoxyphenyl)prop-2-enoate: Molecular structure, spectral, antimicrobial, molecular docking and DFT computational approaches

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2017-01-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido] methyl}-3-(2-methoxyphenyl)prop-2-enoate (MFMSM) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. XRD, FT-IR and NMR spectra of MFMSM in the solid phase were recorded and analyzed. The optimized geometry and vibrational wave numbers were computed using DFT method. The NLO, Mulliken, MEP, HOMO-LUMO energy gap and thermodynamic properties were theoretically predicted. The NBO analysis explained the intramolecular hydrogen bonding. The global chemical reactivity descriptors are calculated for MFMSM and used to predict their relative stability and reactivity. All the calculations were carried out by B3LYP/6-311G (d,p) method. MFMSM has been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Docking simulation has been performed.

  6. Effect of phosphorus on the electronic and optical properties of naphthoxaphospholes: theoretical investigation

    NASA Astrophysics Data System (ADS)

    Moon, Jiwon; Kim, Minbi; Lim, Jeong Sik; Kim, Joonghan

    2018-06-01

    Density functional theory (DFT) and time-dependent DFT calculations were performed to elucidate the electronic and optical properties of 2-R-naphthol[2,3-d]oxaphospholes (R-NOPs). On the basis of the calculated results, the poor π overlap between the 3pz orbital of P atom and the 2pz orbitals of other atoms and increasing polarity of P atom result in a reduced energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. When these two effects are considered simultaneously, the absorption energies obtained for the S1 state can be below 3.00 eV according to replace the P atom of oxaphosphole ring by As atom (increasing the poor π overlap) and change the functional groups (increasing polarity). The origin of these two effects is the inherent size of the 3p orbital of P atom. The role of P atom in the control of the electronic and optical properties of R-NOPs is clearly elucidated.

  7. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    PubMed

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  8. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  9. Electronic structure, hydrogen bonding and spectroscopic profile of a new 1,2,4-triazole-5(4H)-thione derivative: A combined experimental and theoretical (DFT) analysis

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, Abdul-Malek S.

    2016-09-01

    Density functional theory has been implemented to study the electronic structure, molecular properties and vibrational spectra of 3-(adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione, a novel 1,2,4-triazole-5(4H)-thione derivative. Hydrogen bonded dimer of the title molecule has been studied using B3LYP, M06-2X and X3LYP functionals at 6-311++ G(d,p) level of theory. The intermolecular hydrogen bonding has been studied using NBO analysis of the dimer. Bader's AIM theory was also used to evaluate the strength as well as the hydrogen bonding characteristics. Experimental FT-IR and FT-Raman spectra of the title molecule were related with the spectral data obtained with DFT/B3LYP method. The 1H NMR chemical shifts of the title molecule were calculated by the GIAO method and compared with experimental results. Dipole moment, polarizability (α), first order static hyperpolarizability (β) along with molecular electrostatic potential surface have been calculated. Frequency-dependent first hyperpolarizabilities, β(-2ω;ω,ω) and β(-ω;ω,0) have also been evaluated to study the non-linear optical behavior of the title compound. UV-Vis spectrum of the title molecule was recorded and TD-DFT method has been used to calculate six lowest excited states and the corresponding excitation energies.

  10. Synthesis, characterization and relativistic DFT studies of fac-Re(CO)3(isonicotinic acid)2Cl complex

    NASA Astrophysics Data System (ADS)

    Zúñiga, César; Oyarzún, Diego P.; Martin-Transaco, Rudy; Yáñez-S, Mauricio; Tello, Alejandra; Fuentealba, Mauricio; Cantero-López, Plinio; Arratia-Pérez, Ramiro

    2017-11-01

    In this work, new fac-Re(CO)3(PyCOOH)2Cl from isonicotinic acid ligand has been prepared. The complex was characterized by structural (single-crystal X-ray diffraction), elemental analysis and spectroscopic (FTIR, NMR, UV-vis spectroscopy) methods. DFT and TDDFT calculations were performed to obtain the electronic transitions involved in their UV-Vis spectrum. The excitation energies agree with the experimental results. The TDDFT calculations suggest that experimental mixed absorption bands at 270 and 314 nm could be assigned to (MLCT-LLCT)/MLCT transitions. Natural Bond Orbitals (NBO) approach has enabled studying the effects of bonding interactions. E(2) energies confirm the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule.

  11. Crystal structure and chemical bonding in the mixed anion compound BaSF.

    PubMed

    Driss, D; Cadars, S; Deniard, P; Mevellec, J-Y; Corraze, B; Janod, E; Cario, L

    2017-11-28

    BaSF was synthesised by a solid state reaction at high temperature and its crystal structure was determined thanks to X-ray diffraction on a single crystal. This transparent yellow fluorochalcogenide has an intergrowth structure built from the stacking of fluorite type layers and sulfur layers. In BaSF sulfur atoms form dimers with interatomic distances as short as 2.1074(10) Å. DFT calculations confirm that this compound is a band insulator with the Fermi level lying in between the antibonding π* and σ* molecular orbitals of the sulfur dimers. Reflectance measurements show that the optical band gap of BaSF is about 2.7 eV in good agreement with the value found from DFT calculations.

  12. Molecular structure and vibrational assignments of 2,4-dichlorophenoxyacetic acid herbicide

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2010-09-01

    The structural stability of 2,4-dichlorophenoxyacetic acid was investigated by the DFT-B3LYP and the ab initio MP2 calculations with the 6-311G** basis set. From the calculations at both levels of theory the Cgcpp structure was predicted to be the lowest energy minimum for the acid. The DFT and the MP2 levels disagreed about the nature of the second stable structure of 2,4-dichlorophenoxyacetic acid. At the DFT-B3LYP level of calculation the planar Tttp ( transoid O dbnd C sbnd O sbnd H) and the non-planar Tgcpp ( cisoid O dbnd C sbnd O sbnd H) forms were predicted to be 0.7 and 1.5 kcal/mol, respectively higher in energy than the Cgcpp conformation. At the MP2 level the two high energy Tttp and Tgcpp forms were predicted to be 2.7 and 1.4 kcal/mol, respectively higher in energy than the ground state Cgcpp structure. The Tgcpp form was adopted as the second possible structure of 2,4-dichlorophenoxyacetic acid on the basis of the fact that the Møller-Plesset calculations account better than the DFT ones for the non-bonding O⋯H interactions. The vibrational frequencies of the lowest energy Cgcpp conformer were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  13. Phenothiazine-anthraquinone donor-acceptor molecules: synthesis, electronic properties and DFT-TDDFT computational study.

    PubMed

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-09-17

    Two donor-acceptor molecules with different pi-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and pi --> pi* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  14. Exploring unimolecular dissociation kinetics of ethyl dibromide through electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Gulvi, Nitin R.; Patel, Priyanka; Badani, Purav M.

    2018-04-01

    Pathway for dissociation of multihalogenated alkyls is observed to be competitive between molecular and atomic elimination products. Factors such as molecular structure, temperature and pressure are known to influence the same. Hence present work is focussed to explore mechanism and kinetics of atomic (Br) and molecular (HBr and Br2) elimination upon pyrolysis of 1,1- and 1,2-ethyl dibromide (EDB). For this purpose, electronic structure calculations were performed at DFT and CCSD(T) level of theory. In addition to concerted mechanism, an alternate energetically efficient isomerisation pathway has been exploited for molecular elimination. Energy calculations are further complimented by detailed kinetic investigation, over wide range of temperature and pressure, using suitable models like Canonical Transition State Theory, Statistical Adiabatic Channel Model and Troe's formalism. Our calculations suggest high branching ratio for dehydrohalogentation reaction, from both isomers of EDB. Fall off curve depicts good agreement between theoretically estimated and experimentally reported values.

  15. The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-06-01

    Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.

  16. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    NASA Astrophysics Data System (ADS)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  17. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations.

    PubMed

    Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R

    2015-03-05

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach.

    PubMed

    Kityk, Andriy V

    2012-03-22

    Long-range-corrected (LC) DFT/TDDFT methods may provide adequate description of ground and excited state properties; however, accuracy of such an approach depends much on a range separation (exchange screening) representing adjustable model parameter. Its relation to a size or specific of molecular systems has been explored in numerous studies, whereas the effect of solvent environment is usually ignored during the evaluation of state properties. To benchmark and assess the quality of the LC-DFT/TDDFT formalism, we report the optical absorption and fluorescence emission energies of organic heterocyclic isomers, DPIPQ and PTNA, calculated by LC-BLYP DFT/TDDFT method in the polarizable continuum (PCM) approach. The calculations are compared with the optical absorption and fluorescence spectra measured in organic solvents of different polarity. Despite a considerable structural difference, both dyes exhibit quite similar range separations being somewhat different for the optical absorption and fluorescence emission processes. Properly parametrized LC-BLYP xc-potential well reproduces basic features of the optical absorption spectra including the electronic transitions to higher excited states. The DFT/TDDFT/PCM analysis correctly predicts the solvation trends although solvatochromic shifts of the electronic transition energies appear to be evidently underestimated in most cases, especially for the fluorescence emission. Considering the discrepancy between the experiment and theory, evaluated state dipole moments and solvation corrections to the exchange screening are analyzed. The results of the present study emphasize the importance of a solvent-dependent range separation in DFT/TDDFT/PCM calculations for investigating excited state properties. © 2012 American Chemical Society

  19. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afroz, Ziya; Zulkarnain,; Ahmad, Afaq, E-mail: afaqahmad3@gmail.com

    2016-05-23

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  20. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  1. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  2. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE PAGES

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; ...

    2016-08-23

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  3. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  4. Molecular Design of High Performance Molecular Devices Based on Direct Ab-initio Molecular Dynamics Method: Diffusion of Lithium Ion on Fluorinated Amorphous Carbon

    NASA Astrophysics Data System (ADS)

    Kawabata, Hiroshi; Iyama, Tetsuji; Tachikawa, Hiroto

    2008-01-01

    Hybrid density functional theory (DFT) calculations have been carried out for the lithium adsorbed on a fluorinated graphene surface (F-graphene, C96F24) to elucidate the effect of fluorination of amorphous carbon on the diffusion mechanism of lithium ion. Also, direct molecular orbital-molecular dynamics (MO-MD) calculation [H. Tachikawa and A. Shimizu: J. Phys. Chem. B 109 (2005) 13255] was applied to diffusion processes of the Li+ ion on F-graphene. The B3LYP/LANL2MB calculation showed that the Li+ ion is most stabilized around central position of F-graphene, and the energy was gradually instabilized for the edge region. The direct MO-MD calculations showed that the Li+ ion diffuses on the bulk surface region of F-graphite at 300 K. The nature of the interaction between Li+ and F-graphene was discussed on the basis of theoretical results.

  5. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.

    2015-02-01

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450 cm-1 and 4000-50 cm-1, respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (ΔH). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (η), chemical potential (μ), Electro negativity (χ) and electrophilicity values (ω) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed.

  6. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-02-05

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450cm(-1) and 4000-50cm(-1), respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (ΔH). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (η), chemical potential (μ), Electro negativity (χ) and electrophilicity values (ω) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Structural, vibrational and nuclear magnetic resonance investigations of 4-bromoisoquinoline by experimental and theoretical DFT methods.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S

    2013-04-15

    Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical investigations of free 2,2'-dithiodipyridine and its metal (Co, Cu and Zn) halide complexes.

    PubMed

    Gökce, Halil; Bahçeli, Semiha

    2013-10-01

    In this study the elemental analysis results, molecular geometries, vibrational and electronic absorption spectra of free 2,2'-dithiodipyridine(C10H8N2S2), (or DTDP) (with synonym, 2,2'-dipyridyl disulfide) and M(C10H8N2S2)Cl2 (M=Co, Cu and Zn) complexes have been reported. Vibrational wavenumbers of free DTDP and its metal halide complexes have been calculated by using DFT/B3LYP calculation method with 6-31++G(d,p) and Lanl2DZ basis sets, respectively, in the ground state, for the first time. The calculated fundamental vibrational frequencies are in a good agreement with experimental data. The HOMO, LUMO and MEP analyses of all compounds are performed by DFT method. Copyright © 2013. Published by Elsevier B.V.

  9. Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes

    NASA Astrophysics Data System (ADS)

    Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong

    2018-04-01

    Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.

  10. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    NASA Astrophysics Data System (ADS)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  11. Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations.

    PubMed

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Isac, Jayakumary

    2014-03-25

    The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  13. Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint

    NASA Astrophysics Data System (ADS)

    Karabulut, Sedat; Namli, Hilmi; Leszczynski, Jerzy

    2013-08-01

    Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione ( 1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone ( 2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers' ratio using both experimental and theoretical data in Lambert-Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.

  14. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2}more » and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.« less

  15. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  16. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: a density functional theory.

    PubMed

    Govindasamy, P; Gunasekaran, S; Ramkumaar, G R

    2014-09-15

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm(-1) and 4000-50 cm(-1) respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Optical characterization of chemistry in shocked nitromethane with time-dependent density functional theory.

    PubMed

    Pellouchoud, Lenson A; Reed, Evan J

    2013-11-27

    We compute the optical properties of the liquid-phase energetic material nitromethane (CH3NO2) for the first 100 ps behind the front of a simulated shock at 6.5 km/s, close to the experimentally observed detonation shock speed of the material. We utilize molecular dynamics trajectories computed using the multiscale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood formula with Kohn-Sham DFT wave functions. We find that the TDDFT method predicts an optical conductivity 25-35% lower than the Kubo-Greenwood calculation and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the Kubo-Greenwood spectra and find no significant effect at optical wavelengths. In both Kubo-Greenwood and TDDFT, the spectra evolve nonmonotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. These calculations offer direction for guiding and interpreting ultrafast optical measurements on reactive materials.

  18. Equation of state of dense plasmas with pseudoatom molecular dynamics

    DOE PAGES

    Starrett, C. E.; Saumon, D.

    2016-06-14

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  19. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; Awad, Mohamed K.; Atlam, Faten M.

    2018-05-01

    The ligation behavior of two chalcone ligands namely, (E)-3-(4-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L1) and (E)-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L2), towards the Pd(II) ion is determined. The structures of the complexes are elucidated by elemental analysis, spectral methods (IR, electronic and NMR spectra) as well as the conductance measurements and thermal analysis. The metal complexes exhibit a square planar geometrical arrangement. The kinetic and thermodynamic parameters for some selected decomposition steps have been calculated. The antimicrobial, antioxidant and anticancer activities of the chalcones and their Pd(II) complexes have been evaluated. Molecular orbital computations are performed using DFT at B3LYP level with 6-31 + G(d) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations are performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry. Thermodynamic parameters for the investigated compounds are also studied. The calculations confirm that the investigated complexes have square planner geometry, which is in a good agreement with the experimental observation.

  20. Structure-activity relationship of the ionic cocrystal: 5-amino-2-naphthalene sulfonate·ammonium ions for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mathammal, R.

    2018-02-01

    The ionic cocrystals of 5-amino-2-naphthalene sulfonate · ammonium ions (ANSA-ṡNH4+) were grown under slow evaporation method and examined in detail for pharmaceutical applications. The crystal structure and intermolecular interactions were studied from the single X-ray diffraction analysis and the Hirshfeld surfaces. The 2D fingerprint plots displayed the inter-contacts possible in the ionic crystal. Computational DFT method was established to determine the structural, physical and chemical properties. The molecular geometries obtained from the X-ray studies were compared with the optimized geometrical parameters calculated using DFT/6-31 + G(d,p) method. The band gap energy calculated from the UV-Visible spectral analysis and the HOMO-LUMO energy gap are compared. The theoretical UV-Visible calculations helped in determining the type of electronic transition taking place in the title molecule. The maximum absorption bands and transitions involved in the molecule represented the drug reaction possible. Non-linear optical properties were characterized from SHG efficiency measurements experimentally and the NLO parameters are also calculated from the optimized structure. The reactive sites within the molecule are detailed from the MEP surface maps. The molecular docking studies evident the structure-activity of the ionic cocrystal for anti-cancer drug property.

  1. The spectroscopic (FTIR, FT-Raman and UV-Vis spectra), DFT and normal coordinate computations of m-nitromethylbenzoate

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2013-08-01

    A combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV-spectral analysis of m-nitromethylbenzoate (MNMB) has been reported in the present work. The FT-IR solid phase (4000-400 cm-1) and FT-Raman spectra (3500-100 cm-1) of MNMB was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of MNMB in the ground-state have been calculated by using the density functional method B3LYP with 6-31G (d,p) and 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethyl acetate solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.

  2. Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.

    2017-10-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.

  3. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  4. Synthesis, molecular docking, DFT calculations and cytotoxicity activity of benzo[g]quinazoline derivatives in choline chloride-urea

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Sivalingam; Govindaraj, Dharman; Ramalakshmi, Narayanan; Antony, S. Arul

    2017-12-01

    Green and highly efficient one-pot three component approach for the synthesis of benzo[g]quinazoline derivatives (6a-g) using Choline chloride-urea (DES). Synthesized compounds 6b and 6g showed the most potent biological activity against A549 lung cancer cell line. Docking simulation was performed to position compounds 6b and 6g showed the greater affinity for anaplastic lymphoma kinase (ALK) receptor. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity using DFT/6-31G level of theory.

  5. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.

  6. A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure

    NASA Astrophysics Data System (ADS)

    Zaboli, Maryam; Raissi, Heidar

    2018-01-01

    In the current study, the probability of complex formation between mercaptopurine drug with cucurbit[6]urils and cucurbit[7]urils has been investigated. The calculations for geometry optimization of complexes have been carried out by means of DFT (B3LYP), DFT-D (B3LYP-D) and M06-2X methods. The Atoms In Molecules (AIM), Natural Bond Orbital (NBO), NMR, the density of states (DOSs) and frontier molecular orbital (MO) analyses have been done on the inclusion complexes. In addition, the UV-Vis spectra of the first eight states have been obtained by CAM-B3LYP/TD-DFT calculation. The obtained results of the complexation process reveal that CB[7]-DRG complexes are more favorable than that of CB[6]-DRG interactions. Furthermore, our theoretical results show that configurations III and I are the most stable configurations related to the CB[6]/DRG and CB[7]/DRG interactions, respectively. The positive ∇2ρ(r) and HC values at the bond critical points indicate that exist the weak H-bonds between CB[6] and CB[7] with H atoms of the drug molecule. The obtained negative binding energy values of CB[7]-DRG interaction in solution phase show the stability of these complexes in the aqueous medium. Also, all of the observed parameters of molecular dynamics simulation such as the number of contacts, hydrogen bonding, center-of-mass distance and van der Waals energy values confirm the encapsulation of mercaptopurine molecule inside the cucurbit[7]urils cavity at about 3.2 ns.

  7. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  8. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  9. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spectroscopic and molecular docking studies on the interaction of antiviral drug nevirapine with calf thymus DNA.

    PubMed

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid

    2017-09-02

    The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.

  11. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turi, László, E-mail: turi@chem.elte.hu

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less

  12. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    NASA Astrophysics Data System (ADS)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  13. MCD spectroscopy and TD-DFT calculations of low symmetry subnaphthalocyanine analogs.

    PubMed

    Mack, John; Otaki, Tatsuya; Durfee, William S; Kobayashi, Nagao; Stillman, Martin J

    2014-07-01

    Magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations are used to analyze the electronic structure and optical properties of low-symmetry subnaphthalocyanine analogs with AAB and ABB structures formed during mixed condensations of tetrafluorophthalonitrile and 2,3-naphthalenedicarbonitrile. The results demonstrate that trends observed in the properties of phthalocyanine analogs can be used to fine tune the optical properties so that the Q(0,0) bands lie in the red region, in a manner that does not significantly destabilize the highest occupied molecular orbital (HOMO) energy relative to that of the parent subphthalocyanine ligand. Attempts to study the spectroscopy of anion radical species proved unsuccessful, since they proved to be unstable. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  15. Molecular structure, nonlinear optical studies and spectroscopic analysis of chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one by DFT calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumar, Rajesh; Gupta, Archana; Tandon, Poonam; D'silva, E. Deepak

    2017-12-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of nonlinear optical chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP). The FT-IR and FT-Raman spectra of the molecule in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP level with 6-311++G (d,p) basis set have been carried out to derive useful information about the molecular structure and to assign the relevant electronic and vibrational features. These calculations reveal that the optimized geometry closely resembles the experimental XRD data. The vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of FT-IR and FT-Raman spectra. The UV-vis spectrum was recorded in methanol solution. The excited state properties have been determined by TD-DFT method and the effect of solvent was analyzed by PCM model. The most prominent transition corresponds to π→π∗. The reactivity parameters as chemical potential, global hardness, and electrophilicity index have also been calculated. To provide an explicit assignment and analysis of 13C and 1H NMR spectra, theoretical calculations on chemical shift of the title compound were done through GIAO method at B3LYP/6-311++G (d,p) level. The Mulliken's population analysis shows one of the simplest pictures of charge distribution. The standard statistical thermodynamic functions like heat capacity at constant pressure (Cop,m), entropy (Som) and enthalpy (Hom) were obtained from the theoretical harmonic frequencies for the optimized molecule. The nonlinear optical properties of title molecule are also addressed theoretically. Two contributions, vibrational and electronic, to the electrical properties polarizability and first order hyperpolarizability of 3Br4MSP have been evaluated using the self-consistent field wave functions within the double harmonic oscillator approximation.

  16. X-ray Crystallographic, Multifrequency Electron Paramagnetic Resonance, and Density Functional Theory Characterization of the Ni(P(Cy)2N(tBu)2)2(n+) Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State.

    PubMed

    Niklas, Jens; Westwood, Mark; Mardis, Kristy L; Brown, Tiara L; Pitts-McCoy, Anthony M; Hopkins, Michael D; Poluektov, Oleg G

    2015-07-06

    The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.

  17. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  18. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  20. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  1. Probing the (110)-Oriented plane of rutile ZnF2: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Tamijani, Ali Abbaspour; Ebrahimiaqda, Elham

    2017-12-01

    For many years, rutile-like crystals have given rise to pronounced enthusiasm amongst mineralogists. In this context, rutile-type ZnF2 has found numerous applications across a variety of disciplines, ranging from material sciences to optoelectronics. Surprisingly, very limited literature is concerned with the molecular adsorption on ZnF2 surfaces and related energetics. Additionally, surface probing with small particles is a well-entrenched technique to analyze the interfacial properties. In this regard, small organic species are valuable picks. In the present work, we have employed electronic structure calculations to simulate the adsorption of methane, chloroform, pyrrole, benzene, naphthalene, anthracene, tetracene and pentacene at the (110) plane of rutile ZnF2. Dispersion-corrected DFT method was chosen to predict the binding energies and structures of molecule-adsorbed surfaces. Interestingly, a linear proportionality relationship was found between the binding energies of aromatic adsorbates and their respective molecular lengths. By applying this relationship, we were able to predict the adsorption energy of pentacene on ZnF2 to within 2% of our DFT-based result.

  2. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  3. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.

    PubMed

    Tao, Yehan; Xue, Qingzhong; Liu, Zilong; Shan, Meixia; Ling, Cuicui; Wu, Tiantian; Li, Xiaofang

    2014-06-11

    First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

  4. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  5. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  6. Synthesis, crystal growth, single crystal X-ray analysis and vibrational spectral studies of (2E)-3-(2-chloro-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one: A combined DFT study

    NASA Astrophysics Data System (ADS)

    Chidan Kumar, C. S.; Balachandran, V.; Fun, Hoong-Kun; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-11-01

    A new chalcone derivative, (2E)-3-(2-chloro-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (a) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3500-100 cm-1 and 4000-400 cm-1 respectively. The spectra were interpreted with the aid of normal coordinate analysis, following structure optimizations and force field calculations based on B3LYP/6-31G (d) level of theory. Normal coordinate calculations were performed using the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between the observed and calculated wavenumbers. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed using B3LYP/6-31G (d) method to display electrostatic potential (electron + nuclei) distribution, molecular shape, size, and dipole moments of the molecule. HOMO and LUMO energies were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Global and local reactivity descriptors and dipole moment (μ), static polarizability (α), first order hyperpolarizability (β) and optical gap (ΔE) were also calculated to study the NLO property of our title compound.

  7. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad

    2018-04-01

    Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.

  8. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.

  9. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  10. Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model.

    PubMed

    Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua

    2008-05-14

    A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.

  11. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.

    2017-10-01

    The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.

  12. Molecular design and theoretical characterization of benzodithiophene based organic photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Labanya; Sahu, Sridhar

    2018-05-01

    Two different oligomers, containing methyl substituted Benzodithiophene (BDT) as donor unit, fluorinated thiophene as the π-bridge unit and two different kinds of acceptors based on fluorinated benzothiadiazole, fluorinated benzoselenadiazole units are designed for bulk heterojunction (BHJ) organic solar cell (OSC). The ground and excited state properties of those donor-π-acceptor-π-donor (D-π-A-π-D) oligomeric configurations are characterized via density functional (DFT) and time dependent density functional theory (TD-DFT). The parameters such as dipole moment (ρ), chemical potential (µ), electronegativity (χ), frontier molecular orbital (FMO) analysis, HOMO-LUMO gap, open circuit voltage (Voc) and driving force (ΔE) are calculated to analyze geometrical, electronic structural, quantum chemical and photovoltaic properties of the compounds. In addition, optical absorption spectra are also presented for the optical characterization of the compounds.

  13. Quantum chemical calculations of Cr2O3/SnO2 using density functional theory method

    NASA Astrophysics Data System (ADS)

    Jawaher, K. Rackesh; Indirajith, R.; Krishnan, S.; Robert, R.; Das, S. Jerome

    2018-03-01

    Quantum chemical calculations have been employed to study the molecular effects produced by Cr2O3/SnO2 optimised structure. The theoretical parameters of the transparent conducting metal oxides were calculated using DFT / B3LYP / LANL2DZ method. The optimised bond parameters such as bond lengths, bond angles and dihedral angles were calculated using the same theory. The non-linear optical property of the title compound was calculated using first-order hyperpolarisability calculation. The calculated HOMO-LUMO analysis explains the charge transfer interaction between the molecule. In addition, MEP and Mulliken atomic charges were also calculated and analysed.

  14. Synthesis, spectroscopy, X-ray crystallography, DFT calculations, DNA binding and molecular docking of a propargyl arms containing Schiff base.

    PubMed

    Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S

    2015-11-05

    A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study

    NASA Astrophysics Data System (ADS)

    Bavadi, Masoumeh; Niknam, Khodabakhsh; Shahraki, Omolbanin

    2017-10-01

    The synthesis of new derivatives of pyrrole substituted sulfonamide groups is described. The in vitro anticancer activity of these pyrroles was evaluated against MCF7, MOLT-4 and HL-60 cells using MTT assay. The target compounds showed inhibitory activity against tested cell lines. Among the compounds, compound 1a exhibited good cytotoxic activity. The potential of this analog to induce apoptosis was confirmed in a nuclear morphological assay by Hoechst 33258 staining in the PC-12 cells. Finally, molecular docking was performed to determine the probable binding mode of the designed pyrrole derivatives into the active site of FGFR1 protein. DFT calculations were carried out at the B3LYP levels of theory with 6-31+G (d,p) basis set for compound 1a. The point group (C1) of it was obtained based on the optimized structures; the calculation of the FT-IR vibrational frequencies, 1H NMR and 13C NMR chemical shifts of the compound were carried out and compared with those obtained experimentally.

  16. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  17. Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation.

    PubMed

    He, Yangyong; Cai, Zeying; Shao, Jian; Xu, Li; She, Limin; Zheng, Yue; Zhong, Dingyong

    2018-05-03

    The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

  18. Molecular Reactivity and Absorption Properties of Melanoidin Blue-G1 through Conceptual DFT.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2018-03-02

    This computational study presents the assessment of eleven density functionals that include CAM-B3LYP, LC-wPBE, M11, M11L, MN12L, MN12SX, N12, N12SX, wB97, wB97X and wB97XD related to the Def2TZVP basis sets together with the Solvation Model Density (SMD) solvation model in calculating the molecular properties and structure of the Blue-G1 intermediate melanoidin pigment. The chemical reactivity descriptors for the system are calculated via the conceptual Density Functional Theory (DFT). The choice of the active sites related to the nucleophilic, electrophilic, as well as radical attacks is made by linking them with the Fukui function indices, the electrophilic Parr functions and the condensed dual descriptor Δ f ( r ) . The prediction of the maximum absorption wavelength tends to be considerably accurate relative to its experimental value. The study found the MN12SX and N12SX density functionals to be the most appropriate density functionals in predicting the chemical reactivity of the studied molecule.

  19. Reduction of aflatoxin B1 to aflatoxicol: a comprehensive DFT study provides clues to its toxicity.

    PubMed

    Karabulut, Sedat; Paytakov, Guvanchmyrat; Leszczynski, Jerzy

    2014-12-01

    Aflatoxicol (AFL) is one of most the important metabolites of aflatoxin B1 (AFB1). AFL can be formed through enzymatic or synthetic reduction of AFB1. Various experimental and theoretical studies have been focused on the AFB1 due to its high toxicity and carcinogenicity. The selective reduction of AFB1 carbonyls, molecular structure of AFL and its effect on toxicity has been studied here by the density functional theory (DFT) method. Although the toxicity of AFL is 18 times lower than that of AFB1, it has been concluded that both molecular structures have similar potency to form an exo-epoxide (AFEP) analogue which can bind to DNA. Calculations revealed that only one of the three possible tautomers of AFL is stable, both in the gas phase and water. The electronic properties of aflatoxicol are calculated as similar to aflatoxin B1 and this may be an explanation of similar carcinogenicity and toxicity of these compounds, which has been proved by experimental results. © 2014 Society of Chemical Industry.

  20. Structure of 1-butylpyridinium tetrafluoroborate ionic liquid: quantum chemistry and molecular dynamic simulation studies.

    PubMed

    Sun, Hui; Qiao, Baofu; Zhang, Dongju; Liu, Chengbu

    2010-03-25

    Density functional theory (DFT) calculations combined with molecular dynamic (MD) simulations have been performed to show in detail the structure characteristic of 1-butylpyridinium tetrafluoroborate ([BPy(+)][BF(4)(-)]), a representative of pyridinium-based ionic liquids (ILs). It is found that the relative stability for ion pair configurations is synergically determined by the electrostatic attractions and the H-bond interactions between the ions of opposite charge. [BPy(+)][BF(4)(-)] IL possesses strong long-range ordered structure with cations and anions alternately arranging. The spatial distributions of anions and cations around the given cations are clearly shown, and T-shaped orientation is indicated to play a key role in the interaction between two pyridine rings. DFT calculations and MD simulations uniformly suggest that the H-bonds of the fluorine atoms with the hydrogen atoms on the pyridine rings are stronger than those of the fluorine atoms with the butyl chain hydrogens. The present results can offer useful information for understanding the physicochemical properties of [BPy(+)][BF(4)(-)] IL and further designing new pyridinium-based ILs.

  1. Conformational, spectroscopic and nonlinear optical investigations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one: a DFT study

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Boukabcha, Nourdine; Benhalima, Nadia; Tamer, Ömer; Chouaih, Abdelkader; Avcı, Davut; Atalay, Yusuf; Hamzaoui, Fodil

    2017-05-01

    The density functional theory calculations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one (CPCPP) are performed by using B3LYP and HSEh1PBE levels. These methods along with 6-311++G(d,p) basis set have been used to determine optimized molecular geometries, vibrational frequencies, electronic absorption wavelengths and bonding features of CPCPP. The solvent effect on the electronic absorption properties of CPCPP is examined at polar (ethanol and water) and nonpolar (toluene and n-hexane) solvents. In order to find the most stable conformers, conformational analysis is carried out by using B3LYP level. The computed small energy gaps between HOMO and LUMO energies show that the charge transfers occur within CPCPP. DFT calculations have been also performed to investigate the dipole moment (μ), mean polarizability (α), anisotropy of polarizability (Δα), first order static hyperpolarizability (β) for CPCPP. The obtained values show that CPCPP is an excellent candidate to nonlinear optical materials. NBO analysis has been used to investigate the bond strengths, molecular stability, hyperconjugative interactions and intramolecular charge transfer (ICT).

  2. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    NASA Astrophysics Data System (ADS)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  3. Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team

    Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.

  4. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.

    2017-06-01

    A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.

  5. Molecular nano-arches on silicon

    NASA Astrophysics Data System (ADS)

    Dobrin, S.

    2007-08-01

    The formation of molecular nano-arches on the Si(1 1 1)-7 × 7 surface was modeled using density functional theory (DFT). It has been suggested, based on the calculations, that the arches are formed by molecular dimers of chlorobenzene at near-monolayer coverages. Molecules of the dimer are covalently bound to two silicon adatoms and to each other thereby forming a molecular arch on the surface. The structure of the molecular dimer was calculated at the B3LYP/6-31G(d) level of theory. The dimers were found to be stable at room temperature, and to form a near-monolayer coverage, which has been observed in the experiment [X.H. Chen, Q. Kong, J.C. Polanyi, D. Rogers, S. So, Surf. Sci. 340 (1995) 224; Y. Cao, J.F. Deng, G.Q. Xu, J. Chem. Phys. 112 (2000) 4759].

  6. Experimental and Theoretical Study on Supramolecular Ionic Liquid (IL)-Asphaltene Complex Interactions and Their Effects on the Flow Properties of Heavy Crude Oils.

    PubMed

    Hernández-Bravo, R; Miranda, A D; Martínez-Magadán, J-M; Domínguez, J M

    2018-04-19

    A combined study for understanding the molecular interactions of asphaltenes with molecular species such as ionic liquids (ILs) comprised experimental measurements and computational numerical simulation calculations, using density-functional theory (DFT) with dispersion corrections, molecular dynamics (MD) calculations, and experimental rheological characterization of the heavy crude oils (HCOs), before and after doping with ILs, respectively. The main results show that ILs influence the asphaltenic dimer association by forming supramolecular complexes that modify the properties of crude oils such as viscosity and interfacial tension. The IL-cation and asphaltene-π ligand molecular interactions seem to dominate the interactions between ionic liquids and asphaltenes, where ILs' high aromaticity index induces a strong interaction with the aromatic hard core of asphaltenes.

  7. Density functional theory studies on the structures and electronic communication of meso-ferrocenylporphyrins: long range orbital coupling via porphyrin core.

    PubMed

    Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-02-01

    The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Origin of Unusual Dependencies of LUMO Levels on Conjugation Length in Quinoidal Fused Oligosiloles

    NASA Astrophysics Data System (ADS)

    Misawa, Nana; Fujii, Mikiya; Shintani, Ryo; Tsuda, Tomohiro; Nozaki, Kyoko; Yamashita, Koichi

    Quinoidal fused oligosiloles, a new family of silicon-bridged π-conjugated compounds, have been synthesized and their physical properties showed a unique trend in their LUMO levels, which become higher with longer π-conjugation. Although this trend was reproduced by the DFT calculations, its origin remained to be discussed. In this work we performed quantum chemical calculations and discovered that the unusual LUMO trend is attributable to the π-frameworks. We elucidated its origin by orbital correlation diagrams based on classical Hückel calculations, essentially. However, LUMO trends cannot fully be explained only by Hückel calculations because of the lack of the consideration of geometries. In the case of quinoidal fused oligosiloles, judging from DFT calculation results, the presence of silole fused structure play an important role in fixing the bond angles of the linear polyenes as an interior angle of siloles, leading to the unusual LUMO behavior. The qualitative but essential understanding of these LUMO trend would provide new insight into molecular design of π-conjugated compounds for tuning their LUMO levels.

  9. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  10. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  12. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  13. Study of vibrational spectra and hydrogen bonding network in dimeric and tetrameric model of ampicillin using DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Shukla, Anuradha; Khan, Eram; Tandon, Poonam; Sinha, Kirti

    2017-03-01

    Ampicillin is a β-lactam antibiotic that is active against both gram-positive and gram-negative bacteria and is widely used for the treatment of infections. In this work, molecular properties of ampicillin are calculated on the basis of calculations on its dimeric and tetrameric models using DFT/B3LYP/6-311G(d,p). HOMO-LUMO energy gap shows that chemical reactivity of tetrameric model of ampicillin is higher than the dimeric and monomeric model of ampicillin. To get a better understanding of intra and intermolecular bonding and interactions among bonds, NBO analysis is carried out with tetrameric model of ampicillin, and is further finalized with an 'quantum theory of atoms-in-molecules' (QTAIM) analysis. The binding energy of dimeric model of ampicillin is calculated as -26.84 kcal/mol and -29.34 kcal/mol using AIM and DFT calculations respectively. The global electrophilicity index (ω = 2.8118 eV) of tetrameric model of ampicillin shows that this behaves as a strong electrophile in comparison to dimeric and monomeric model of ampicillin. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. A collective theoretical and experimental vibrational analysis approves the presence of hydrogen bonds in the ampicillin molecule.

  14. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  15. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid.

    PubMed

    Sert, Yusuf; Mahendra, M; Keskinoğlu, S; Chandra; Srikantamurthy, N; Umesha, K B; Çırak, Ç

    2015-03-15

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  17. A structural study of fentanyl by DFT calculations, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Esrafili, Mehdi D.; Vessally, Esmail; Asnaashariisfahani, Manzarbanou; Yahyaei, Saeideh; Khani, Ali

    2017-01-01

    N-(1-(2-phenethyl)-4-piperidinyl-N-phenyl-propanamide (fentanyl) is synthesized and characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The geometry optimization is performed using the B3LYP and M06 density functionals with 6-311 + G(d) and 6-311++G(d,p) basis sets. The complete assignments are performed on the basis of the potential energy distribution (PED) of the all vibrational modes. Almost a nice correlation is found between the calculated 13C chemical shifts and experimental data. The frontier molecular orbitals and molecular electrostatic potential of fentanyl are also obtained.

  18. Theoretical studies on the molecular structure, conformational preferences, topological and vibrational analysis of allicin

    NASA Astrophysics Data System (ADS)

    Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław

    2016-01-01

    The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.

  19. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    PubMed

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  20. X-ray structure determination, Hirshfeld surface analysis, spectroscopic (FT-IR, NMR, UV-Vis, fluorescence), non-linear optical properties, Fukui function and chemical activity of 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Yeşil, Ahmet Emin; Altun, Mehmet; Bal-Demirci, Tülay; Özdemir, Namık

    2018-06-01

    The compound 4‧-(2,4-dimethoxyphenyl)-2,2‧:6‧,2″-terpyridine (Mtpyr) was synthesized and investigated using X-ray single crystal structure determination, combined with Hirshfeld topology analysis of the molecular packing. In addition, Mtpyr was characterized by experimental and theoretical FT-IR, UV-Vis, 1H NMR, 13C NMR and fluorescence emission spectra. The optimized molecular geometry (bond length, bond angle, torsion angle), the complete vibrational frequency and all other theoretical computations were calculated by using density functional theory (DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Vis spectrum, the electronic properties such as excitation energies, wavelength and oscillator strength are evaluated by TD-DFT in chloroform solution. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The calculated HOMO-LUMO band gap energies confirmed that charge transfer and chemical stability within the molecule. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using natural bond orbital (NBO) analysis. Besides Mulliken and natural population charges (NPA), non-linear optic properties (NLO), Fukui Function analysis, molecular electrostatic potential (MEP) were also computed which helps to identifying the electrophilic/nucleophilic nature.

  1. A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure.

    PubMed

    Zaboli, Maryam; Raissi, Heidar

    2018-01-05

    In the current study, the probability of complex formation between mercaptopurine drug with cucurbit[6]urils and cucurbit[7]urils has been investigated. The calculations for geometry optimization of complexes have been carried out by means of DFT (B3LYP), DFT-D (B3LYP-D) and M06-2X methods. The Atoms In Molecules (AIM), Natural Bond Orbital (NBO), NMR, the density of states (DOSs) and frontier molecular orbital (MO) analyses have been done on the inclusion complexes. In addition, the UV-Vis spectra of the first eight states have been obtained by CAM-B3LYP/TD-DFT calculation. The obtained results of the complexation process reveal that CB[7]-DRG complexes are more favorable than that of CB[6]-DRG interactions. Furthermore, our theoretical results show that configurations III and I are the most stable configurations related to the CB[6]/DRG and CB[7]/DRG interactions, respectively. The positive ∇ 2 ρ (r) and HC values at the bond critical points indicate that exist the weak H-bonds between CB[6] and CB[7] with H atoms of the drug molecule. The obtained negative binding energy values of CB[7]-DRG interaction in solution phase show the stability of these complexes in the aqueous medium. Also, all of the observed parameters of molecular dynamics simulation such as the number of contacts, hydrogen bonding, center-of-mass distance and van der Waals energy values confirm the encapsulation of mercaptopurine molecule inside the cucurbit[7]urils cavity at about 3.2ns. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Piezochromism and structural and electronic properties of benz[a]anthracene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Zhang, Rong; Yao, Yansun

    2017-01-31

    We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less

  3. Mass Transport in the Warm, Dense Matter and High-Energy Density Regimes

    NASA Astrophysics Data System (ADS)

    Kress, J. D.; Burakovsky, L.; Ticknor, C.; Collins, L. A.; Lambert, F.

    2011-10-01

    Large-scale hydrodynamical simulations of fluids and plasmas under extreme conditions require knowledge of certain microscopic properties such as diffusion and viscosity in addition to the equation-of-state. To determine these dynamical properties, we employ quantum molecular dynamical (MD) simulations on large samples of atoms. The method has several advantages: 1) static, dynamical, and optical properties are produced consistently from the same simulations, and 2) mixture properties arise in a natural way since all intra- and inter-particle interactions are properly represented. We utilize two forms of density functional theory: 1) Kohn-Sham (KS-DFT) and 2) orbital-free (OF-DFT). KS-DFT is computationally intense due to its reliance on an orbital representation. As the temperature rises, the Thomas-Fermi approximation in OF-DFT begins to represent accurately the density functional, and provides an efficient and systematic means for extending the quantum simulations to very hot conditions. We have performed KS-DFT and OF-DFT calculations of the self-diffusion, mutual diffusion and shear viscosity for Al, Li, H, and LiH. We examine trends in these quantities and compare to more approximate forms such as the one-component plasma model. We also determine the validity of mixing rules that combine the properties of pure species into a composite result.

  4. Synthesis, crystal structures and theoretical calculations of new 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3,5-diphenyl-4,5-dihydro-(1H)-pyrazoles

    NASA Astrophysics Data System (ADS)

    Gökşen, Umut Salgın; Alpaslan, Yelda Bingöl; Kelekçi, Nesrin Gökhan; Işık, Şamil; Ekizoğlu, Melike

    2013-05-01

    1-[2-(5-Chloro-2-benzoxazolinone-3-yl)acetyl]-3-phenyl-5-(3-methoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5a), 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3-phenyl-5-(3,4-dimethoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5b) and 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3-(4-methylphenyl)-5-(2,3-dimethoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5c) were synthesized. The crystal and molecular structures of the compounds 5a, 5b and 5c were determined by elemental analyses, IR, 1H NMR, ESI-MS and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set was used to calculate the optimized geometrical parameters, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values were compared with experimental IR and 1H NMR values. The results represented that there was a good agreement between experimental and calculated values of the compounds 5a-5c. In addition, DFT calculations of the compounds, molecular electrostatic potentials (MEPs) and frontier molecular orbitals were performed at B3LYP/6-31G(d,p) level of theory. Furthermore, compounds were tested against three Gram-positive bacteria: Staphylococcus aureus ATCC 29213 (American Type Culture Collection), methicillin resistant S. aureus (MRSA) ATCC 43300 and Enterococcus faecalis ATCC 29212; two Gram negative bacteria: Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853; and three fungi: Candida albicans ATCC 90028, Candida krusei ATCC 6258 and Candida parapsilosis ATCC 90018. In general, all of the compounds were found to be slightly active against tested microorganisms.

  5. Synthesis, characterization, crystal structure and DFT study of two new polymorphs of a Schiff base (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile

    NASA Astrophysics Data System (ADS)

    Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.

    2016-02-01

    Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  7. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    PubMed

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  8. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davci@sakarya.edu.tr

    Quantum mechanical calculations on cis-2, 6-bis (2-chlorophenyl)-3, 3-dimethylpiperidin-4-one were performed by using HSEH1PBE level of density functional theory (DFT) with 6-311++G (d, p) basis set. Geometric parameters of the title molecule in the ground state were found to be in good agreement with experimental data. The frontier molecular orbitals (HOMO and LUMO) were simulated by the same level. Small energy gap between the HOMO and LUMO is an indicator molecular charge transfer within the title molecule. The electronegativity, chemical hardness and softness were also calculated by using HOMO and LUMO energies. Dipole moment, polarizability and hyperpolarizability parameters were also calculatedmore » by using HSEH1PBE level. All calculations were carried out with the GAUSSIAN 09 package program.« less

  10. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interaction between transition metals and phenylalanine: a combined experimental and computational study.

    PubMed

    Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A

    2015-03-05

    Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Optical characterization of shock-induced chemistry in the explosive nitromethane using DFT and time-dependent DFT

    NASA Astrophysics Data System (ADS)

    Pellouchoud, Lenson; Reed, Evan

    2014-03-01

    With continual improvements in ultrafast optical spectroscopy and new multi-scale methods for simulating chemistry for hundreds of picoseconds, the opportunity is beginning to exist to connect experiments with simulations on the same timescale. We compute the optical properties of the liquid phase energetic material nitromethane (CH3NO2) for the first 100 picoseconds behind the front of a simulated shock at 6.5km/s, close to the experimentally observed detonation shock speed. We utilize molecular dynamics trajectories computed using the multi-scale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood (KG) formula within Kohn-Sham DFT. We find that TDDFT predicts optical conductivities 25-35% lower than KG-based values and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the KG spectra and find no significant effect at optical wavelengths. With all methods, the spectra evolve non-monotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. Supported by NASA Space Technology Research Fellowship (NSTRF) #NNX12AM48H.

  13. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  14. Structure evolution of mononuclear tungsten and molybdenum species in the protonation process: Insight from FPMD and DFT calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Yi, Haibo; Zeng, Dewen; Zhao, Zhongwei; Wang, Wenlei; Costanzo, Francesca

    2018-03-01

    In this work, we apply static density functional theory (DFT) calculations, as well as classical and first-principles molecular dynamics (FPMD) simulations, using the free-energy perturbation method to study the protonation ability, active site and structures of W(VI) and Mo(VI) in acidic aqueous solution. Using FPMD simulations, utilizing the pKa's calculation technique, we concluded that the octahedral WO2(OH)2(H2O)2 is the true formula for tungstic acid (H2WO4), and the hydroxyl ligands are the acidic site. This aqueous structure of H2WO4 is analogous to the previously reported structure of molybdic acid (H2MoO4). The FPMD trajectories of the tungstic acid deprotonation show that the mono-protonated monotungstate ion (HWO4-) may partially exist as a five-coordinated WO3(OH)(H2O)- species except for the four-coordinated WO3(OH)- species. This result is supported by DFT calculations, with an isoenergetic point (ΔE = 1.9 kcal·mol-1) for the WO3(OH)(H2O)- and WO3(OH)- species, when explicit solvent molecules are taken into account. In contrast, for the H2MoO4 acid, FPMD trajectories during the deprotonation process show that two H2O ligands immediately escape from the first coordinated sphere of Mo(VI) to form the four-coordinated MoO3(OH)- species. This difference indicates that structural expansion of W(VI) began in the first protonated step, while that of Mo(VI) only occurs in the second step. In addition, our calculated first and second acid constants for tungstic acid are higher than previously reported values for molybdic acid. This result suggests that WO42- is more easily protonated than the MoO42- anion in the same acidic solution, which is further confirmed by DFT calculations of hydrated oxoanions and its protonated species, based upon the hydration energy.

  15. DFT analysis on the molecular structure, vibrational and electronic spectra of 2-(cyclohexylamino)ethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.

    2015-02-01

    The FTIR and FT-Raman spectra of 2-(cyclohexylamino)ethanesulfonic acid were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and Density functional method (B3LYP) with the correlation consistent-polarized valence double zeta (cc-pVDZ) basis set and 6-311++G(d,p) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed based on the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Atomic charges were calculated using both Hartee-Fock and density functional method using the cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge Including Atomic Orbital (GIAO) method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The first order hyperpolarizability (β) and Molecular Electrostatic Potential (MEP) of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemical reactivity site in the molecule.

  16. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  17. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations.

    PubMed

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-11

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular structure, spectroscopic and docking analysis of 1,3-diphenylpyrazole-4-propionic acid: A good prostaglandin reductase inhibitor

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Velraj, G.

    2018-03-01

    The molecule 1,3-diphenylpyrazole-4-propionic acid (DPPA) was optimized to its minimum energy level using density functional theory (DFT) calculations. The vibrational frequencies of DPPA were calculated along with their potential energy distribution (PED) and the obtained values are validated with the help of experimental calculations. The reactivity nature of the molecule was investigated with the aid of various DFT methods such as global reactivity descriptors, local reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbitals (NBOs), etc. The prediction of activity spectra for substances (PASS) result forecast that, DPPA can be more active as a prostaglandin (PG) reductase inhibitor. The PGs are biologically synthesized by the cyclooxygenase (COX) enzyme which exists in COX1 and COX2 forms. The PGs produced by COX2 enzyme induces inflammation and fungal infections and hence the inhibition of COX2 enzyme is indispensable in anti-inflammation and anti-fungal activities. The docking analysis of DPPA with COX enzymes (both COX1 and COX2) were carried out and eventually, it was found that DPPA can selectively inhibit COX2 enzyme and can serve as a PG reductase inhibitor thereby acting as a lead compound for the treatment of inflammation and fungal diseases.

  19. Hydrogen bonding interactions and supramolecular assemblies in 2-amino guanidinium 4-methyl benzene sulphonate crystal structure: Hirshfeld surfaces and computational calculations

    NASA Astrophysics Data System (ADS)

    Muthuraja, P.; Joselin Beaula, T.; Balachandar, S.; Bena Jothy, V.; Dhandapani, M.

    2017-10-01

    2-aminoguanidinium 4-methyl benzene sulphonate (AGMS), an organic compound with big assembly of hydrogen bonding interactions was crystallized at room temperature. The structure of the compound was confirmed by FT-IR, NMR and single crystal X-ray diffraction analysis. Numerous hydrogen bonded interactions were found to form supramolecular assemblies in the molecular structure. Fingerprint plots of Hirshfeld surface analysis spells out the interactions in various directions. The molecular structure of AGMS was optimised by HF, MP2 and DFT (B3LYP and CAM-B3LYP) methods at 6-311G (d,p) basis set and the geometrical parameters were compared. Electrostatic potential calculations of the reactants and product confirm the transfer of proton. Optical properties of AGMS were ascertained by UV-Vis absorbance and reflectance spectra. The band gap of AGMS is found to be 2.689 eV. Due to numerous hydrogen bonds, the crystal is thermally stable up to 200 °C. Hyperconjugative interactions which are responsible for the second hyperpolarizabilities were accounted by NBO analysis. Static and frequency dependent optical properties were calculated at HF and DFT methods. The hyperpolarizabilities of AGMS increase rapidly at frequencies 0.0428 and 0.08 a.u. compared to static one. The compound exhibits violet and blue emission.

  20. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures

    NASA Astrophysics Data System (ADS)

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-01

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed.

  1. Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf

    2018-01-01

    In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.

  2. Synthesis, spectroscopic and TD-DFT quantum mechanical study of azo-azomethine dyes. A laser induced trans-cis-trans photoisomerization cycle

    NASA Astrophysics Data System (ADS)

    Georgiev, Anton; Kostadinov, Anton; Ivanov, Deyan; Dimov, Deyan; Stoyanov, Simeon; Nedelchev, Lian; Nazarova, Dimana; Yancheva, Denitsa

    2018-03-01

    This paper describes the synthesis, spectroscopic characterization and quantum mechanical calculations of three azo-azomethine dyes. The dyes were synthesized via condensation reaction between 4-(dimethylamino)benzaldehyde and three different 4-aminobenzene azo dyes. Quantum chemical calculations on the optimized molecular geometry and electron densities of the trans (E) and cis (Z) isomers and their vibrational frequencies have been computed by using DFT/B3LYP density-functional theory with 6-311 ++G(d,p) basis set in vacuo. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans → cis, Δμtrans → cis,ΔHtrans → cis, ΔGtrans → cis and ΔStrans → cis values. After molecular geometry optimization the electronic spectra have been obtained by TD-DFT calculations at same basis set and correlated with the spectra of vapour deposited nanosized films of the dyes. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. Solvatochromism was investigated by UV-VIS spectroscopy in five different organic solvents with increasing polarity. The dynamic photoisomerization experiments have been performed in DMF by pump lasers λ = 355 nm (mostly E → Z) and λ = 491 nm (mostly Z → E) in spectral region 300 nm - 800 nm at equal concentrations and times of illumination in order to investigate the photodynamical trans-cis-trans properties of the sbnd CHdbnd Nsbnd and sbnd Ndbnd Nsbnd chromophore groups of the dyes.

  3. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  4. Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene.

    PubMed

    Özdemir Tarı, Gonca; Gümüş, Sümeyye; Ağar, Erbil

    2015-04-15

    The title compound, 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene, C12H9O2N2I1S1, was synthesized and characterized by IR, UV-Vis and single-crystal X-ray diffraction technique. The molecular structure was optimized at the B3LYP, B3PW91 and PBEPBE levels of the density functional method (DFT) with the 6-311G+(d,p) basis set. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311G+(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. The energetic behavior such as the total energy, atomic charges, dipole moment of the title compound in solvent media were examined using the B3LYP, B3PW91 and PBEPBE methods with the 6-311G+(d,p) basis set by applying the Onsager and the polarizable continuum model (PCM). The molecular orbitals (FMOs) analysis, the molecular electrostatic potential map (MEP) and the nonlinear optical properties (NLO) for the title compound were obtained with the same levels of theory. And then thermodynamic properties for the title compound were obtained using the same methods with the 6-311G(d,p) basis set. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    NASA Astrophysics Data System (ADS)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  6. Vibrational, DFT, and thermal analysis of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.

    2013-12-01

    New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  7. Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations

    NASA Astrophysics Data System (ADS)

    Sheikhi, Masoome; Shahab, Siyamak; Khaleghian, Mehrnoosh; Hajikolaee, Fatemeh Haji; Balakhanava, Iryna; Alnajjar, Radwan

    2018-05-01

    In the present work the adsorption properties of the molecule Resveratrol (RSV) (trans-3,5,4‧-Trihydroxystilbene) on CNT(8,0-10) nanotube was investigated by Density Functional Theory (DFT) in the gaseous phase for the first time. The non-bonded interaction effects of compounds RSV and CNT(8,0-10) nanotube on the electronic properties, chemical shift tensors and natural charge were determined and discussed. The electronic spectra of the RSV and the complex CNT(8,0-10)/RSV in the gaseous phase were calculated by Time Dependent Density Functional Theory (TD-DFT) for investigation of the maximum wavelength value of the RSV before and after the non-bonded interaction with the CNT(8,0-10) nanotube and molecular orbitals involved in the formation of absorption spectrum of the complex RSV at maximum wavelength.

  8. Structural, dynamic and photophysical properties of a fluorescent dye incorporated in an amorphous hydrophobic polymer bundle.

    PubMed

    De Mitri, N; Prampolini, G; Monti, S; Barone, V

    2014-08-21

    The properties of a low molecular weight organic dye, namely 4-naphthyloxy-1-methoxy-2,2,6,6-tetramethylpiperidine, covalently bound to an apolar polyolefin were investigated by means of a multi-level approach, combining classical molecular dynamics simulations, based on purposely parameterized force fields, and quantum mechanical calculations based on density functional theory (DFT) and its time-dependent extension (TD-DFT). The structure and dynamics of the dye in its embedding medium were analyzed and discussed taking the entangling effect of the surrounding polymer into account, and also by comparing the results to those obtained for a different environment, i.e. toluene solution. Finally, the influence was investigated of long lived cages found in the polymeric embedding on photophysical properties, in terms of the slow and fast dye's internal dynamics, by comparing computed IR and UV spectra with their experimental counterparts.

  9. Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

    NASA Astrophysics Data System (ADS)

    Ramesh, Gaddam; Reddy, Byru Venkatram

    2018-05-01

    In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible (UV-Vis) spectra of the compounds are also recorded in the region 200-400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules.

  10. Molecular structure, interatomic interactions and vibrational analysis of 1,4-diazabicyclo[3.2.1]octane parent ring system

    NASA Astrophysics Data System (ADS)

    Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.

    2017-02-01

    Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.

  11. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    PubMed

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  12. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Prasad, M. V. S.; Udaya Sri, N.; Veeraiah, V.

    2015-09-01

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm-1, respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  13. Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione.

    PubMed

    Barakat, Assem; Al-Najjar, Hany J; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-05

    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    PubMed

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.

    2015-09-01

    The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  16. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (E

  17. Chromocene in porous polystyrene: an example of organometallic chemistry in confined spaces.

    PubMed

    Estephane, Jane; Groppo, Elena; Vitillo, Jenny G; Damin, Alessandro; Lamberti, Carlo; Bordiga, Silvia; Zecchina, Adriano

    2009-04-07

    In this work, we present an innovative approach to investigate the structure and the reactivity of a molecularly dispersed organometallic compound. The poly(4-ethylstyrene-co-divinylbenzene) microporous system (PS) is used as "solid solvent" able to molecularly disperse CrCp2, allowing: (i) its full characterization by means of spectroscopic techniques; (ii) the pressure and temperature dependent study of its interaction towards simple molecules like CO freely diffusing through the pores; (iii) the accurate determination of the reaction enthalpies by both direct microcalorimetric measurements and by an indirect spectroscopic approach. The experimental results are compared with quantum-mechanical calculations adopting the DFT approximation with two different functionals (namely BP86 and B3-LYP), showing the limitations and the potentialities of DFT methods in predicting the properties of open shell systems. It is concluded that modern DFT methods are able to give a coherent view of the vibrational properties of the CrCp2 molecule (and of the complex formed upon CO adsorption) that well match the experimental results, while the energetic predictions should be taken with care as they are significantly dependent on the functionals used.

  18. Performance of some nucleation theories with a nonsharp droplet-vapor interface.

    PubMed

    Napari, Ismo; Julin, Jan; Vehkamäki, Hanna

    2010-10-21

    Nucleation theories involving the concept of nonsharp boundary between the droplet and vapor are compared to recent molecular dynamics (MD) simulation data of Lennard-Jones vapors at temperatures above the triple point. The theories are diffuse interface theory (DIT), extended modified liquid drop-dynamical nucleation theory (EMLD-DNT), square gradient theory (SGT), and density functional theory (DFT). Particular attention is paid to thermodynamic consistency in the comparison: the applied theories either use or, with a proper parameter adjustment, result in the same values of equilibrium vapor pressure, bulk liquid density, and surface tension as the MD simulations. Realistic pressure-density correlations are also used. The best agreement between the simulated nucleation rates and calculations is obtained from DFT, SGT, and EMLD-DNT, all of which, in the studied temperature range, show deviations of less than one order of magnitude in the nucleation rate. DIT underestimates the nucleation rate by up to two orders of magnitude. DFT and SGT give the best estimate of the molecular content of the critical nuclei. Overall, at the vapor conditions of this study, all the investigated theories perform better than classical nucleation theory in predicting nucleation rates.

  19. Multifunctional Composites of Chiral Valine Derivative Schiff Base Cu(II) Complexes and TiO2

    PubMed Central

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro

    2015-01-01

    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV–Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions. PMID:25686033

  20. Concomitant polymorphism of an octahedral, homoleptic zinc(II) bis complex of an N,N,O donor hydrazone

    NASA Astrophysics Data System (ADS)

    Patra, Shanti G.; Shee, Nirmal K.; Mitra, Partha; Drew, Michael G. B.; Datta, Dipankar

    2018-03-01

    Using the 1:1 condensate of benzil and 2-hydrazinopyridine as the ligand HL (H: a dissociable proton), a new zinc(II) complex ZnL2 is synthesized. It is obtained as a mixture of three types of deep red crystals - diamond shaped (1a), rectangular (1b) and pointed tetragonal (1c) which can be separated manually. Their different crystal structures have been determined. 1a crystallizes in the space group P21/c, 1b in Pbca and 1c in P-1. The asymmetric unit of 1c contains two independent molecules labeled A and B. Thus ZnL2 can assume at least four different molecular conformations in the solid state, namely 1a, 1b, 1c-A and 1c-B. But in the DFT calculations at the B3LYP/6-311++G (2d,p) and BP86/LanL2DZ levels 1a, 1b, 1c-A and 1c-B converge to a single structure in the gas phase. The DFT structure is found to possess a C2 axis though no symmetry constraint was imposed in the calculations. Interestingly 1a, 1b, 1c-A and 1c-B yield the same NMR spectra in solution revealing a C2 axis. So it is concluded that the gas phase DFT structure is realized experimentally only in solution. Further, our DFT calculations show that the four species are distributed along a "potential energy curve" of ZnL2. Anyway, our ZnL2 presents a case of concomitant polymorphism.

  1. Quantifying Environmental Effects on the Decay of Hole Transfer Couplings in Biosystems.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2014-06-10

    In the past two decades, many research groups worldwide have tried to understand and categorize simple regimes in the charge transfer of such biological systems as DNA. Theoretically speaking, the lack of exact theories for electron-nuclear dynamics on one side and poor quality of the parameters needed by model Hamiltonians and nonadiabatic dynamics alike (such as couplings and site energies) on the other are the two main difficulties for an appropriate description of the charge transfer phenomena. In this work, we present an application of a previously benchmarked and linear-scaling subsystem density functional theory (DFT) method for the calculation of couplings, site energies, and superexchange decay factors (β) of several biological donor-acceptor dyads, as well as double stranded DNA oligomers composed of up to five base pairs. The calculations are all-electron and provide a clear view of the role of the environment on superexchange couplings in DNA-they follow experimental trends and confirm previous semiempirical calculations. The subsystem DFT method is proven to be an excellent tool for long-range, bridge-mediated coupling and site energy calculations of embedded molecular systems.

  2. Synthesis, molecular structure and spectroscopic investigations of novel fluorinated spiro heterocycles.

    PubMed

    Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Barakat, Assem; Soliman, Saied M; Ghabbour, Hazem A; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-05-07

    This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.

  3. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  4. Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy- trans-stilbenes and their hydrolytic equilibria

    NASA Astrophysics Data System (ADS)

    Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans

    2008-02-01

    Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.

  5. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  6. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less

  7. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  8. FT-Raman spectroscopy of the Candelaria and Pyxine lichen species: A new molecular structural study

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafaella F.; Ferreira, Gilson R.; Spielmann, Adriano A.; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.

    2015-12-01

    In this work the chemistry of the lichens Candelaria fibrosa and Pyxine coccifera have been investigated for the first time using FT-Raman spectroscopy with the help of quantum mechanical DFT calculations to support spectral band assignments. The non-destructive spectral vibrational analysis provided evidence for the presence of pulvinic acid derivatives and conjugated polyenes, which probably belong to a carotenoid with characteristic signatures at ca. 1003, 1158 and 1525 cm-1 assigned respectively to δ(C-CH3), ν(C-C) and ν(Cdbnd C) modes. The identification of features arising from chiodectonic acid in the Pyxine species and calycin and pulvinic dilactone pigments in C. fibrosa were assisted by the quantum mechanical DFT calculations. Raman spectroscopy can provide important spectroscopic data for the identification of the biomarker spectral signatures nondestructively for these lichen pigments without the need for chemical extraction processes.

  9. Anharmonic vibrational spectroscopy, NBO charges and global chemical reactivity studies on the charge transfer PDCA-.AHMP+ single crystal using DFT calculations

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Bhat, Sheeraz Ahmad; Alam, Mohamad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    The charge transfer (CT) complex of the 2-amino-4-hydroxy-6-methylpyrimidine and 2,3 pyrazinedicarboxylic acid (PDCA-.AHMP+) was synthesized and its single crystal was grown by solution method. The structure of the crystalline complex has been investigated by single crystal X-ray diffraction (SCXRD). The vibrational features of the complex have been studied with the help of FTIR spectra and DFT computation. The anharmonic corrections in vibrational frequencies are made using the GVPT2 method at B3LYP/6-311++G(d,p) level of theory. The frontier molecular orbitals and global chemical reactivity have been calculated to understand the pharmacological aspect of the synthesized crystal. Furthermore, Hirshfeld electrostatic potential (ESP) surface, void space in the crystal structure and natural as well as Mulliken atomic charges are studied.

  10. Experimental and theoretical studies on the structure and spectroscopic properties of (E)-1-(2-aminophenyl)-3-(pyridine-4-yl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Cruz Ortiz, Andrés Felipe; Sánchez López, Alberto; García Ríos, Alejandro; Cuenú Cabezas, Fernando; Rozo Correa, Ciro Eduardo

    2015-10-01

    (E)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one (or simply 2-aminochalcone) was synthetized and characterized by elemental analysis, FT-IR, NMR, MS and XRD. Molecular geometry optimization, vibrational harmonic frequencies, 1H and 13C NMR chemical shifts were calculated by ab initio (HF and MP2) and density functional theory (DFT) methods, with B3LYP and B3PW91 functionals, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA software vibrational frequencies were assigned in terms of the potential energy distribution. A detailed interpretation of the FT-IR, NMR and XRD, experimental and calculated, is reported. The HOMO and LUMO energy gap that reflects the chemical activity of the molecule were also studied by DFT and above basis set. All theoretical results correspond to a great extent to experimental ones.

  11. Molecular structure and spectroscopic investigation of sodium(E)-2-hydroxy-5-((4-sulfonatophenyl)diazenyl)benzoate: A DFT study

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Kumar, Rakesh; Darroudi, Mahdieh; Yousefzadeh Borzehandani, Mostafa

    2015-03-01

    Quantum-chemical calculations using the Density Functional Theory (DFT) approach for structural analysis of new azodye sodium(E)-2-hydroxy-5-((4-sulfonatophenyl)diazenyl) (trans isomer) is carried out using B3LYP methods with 6-31G∗ basis set. The comparison of measured UV-Vis data, IR and NMR spectra of the molecule with the experimental data were also described which allowed assignment of major spectral features of title molecule. The optimized geometrical parameters obtained by B3LYP methods show a good agreement with experimental data. On the basis of polyvinyl alcohol (PVA) and the dichroic synthesized dye polarizer absorbing in the UV region of the spectrum (λmax = 353 nm) with the effect of polarization in the absorption maximum 96% was developed. The spectral-polarization parameters of stretched PVA-films were calculated.

  12. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    PubMed

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  14. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  15. Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT.

    PubMed

    Soto-Rojo, Rody; Baldenebro-López, Jesús; Glossman-Mitnik, Daniel

    2015-06-07

    A group of dyes derived from coumarin was studied, which consisted of nine molecules using a very similar manufacturing process of dye sensitized solar cells (DSSCs). Optimized geometries, energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and ultraviolet-visible spectra were obtained using theoretical calculations, and they were also compared with experimental conversion efficiencies of the DSSC. The representation of an excited state in terms of natural transition orbitals (NTOs) was studied. Chemical reactivity parameters were calculated and correlated with the experimental data linked to the efficiency of the DSSC. A new proposal was obtained to design new molecular systems and to predict their potential use as a dye in DSSCs.

  16. DFT computational analysis of piracetam

    NASA Astrophysics Data System (ADS)

    Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.

    2014-11-01

    Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.

  17. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    PubMed

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  18. Studies on the synthesis, spectroscopic analysis, molecular docking and DFT calculations on 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazol 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.

    2017-02-01

    In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.

  19. Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid

    NASA Astrophysics Data System (ADS)

    Thaya Kumari, C. Rathika; Nageshwari, M.; Raman, R. Ganapathi; Caroline, M. Lydia

    2018-07-01

    An organic centrosymmetric nicotinic acid (NA) single crystal has been grown employing slow evaporation method in water. NA crystallizes in monoclinic system with centric space group P21/C. The experimental and theoretical investigation includes vibrational spectra based on Hartree - Fock (HF) and density functional theory (DFT) has been applied using different function at B3LYP level of theory using 6-311G++(d,p) basis set. The optical transparency of the title molecule was examined by TD- DFT analysis and for comparison basis experimental UV-Vis spectrum was recorded. The interaction of charge within the molecule was analyzed and the HOMO - LUMO energy gap was evaluated. The value of dipole moment, Mulliken charge and molecular electrostatic potential were estimated at the same level of theory. Also the first order hyper polarizability for NA was calculated. The dielectric behavior of the grown crystal was determined for few selected temperatures. The third order nonlinear response of NA has been examined using Z-scan technique and nonlinear susceptibility (χ3), nonlinear refraction (n2) and nonlinear absorption coefficient (β) has been calculated. The current results clearly indicate that the title compound is an excellent applicant in the domain of opto - electronic applications.

  20. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) Tripeptide. Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Spiwok, Vojtech; Rezac, Jan

    2008-04-17

    The free-energy surface (FES) of glycyl-phenylalanyl-alanine (GFA) tripeptide was explored by molecular dynamics (MD) simulations in combination with high-level correlated ab initio quantum chemical calculations and metadynamics. Both the MD and metadynamics employed the tightbinding DFT-D method instead of the AMBER force field, which yielded inaccurate results. We classified the minima localised in the FESs as follows: a) the backbone-conformational arrangement; and b) the existence of a COOH---OC intramolecular H-bond (families CO₂Hfree and CO₂Hbonded). Comparison with experimental results showed that the most stable minima in the FES correspond to the experimentally observed structures. Remarkably, however, we did not observe experimentallymore » the CO₂Hbonded family (also predicted by metadynamics), although its stability is comparable to that of the CO₂Hfree structures. This fact was explained by the former’s short excited state lifetime. We also carried out ab initio calculations using DFT-D and the M06-2X functional. The importance of the dispersion energy in stabilizing peptide conformers is well reflected by our pioneer analysis using the DFT-SAPT method to explore the nature of the backbone/side-chain interactions.« less

  1. DFT investigation on the electronic structure of Faujasite

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-01

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  2. Naphtyl- and pyrenyl-flavylium dyads: Synthesis, DFT and optical properties

    NASA Astrophysics Data System (ADS)

    Aguilar-Castillo, Bethsy Adriana; Sánchez-Bojorge, Nora Aydee; Chávez-Flores, David; Camacho-Dávila, Alejandro A.; Pasillas-Ornelas, Eddie; Rodríguez-Valdez, Luz-María; Zaragoza-Galán, Gerardo

    2018-03-01

    A one-step preparation of flavylium salts containing naphtyl and pyrenyl moieties is described hereafter. Flavylium salts were successfully characterized by 1H NMR spectroscopy and ESI-MS spectrometry. Theoretical calculations were carried out by means of Density Functional Theory in order to simulate flavylium cation electronic transitions. Molecular simulation of -naphtyl derivatives displayed a coplanar conformation between naphthalene and benzopyrylium moieties. In contrast, DFT analysis exhibited a non-coplanar arrangement of pyrene and benzopyrylium units. These former statements in coherence with the absorption experiments where the naphtyl-flavylium dyads shows a red-shifted maximum absorption band with respect to pyrene dyads, led us to conclude that these bathochromic effects are associated with a more planar conformation.

  3. The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases

    NASA Astrophysics Data System (ADS)

    Elmacı, Gökhan; Duyar, Halil; Aydıner, Burcu; Seferoğlu, Nurgül; Naziri, Mir Abolfazl; Şahin, Ertan; Seferoğlu, Zeynel

    2018-06-01

    Benzil monohydrazone based Schiff bases were synthesized and characterized by 1H NMR, 13C NMR, HRMS as well as by single crystal X-ray diffraction. The geometries of the compounds was optimized by the DFT method and the results were compared with the X-ray diffraction data. The HOMO and LUMO energy gap and also related parameters (electronic chemical potential (μ) and global hardness (η), global electrophilicity index (ω) and softness (s)) were obtained from ground state calculations. In addition, the thermal properties of the compounds were investigated by DTA-TGA. The results showed that the compounds have good thermal properties for practical applications as optic dye.

  4. TCNQ molecular semiconductor of the Cu(II)TAAB macrocycle: Optical and electrical properties.

    PubMed

    Sánchez Vergara, M E; Salcedo, R; Molina, Bertha; Carrera-Téllez, R; Álvarez-Bada, J R; Hernández-García, A; Gómez-Vidales, V

    2018-07-05

    The present study reports the doping of a semiconducting molecular material through the formation of hydrogen bonds between the macrocycle Cu(II)(TAAB) and the electronic acceptor TCNQ. According to density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) analysis, the doped compound has the shape of a distorted square pyramid, with four nitrogen atoms in the equatorial position and the apical oxygen atom from the water ligands. These water molecules can generate strong hydrogen bonds with TCNQ and the TAAB metallic complex. Thin films of copper molecular material were obtained through high vacuum evaporation and were structurally characterized by IR spectroscopy, EPR and scanning electron microscopy (SEM). Additionally, the absorption coefficient (α) and photon energy (hν) were calculated from UV-vis spectroscopy and used to determine the optical activation energy in each film, from which its semiconducting behavior was established. An important aspect to consider is that the presence of hydrogen bonds is essential to establish the semiconducting nature of these species; this chemical behavior, as well as the resulting electronic mobility, have been studied by DFT theoretical calculations, which reinforce the experimental conclusion of a relationship between Cu(II)TAAB and TCNQ moieties generated by a weak bond. Finally, I-V characteristics have been obtained from a glass/ITO/doped molecular semiconductor/Ag device using Ag and ITO electrodes. Results for the copper-based device show that, at low voltages, the conduction process is of an ohmic nature while, at higher voltages, space-charge-limited current (SCLC) is found. It is highly probable that the doping effect in TCNQ favors electronic transport due to the formation of conduction channels caused by dopant-favored anisotropy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with some transition metals

    NASA Astrophysics Data System (ADS)

    Zülfikaroğlu, Ayşin; Batı, Hümeyra; Dege, Necmi

    2018-06-01

    A new hydrazone oxime compound, isonitrosoacetophenone nicotinoyl hydrazone (inapNH2), was synthesized and characterized by spectroscopic techniques (FT-IR, 1H-NMR and 13C-NMR) and single-crystal X-ray diffraction. The molecular geometry, NMR chemical shift values and vibrational frequencies of the inapNH2 in the ground state have been calculated by using the Density Functional Method (DFT/B3LYP) with 6-31G(d) and 6-311++G(d,p) basis sets. The computational results obtained were in agreement with the experimental results. The thermodynamic parameters of the inapNH2 were calculated at different temperatures, and the changes in thermodynamic properties were studied with increasing temperature. The molecular stability originating from charge transfer and hyperconjugative interactions in the title compound was analyzed using Natural Bond Orbital (NBO) and Natural Localized Molecular Orbital (NLMO) analyzes. The Natural Population Analysis (NPA) charges obtained from NBO analysis were used in order to find out the possible coordination modes of the inapNH2 compound with metal ions. To predict the chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map of inapNH2 was investigated and some of its global reactivity descriptors (chemical potential μ, electronegativity χ, hardness η and electrophilicity index ω) were calculated using DFT. Furthermore, the strength of metal-ligand interaction between chlorides of Co(II), Ni(II), Cu(II), Zn(II) and inapNH2, in both aqueous and ethanol phases, was elucidated by using the values of Charge Transfer (ΔN) and Energy Lowering (ΔE). The results indicated that the best interaction in both solvents is between CuCl2 and inapNH2.

  6. Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Chow, Philip C. Y.

    2014-06-19

    7-(Diethylamino)-coumarin-3-carboxylic acid (1) has been used as a laser dye, fluorescent label, and biomedical inhibitor in many different applications. Although this dye is typically used in the solution phase, it is prone to molecular aggregation, resulting in many inconsistent optoelectronic properties being reported in the literature. In this paper, the UV—vis absorption and fluorescence spectra of 1 are investigated in three representative solvents: cyclohexane [nonpolar and non-hydrogen bonding (NHB)], ethanol (moderately polar and hydrogen-bond accepting/donating), and DMSO (strongly polar and hydrogen-bond accepting). These experimental results, in conjunction with (time-dependent) density functional theory (DFT/TDDFT) based quantum calculations, have led to themore » identification of the J-aggregates of 1, and rationalized its different aggregation characteristic in cyclohexane in contrast to that of another similar compound, coumarin 343. We show here that these aggregates are largely responsible for the anomalous optoelectronic properties of this compound. In addition, DFT calculations and 1H NMR spectroscopy measurements suggest that the intramolecular hydrogen bond in 1 could be "opened up" in hydrogen-bond accepting solvents, affording significant molecular conformational changes and complex formation effects. The comprehensive understanding of the molecular aggregation and complex formation mechanisms of 1 acquired through this work forms a foundation for the knowledge-based molecular design of organic dyes with tailored aggregation tendencies or anti-aggregation characteristics to cater for different opapplications.« less

  7. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  8. Experimental and computational approaches to the analysis of the molecular structure of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile

    NASA Astrophysics Data System (ADS)

    Al-Azmi, Amal; Shalaby, Mona Abbas

    2018-03-01

    A green, fast and straightforward procedure for the synthesis of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile is described in this paper. The method uses a coupling reaction between 4- nitrophenyl diazonium chloride and 5-aminopyrazole-4-carbonitrile. The structure is confirmed by different spectroscopic studies such as IR, NMR, HRMS and UV-vis spectroscopy in addition to X-ray single-crystal determination. The molecular geometry, vibrational frequencies and gauge-invariant atomic orbital (GIAO) 1H and 13C NMR chemical shift values of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile are calculated in the ground state using the Hartree-Fock (HF) method and density functional theory (DFT) with the 6-31G(d) basis set, and are compared with the experimental data. The natural bond orbital (NBO) analysis is performed so as to discuss the stability of the molecule that arises from hyper conjugative interactions and charge delocalization. The electronic properties, such as HOMO and LUMO energies, were calculated using time dependent density functional theory (TD-DFT) approach.

  9. An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione

    NASA Astrophysics Data System (ADS)

    Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.

    2003-07-01

    We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.

  10. A complete computational and spectroscopic study of 2-bromo-1, 4-dichlorobenzene - A frequently used benzene derivative

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.; Mary, Y. Sheena; Panicker, C. Yohannan; Kaya, S.; Armaković, Stevan; Armaković, Sanja J.

    2018-01-01

    The coupled experimental and theoretical vibrational investigation of 2-bromo-1, 4-dichlorobenzene (BDB) molecule has been carried out and they have been duly compared with standard values in order to produce the reliability of the results. Results of DFT analysis carried out using B3LYP functional with 6-31 + G/6-311++G (d,p) basis set revealed that BDB has higher electronic density. The molecular geometry, 13C &1H Nuclear Magnetic Resonance (NMR), Natural Bond Orbital (NBO) and Natural Atomic Charge analyses have been obtained by DFT calculations. Nonlinear optical (NLO) properties, quantum chemical descriptors and first order hyperpolarizability have been calculated. In addition, Local reactivity properties reflected through average local ionization energies (ALIE), Fukui functions and bond dissociation energies have also been investigated. Besides investigation of docking properties, molecular dynamics simulations were also taken in account with a view to identify atoms that have relatively important interactions with water molecules. The title compound forms a stable complex with isopentenylpyrophosphate transferase with a binding affinity value as -4.6 kCal./Mol. and shows inhibitory activity against isopentenylpyrophosphate transferase.

  11. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  12. Vibrational spectroscopy and theoretical studies on 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Chiş, V.; Filip, S.; Miclăuş, V.; Pîrnău, A.; Tănăselia, C.; Almăşan, V.; Vasilescu, M.

    2005-06-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 2,4-dinitrophenylhydrazine. FT-IR, FT-IR/ATR and Raman spectra of normal and deuterated DNPH have been recorded and analyzed in order to get new insights into molecular structure and properties of this molecule, with particular emphasize on its intra- and intermolecular hydrogen bonds (HB's). For computational purposes we used density functional theory (DFT) methods, with B3LYP and BLYP exchange-correlation functionals, in conjunction with 6-31G(d) basis set. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of DFT calculations and isotopic shifts and by comparison to other dinitro- substituted compounds [V. Chiş, Chem. Phys., 300 (2004) 1]. To aid in mode assignments, we based on the direct comparison between experimental and calculated spectra by considering both the frequency sequence and the intensity pattern of the experimental and computed vibrational bands. It is also shown that semiempirical AM1 method predicts geometrical parameters and vibrational frequencies related to the HB in a pleasant agreement with experiment, being surprisingly accurate from this perspective.

  13. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  14. Structure, vibrational spectra and DFT characterization of the intra- and inter-molecular interactions in 2-hydroxy-5-methylpyridine-3-carboxylic acid--normal modes of the eight-membered HB ring.

    PubMed

    Godlewska, P; Jańczak, J; Kucharska, E; Hanuza, J; Lorenc, J; Michalski, J; Dymińska, L; Węgliński, Z

    2014-01-01

    Fourier transform IR and Raman spectra, XRD studies and DFT quantum chemical calculations have been used to characterize the structural and vibrational properties of 2-hydroxy-5-methylpyridine-3-carboxylic acid. In the unit-cell of this compound two molecules related by the inversion center interact via OH⋯N hydrogen bonds. The double hydrogen bridge system is spaced parallel to the (102) crystallographic plane forming eight-membered arrangement characteristic for pyridine derivatives. The six-membered ring is the second characteristic unit formed via the intramolecular OH⋯O hydrogen bond. The geometry optimization of the monomer and dimer have been performed applying the Gaussian03 program package. All calculations were performed in the B3LYP/6-31G(d,p) basis set using the XRD data as input parameters. The relation between the molecular and crystal structures has been discussed in terms of the hydrogen bonds formed in the unit cell. The vibrations of the dimer have been discussed in terms of the resonance inside the system built of five rings coupled via hydrogen bonds. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    PubMed

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  16. Investigation of the CH3Cl + CN- reaction in water: Multilevel quantum mechanics/molecular mechanics study

    NASA Astrophysics Data System (ADS)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-01

    The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  17. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense; Olsen, Jógvan Magnus Haugaard

    2015-03-21

    We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linearmore » response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.« less

  18. A theoretical study on 3-(4-methoxyphenyl)-1-(pyridin-2-Yl) prop-2-en-1-one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davcir@sakarya.edu.tr

    This study reports the geometric parameters, vibration frequencies, {sup 13}C and {sup 1}H NMR chemical shifts of 3-(4-Methoxyphenyl)-1-(pyridin-2-yl) prop-2-en-1-one (MPP) molecule calculated by B3LYP level of density functional theory (DFT) with 6-311++G(d,p) basis set. {sup 13}C and {sup 1}H NMR chemical shifts were calculated within GIAO approach which is one of the most common approaches. Additionally, 3D molecular surfaces such as molecular electrostatic potential (MEP) and electrostatic potential (ESP), were simulated by the same level. As a result, obtained theoretical results were found to be consistent with experimental ones. All of calculations were carried out Gaussian 09 package program.

  19. Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide.

    PubMed

    Balachandran, V; Janaki, A; Nataraj, A

    2014-01-24

    The Fourier-Transform infrared and Fourier-Transform Raman spectra of thiophene-2-carbohydrazide (TCH) was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1). Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of TCH were carried out by DFT (B3LYP) method with 6-311++G(d,p) as basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV spectrum was measured in different solvent. The energy and oscillator strength are calculated by Time Dependant Density Functional Theory (TD-DFT) results. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. The complete assignments were performed on the basis of the potential energy distribution (PED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method. Finally the theoretical FT-IR, FT-Raman, and UV spectra of the title molecule have also been constructed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate.

    PubMed

    Kanagathara, N; Marchewka, M K; Drozd, M; Renganathan, N G; Gunasekaran, S; Anbalagan, G

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by (1)H and (13)C NMR spectra. No detectable signal was observed during powder test for second harmonic generation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    PubMed

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Time averaging of NMR chemical shifts in the MLF peptide in the solid state.

    PubMed

    De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele

    2010-05-05

    Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.

  3. Milestone report: The simulation of radiation driven gas diffusion in UO 2 at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Michael William; Kuganathan, Navaratnarajah; Burr, Patrick A

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xemore » lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT binding energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  4. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  5. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  6. Facile synthesis of corticosteroids prodrugs from isolated hydrocortisone acetate and their quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Singh, Ranvijay Pratap; Prakash, Rohit; Amandeep

    2017-02-01

    In the present research paper corticosteroids prodrugs of hydrocortisone acetate (1) have been synthesized, which was isolated from the flowers of Allamanda Violacea. The hydrocortisone acetate (1) was hydrolyzed to hydrocortisone (2) which was subsequently converted to prednisolone (3). Both the hydrocortisone (1) and prednisolone (2) underwent Steglich esterification with naproxen and Ibuprofen yielding compounds 11, 17 dihydroxy-21-(2-(6-methoxynaphthalene-2yl) propionoxy)-pregn-4-ene-3, 20-dione (4), 11, 17-dihydroxy-21-(2-(4-isobutylphenyl) propionoxy)-pregn-4-ene-3, 20-dione (5), 21-(2-(6-methoxynaphthalene-2-yl) propionoxy) 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene (6) and 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene-21-yl-2-(4-isobutylphenyl) propanoate (7). The synthesized compounds have been characterized with the help of spectroscopic techniques like 1H, 13C NMR, FT-IR spectroscopy and mass spectrometry. Density functional theory (DFT) with B3LYP functional and 6-31G (d, p) basis set has been used for the Quantum chemical calculations. The electronic properties such as frontier orbitals and band gap energies were calculated by TD-DFT approach. Intramolecular interactions have been identified by AIM (Atoms in Molecule) approach and vibrational wavenumbers have been calculated using DFT method. The reactivity and reactive site within the synthesized prodrugs have been examined with the help of reactivity descriptors. Dipole moment, polarizability and first static hyperpolarizability have been calculated to get a better insight of the properties of synthesized prodrugs. The molecular electrostatic potential (MEP) surface analysis has also been carried out.

  7. Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate ONO donor Schiff base ligand: Synthesis, characterization, thermal, non-isothermal kinetics and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Mishra, A. P.

    2017-02-01

    We report here four mononuclear Co(II), Ni(II), Cu(II) and Zn(II) coordination compounds of general formula [M(L)2] {L = dcp; M = CoII, CuII & ZnII} and [M(L)(H2O)]·H2O {L = dcp; M = NiII} derived from tridentate 2,4-dichloro-6-{[(3-chloro-2-hydroxy-5-nitrophenyl)imino]methyl}phenol (dcp) ligand. These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, magnetic moment, thermal, PXRD and SEM-EDX. The Powder X-ray Diffraction patterns and SEM analyses showed the crystalline nature of synthesized compounds. The peak broadening was explained in terms of crystallite size and the lattice strain using Scherrer and Williamson-Hall method. Thermogravimetric analysis was performed to determine the thermal stability of synthesized compounds under nitrogen atmosphere up to 820 K at 10 Kmin-1 heating rate. The kinetic and thermodynamic parameters of thermal decomposition were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation. The calculated optical band gap values of complexes were found to be in semiconducting range. To support the experimental findings, and derive some fruitful information viz. frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density, absorption spectra etc.; theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated.

  8. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Dani, R. K.; Kushawaha, S. K.; Prakash, Om; Singh, Ranjan K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.

    2015-06-01

    Two new compounds N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal.

  9. DFT analysis on the molecular structure, vibrational and electronic spectra of 2-(cyclohexylamino)ethanesulfonic acid.

    PubMed

    Renuga Devi, T S; Sharmi kumar, J; Ramkumaar, G R

    2015-02-25

    The FTIR and FT-Raman spectra of 2-(cyclohexylamino)ethanesulfonic acid were recorded in the regions 4000-400 cm(-1) and 4000-50 cm(-1) respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and Density functional method (B3LYP) with the correlation consistent-polarized valence double zeta (cc-pVDZ) basis set and 6-311++G(d,p) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed based on the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Atomic charges were calculated using both Hartee-Fock and density functional method using the cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. (1)H and (13)C NMR chemical shifts of the molecule were calculated using Gauge Including Atomic Orbital (GIAO) method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The first order hyperpolarizability (β) and Molecular Electrostatic Potential (MEP) of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemical reactivity site in the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone

    NASA Astrophysics Data System (ADS)

    Gosav, Steluta; Paduraru, Nicoleta; Maftei, Dan; Birsa, Mihail Lucian; Praisler, Mirela

    2017-02-01

    The aim of this work is to characterize a quite novel 3-dithiocarbamic flavonoid by vibrational spectroscopy in conjunction with Density Functional Theory (DFT) calculations. Quantum mechanics calculations of energies, geometries and vibrational wavenumbers in the ground state were carried out by using hybrid functional B3LYP with 6-311G(d,p) as basis set. The results indicate a remarkable agreement between the calculated molecular geometries, as well as vibrational frequencies, and the corresponding experimental data. In addition, a complete assignment of all the absorption bands present in the vibrational spectrum has been performed. In order to assess its chemical potential, quantum molecular descriptors characterizing the interactions between the 3-dithiocarbamic flavonoid and its biological receptors have been computed. The frontier molecular orbitals and the HOMO-LUMO energy gap have been used in order to explain the way in which the new molecule can interact with other species and to characterize its molecular chemical stability/reactivity. The molecular electrostatic potential (MEP) map, computed in order to identify the sites of the studied flavonoid that are most likely to interact with electrophilic and nucleophilic species, is discussed.

  11. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. Themore » relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.« less

  12. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    PubMed

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Use of vibrational spectroscopy to study 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Abdullah, Ebtehal S.; Al-Tamimi, Abdul-Malek S.; Çırak, Çağrı; Ucun, Fatih

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential anti-inflammatory agent namely, 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths, bond angles and dihedral angles) have been calculated using density functional theory methods (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software program. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  14. Use of vibrational spectroscopy to study 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione: A combined theoretical and experimental approach.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Abdullah, Ebtehal S; Al-Tamimi, Abdul-Malek S; Cırak, Cağrı; Ucun, Fatih

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential anti-inflammatory agent namely, 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths, bond angles and dihedral angles) have been calculated using density functional theory methods (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software program. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Deeb, Omar A; Al-Turkistani, Abdulghafoor A; Ucun, Fatih; Cırak, Cağrı

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Predicting elastic properties of β-HMX from first-principles calculations.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu

    2015-05-07

    We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.

  17. Structure, stability, thermodynamic properties, and infrared spectra of the protonated water octamer H(+)(H2O)8.

    PubMed

    Karthikeyan, S; Park, Mina; Shin, Ilgyou; Kim, Kwang S

    2008-10-16

    We investigated various two-dimensional (2D) and three-dimensional (3D) structures of H (+)(H 2O) 8, using density functional theory (DFT), Moller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). The 3D structure is more stable than the 2D structure at all levels of theory on the Born-Oppenheimer surface. With the zero-point energy (ZPE) correction, the predicted structure varies depending on the level of theory. The DFT employing Becke's three parameters with Lee-Yang-Parr functionals (B3LYP) favors the 2D structure. At the complete basis set (CBS) limit, the MP2 calculation favors the 3D structure by 0.29 kcal/mol, and the CCSD(T) calculation favors the 3D structure by 0.27 kcal/mol. It is thus expected that both 2D and 3D structures are nearly isoenergetic near 0 K. At 100 K, all the calculations show that the 2D structure is much more stable in free binding energy than the 3D structure. The DFT and MP2 vibrational spectra of the 2D structure are consistent with the experimental spectra. First-principles Car-Parrinello molecular dynamics (CPMD) simulations show that the 2D Zundel-type vibrational spectra are in good agreement with the experiment.

  18. Structural characterization, vibrational study, NLO and DFT calculations of a novel organic sulfate monohydrate templated with (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole

    NASA Astrophysics Data System (ADS)

    Barhoumi, Abir; Mhiri, Tahar; Dammak, Thameur; Suñol, Joan Josep; Belhouchet, Mohamed

    2017-01-01

    A single crystal of (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole sulfate monohydrate has been synthesized and grown at room temperature by slow evaporation of aqueous solution. The studied compound crystallizes in the space group P212121 of the orthorhombic system with cell parameters a = 7.0014(12), b = 8.7631(15), c = 19.773(3) Å. We report the molecular structure and the theoretical and experimental vibrational spectra of the synthesized compound. The atomic arrangement, which is an alternation of organic inorganic layers linked together through hydrogen bonds, gives rise to three types of rings formed by the interconnection of organic-inorganic entities. The experimental FT-IR and the Raman spectra the synthesized compound were recorded and analyzed. The peaks assignment has been made unambiguously from the literature. To confirm the assignment, the experimental spectra were compared with theoretical spectra obtained with the Gaussian 98 program by the Density Functional Theory (DFT) method using B3LYP function with the LanL2DZ basis set. Moreover, to study the nonlinear optical (NLO) property of this compound, the hyperpolarizability βtot, the electric dipole μtot and the polarizability αtot were calculated using the DFT. Based on our calculation the synthesized compound has a non-zero hyperpolarizability suggesting that it may be used in some NLO applications.

  19. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds.

  20. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  1. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  2. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  3. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen.

    PubMed

    Shen, Xiaomei; Liu, Wenqi; Gao, Xuejiao; Lu, Zhanghui; Wu, Xiaochun; Gao, Xingfa

    2015-12-23

    Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4-xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like activities, the mechanisms mainly consist of protonation of O2(•-) and adsorption and rearrangement of HO2(•) on metal surfaces. Our results provide atomistic-level insights into the oxidase- and SOD-like activities of metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials. Especially, the O2 dissociative adsorption mechanism will serve as a general way to the activation of molecular oxygen by nanosurfaces and help understand the catalytic role of nanomaterials as pro-oxidants and antioxidants.

  4. Synthesis, spectroscopic investigations (FT-IR, NMR, UV-Vis, and TD-DFT), and molecular docking of (E)-1-(benzo[d][1, 3]dioxol-6-yl)-3-(6-methoxynaphthalen-2-yl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2017-02-01

    The compound (E)-1-(benzo [d] [1, 3] dioxol-6-yl)-3-(6-methoxy naphthalen-2-yl) prop-2-en-1-one (AKN) was synthesized and characterized by FT-IR, NMR, and UV-Vis spectrometer. The optimized molecular geometry, bond lengths, bond angles, atomic charges, harmonic vibrational wave numbers and intensities of vibrational bonds of the title compound have been investigated by Time dependent- Density Functional Theory (TD-DFT) using a standard B3LYP method with 6-31 G (d, p) basis set available in the Gaussian 09W package. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). Experimental excitation energies of the molecules were matched with the theoretically calculated energies. The atomic charge distributions of the various atoms present in the AKN were obtained by Mulliken charge population analysis. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule. The difference between the observed and scaled frequencies was small. The HOMO to LUMO transition implies an electron density transfer. The intramolecular contacts have been interpreted using Natural Bond Orbital (NBO) analysis. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  5. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity

    NASA Astrophysics Data System (ADS)

    İskeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, Şahin; Ertürk, Aliye Gediz; Süleymanoğlu, Nevin; Ustabaş, Reşat

    2015-03-01

    The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by 13C NMR, 1H NMR, 2D NMR (1H-1H COSY and 13C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92 eV is due to contribution of the bands the n → π∗. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.

  6. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.

    2015-02-01

    The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  7. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGES

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  9. Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hasanzade, Zohre; Raissi, Heidar

    2017-11-01

    In this work, the adsorption of Thioguanine (TG) anticancer drug on the surface of Graphene oxide (GO) nanosheet has investigated using density functional theory (DFT) and molecular dynamics simulation (MDs). Quantum mechanics calculations by two methods including M06-2X/6-31G**and ωB97X-D/6-31G** have been employed to calculate the details of energetic, geometric, and electronic properties of the TG molecule interacting with Graphene oxide nanosheet (GONS). DFT calculations confirmed that the strongest adsorption is observed when hydrogen bond interactions between TG molecule and the functional groups of Graphene oxide nanosheet are predominate. In all calculations, solvent effects have been considered in water using the PCM method. It is found that TG molecule can be adsorbed on Graphene oxide with negative solvation energy, indicating the TG adsorption on Graphene oxide surfaces is thermodynamically favored. Moreover, MD simulations are examined to understand the solvent/co-solvent effect (water, ethanol, nicotine) on the Thioguanine drug delivery through Graphene oxide. The results of RDF patterns and the van der Waals energy calculations show that interaction between TG drugs and the Graphene oxide surface is stronger in water solvent compared to the other co-solvent. The obtained MD results illustrate that when nicotine and ethanol exist in the system, the drug takes longer time to bind with GO nanosheet and the system becomes unstable. It can be concluded that Graphene oxide can be a promising candidate in water media for delivery the TG molecule.

  10. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies.

    PubMed

    Guennoun, L; Zaydoun, S; El Jastimi, J; Marakchi, K; Komiha, N; Kabbaj, O K; El Hajji, A; Guédira, F

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400cm(-1) and 3600-50cm(-1) respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  12. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures.

    PubMed

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-15

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modeling of Branched (L, T and Y) Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Han, Jie; Jaffe, Richard; Saini, Subhash (Technical Monitor)

    1998-01-01

    Models for connecting two or three carbon nanotubes (CNT) using topological defects (i.e., pentagons and heptagons) are presented for the characterization of experimentally observed L, T and Y CNT junctions. The effects of the separation and orientation of the topological defects on the structures and energetics of these junctions are investigated using the nonlocal density function theory (DFT) and semi-empirical molecular orbital (AM1) calculations, and the Brenner empirical potential molecular mechanics simulations. The potential applications of L, Y and T CNT junctions in nanoelectronic devices are also discussed.

  14. "Washing-out" ionic liquids from polyethylene glycol to form aqueous biphasic systems.

    PubMed

    Tomé, Luciana I N; Pereira, Jorge F B; Rogers, Robin D; Freire, Mara G; Gomes, José R B; Coutinho, João A P

    2014-02-14

    The molecular-level mechanisms behind the formation of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and polymers are hitherto not completely understood. For the first time, it is herein shown that polymer-IL-based ABS are a result of a "washing-out" phenomenon, and not of a salting-out effect of the IL over the polymer as assumed in the past few years. Novel evidence is herein provided by experimental results combined with molecular dynamics (MD) simulations and density functional theory (DFT) calculations.

  15. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study.

    PubMed

    Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang

    2016-01-01

    The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation.

  16. Analysis of molecular structure, spectroscopic properties (FT-IR, micro-Raman and UV-vis) and quantum chemical calculations of free and ligand 2-thiopheneglyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn).

    PubMed

    Gökce, Halil; Bahçeli, Semiha

    2013-12-01

    In this study, molecular geometries, experimental vibrational wavenumbers, electronic properties and quantum chemical calculations of 2-thiopheneglyoxylic acid molecule, (C6H4O3S), and its metal halides (Cd, Co, Cu, Ni and Zn) which are used as pharmacologic agents have been investigated experimentally by FT-IR, micro-Raman and UV-visible spectroscopies and elemental analysis. Meanwhile the vibrational calculations were verified by DFT/B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets in the ground state, for free TPGA molecule and its metal halide complexes, respectively, for the first time. The calculated fundamental vibrational frequencies for the title compounds are in a good agreement with the experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Quantum chemical calculations of glycine glutaric acid

    NASA Astrophysics Data System (ADS)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  18. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results will be presented for calculations of liquid-vapor fractionation of cadmium and mercury, which indicate an affinity for heavy isotopes in the liquid phase. In the case of mercury the results match well with recent experiments. Mössbauer-calibrated fractionation factors will also be presented for tin and platinum species. Platinum isotope behaviour in metals appears to particularly interesting, with very distinct isotope partitioning behaviour for iron-rich alloys, relative to pure platinum metal. References: 1) Bigeleisen, J. (1996) J. Am. Chem. Soc. 118, 3676-3680. 2) Nomura, M., Higuchi, N., Fujii, Y. (1996) J. Am. Chem. Soc. 118, 9127-9130.

  19. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  20. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential of title molecule in the area of pharmaceutics, we have also calculated a series of drug likeness parameters. Possibly important biological activity of BMMBI molecule was also confirmed by molecular docking study.

  1. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  2. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  3. Direct Production of Propene from the Thermolysis of Poly(β-hydroxybutyrate) (PHB). An Experimental and DFT Investigation.

    PubMed

    Clark, Jared M; Pilath, Heidi M; Mittal, Ashutosh; Michener, William E; Robichaud, David J; Johnson, David K

    2016-01-28

    We demonstrate a synthetic route toward the production of propene directly from poly(β-hydroxybutyrate) (PHB), the most common of a wide range of high-molecular-mass microbial polyhydroxyalkanoates. Propene, a major commercial hydrocarbon, was obtained from the depolymerization of PHB and subsequent decarboxylation of the crotonic acid monomer in good yields (up to 75 mol %). The energetics of PHB depolymerization and the gas-phase decarboxylation of crotonic acid were also studied using density functional theory (DFT). The average activation energy for the cleavage of the R'C(O)O-R linkage is calculated to be 163.9 ± 7.0 kJ mol(-1). Intramolecular, autoacceleration effects regarding the depolymerization of PHB, as suggested in some literature accounts, arising from the formation of crotonyl and carboxyl functional groups in the products could not be confirmed by the results of DFT and microkinetic modeling. DFT results, however, suggest that intermolecular catalysis involving terminal carboxyl groups may accelerate PHB depolymerization. Activation energies for this process were estimated to be about 20 kJ mol(-1) lower than that for the noncatalyzed ester cleavage, 144.3 ± 6.4 kJ mol(-1). DFT calculations predict the decarboxylation of crotonic acid to follow second-order kinetics with an activation energy of 147.5 ± 6.3 kJ mol(-1), consistent with that measured experimentally, 146.9 kJ mol(-1). Microkinetic modeling of the PHB to propene overall reaction predicts decarboxylation of crotonic acid to be the rate-limiting step, consistent with experimental observations. The results also indicate that improvements made to enhance the isomerization of crotonic acid to vinylacetic acid will improve the direct conversion of PHB to propene.

  4. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  5. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  6. Infrared spectrum, NBO, HOMO-LUMO, MEP and molecular docking studies (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one.

    PubMed

    Panicker, C Yohannan; Varghese, Hema Tresa; Nayak, Prakash S; Narayana, B; Sarojini, B K; Fun, H K; War, Javeed Ahamad; Srivastava, S K; Van Alsenoy, C

    2015-09-05

    FT-IR spectrum of (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one was recorded and analyzed. The vibrational wavenumbers were computed using HF and DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign IR bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, HOMO-LUMO, first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title molecule is identified using MEP surface plot study. Molecular docking results predicted the anti-leishmanic activity for the compound. Copyright © 2015. Published by Elsevier B.V.

  7. Carbonic anhydrase inhibition of Schiff base derivative of imino-methyl-naphthalen-2-ol: Synthesis, structure elucidation, molecular docking, dynamic simulation and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abbas, Saghir; Nasir, Hafiza Huma; Zaib, Sumera; Ali, Saqib; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2018-03-01

    In the present study, we have designed and synthesized a Schiff base derivative 3 and characterized by FT-IR, 1H and 13C NMR spectroscopy. Single crystal X-ray diffraction and NMR studies were also performed. The synthetic compound was screened for its inhibitory potential against carbonic anhydrase II. The experimental results were validated by molecular docking and dynamic simulations of compound 3 in the active pocket of enzyme. Important binding interactions with the key residues in the active site of the carbonic anhydrase enzyme were revealed. Moreover, supramolecular assembly of the title compound was analyzed by density functional theory (DFT) calculations. These studies rendered a more clear understanding for the demonstration of novel molecular mechanism involved in CA II inhibition by the synthesized compound.

  8. Application of the Interacting Quantum Atoms Approach to the S66 and Ionic-Hydrogen-Bond Datasets for Noncovalent Interactions.

    PubMed

    Suárez, Dimas; Díaz, Natalia; Francisco, Evelio; Martín Pendás, Angel

    2018-04-17

    The interacting quantum atoms (IQA) method can assess, systematically and in great detail, the strength and physics of both covalent and noncovalent interactions. The lack of a pair density in density functional theory (DFT), which precludes the direct IQA decomposition of the characteristic exchange-correlation energy, has been recently overcome by means of a scaling technique, which can largely expand the applicability of the method. To better assess the utility of the augmented IQA methodology to derive quantum chemical decompositions at the atomic and molecular levels, we report the results of Hartree-Fock (HF) and DFT calculations on the complexes included in the S66 and the ionic H-bond databases of benchmark geometry and binding energies. For all structures, we perform single-point and geometry optimizations using HF and selected DFT methods with triple-ζ basis sets followed by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical errors, the fragment and atomic distribution of formation energies, etc. It is shown that fragment-based IQA decomposes the formation energies in comparable terms to those of perturbative approaches and that the atomic IQA energies hold the promise of rigorously quantifying atomic and group energy contributions in larger biomolecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    NASA Astrophysics Data System (ADS)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  10. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  11. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  12. Dynamical discrete/continuum linear response shells theory of solvation: convergence test for NH4+ and OH- ions in water solution using DFT and DFTB methods.

    PubMed

    de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R

    2010-12-09

    A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.; Saumon, D.

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  14. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  15. Structural and vibrational studies on 1-(5-methyl-[1,3,4] thiadiazol-2-yl)-pyrolidin-2-ol

    NASA Astrophysics Data System (ADS)

    Ramesh Babu, N.; Saleem, H.; Subashchandrabose, S.; Padusha, M. Syed Ali; Bharanidharan, S.

    2016-01-01

    FT-Raman and FT-IR spectra were recorded for1-(5-methyl-[1,3,4]thiadiazol-2-yl)-pyrolidin-2-ol (MTPN) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, IR and the Raman scattering intensities were computed using DFT/6-311++G (d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the IR and Raman spectra, based on the TED of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated. The intra-molecular charge transfer was calculated by means of NBO. Hyperconjugative interaction energy was more during the π-π∗ transition. Energy gap of the molecule has been found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable.

  16. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  17. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. DFT investigation on the electronic structure of Faujasite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian

    2013-11-13

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed formore » describing atomic charge distribution in the chosen systems.« less

  19. Molecular interactions investigated with DFT calculations of QTAIM and NBO analyses: An application to dimeric structures of rice α-amylase/subtilisin inhibitor

    NASA Astrophysics Data System (ADS)

    Astani, Elahe K.; Hadipour, Nasser L.; Chen, Chun-Jung

    2017-03-01

    Characterization of the dimer interactions at the dimeric interface of the crystal structure of rice α-amylase/subtilisin inhibitor (RASI) were performed using the quantum theory of atoms in molecules (QTAIM) and natural bonding orbital (NBO) analyses at the density-functional theory (DFT) level. The results revealed that Gly27 and Arg151 of chain A are the main residues involved in hydrogen bonds, dipole-dipole, and charge-dipole interactions with Gly64, Ala66, Ala67 and Arg81 of chain B at the dimeric interface. Calcium ion of chain A plays the significant role in the stability of the dimeric structure through a strong charge-charge interaction with Ala66.

  20. First principle study of a potential bioactive molecule with tetrahydroisoquinoline, carbothiomide and adamantane scaffolds

    NASA Astrophysics Data System (ADS)

    Al-Shehri, Mona M.; Al-Majed, Abdul-Rahman A.; Aljohar, Haya I.; El-Emam, Ali A.; Pathak, Shilendra K.; Sachan, Alok K.; Prasad, Onkar; Sinha, Leena

    2017-09-01

    The FT-Raman and FT-IR spectra of N-(adamantan-1-yl)-1,2,3,4-tetrahydroisoquinoline-2-carbothioamide were recorded and investigated. The DFT/M06-2X/6-311++G(d,p) method was used to compute the vibrational wavenumbers. The effect of solvents (water, carbon tetrachloride and chloroform) on the dipole moment and polarizability has been evaluated. UV-Vis spectrum of the title compound was recorded and compared with the theoretical spectrum calculated by TD-DFT approach. To investigate the movement of electrons within the system when excited, the difference of the excited and ground state densities has also been plotted. The molecular docking studies reveals that the investigated compound may exhibit HIV-1 Protease inhibitory activity.

Top