Sample records for dft theoretical studies

  1. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  2. Theoretical DFT, vibrational and NMR studies of benzimidazole and alkyl derivatives

    NASA Astrophysics Data System (ADS)

    Infante-Castillo, Ricardo; Rivera-Montalvo, Luis A.; Hernández-Rivera, Samuel P.

    2008-04-01

    Benzimidazoles are heterocyclic compounds that have awaked great interest during the last few years because of their proven biological activity as antiviral, antimicrobial, and antitumoral agents. For this reason, the development of a systematic FT-IR, FT-Raman and NMR study of 1-substituted compounds in 2-methylbenzimidazole constitutes a significant tool in understanding the molecular dynamics and the structural parameters that govern their behavior. Two new 1-alkyl-2-methylbenzimidazoles compounds were synthesized from reaction of 2-methylbenzimidazole with primary and secondary alkyl halides using a strong base as a catalyst. These compounds were purified and characterized by elemental analysis and different spectroscopic methods. The comparative analysis of vibrational modes of benzimidazole and its alkyl derivatives show that regions of absorption are very similar in all of them. However, changes are produced at low frequencies specifically in the C-H out of plane deformations, ring breathing and ring skeletal vibrations. The ring out-of plane bending modes shift by 10-15 cm -1 in some cases as results of alkyl substitution. The theoretical calculated spectra, using Density Functional Theory (DFT) approximation, and experimental results were consistent with each other. The GIAO method was used to calculate absolute shieldings, which agree consistently with those measured by 1H and 13C NMR. The consistency and efficiency of the GIAO 13C and 1H NMR calculations were thoroughly checked by the analysis of statistical parameters concerning computed and experimental 13C and 1H NMR chemical shift values of the studied compounds.

  3. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    NASA Astrophysics Data System (ADS)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  4. Experimental (FTIR, Raman, UV-visible and PL) and theoretical (DFT and TDDFT) studies on bis(8-hydroxyquinolinium) tetrachlorocobaltate(II) compound

    NASA Astrophysics Data System (ADS)

    Chaouachi, Soumaya; Elleuch, Slim; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    The purpose of this paper is to present the chemical preparation, crystal structure, vibrational study and optical features for new organic-inorganic compound [C9H8NO]2CoCl4 abbreviated [8-HQ]2CoCl4. The structural study by X-ray diffraction prove that this compound crystallize in a monoclinic unit-cell with space group C2/c (point group 2/m = C2h). It is built of tetrahedra [CoCl4]2- anions and (C9H8NO)+ cations in the 1/2 ratio. The crystal structure is stabilized by network three-dimensional of Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl, Csbnd H⋯Cl hydrogen bonds, and offset π-π stacking interactions. Also, the Hirshfeld Surface projections and Fingerprint plots were elucidated the relative contribution of the type, nature and explore the H⋯Cl, C⋯H, C⋯C, C⋯N, H⋯O intermolecular contacts in the crystal in a visual manner. Furthermore, vibrational analysis of the structural groups in the compound was carried out by both Fourier transforms infrared (FT-IR) and Raman spectra. The spectral data are complemented by good information at the region characteristic of metal-ligand, which evidences coordination through the compound. The optical properties of the crystal were studied by using optical absorption UV-visible and photoluminescence (PL) spectroscopy studies. Theoretical calculations were performed using density functional theory (DFT) at (DFT/B3LYP/LanL2DZ) level in the aim of aiding in studying structural, vibrational and optical properties of the investigated compound. Good relationship consistency is found between the experimental and theoretical studies. Inspection of the optical properties has lead to confirm the exhibition of a green photoluminescence and the occurrence of charge transfer phenomenon in this material.

  5. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application

    NASA Astrophysics Data System (ADS)

    Dulski, Mateusz; Kempa, Marta; Kozub, Patrycja; Wójcik, Justyna; Rojkiewicz, Marcin; Kuś, Piotr; Szurko, Agnieszka; Ratuszna, Alicja; Wrzalik, Roman

    2013-03-01

    Spectral characteristics study of meso-tetraphenylporphyrin derivatives (TPP1 and TPP2) used as photosensitizers for utilization in photodynamic therapy (PDT) has been performed by density functional theory (DFT) and time dependent DFT (TD-DFT) calculations at B3LYP/6-31G(d) level of theory using PCM solvation model. The geometrical parameters of porphyrins have been studied for ground and excited-state geometry to deduce the influence of various substituents as well as solvent effect on the deformation of porphyrin ring. Two theoretical approaches - linear response (LR) and external iteration (EI) - have been performed to replicate absorption and fluorescence emission spectra. Experimental and theoretical investigations have shown that EI method reproduces the absorption energies very well for both singlet-singlet and triplet-triplet transitions, whereas the LR approach is more coherent with experimental fluorescence emission spectra. Spectral features and HOMO-LUMO band gap analysis have shown that TPP1 can be more useful in PDT. Calculations have revealed that two the highest occupied and two the lowest unoccupied molecular orbitals are responsible for the Q-band absorption and are located mainly on the porphyrin ring. In order to verify the substituent effect on the activity of tested compounds in their ground and excited states, the molecular electrostatic potential surfaces have been analyzed.

  7. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches

    NASA Astrophysics Data System (ADS)

    Anbarasan, R.; Dhandapani, A.; Manivarman, S.; Subashchandrabose, S.; Saleem, H.

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis.

  8. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  9. Electron affinity of perhalogenated benzenes: A theoretical DFT study

    NASA Astrophysics Data System (ADS)

    Volatron, François; Roche, Cécile

    2007-10-01

    The potential energy surfaces (PES) of unsubstituted and perhalogenated benzene anions ( CX6-, X = F, Cl, Br, and I) were explored by means of DFT-B3LYP calculations. In the F and Cl cases seven extrema were located and characterized. In the Br and I cases only one minimum and two extrema were found. In each case the minimum was recomputed at the CCSD(T) level. The electron affinities of C 6X 6 were calculated (ZPE included). The results obtained agree well with the experimental determinations when available. The values obtained in the X = Br and the X = I cases are expected to be valuable predictions.

  10. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2018-05-01

    New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.

  11. Synthesis, characterization, and DFT studies of a new chiral ionic liquid from (S)-1-phenylethylamine

    NASA Astrophysics Data System (ADS)

    Cui, Shuya; Wang, Tao; Hu, Xiaoli

    2014-12-01

    A new chiral ionic liquid was synthesized from (S)-1-phenylethylamine and it was studied by IR, Raman, polarimetry, NMR and X-ray crystal diffraction. Its vibrational spectral bands are precisely ascribed to the studied structure with the aid of DFT theoretical calculations. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from IR and Raman spectra are assigned based on the results of the theoretical calculations by the DFT-B3LYP method at 6-311G(d,p) level. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The vibrational modes assignments were performed by using the animation option of GaussView5.0 graphical interface for Gaussian program.

  12. Ferrocene-isocoumarin conjugated molecules: synthesis, structural characterization, electronic properties, and DFT-TDDFT computational study.

    PubMed

    Peng, Ye-Dong; Zhou, Lin-Sen; Chen, Li-Li; Ma, Lu; Zhao, Yue; Zhang, Wen-Wei; Zuo, Jing-Lin

    2015-08-28

    Two ferrocene-isocoumarin conjugated molecules, methyl 3-ferrocenyl-1-oxo-1H-isochromene-6-carboxylate () and 3,8-bisferrocenylpyrano[3,4-g]isochromene-1,6-dione (), have been synthesized through the acid-prompted regioselective oxidative cyclization from dimethyl 2-(ferrocenylethynyl)terephthalate () and dimethyl 2,5-bis(ferrocenylethynyl)terephthalate (), respectively. Single-crystal X-ray diffraction, together with the density functional theory (DFT) calculations, shows that the ferrocene-isocoumarin conjugated compounds display better coplanarity than the corresponding ferrocenylethynyl terephthalates. All the compounds exhibit characteristic MLCT, ICT and π-π* transitions in the UV-visible range in solution, and and show higher oscillator strength of the absorption than and , which are verified by time-dependent DFT (TDDFT) theoretical calculations. The electrochemical properties are studied by cyclic voltammetry (CV), which are also in accord with the theoretical calculations.

  13. Synthesis, characterization, and DFT studies of a new chiral ionic liquid from (S)-1-phenylethylamine.

    PubMed

    Cui, Shuya; Wang, Tao; Hu, Xiaoli

    2014-12-10

    A new chiral ionic liquid was synthesized from (S)-1-phenylethylamine and it was studied by IR, Raman, polarimetry, NMR and X-ray crystal diffraction. Its vibrational spectral bands are precisely ascribed to the studied structure with the aid of DFT theoretical calculations. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from IR and Raman spectra are assigned based on the results of the theoretical calculations by the DFT-B3LYP method at 6-311G(d,p) level. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies.The vibrational modes assignments were performed by using the animation option of GaussView5.0 graphical interface for Gaussian program. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. FT-IR and DFT study of lemon peel

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Likhter, A. M.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.

    2017-03-01

    Experimental FT-IR spectra of lemon peel are registered in the 650 - 3800 cm-1 range. The influence of peel artificial and natural dehydration on its vibrational spectrum is studied. The colored outer surface of lemon peel is proved not to have a significant impact on FT-IR spectrum. It is determined that only dehydration processes affect the FT-IR vibrational spectrum of the peel when a lemon is stored for 28 days under natural laboratory conditions. Polymer molecule models for dietary fibers, such as cellulose, hemicellulose, pectin, lignin, as well as hesperidin - flavonoid glycoside, and free moisture cluster are developed within the framework of DFT/B3LYP/6-31G(d) theoretical method. By implementing supramolecular approach, modeling of the vibrational FT-IR spectrum of lemon peel is carried out and its detailed theoretical interpretation is presented.

  15. A systematic theoretical study of the electronic structures of porphyrin dimers: DFT and TD-DFT calculations on diporphyrins linked by ethane, ethene, ethyne, imine, and azo bridges.

    PubMed

    Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P

    2013-11-21

    Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences

  16. Novel MC/BZY Proton Conductor: Materials Development, Device Evaluation, and Theoretical Exploration using CI and DFT Methods

    DTIC Science & Technology

    2017-09-05

    Report: Novel MC/BZY Proton Conductor: Materials Development, Device Evaluation, and Theoretical Exploration using CI and DFT Methods The views...policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...Box 12211 Research Triangle Park, NC 27709-2211 REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S

  17. Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Swaminathan, J.; Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.; Sebastian, S.

    2009-08-01

    The pyrazole derivative, 4-aminoantipyrine (4AAP), used as an intermediate for the synthesis of pharmaceuticals especially antipyretic and analgesic drugs has been analyzed experimentally and theoretically for its vibrational frequencies. The FTIR and FT Raman spectra of the title compound have been compared with the theoretically computed frequencies invoking the standard 6-311g(d,p) and cc-pVDZ basis sets at DFT level of theory (B3LYP). The harmonic vibrational frequencies at B3LYP/cc-pVDZ after appropriate scaling method seem to coincide satisfactorily with the experimental observations rather than B3LYP/6-311g(d,p) results. The theoretical spectrograms for FT-IR and FT-Raman spectra of 4AAP have been also constructed and compared with the experimental spectra. Additionally, thermodynamic data have also been calculated and discussed.

  18. Modelling Catalyst Surfaces Using DFT Cluster Calculations

    PubMed Central

    Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver

    2009-01-01

    We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies. PMID:20057947

  19. Hydrogen bonding interactions in nicotinamide Ionic Liquids: A comparative spectroscopic and DFT studies

    NASA Astrophysics Data System (ADS)

    Shukla, Madhulata

    2017-03-01

    Being biodegradable in nature nicotinamide based Ionic Liquids (ILs) are gaining much attention now a day. Nicotinamide iodide (i.e 1-methyl-3ethoxy carbonyl pyridinium iodide (mNicI)) and 1-methyl-3ethoxy carbonyl pyridinium trifilimide (mNicNTf2) new ILs has been synthesized and has been characterized using different spectroscopic techniques like NMR, UV visible and infrared spectroscopy. Theoretical studies have been performed on several nicotinamide ILs. Geometry and spectral features were further characterized by Density Functional Theory (DFT) calculation. NBO charge distribution and electrostatic potential diagram presents in depth knowledge about interactions between cation and anion. A comparative theoretical study between mNicI and its other analogues i. e 1-methyl-3 ethoxy carbonyl pyridinium chloride and bromide i. e mNicCl and mNicBr has also been performed. Csbnd H⋯X hydrogen bonding along with C⋯X interaction has been reported for the first time for the nicotinamide based ILs. C2sbnd H stretching frequency shifts to higher wavenumber with change to a lesser electronegative anion. mNicCl and mNicBr are expected to be solid in nature with the evidence from the red shift in stretching frequency as compared to mNicI. TD-DFT calculation of mNicI proved that pale yellow color of liquid is due to inherent transition from anion to cation.

  20. DFT computations on: Crystal structure, vibrational studies and optical investigations of a luminescent self-assembled material

    NASA Astrophysics Data System (ADS)

    Kessentini, A.; Ben Ahmed, A.; Dammak, T.; Belhouchet, M.

    2018-02-01

    The current work undertakes the growth and the physicochemical properties of a novel green-yellow luminescence semi-organic material, the 3-picolylammonium bromide abbreviated (Pico-Br). In this paper, we report the X-ray diffraction measurements which show that the crystal lattice consists of distinct 3-picolylammonium cations and free bromide anions connected via Nsbnd H ⋯ Br and Nsbnd H ⋯ N hydrogen bonds leading to form a two dimensional frameworks. Molecular geometry compared with its optimized counterpart shows that the quantum chemical calculations carried out with density functional method (DFT) well produce the perceived structure by X-ray resolution of the studied material. To provide further insight into the spectroscopic properties, additional characterization of this material have been performed with Raman and infrared studies at room temperature. Theoretical computations have been computed using the (DFT) method at B3LYP/LanL2DZ level of theory implemented within Gaussian 03 program to study the vibrational spectra of the investigated molecule in the ground state. Optical absorption spectrum inspected by UV-visible absorption reveals the appearance of sharp optical gap of 280 nm (4.42 eV) as well as a strong green photoluminescence emission at 550 nm (2.25 eV) is detected on the photoluminescence (PL) spectrum at room temperature. Using the TD/DFT method, HOMO-LUMO energy gap and the Mulliken atomic charges were calculated in order to get an insight into the material. Good agreement between the theoretical results and the experimental ones was predicted.

  1. Experimental (X-ray, FT-IR and UV-vis spectra) and theoretical methods (DFT study) of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol.

    PubMed

    Demircioğlu, Zeynep; Albayrak, Çiğdem; Büyükgüngör, Orhan

    2014-07-15

    A suitable single crystal of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol, formulated as C15H15N1O2, reveals that the structure is adopted to its E configuration about the azomethine C=N double bond. The compound adopts a enol-imine tautomeric form with a strong intramolecular O-H⋯N hydrogen bond. The single crystal X-ray diffraction analysis at 296K crystallizes in the monoclinic space group P21/c with a = 13.4791(11) Å, b = 6.8251(3) Å, c = 18.3561(15) Å, α = 90°, β = 129.296(5)°, γ = 90° and Z = 4. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR and UV-vis spectrometry. Optimized molecular structure and harmonic vibrational frequencies have been investigated by DFT/B3LYP method with 6-31G(d,p) basis set. Stability of the molecule, hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed by using natural bond orbital (NBO) analysis. Electronic structures were discussed by TD-DFT method and the relocation of the electron density were determined. The energetic behavior of the title compound has been examined in solvent media using polarizable continuum model (PCM). Molecular electrostatic potential (MEP), Mulliken population method and natural population analysis (NPA) have been studied. Nonlinear optical (NLO) properties were also investigated. In addition, frontier molecular orbitals analysis have been performed from the optimized geometry. An ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S), have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  3. DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls.

    PubMed

    Krzemińska, Agnieszka; Paneth, Piotr

    2016-06-21

    Nucleophilic dechlorination of all 209 PCBs congeners by ethylene glycol anion has been studied theoretically at the DFT level. The obtained Gibbs free energies of activation are in the range 7-22 kcal/mol. The reaction Gibbs free energies indicate that all reactions are virtually irreversible. Due to geometric constrains these reactions undergo rather untypical attack with attacking oxygen atom being nearly perpendicular to the attacked C-Cl bond. The most prone to substitution are chlorine atoms that occupy ortho- (2, 2', 6, 6') positions. These results provide extensive information on the PEG/KOH dependent PCBs degradation. They can also be used in further developments of reaction class transition state theory (RC-TST) for description of complex reactive systems encountered for example in combustion processes.

  4. Electronic spectroscopy of HRe(CO) 5: a CASSCF/CASPT2 and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Bossert, J.; Ben Amor, N.; Strich, A.; Daniel, C.

    2001-07-01

    The low-lying excited states of HRe(CO) 5 have been calculated at the CASSCF/CASPT2 and TD-DFT level of theory using relativistic effective core potentials (ECP) or ab initio model potentials (AIMP). The theoretical absorption spectrum is compared to the experimental one. Despite the similarity between the experimental absorption spectra of HMn(CO) 5 and HRe(CO) 5 in the UV/visible energy domain it is shown that the assignment differs significantly between the two molecules. The low-lying excited states of HRe(CO) 5 correspond to 5d→π *CO excitations whereas the spectrum of HMn(CO) 5 consists mainly of 3d→3d and 3d→ σ*Mn-H excitations. If the CASPT2 and TD-DFT results are quite comparable for the lowest excited states, the upper part assignment is more problematic with the TD-DFT method.

  5. Sulphonamides as corrosion inhibitor: Experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Obayes, Hasan R.; Al-Amiery, Ahmed A.; Alwan, Ghadah H.; Abdullah, Thamer Adnan; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2017-06-01

    Inhibitors are synthetic and natural molecules have various functional groups like double or triple bonds and heteroatoms; N, O or S, which permit adsorption onto the MS (metal surface). These inhibitors have the ability to adsorb onto the MS and block the active site that was reducing the corrosion rate. Inhibition efficiencies of the investigated compounds: Sulfacetamide (SAM), Sulfamerazine (SMR), Sulfapyridine (SPY) and Sulfathiazole (STI), as inhibitors in corrosive solution were evaluated based on weight loss technique. Nitro and Amino groups were chosen for the study of the substituted reaction of four corrosion inhibitor compounds: SAM, SMR, SPY and STI, theoretically utilizing the thickness capacities hypothesis DFT (density functions theory) method with the level [rB3LYP/6-311G(d,p)]. Our research demonstrated that the nitration of studied molecules lead to a diminishing in inhibition efficiencies, group lead to an increase in inhibition efficiency. Compared with corrosion inhibitor molecules these results gave a significant improvement in inhibition efficiency for corrosion inhibitor molecules.

  6. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    PubMed

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  7. Adsorption of CGA on colloidal silver particles: DFT and SERS study

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Kapoor, Sudhir; Mahal, Harbir S.; Mukherjee, Tulsi

    2007-08-01

    Raman and surface-enhanced Raman scattering (SERS) of chlorogenic acid (CGA) have been investigated. CGA is an important plant metabolite with anti-viral and anti-bacterial properties and thus, it is useful to study its surface adsorption characteristics. The experimental Raman data is supported with DFT calculations using B3LYP functional with 6-31G ∗ and LANL2DZ basis set. This is the first report on the vibrational analysis of CGA and its silver complex. From the SERS spectra as well as theoretical calculations, it has been inferred that the molecule is chemisorbed to the silver surface through the oxygen atoms of the carboxylate group.

  8. NTO-Picryl Constitutional Isomers—A DFT Study

    NASA Astrophysics Data System (ADS)

    Türker, Lemi; Çelik Bayar, Çağlar

    2012-01-01

    The quantum chemical properties and the detonation performance of some new explosives, 5-nitro-4-picryl-2,4-dihydro-3H-1,2,4-triazol-3-one (class A) and 5-nitro-2-picryl-2,4-dihydro-3H-1,2,4-triazol-3-one (class B), and their constitutional isomers have been investigated theoretically using the density functional theory (DFT) 6-31G(d,p) method. All of the constitutional isomers were found to be more sensitive than 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and TNT but more insensitive than RDX and HMX. Their detonation performance is higher than that of NTO and TNT and all except two had lower detonation performance than RDX and HMX.

  9. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  10. Investigation of ground state charge transfer complex between paracetamol and p-chloranil through DFT and UV-visible studies

    NASA Astrophysics Data System (ADS)

    Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen

    2012-08-01

    The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.

  11. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    PubMed

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  13. Synthesis, molecular structure, vibrational spectroscopy, optical investigation and DFT study of a novel hybrid material: 3,3‧-diammoniumdiphenylsulfone hexachloridostannate monohydrate

    NASA Astrophysics Data System (ADS)

    Kessentini, A.; Dammak, T.; Belhouchet, M.

    2017-12-01

    In his work we investigate a new halogenotin (IV) organic inorganic material. The structure, determined by single-crystal X-ray diffraction at 293 K of 3,3‧-diammoniumdiphenylsulfone hexachloridostannate monohydrate abbreviated 3,3‧(DDS)SnCl6, can be viewed as inorganic layers built from (SnCl6)2- octahedra and H2O molecules, between which, the organic entities [C12H14N2O2S]2+ are inserted. Experimental room-temperature X-ray studies were supported by theoretical methods using density functional theory (DFT). The detailed examination of the vibrational spectra of our material was correlated by DFT calculation using the unit cell parameters obtained from the experiment data. The optical properties in the UV-visible region have been explored by the UV-visible absorption. This material shows a single absorption band centred at 325 nm (318 eV). The energy difference between Occupied, HOMO and Lowest Unoccupied, LUMO orbital which is called energy gap can be used to predict the strength and stability of metal complexes, as well as in determining molecular electrical transport properties. For the calculation of excitation energies in the optical studies we used Time-Dependent Density Functional Theory (TD-DFT). In addition, Mulliken population method and molecular electrostatic potential (MEP) of the title material have been theoretically studied by GAUSSIAN 03 package.

  14. Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.

    2017-10-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.

  15. Synthesis, spectroscopic characterization and crystallographic behavior of a biologically relevant novel indole-fused heterocyclic compound - Experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Brahmachari, Goutam; Banerjee, Bubun; Nurjamal, Khondekar; Kumar, Abhishek; Srivastava, Ambrish Kumar; Misra, Neeraj; Pandey, Sarvesh Kumar; Rajnikant; Gupta, Vivek K.

    2016-08-01

    The present communication deals with the eco-friendly synthesis, spectral properties and X-ray crystal structure of an indole derivative - Ethyl 2'-amino-3'-cyano-6'-methyl-5-nitro-2-oxospiro [indoline-3,4'-pyran]-5'-carboxylate. The title compound was synthesized in 87% yield. The crystal structure of the molecule is stabilized by intermolecular Nsbnd H … N, Nsbnd H … O and Csbnd H … π interactions. The molecule is organized in the crystal lattice forming sheet like structure. To interpret the experimental data, ab initio computations of the vibrational frequencies were carried out using the Gaussian 09 program followed by the full optimizations done using Density Functional Theory (DFT) at B3LYP/6-31 + G(d,p) level. The combined use of experiments and computations allowed a firm assignment of the majority of observed bands for the compound. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs) and density of states (DOS). From the optimized geometry of the molecule, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMOs) of the title compound have been calculated in the ground state theoretically. The theoretical results showed good agreement with the experimental values. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compound.

  16. Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure modeling.

    PubMed

    Yin, Bing; Xue, GangLin; Li, JianLi; Bai, Lu; Huang, YuanHe; Wen, ZhenYi; Jiang, ZhenYi

    2012-05-01

    The exchange coupling of a group of three dinuclear sandwich-type polyoxomolybdates [MM'(AsMo7O27)2](12-) with MM' = CrCr, FeFe, FeCr are theoretically predicted from combined DFT and broken-symmetry (BS) approach. Eight different XC functionals are utilized to calculate the exchange-coupling constant J from both the full crystalline structures and model structures of smaller size. The comparison between theoretical values and accurate experimental results supports the applicability of DFT-BS method in this new type of sandwich-type dinuclear polyoxomolybdates. However, a careful choice of functionals is necessary to achieve the desired accuracy. The encouraging results obtained from calculations on model structures highlight the great potential of application of structure modeling in theoretical study of POM. Structural modeling may not only reduce the computational cost of large POM species but also be able to take into account the external field effect arising from solvent molecules in solution or counterions in crystal.

  17. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  18. BH-DFTB/DFT calculations for iron clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aktürk, Abdurrahman; Sebetci, Ali, E-mail: asebetci@mevlana.edu.tr

    2016-05-15

    We present a study on the structural, electronic, and magnetic properties of Fe{sub n}(n  =  2  −  20) clusters by performing density functional tight binding (DFTB) calculations within a basin hopping (BH) global optimization search followed by density functional theory (DFT) investigations. The structures, total energies and total spin magnetic moments are calculated and compared with previously reported theoretical and experimental results. Two basis sets SDD with ECP and 6-31G** are employed in the DFT calculations together with BLYP GGA exchange-correlation functional. The results indicate that the offered BH-DFTB/DFT strategy collects all the global minima of which different minima havemore » been reported in the previous studies by different groups. Small Fe clusters have three kinds of packing; icosahedral (Fe{sub 9−13}), centered hexagonal antiprism (Fe{sub 14−17}, Fe{sub 20}), and truncated decahedral (Fe{sub 17(2)}, Fe{sub 18−19}). It is obtained in a qualitative agreement with the time of flight mass spectra that the magic numbers for the small Fe clusters are 7, 13, 15, and 19 and with the collision induced dissociation experiments that the sizes 6, 7, 13, 15, and 19 are thermodynamically more stable than their neighboring sizes. The spin magnetic moment per atom of Fe{sub n}(n = 2 − 20) clusters is between 2.4 and 3.6 μ{sub B} for the most of the sizes. The antiferromagnetic coupling between the central and the surface atoms of the Fe{sub 13} icosahedron, which have already been reported by experimental and theoretical studies, is verified by our calculations as well. The quantitative disagreements between the calculations and measurements of the magnetic moments of the individual sizes are still to be resolved.« less

  19. Theoretical investigation of structures and energetics of sodium adatom and its dimer on graphene: DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya

    2015-11-01

    Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible. Summary The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS) and PDOS of adatom/dimer-graphene system have been calculated using SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. Preferred site for adsorption of a sodium atom on graphene is the hollow site. For the Na dimer adsorption, we found that horizontal orientation is favored over the vertical one. From DOS plots, it is clear that graphene's states are nearly unaffected by the adsorption of Na adatom and Interaction between sodium and graphene is predominantly ionic

  20. Assessment of TD-DFT and LF-DFT for study of d − d transitions in first row transition metal hexaaqua complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlahović, Filip; Perić, Marko; Zlatar, Matija, E-mail: matijaz@chem.bg.ac.rs

    2015-06-07

    Herein, we present the systematic, comparative computational study of the d − d transitions in a series of first row transition metal hexaaqua complexes, [M(H{sub 2}O){sub 6}]{sup n+} (M{sup 2+/3+} = V {sup 2+/3+}, Cr{sup 2+/3+}, Mn{sup 2+/3+}, Fe{sup 2+/3+}, Co{sup 2+/3+}, Ni{sup 2+}) by the means of Time-dependent Density Functional Theory (TD-DFT) and Ligand Field Density Functional Theory (LF-DFT). Influence of various exchange-correlation (XC) approximations have been studied, and results have been compared to the experimental transition energies, as well as, to the previous high-level ab initio calculations. TD-DFT gives satisfactory results in the cases of d{sup 2}, d{supmore » 4}, and low-spin d{sup 6} complexes, but fails in the cases when transitions depend only on the ligand field splitting, and for states with strong character of double excitation. LF-DFT, as a non-empirical approach to the ligand field theory, takes into account in a balanced way both dynamic and non-dynamic correlation effects and hence accurately describes the multiplets of transition metal complexes, even in difficult cases such as sextet-quartet splitting in d{sup 5} complexes. Use of the XC functionals designed for the accurate description of the spin-state splitting, e.g., OPBE, OPBE0, or SSB-D, is found to be crucial for proper prediction of the spin-forbidden excitations by LF-DFT. It is shown that LF-DFT is a valuable alternative to both TD-DFT and ab initio methods.« less

  1. Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.

    PubMed

    Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia

    2015-01-01

    In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praveena, R.; Sadasivam, K.

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computedmore » values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.« less

  3. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    PubMed

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  5. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  6. Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, S. G.; Azkeskin, Caner; Eşme, A.

    2018-06-01

    Imipramine hydrochloride ([H-IMI]Cl), C19H24N2.HCl, is the prototypic tricyclic antidepressant (TCA) inhibitor of norepinephrine and serotonin neuronal reuptake. The molecular structure, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, linear and non-linear optical (NLO) properties of [H-IMI]Cl have been investigated using the density functional theory (DFT) calculations with the B3LYP level at the 6‒311++G(d,p) basis set. The UV-Vis spectra for [H-IMI]Cl were experimentally studied in water and methanol. TD‒DFT calculations in water and methanol were employed to investigate the absorption wavelengths (λ), excitation energies (E), and oscillator strengths (f) for the UV-Vis analysis and the major contributions to the electronic transitions. From NBO analysis, the orbitals with the stabilization energy E(2) of 192.15 kcal/mol are π*(C5sbnd C18) as donor NBO and π*(C19sbnd C20) as acceptor NBO. The FT‒IR (4000‒400 cm-1) and FT‒Raman (3500-50 cm-1) spectra have been measured and analyzed. The assignment of bands observed vibrational spectra have been made by comparison of its calculated theoretical vibrational frequencies obtained using the DFT/B3LYP/6‒311++G(d,p) method. The detailed vibrational assignments were performed with the DFT calculation, and the potential energy distribution (PED) of [H-IMI]Cl was obtained by the Vibrational Energy Distribution Analysis 4 (VEDA4) program. The scaled frequencies resulted in good agreement with the observed spectral patterns.

  7. Structural investigation, spectroscopic and energy level studies of Schiff base: 2-[(3‧-N-salicylidenephenyl)benzimidazole] using experimental and DFT methods

    NASA Astrophysics Data System (ADS)

    Suman, G. R.; Bubbly, S. G.; Gudennavar, S. B.; Muthu, S.; Roopashree, B.; Gayatri, V.; Nanje Gowda, N. M.

    2017-07-01

    The Schiff base 2-[(3‧-N-salicylidenephenyl)benzimidazole] (Spbzl) was characterized by FT-Raman, 1H NMR, 13C NMR and single crystal X-ray diffraction technique. Crystallographic studies reveal the presence of two water molecules in the asymmetry unit which aid the intermolecular hydrogen bonding with imidazole ring, and the trans-conformation of the azomethine bond. Theoretical computations conducted using density functional theory (DFT) analysis support the experimental facts. Energy levels estimated by DFT studies are in good agreement with the values obtained from cyclic voltammetry technique. Frontier molecular orbital analysis shows that charge transfer has taken place from donor to acceptor moiety, which is also supported by the high hyperpolarizability values in both gaseous and solution phases, indicating high charge transfer capability of the molecule. A comparative theoretical study of Spbzl with derivative 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxybenzoic acid (Pbzlb) having an added anchor group COOH substituted at para position in the acceptor ring has been made. The result shows the feasibility of charge transfer to the semiconductor surface in dye sensitized solar cell (DSSC) applications for Pbzlb.

  8. Structural, vibrational and nuclear magnetic resonance investigations of 4-bromoisoquinoline by experimental and theoretical DFT methods.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S

    2013-04-15

    Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  11. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGES

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  12. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    NASA Astrophysics Data System (ADS)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  13. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate.

    PubMed

    Sert, Yusuf; Singer, L M; Findlater, M; Doğan, Hatice; Çırak, Ç

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm(-1)) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting

    PubMed Central

    2017-01-01

    A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm–1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport. PMID:28731723

  15. Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi

    2018-01-11

    Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.

  16. Vibrational spectroscopy and theoretical studies on 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Chiş, V.; Filip, S.; Miclăuş, V.; Pîrnău, A.; Tănăselia, C.; Almăşan, V.; Vasilescu, M.

    2005-06-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 2,4-dinitrophenylhydrazine. FT-IR, FT-IR/ATR and Raman spectra of normal and deuterated DNPH have been recorded and analyzed in order to get new insights into molecular structure and properties of this molecule, with particular emphasize on its intra- and intermolecular hydrogen bonds (HB's). For computational purposes we used density functional theory (DFT) methods, with B3LYP and BLYP exchange-correlation functionals, in conjunction with 6-31G(d) basis set. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of DFT calculations and isotopic shifts and by comparison to other dinitro- substituted compounds [V. Chiş, Chem. Phys., 300 (2004) 1]. To aid in mode assignments, we based on the direct comparison between experimental and calculated spectra by considering both the frequency sequence and the intensity pattern of the experimental and computed vibrational bands. It is also shown that semiempirical AM1 method predicts geometrical parameters and vibrational frequencies related to the HB in a pleasant agreement with experiment, being surprisingly accurate from this perspective.

  17. Why use DFT methods in the study of carbohydrates?

    USDA-ARS?s Scientific Manuscript database

    The recent advances in density functional theory (DFT) and computer technology allow us to study systems with more than 100 atoms routinely. This makes it feasible to study large carbohydrate molecules via quantum mechanical methods, whereas in the past, studies of carbohydrates were restricted to ...

  18. DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.

    2014-08-01

    The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.

  19. A DFT Study of Pyrrole-Isoxazole Derivatives as Chemosensors for Fluoride Anion

    PubMed Central

    Jin, Ruifa; Sun, Weidong; Tang, Shanshan

    2012-01-01

    The interactions between chemosensors, 3-amino-5-(4,5,6,7-tetrahydro-1H-indol-2-yl)isoxazole-4-carboxamide (AIC) derivatives, and different anions (F− Cl−, Br−, AcO−, and H2PO4−) have been theoretically investigated using DFT approaches. It turned out that the unique selectivity of AIC derivatives for F− is ascribed to their ability of deprotonating the host sensors. Frontier molecular orbital (FMO) analyses have shown that the vertical electronic transitions of absorption and emission for the sensing signals are characterized as intramolecular charge transfer (ICT). The study of substituent effects suggests that all the substituted derivatives are expected to be promising candidates for fluoride chemosensors both in UV-vis and fluorescence spectra except for derivative with benzo[d]thieno[3,2-b]thiophene fragment that can serve as ratiometric fluorescent fluoride chemosensor only. PMID:23109833

  20. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: A combined density functional theory and kinetic Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeo, Sang Chul; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr; Lo, Yu Chieh

    2014-10-07

    Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate onmore » the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.« less

  1. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: a combined density functional theory and kinetic Monte Carlo study.

    PubMed

    Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo

    2014-10-07

    Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.

  2. A combined experimental and DFT study of a novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine

    NASA Astrophysics Data System (ADS)

    Vijaya, P.; Sankaran, K. R.

    2015-03-01

    A novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine (UA) was prepared and characterized by IR, 1H and 13C NMR spectral studies. A 2D - potential energy scan (PES) of p-isobutylacetophenone (IBAP) was the portal to the conformational analysis of UA by density functional theory (DFT) methods using 6-31G(d,p) basis set by Gaussian 03 program. The theoretical IR frequencies were found to be in good agreement with the experimental values. The IR frequencies of UA were analyzed by means of Potential energy Distribution (PED %) calculation using Vibrational Energy Distribution Analysis (VEDA 4) program. The experimental NMR chemical shift values of UA were compared with the theoretical values obtained by DFT method. Nonlinear optical behavior of the unsymmetrical azine is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). Stability of the UA molecule has been analyzed using NBO analysis. The electrochemistry of UA studied experimentally by cyclic voltammetry is complemented by the computational analysis of the anionic form of the molecule UA. The determination of various global and local reactivity descriptors in the context of chemical reactivity is also performed and the electrophilicity at the vital atomic sites in UA is revealed. Bader's Atoms in molecules (AIM) theory of UA indicated the presence of intramolecular hydrogen bonding in the molecule. The molecular electrostatic potential (MEP) and HOMO-LUMO orbital analysis are also performed for the molecule UA.

  3. A combined experimental and DFT study of a novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine.

    PubMed

    Vijaya, P; Sankaran, K R

    2015-03-05

    A novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine (UA) was prepared and characterized by IR, (1)H and (13)C NMR spectral studies. A 2D - potential energy scan (PES) of p-isobutylacetophenone (IBAP) was the portal to the conformational analysis of UA by density functional theory (DFT) methods using 6-31G(d,p) basis set by Gaussian 03 program. The theoretical IR frequencies were found to be in good agreement with the experimental values. The IR frequencies of UA were analyzed by means of Potential energy Distribution (PED %) calculation using Vibrational Energy Distribution Analysis (VEDA 4) program. The experimental NMR chemical shift values of UA were compared with the theoretical values obtained by DFT method. Nonlinear optical behavior of the unsymmetrical azine is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). Stability of the UA molecule has been analyzed using NBO analysis. The electrochemistry of UA studied experimentally by cyclic voltammetry is complemented by the computational analysis of the anionic form of the molecule UA. The determination of various global and local reactivity descriptors in the context of chemical reactivity is also performed and the electrophilicity at the vital atomic sites in UA is revealed. Bader's Atoms in molecules (AIM) theory of UA indicated the presence of intramolecular hydrogen bonding in the molecule. The molecular electrostatic potential (MEP) and HOMO-LUMO orbital analysis are also performed for the molecule UA. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. SERS and DFT study of copper surfaces coated with corrosion inhibitor

    PubMed Central

    Muniz-Miranda, Francesco; Caporali, Stefano

    2014-01-01

    Summary Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS) effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT) approach. PMID:25671144

  5. Experimental and theoretical study on THz spectrum artesunate

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Bing; Kong, Ling-Gao; Wang, Shi-Jin; Li, Lei; Zheng, Xiang-Zhi

    2008-10-01

    Artesunate is a very effective drug to treat malaria. They are studied experimentally by Terahertz (THz) time-domain spectroscopy (THz-TDS), and the characteristic absorption spectra are obtained in the range of 0.2 to 2.6 THz. The vibrational frequencies are calculated using the density functional theory (DFT). Theoretical results show that 0.71, 1.94 and 2.46 THz are significant agreement with the experimental results in 0.87, 1.82 and 2.46THz, and identification of vibrational modes are given. The calculated results further confirm that the characteristic frequencies come from the collective vibrational modes. The results suggest that the use of the THz-TDS technique can be an effective way to inspect for Chinese medicine.

  6. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  7. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory.

    PubMed

    Mariappan, G; Sundaraganesan, N; Manoharan, S

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: a DFT computational study.

    PubMed

    Tanak, Hasan; Marchewka, Mariusz K; Drozd, Marek

    2013-03-15

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of N-H···O, N-H···N and O-H···O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.

    2014-10-01

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  10. Synthesis, spectroscopic investigation and theoretical studies of 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate

    NASA Astrophysics Data System (ADS)

    Arokiasamy, A.; Manikandan, G.; Thanikachalam, V.; Gokula Krishnan, K.

    2017-04-01

    Synthesis and computational optimization studies have been carried out by Hartree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-31+G(d, p) basis set for 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate (CHPMC). The stable configuration of CHPMC was confirmed theoretically by potential energy surface scan analysis. The complete vibrational assignments were performed on the basis of total energy distribution (TED) analysis. The vibrational properties studied by IR and Raman spectroscopic data complemented by quantum chemical calculations support the formation of intramolecular hydrogen bond. Furthermore, the UV-Vis spectra are interpreted in terms of TD-DFT quantum chemical calculations. The shapes of the simulated absorption spectra are in good agreement with the experimental data. The comparison between the experimental and theoretical values of FT-IR, FT-Raman vibrational spectra, NMR (1H and 13C) and UV-Vis spectra have also been discussed.

  11. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  12. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials.

    PubMed

    Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha

    2012-06-01

    Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

  13. Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds

    PubMed Central

    Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.

    2013-01-01

    A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190

  14. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  15. DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Sathe, V G; Milton Franklin Benial, A

    2014-08-14

    The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. First principles DFT study of dye-sensitized CdS quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam, E-mail: shyam387@gmail.com

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positionsmore » of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.« less

  17. FT-Raman, FT-IR spectroscopic and DFT studies of hexaphenoxycyclotriphosphazene

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Padie, C.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-07-01

    The FTIR and FT Raman measurements of zero Gc0‧ -H and first Gc1‧ -H generations of phosphorus dendrimer built from cyclotriphosphazene core with phenoxy and deuterophenoxy terminal groups have been performed. In order to evaluate how much the frequencies, shift when changing the electronics of the system the FTIR and FT Raman spectra of phosphorus‒containing dendron with five terminal oxybenzaldehyde and one ester function Gci‧ have been also studied. Structural optimization and normal mode analysis were obtained for Gc0‧ -H and Gc0‧ -D by the density functional theory (DFT). It is discovered that dendrimer molecule exists in a stable conformation with six phenoxy terminal groups spaced above and below the flat cyclotriphosphazene core. Optimized geometric bond length and angles obtained by DFT show good agreement with a previously-published X-ray study. The phenoxy terminal groups are characterized by the well-defined line at 993 cm-1 in the experimental Raman spectrum of Gc0‧ -H and by line at 960 cm-1 in the Raman spectrum of Gc0‧ -D. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimers. The frequencies and relative intensity of the bands at 1589, 1487 cm-1 in the IR spectra show marked difference in dependence of the substituents on the aromatic ring.

  18. Binaphthyl-containing Schiff base complexes with carboxyl groups for dye sensitized solar cell: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tsaturyan, Arshak; Machida, Yosuke; Akitsu, Takashiro; Gozhikova, Inna; Shcherbakov, Igor

    2018-06-01

    We report on synthesis and characterization of binaphthyl containing Schiff base Ni(II), Cu(II), and Zn(II) complexes as promising photosensitizers for dye-sensitized solar cells (DSSC). Based on theoretical and experimental data, the possibility of their application in DSSC was confirmed. To our knowledge, we find dye performance of complex is steric and rigid structure widely spread to efficiency. The spatial and electronic structures of the complexes were studied by means of the quantum chemical modeling using DFT and TD-DFT approaches. The adsorption energies of the complexes on TiO2 cluster were calculated and appeared to be very close in value. The Zn(II) complex has the biggest value of molar extinction.

  19. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  20. A study on the electronic spectra of some 2-azidobenzothiazoles, TD-DFT treatment.

    PubMed

    Abu-Eittah, Rafie H; El-Taher, Sabry; Hassan, Walid; Noamaan, Mahmoud

    2015-12-05

    The electronic absorption spectra of some 2-azidobenzothiazoles were measured in different solvents. The effects of solvent and substitution on the spectra were investigated. Substitution by a bromine atom and by a nitro group have significant effects on both band maxima and band intensity. Correlation between the spectra of the studied compounds and the corresponding hydrocarbons proved to be weak, whereas the correlation between the observed spectra and those calculated is adequate. Theoretical treatment of the ultraviolet spectra of the studied compounds was carried out by using the TD-DFT procedures, at the B3LYP level and the 6-311+G(∗∗) basis sets, the results compared well with the experimental values. The computed molecular orbitals of the ground state indicate that some orbitals are "localized-π" or "localized σ" molecular orbitals while the others are delocalized orbitals. The calculated functions of the excited states lead to an accurate assignment of the bands observed in the spectra. Copyright © 2015. Published by Elsevier B.V.

  1. NEGF-DFT characterization of diarylethene photoswitches: Impact of substituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyck, Colin; Geskin, Victor; Cornil, Jérôme

    2015-01-22

    In this presentation we report a theoretical study on the performance of diarylethene photoswitches. We start with a comparison between the electronic structures of different substituted diarylethene cores. Using a NEGF-DFT formalism we compute self-consistently transmission and IV curves with a focus on the impact of the substituents usually introduced for various synthetic and functional reasons. We find that the conductance properties of the diarylethene photoswitches are rather insensitive to these substitutions in the core. In the interpretation of our results, we make a connection between transmission spectra and molecular electronic properties.

  2. DFT and experimental studies of the structure and vibrational spectra of curcumin

    NASA Astrophysics Data System (ADS)

    Kolev, Tsonko M.; Velcheva, Evelina A.; Stamboliyska, Bistra A.; Spiteller, Michael

    The potential energy surface of curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] was explored with the DFT correlation functional B3LYP method using 6-311G* basis. The single-point calculations were performed at levels up to B3LYP/6-311++G**//B3LYP/6-311G*. All isomers were located and relative energies determined. According to the calculation the planar enol form is more stable than the nonplanar diketo form. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. In addition, harmonic vibrational frequencies of the molecule were evaluated theoretically using B3LYP density functional methods. The computed vibrational frequencies were used to determine the types of molecular motions associated with each of the experimental bands observed. Our vibrational data show that in both the solid state and in all studied solutions curcumin exists in the enol form.

  3. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  4. 13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona

    2011-05-01

    13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.

  5. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile.

    PubMed

    Sert, Yusuf; Balakit, Asim A; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A

    2014-10-15

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, (1)H and (13)C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. (1)H and (13)C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular structure and vibrational spectra of Irinotecan: a density functional theoretical study.

    PubMed

    Chinna Babu, P; Sundaraganesan, N; Sudha, S; Aroulmoji, V; Murano, E

    2012-12-01

    The solid phase FTIR and FT-Raman spectra of Irinotecan have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d) as basis set. The vibrational frequencies were calculated for Irinotecan by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared spectrum was also simulated from the calculated intensities. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method.

    PubMed

    Mariappan, G; Sundaraganesan, N

    2014-01-03

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Polar Diels-Alder reactions using electrophilic nitrobenzothiophenes. A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Della Rosa, Claudia D.; Mancini, Pedro M. E.; Kneeteman, Maria N.; Lopez Baena, Anna F.; Suligoy, Melisa A.; Domingo, Luis R.

    2015-01-01

    The reactions between 2- and 3-nitrobenzothiophenes with three dienes of different nucleophilicity, 1-methoxy-3-trimethylsilyloxy-1,3-butadiene, 1-trimethylsilyloxy-1,3-butadiene and isoprene developed in anhydrous benzene and alternative under microwave irradiation with molecular solvents or in free solvent conditions, respectively, for produce dibenzothiophenes permit to conclude that both nitroheterocycles act as electrophile with the cited dienes. In the cases of the dienes 1-methoxy-3-trimethylsilyloxy-1,3-butadiene and 1-trimethylsilyloxy-1,3-butadiene which posses major nucleophilicity the observed product is the normal cycloaddition one. However when the diene is isoprene the product with both electrophiles follow the hetero Diels-Alder way. These reactions are considered polar cycloaddition reactions and the yields are reasonables. Moreover the polar Diels-Alder reactions of nitrobenzothiophenes with electron rich dienes 1-trimethylsilyloxy-1,3-butadiene have been theoretically studied using DFT methods.

  9. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  10. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.

    PubMed

    Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q

    2012-12-28

    Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.

  11. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  12. Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid

    NASA Astrophysics Data System (ADS)

    Thaya Kumari, C. Rathika; Nageshwari, M.; Raman, R. Ganapathi; Caroline, M. Lydia

    2018-07-01

    An organic centrosymmetric nicotinic acid (NA) single crystal has been grown employing slow evaporation method in water. NA crystallizes in monoclinic system with centric space group P21/C. The experimental and theoretical investigation includes vibrational spectra based on Hartree - Fock (HF) and density functional theory (DFT) has been applied using different function at B3LYP level of theory using 6-311G++(d,p) basis set. The optical transparency of the title molecule was examined by TD- DFT analysis and for comparison basis experimental UV-Vis spectrum was recorded. The interaction of charge within the molecule was analyzed and the HOMO - LUMO energy gap was evaluated. The value of dipole moment, Mulliken charge and molecular electrostatic potential were estimated at the same level of theory. Also the first order hyper polarizability for NA was calculated. The dielectric behavior of the grown crystal was determined for few selected temperatures. The third order nonlinear response of NA has been examined using Z-scan technique and nonlinear susceptibility (χ3), nonlinear refraction (n2) and nonlinear absorption coefficient (β) has been calculated. The current results clearly indicate that the title compound is an excellent applicant in the domain of opto - electronic applications.

  13. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  14. Benchmark CCSD(T) and DFT study of binding energies in Be7 - 12: in search of reliable DFT functional for beryllium clusters

    NASA Astrophysics Data System (ADS)

    Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel

    2018-05-01

    We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.

  15. Ortho and para hydrogen dimers on G/SiC(0001): combined STM and DFT study.

    PubMed

    Merino, P; Švec, M; Martínez, J I; Mutombo, P; Gonzalez, C; Martín-Gago, J A; de Andres, P L; Jelinek, P

    2015-01-01

    The hydrogen (H) dimer structures formed upon room-temperature H adsorption on single layer graphene (SLG) grown on SiC(0001) are addressed using a combined theoretical-experimental approach. Our study includes density functional theory (DFT) calculations for the full (6√3 × 6√3)R30° unit cell of the SLG/SiC(0001) substrate and atomically resolved scanning tunneling microscopy images determining simultaneously the graphene lattice and the internal structure of the H adsorbates. We show that H atoms normally group in chemisorbed coupled structures of different sizes and orientations. We make an atomic scale determination of the most stable experimental geometries, the small dimers and ellipsoid-shaped features, and we assign them to hydrogen adsorbed in para dimers and ortho dimers configuration, respectively, through comparison with the theory.

  16. The structure of geopolymers - Theoretical studies

    NASA Astrophysics Data System (ADS)

    Koleżyński, Andrzej; Król, Magdalena; Żychowicz, Mikołaj

    2018-07-01

    This work presents the results of DFT and classical mechanics' calculations and theoretical analysis of geopolymer structure. The calculations were carried out using a bottom-up approach (from small oligomers to clusters with increasing size) for various Si:Al ratio. For all model structures after geometry optimization, respective IR spectra were simulated and compared with the experimental ones. The obtained results show that the concordance of simulated spectra with the experiment, for a given Si:Al ratio, increases with the size of the cluster and increasing local order. Moreover, the increase of the level of local disorder (structure "openness") results in significant band splitting, not observable in real geopolymers. This suggest that, in the case of real geopolymeric structures one can expect the presence of reasonably big, ordered structural fragments, analogous to zeolites.

  17. Symmetry properties of the electron density and following from it limits on the KS-DFT applications

    NASA Astrophysics Data System (ADS)

    Kaplan, Ilya G.

    2018-03-01

    At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.

  18. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy.

    PubMed

    Wang, Xin; Yin, Xue; Lai, Xiao-Yong; Liu, Ying-Tao

    2018-10-05

    In this study, the therapeutic activity of a series of water-soluble triphenylamine (TP) photosensitizers (Ps) was explored by using theoretical simulations. The key photophysical parameters which determined the efficiency of Ps, such as absorption electronic spectra, singlet-triplet energy gaps and spin-orbit matrix elements were calculated at density functional theory and its time-dependent extension (DFT, TD-DFT). The calculated results showed that these TP photosensitizers possessed large two-photon absorption cross-section in the near-infrared region (NIR), efficient intersystem crossing (ISC) transition from the first singlet excited state to the low lying triplet excited states and sufficient energy for generating reactive oxygen species (ROS). These suitable features made these TP series holding great promise for applications in two-photon photodynamic therapy (PDT). These TP photosensitizers studied here in principle extended the application range of two-photon PDT in water solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione

    NASA Astrophysics Data System (ADS)

    Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep

    2018-07-01

    The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.

  20. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  1. A vibrational study of inulin by means of experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Balan, C.; Chis, M. I.; Rachisan, A. L.; Baia, M.

    2018-07-01

    Inulin, a natural polymer formed by several units of fructose and just one unit of glucose, is found in different plants or directly in some fruits or vegetables. Due to its structure it has been used in many applications from medicine, pharmacology or food industry. In spite of this, a complete vibrational analysis of the molecule is missing in the literature. Moreover, there are contradictory results regarding the assignment of certain vibrational modes. Therefore, the aim of this study was to obtain a comprehensive vibrational investigation of inulin by means of experimental (FT-IR and Raman spectroscopy) and theoretical (density functional theory -DFT simulations) methods.

  2. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  3. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells

    NASA Astrophysics Data System (ADS)

    El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.

    2018-05-01

    Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.

  4. Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods

    NASA Astrophysics Data System (ADS)

    Govindhan, Raman; Karthikeyan, Balakrishnan

    2017-12-01

    3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.

  5. Experimental and theoretical studies of a pyrazole-thiazolidin-2,4-di-one hybrid

    NASA Astrophysics Data System (ADS)

    Mushtaque, Md.; Avecilla, Fernando; Haque, Ashanul; Perwez, Ahmad; Khan, Md. Shahzad; Rizvi, M. Moshahid Alam

    2017-08-01

    The present work describes synthesis, characterization and biological evaluations of a hybrid compound 10 composed of two intriguing scaffolds pyrazole and thiazolidin-2,4-di-one. The title compound was obtained via multi-step reaction and characterized by a number of techniques (viz. IR, UV-Visible, 1H-NMR, 13C-NMR and MS) including X-ray crystallography. The structural and photophysical data of compound 10 were well supported by theoretical calculations performed at density functional (DFT) level. In-vitro anticancer studies on different human cancer cell lines indicated moderate to low activity of the compounds. The molecular target of the compound was predicted through in-silico studies. Finding of the studies are presented herein.

  6. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  7. Impact of zeolite-Y framework on the geometry and reactivity of Ru (III) benzimidazole complexes - A DFT study

    NASA Astrophysics Data System (ADS)

    Selvaraj, Tamilmani; Rajalingam, Renganathan; Balasubramanian, Viswanathan

    2018-03-01

    A detailed comparative Density Functional Theory (DFT) study is made to understand the structural changes of the guest complex due to steric and electronic interactions with the host framework. In this study, Ru(III) benzimidazole and 2- ethyl Ru(III) benzimidazole complexes encapsulated in a supercage of zeolite Y. The zeolitic framework integrity is not disturbed by the intrusion of the large guest complex. A blue shift in the d-d transition observed in the UV-Visible spectroscopic studies of the zeolite encapsulated complexes and they shows a higher catalytic efficiency. Encapsulation of zeolite matrix makes the metal center more viable to nucleophilic attack and favors the phenol oxidation reaction. Based on the theoretical calculations, transition states and structures of reaction intermediates involved in the catalytic cycles are derived.

  8. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    PubMed

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.

  9. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  10. Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study

    PubMed Central

    Mehmeti, Valbonë V.; Berisha, Avni R.

    2017-01-01

    The corrosion behavior of mild steel in 0.1 M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations, and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1) and Fe2O3 (1 1 1) surface. The molecules were also studied with the density functional theory (DFT), using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using DFT with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results. PMID:28971092

  11. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  12. Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy.

    PubMed

    Vásquez, G Cristian; Maestre, David; Cremades, Ana; Ramírez-Castellanos, Julio; Magnano, Elena; Nappini, Silvia; Karazhanov, Smagul Zh

    2018-06-07

    The effects of Cr on local environment and electronic structure of rutile TiO 2 are studied combining theoretical and experimental approaches. Neutral and negatively charged substitutional Cr impurities Cr Ti 0 and Cr Ti 1- as well as Cr-oxygen vacancy complex 2Cr Ti  + V O are studied by the density functional theory (DFT) within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functional. Experimental results based on X-Ray absorption spectroscopy (XAS) and X-Ray photoelectron spectroscopy (XPS) performed on Cr doped TiO 2 at the Synchrotron facility were compared to the theoretical results. It is shown that the electrons of the oxygen vacancy tend to be localized at the t 2g states of the Cr ions in order to reach the stable oxidation state of Cr 3+ . Effects of Cr on crystal field (CF) and structural distortions in the rutile TiO 2 cell were analyzed by the DFT calculations and XAS spectra revealing that the CF and tetragonal distortions in TiO 2 are very sensitive to the concentration of Cr.

  13. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis.

    PubMed

    Astani, Elahe K; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L

    2016-07-01

    A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Structural characterization, vibrational study, NLO and DFT calculations of a novel organic sulfate monohydrate templated with (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole

    NASA Astrophysics Data System (ADS)

    Barhoumi, Abir; Mhiri, Tahar; Dammak, Thameur; Suñol, Joan Josep; Belhouchet, Mohamed

    2017-01-01

    A single crystal of (S)-(-)-2,6-diammonium-4,5,6,7-tetrahydrobenzothiazole sulfate monohydrate has been synthesized and grown at room temperature by slow evaporation of aqueous solution. The studied compound crystallizes in the space group P212121 of the orthorhombic system with cell parameters a = 7.0014(12), b = 8.7631(15), c = 19.773(3) Å. We report the molecular structure and the theoretical and experimental vibrational spectra of the synthesized compound. The atomic arrangement, which is an alternation of organic inorganic layers linked together through hydrogen bonds, gives rise to three types of rings formed by the interconnection of organic-inorganic entities. The experimental FT-IR and the Raman spectra the synthesized compound were recorded and analyzed. The peaks assignment has been made unambiguously from the literature. To confirm the assignment, the experimental spectra were compared with theoretical spectra obtained with the Gaussian 98 program by the Density Functional Theory (DFT) method using B3LYP function with the LanL2DZ basis set. Moreover, to study the nonlinear optical (NLO) property of this compound, the hyperpolarizability βtot, the electric dipole μtot and the polarizability αtot were calculated using the DFT. Based on our calculation the synthesized compound has a non-zero hyperpolarizability suggesting that it may be used in some NLO applications.

  15. Theoretical and experimental studies of 3β-acetoxy-5α-cholestan-6-one oxime

    NASA Astrophysics Data System (ADS)

    Khan, Azhar U.; Avecillia, Fernando; Malik, Nazia; Khan, Md. Shahzad; Khan, Mohd Shahid; Mushtaque, Md.

    2016-10-01

    Steroidal oxime (3β-acetoxy-5α-cholestan- 6-one oxime) has been synthesized using microwave-induced reaction in 3.5 min using saturated steroidal ketone and aqueous hydroxylamine hydrochloride in ethanol. The structure of the compound was elucidated by UV, IR, 1H NMR and X-ray single crystal structure. The computational quantum chemical studies like, IR, UV analysis were performed by density functional theory (DFT) at Becke-3-Lee-Yang-Parr(B3LYP) exchange-correlation functional in combination with 6-31++G(d,p) basis sets. The harmonic vibrational frequencies, the optimized geometric parameters have been interpreted and compared with experimental values. Theoretical wavelength at 214.88 cm-1 correspond to the experimental value 214.0 cm-1. The nature of this transition is n → π*. The theoretical results are in good agreement with experiment results.

  16. Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gözde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, Fatma; Armaković, Stevan; Armaković, Sanja J.; Yildiz, Ilkay; Van Alsenoy, C.

    2017-08-01

    N-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex.

  17. DFT and ENDOR Study of Bixin Radical Cations and Neutral Radicals on Silica-Alumina.

    PubMed

    Tay-Agbozo, Sefadzi S; Krzyaniak, Matthew D; Bowman, Michael K; Street, Shane; Kispert, Lowell D

    2015-06-18

    Bixin, a carotenoid found in annatto (Bixa orellana), is unique among natural carotenoids by being water-soluble. We stabilized free radicals from bixin on the surface of silica-alumina (Si-Al) and characterized them by pulsed electron-nuclear double resonance (ENDOR). DFT calculations of unpaired electron spin distribution for various bixin radicals predict the EPR hyperfine couplings. Least-square fitting of experimental ENDOR spectra by spectra calculated from DFT hyperfine couplings characterized the radicals trapped on Si-Al. DFT predicts that the trans bixin radical cation is more stable than the cis bixin radical cation by 1.26 kcal/mol. This small energy difference is consistent with the 26% trans and 23% cis radical cations in the ENDOR spectrum. The remainder of the ENDOR spectrum is due to several neutral radicals formed by loss of a H(+) ion from the 9, 9', 13, or 13' methyl group, a common occurrence in all water-insoluble carotenoids previously studied. Although carboxyl groups of bixin strongly affect its solubility relative to other natural carotenoids, they do not alter properties of its free radicals based on DFT calculations and EPR measurements which remain similar to typical water-insoluble carotenoids.

  18. Theoretical study of zeatin - A plant hormone and potential drug for neural diseases - On the basis of DFT, MP2 and target docking

    NASA Astrophysics Data System (ADS)

    Liu, Xueping; Bereźniak, Tomasz; Panek, Jarosław Jan; Jezierska-Mazzarello, Aneta

    2013-02-01

    Zeatin, a cytokinin of the adenine family, originally isolated from Zea mays L., exhibits also bioeffects towards human cells: it is a potent acetylcholinesterase inhibitor and can potentially inhibit amyloid β-protein formation. The role of zeatin in neural disease treatment is yet to be established. This computational study describes a hierarchy of interactions between zeatin and a receptor, a protein from the nodulin family. DFT in hybrid and dispersion-corrected form as well as MP2 approaches were used to derive interaction energies. Docking procedure was employed to investigate the role of selected interaction for anchoring the ligand.

  19. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies.

    PubMed

    Valente, Marco A G; Teixeira, Deiver A; Azevedo, David L; Feliciano, Gustavo T; Benedetti, Assis V; Fugivara, Cecílio S

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.

  20. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase andmore » liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.« less

  1. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  2. Study of transmission function and electronic transport in one dimensional silver nanowire: Ab-initio method using density functional theory (DFT)

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kashyap, Rajinder

    2018-05-01

    Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.

  3. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-05-01

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7 kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π → π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89 × 10- 30 esu, (gas phase); 68.79 × 10- 30 (CHCl3), esu; 76.76 × 10- 30 esu (CH2Cl2), 85.16 × 10- 30 esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram

  4. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih

    2014-06-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  5. A comparative study of the hydrogen-bonding patterns and prototropism in solid 2-thiocytosine (potential antileukemic agent) and cytosine, as studied by 1H-14N NQDR and QTAIM/ DFT.

    PubMed

    Latosińska, Jolanta N; Seliger, Janez; Zagar, Veselko; Burchardt, Dorota V

    2012-01-01

    A potential antileukemic and anticancer agent, 2-thiocytosine (2-TC), has been studied experimentally in the solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the quantum theory of atoms in molecules (QTAIM)/density functional theory (DFT). Eighteen resonance frequencies on (14)N were detected at 180 K and assigned to particular nitrogen sites (-NH(2), -N=, and -NH-) in 2-thiocytosine. Factors such as the nonequivalence of molecules (connected to the duplication of sites) and possible prototropic tautomerism (capable of modifying the type of site due to proton transfer) were taken into account during frequency assignment. The result of replacing oxygen with sulfur, which leads to changes in the intermolecular interaction pattern and molecular aggregation, is discussed. This study demonstrates the advantages of combining NQDR and DFT to extract detailed information on the H-bonding properties of crystals with complex H-bonding networks. Solid-state properties were found to have a profound impact on the stabilities and reactivities of both compounds.

  6. Diffusion of anthracene derivatives on Cu(111) studied by STM and DFT

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Bartels, Ludwig; Einstein, Theodore

    2014-03-01

    Substituted anthracenes have drawn attention due to their ability to diffuse uniaxially on a Cu(111) surface. We compare anthracene to three of its derivatives whose 9,10 hydrogens are replaced by elements of the chalcogen group that act as linkers binding the molecules to a Cu(111) substrate. DFT calculations shed light on STM imaging and diffusion studies on the three substituted species. We present an analysis of the DFT results in which energetic contributions to the diffusion barriers are partitioned among the Kohn-Sham orbitals, allowing us to make assignments as to how each orbital affects diffusion for each species and draw comparisons between them. Present address: Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD.

  7. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies.

    PubMed

    Drozd, Marek; Dudzic, Damian

    2012-04-01

    On the basis of experimental literature data the theoretical studies for guanidinium and maleic acid complex with using DFT method are performed. In these studies the experimental X-ray data for two different forms of investigated crystal were used. During the geometry optimization process one equilibrium structure was found, only. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained and graphically illustrated. The energy difference (GAP) between HOMO and LUMO was analyzed. Additionally, the nonlinear properties of this molecule were calculated. The α and β (first and second order) hyperpolarizability values are obtained. On the basis of these results the title crystal was classified as new second order NLO generator. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Solvatochromic benzo[h] coumarins: Synthesis, solvatochromism, NLO and DFT study

    NASA Astrophysics Data System (ADS)

    Warde, Umesh; Sekar, Nagaiyan

    2017-10-01

    Three benzo[h] coumarins were synthesized and analyzed for their potential NLOphoric properties. Coumarins were synthesized using Knoevenagel condensation method by reacting hydroxyl-naphthalene aldehyde with cyano-methylelene-benzazoles containing NH, O and S elements respectively as the active methylene compounds. The absorption maxima for the coumarins are not affected by the solvent polarity but emission maxima does. Emission solvatochromism was analyzed using various solvent polarity functions which highlights the polarity dependency of the emission profile. Coumarins showed satisfactory values for first and second hyperpolarizability which are comparable using solvatochromism and DFT. NLO properties are also compared with the limits of hyperpolarizability calculated using sum rule of quantum mechanics. Results show that the NLO properties predicted by DFT are close to the upper limits of hyperpolarizability. The functional CAM-B3LYP is proven to be suitable for predicting NLO properties for these coumarins compared to functional B3LYP. The present study highlights the importance of such molecules for incorporating in advanced NLOphores.

  9. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Abdulnabi, Zuhair A; Bolandnazar, Zeinab

    2014-01-03

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, (13)C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical (13)C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Spectroscopic and molecular structure investigation of 2-furanacrylic acid monomer and dimer using HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Ghalla, H.; Issaoui, N.; Govindarajan, M.; Flakus, H. T.; Jamroz, M. H.; Oujia, B.

    2014-02-01

    In the present work, we reported a combined experimental and theoretical study on molecular structure and vibrational spectra of 2-furanacrylic acid (abbreviated as 2FAA). The FT-IR and FT-Raman spectra of 2FAA have been recorded in the regions 4000-400 and 4000-100 cm-1. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The monomer and dimer structures of the title molecule have been obtained from Hartree-Fock (HF) and density functional theory (DFT) B3LYP methods with 6-311++G(d,p) as basis set calculations. The vibrational frequencies were calculated by DFT method and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. Intermolecular OH⋯O hydrogen bonds are discussed in dimer structure of the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. A study on the electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. In addition, Milliken atomic charges, possible charge transfer, natural bond orbital (NBO) and AIM topological analysis were performed. Moreover, molecular electrostatic potential (MEP) and the thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  11. Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of L-asparaginium picrate: a density functional theoretical approach.

    PubMed

    Elleuch, Nabil; Amamou, Walid; Ben Ahmed, Ali; Abid, Younes; Feki, Habib

    2014-07-15

    Single crystals of L-asparaginium picrate (LASP) were grown by slow evaporation technique at room temperature and were the subject of an X-ray powder diffraction study to confirm the crystalline nature of the synthesized compound. FT-IR and Raman spectra were recorded and analyzed with the aid of the density functional theory (DFT) calculations in order to make a suitable assignment of the observed bands. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities and the first hyperpolarizability were investigated with the help of B3LYP method using 6-31G(d) basis set. The theoretical FT-IR and Raman spectra of LASP were simulated and compared with the experimental data. A good agreement was shown and a reliable vibrational assignment was made. Natural bond orbital (NBO) analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of the title compound leading to high NLO activity. A study on the electronic properties was performed by time-dependent DFT (TD-DFT) approach. The lowering in the HOMO and LUMO energy gap explains the eventual charge transfer interactions that take place within the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  13. DFT Study of Optical Properties of Pt-based Complexes

    NASA Astrophysics Data System (ADS)

    Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.

    2010-01-01

    We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.

  14. SbCl3-catalyzed one-pot synthesis of 4,4′-diaminotriarylmethanes under solvent-free conditions: Synthesis, characterization, and DFT studies

    PubMed Central

    2011-01-01

    Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373

  15. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies

    PubMed Central

    Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602

  16. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid.

    PubMed

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-15

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  18. Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies.

    PubMed

    Kwiatek, Anna; Mielke, Zofia

    2015-01-25

    A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.

    PubMed

    Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid

    2015-04-03

    We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

  20. Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

    NASA Astrophysics Data System (ADS)

    Ramesh, Gaddam; Reddy, Byru Venkatram

    2018-05-01

    In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO

  1. Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon-4( 1H)-Imine Derivatives

    NASA Astrophysics Data System (ADS)

    Amorim Madeira, Paulo J.; Sitoe, Ana Raquel Fernandes; Gonçalves, Daniel; Rodrigues, Tiago; Guedes, Rita C.; Lopes, Francisca; Moreira, Rui; Bronze, M. Rosário

    2014-09-01

    The gas-phase behavior of 12 quinolon-4( 1H)-imine derivatives with antiplasmodial activity was investigated using electrospray ionization tandem mass spectrometry together with collision induced dissociation and density functional theory (DFT) calculations. The most probable protonation site was predicted by calculating the proton affinity (PA) values for each possible protonation site and it was found to be the imine nitrogen for all compounds under study. Fragmentation pathways of the protonated molecules were proposed and the assignment of product ion structures was performed taking into account theoretical calculations. The nature of the quinoline substituent was found to influence the gas-phase behavior of the compounds under study. The data acquired allowed to bracket the proton affinity of the quinolin-4-imine scaffold, which can be a useful starting point to choose appropriate references for determining PA values of this scaffold.

  2. A theoretical study of the reaction of Ti+ with ethane

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy; Fedorov, Dmitri G.; Gordon, Mark S.

    2000-06-01

    The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H4++H2 and Ti++C2H6→TiCH2++CH4 reactions are studied using density functional theory (DFT) with the B3LYP functional and ab initio coupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.

  3. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  4. DFT and PCM-TD-DFT investigation of the electronic structures and spectra of 5-(3-phenyl-2-propenylidene)-2-thioxo-4-thiazolidinone derivatives

    NASA Astrophysics Data System (ADS)

    El-Taher, Sabry; Metwaly, Mohamed

    2017-04-01

    UV-Visible absorption spectra of 5-(3-phenyl-2-propenylidene)-2-thioxo-4-thiazolidinones (5pR-PPTT, R = H, CH3, CH3O, and N(CH3)2) were measured in different solvents and investigated using the theoretical PCM-TD-DFT scheme. A benchmark evaluation against experimental results on the accuracy of different DFT functionals has been performed. The best agreement with X-ray data is achieved by using the long-range corrected LC-wPBE functional, while the PBE0 functional provided the most accurate λmax for the studied compounds. The thionic forms of the ZE isomers of the studied compounds are found to be the most stable tautomers. The assignation debate of the second absorption band of rhodanine [2-thioxo-4-thiazolidinone (Rd)] has been solved by confirming on its π-π∗ nature. It was found that the expansion of the π-conjugation system at position 5 of Rd ring leads to significant bathochromic shift. The CT lengths (Δr) and dipole moment change (ΔμCT) indices showed that the charge transfer character of the electronic transitions is directly proportional to the electron-releasing strength of substituted phenyl ring. It was concluded that the red shifting of the maximum absorption is mainly regulated by the solvent polarizability and much less by solvent polarity.

  5. Ferrocenyl-substituted dinuclear Cu(II) complex: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity

    NASA Astrophysics Data System (ADS)

    Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail

    2016-02-01

    A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.

  6. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    NASA Astrophysics Data System (ADS)

    Vu, Nam H.; Le, Hieu V.; Cao, Thi M.; Pham, Viet V.; Le, Hung M.; Nguyen-Manh, Duc

    2012-10-01

    The anatase-rutile phase transformation of TiO2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  7. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih

    2014-06-05

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  9. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.

    2015-02-01

    The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  10. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Theoretical studies of charge transfer and proton transfer complex formation between 3,5-dinitrobenzic acid and 1,2-dimethylimidazole

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.

  12. The CC/DFT Route towards Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as Case Study

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2018-01-01

    The structures, relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of Pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semi-experimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg. for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt- and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol−1. Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm−1 are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC

  13. Behaviour of DFT-based approaches to the spin-orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo).

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2017-11-15

    Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.

  14. DFT calculation of pKa’s for dimethoxypyrimidinylsalicylic based herbicides

    NASA Astrophysics Data System (ADS)

    Delgado, Eduardo J.

    2009-03-01

    Dimethoxypyrimidinylsalicylic derived compounds show potent herbicidal activity as a result of the inhibition of acetohydroxyacid synthase, the first common enzyme in the biosynthetic pathway of the branched-chain aminoacids (valine, leucine and isoleucine) in plants, bacteria and fungi. Despite its practical importance, this family of compounds have been poorly characterized from a physico-chemical point of view. Thus for instance, their pK a's have not been reported earlier neither experimentally nor theoretically. In this study, the acid-dissociation constants of 39 dimethoxypyrimidinylsalicylic derived herbicides are calculated by DFT methods at B3LYP/6-31G(d,p) level of theory. The calculated values are validated by two checking tests based on the Hammett equation.

  15. Theoretical study on physicochemical properties of curcumin

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Ji, Hong-Fang

    2007-07-01

    Curcumin is a yellow-orange pigment, which has attracted considerable attention due to its wide spectrum of biological and pharmacological activities. In spite of much effort devoted on curcumin, there still exist some open questions concerning its fundamental physicochemical properties. The present study suggests that the DFT and TD-DFT calculations are useful to answer these questions. Firstly, the thermodynamic as well as spectral parameters support that curcumin exists predominantly in enol form in solution. Secondly, the calculated absorption spectra of curcumin anions provides direct evidence that the lowest p Ka of curcumin corresponds to the dissociation of enolic proton, which not only reconciles the controversy on this topic, but also has important implications on the proton-transfer/dissociation-associated radical-scavenging mechanisms of curcumin.

  16. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  17. A conceptual DFT study of the molecular properties of glycating carbonyl compounds.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Several glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties. In particular, the chemical reactivity descriptors that arise from conceptual density functional theory and chemical reactivity theory have been calculated through a [Formula: see text]SCF protocol. The validity of the KID (Koopmans' in DFT) procedure has been checked by comparing the reactivity descriptors obtained from the values of the HOMO and LUMO with those calculated through vertical energy values. The reactivity sites have been determined by means of the calculation of the Fukui function indices, the condensed dual descriptor [Formula: see text] and the electrophilic and nucleophilic Parr functions. The glycating power of the studied compounds have been compared with the same property for simple carbohydrates.Graphical abstractSeveral glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties, the chemical reactivity descriptors and the validity of the KID (Koopmans' in DFT) procedure.

  18. Zinc binding in HDAC inhibitors: a DFT study.

    PubMed

    Wang, Difei; Helquist, Paul; Wiest, Olaf

    2007-07-06

    Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.

  19. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Prasad, M. V. S.; Udaya Sri, N.; Veeraiah, V.

    2015-09-01

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm-1, respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  20. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  1. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    NASA Astrophysics Data System (ADS)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  2. The crystallographic, spectroscopic and theoretical studies on (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol molecules

    NASA Astrophysics Data System (ADS)

    Demirtaş, Güneş; Dege, Necmi; Ağar, Erbil; Uzun, Sümeyye Gümüş

    2018-01-01

    Two new salicylideneaniline (SA) derivative compounds (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (I), and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (II), have been synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, 1H NMR, 13C NMR and theoretical methods. Both of the compounds which are Schiff base derivatives are isomer of each other. While the compound (I) crystallizes in centrosymmetric monoclinic space group P 21/c, the compound (II) crystallizes in orthorhombic space group P 212121. The theoretical parameters of the molecules have been calculated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) with 6-31G (d,p) basis set. These theoretical parameters have been compared with the experimental parameters obtained by XRD. The experimental geometries of the compounds have been superimposed with the theoretical geometries calculated by HF and DFT methods. Furthermore, the theoretical IR calculations, molecular electrostatic potential maps (MEP) and frontier molecular orbitals have been created for the compounds.

  3. Determination of Structural and Vibrational Properties of 5-QUINOLINECARBOXALDEHYDE Using Experimental Ft-Ir Ft-Raman Techniques and Theoretical HF and DFT Methods

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Kocademir, Mustafa; Bardakci, Tayyibe

    2013-06-01

    Quinoline derivatives have been used in several pharmaceuticals. They have vital roles in regulating the functions of DNA and cancerous cells. It's necessary to determine the structures and spectroscopic properties of quinoline derivates. In this study, the FT-IR (including mid and far regions) and FT-Raman spectra of 5-quinolinecarboxaldehyde have been investigated. Hartree-Fock (HF) and density functional B3LYP calculations have also been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of the cis and trans conformers of 5-quinolinecarboxaldehyde. Experimental and theoretical results have been compared and the results are in good agreement with each other. Keywords: 5-quinolinecarboxaldehyde; Vibrational Spectroscopy; FT-IR spectra; FT-Raman spectra; Vibrational Modes; HF; DFT [1] V. Kucuk, A. Altun, M. Kumru, Spectrochim. Acta Part A 85(2012)92-98 [2] M. Kumru, V. Kucuk, T. Bardakci, Spectrochim. Acta Part A 90(2012)28-34 [3] M. Kumru, V. Kucuk, M. Kocademir, Spectrochim. Acta Part A, 96 (2012) 242-251 We thank the Turkish Scientific and Technical Research Council (TUBITAK) for their financial support through National Postdoctoral Research Scholarship Programme and Scientific Research Fund of Fatih University under the project number P50011001 G (1457).

  4. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  5. Stability and spatial arrangement of the 2,4-dichlorophenoxyacetic acid and β-cyclodextrin inclusion compound: A theoretical study

    NASA Astrophysics Data System (ADS)

    Pereira, Robson A.; Anconi, Cleber P. A.; Nascimento, Clebio S.; De Almeida, Wagner B.; Dos Santos, Hélio F.

    2015-07-01

    The present letter reports results from a comprehensive theoretical analysis of the inclusion process involving 2,4-dichlorophenoxyacetic acid (2,4-D) and β-cyclodextrin (β-CD) for which the experimental data of formation is available. Spatial arrangement and stabilization energies were evaluated in gas phase and aqueous solution through density functional theory (DFT) and through the use of SMD implicit solvation approach. The discussed methodology was applied to predict the stability and identify the most favorable form (deprotonated or neutral) as well as the most probable spatial arrangement of the studied inclusion compound.

  6. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  7. Synthesis, theoretical studies and molecular docking of a novel chlorinated tetracyclic: (Z/E)-3-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde

    NASA Astrophysics Data System (ADS)

    Sultan, Mujeeb A.; Almansour, Abdulrahman I.; Pillai, Renjith Raveendran; Kumar, Raju Suresh; Arumugam, Natarajan; Armaković, Stevan; Armaković, Sanja J.; Soliman, Saied M.

    2017-12-01

    (Z/E)-3-(1,8-Dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde 2 has been investigated experimentally and theoretically. The Wittig reaction of 1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carbaldehyde 1 and (triphenylphosphoranylidene) acetaldehyde in toluene under reflux conditions resulted in compound 2. Spectroscopic characterization of compound 2 was performed by the Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectroscopy techniques. Density functional theory (DFT) calculations were conducted to study various global and local reactive properties. The spectra were also obtained by DFT calculations and corresponding comparisons were performed to validate the level of theory. Using DFT calculations, reactivity has been studied based on frontier molecular orbitals, charge distribution, average local ionization energies, Fukui functions, and bond dissociation energies for hydrogen abstraction. Molecular dynamics simulations have been used to investigate the influence of water as a solvent for compound 2. Finally, compound 2 was docked into the central and allosteric binding sites of the serotonin transporter enzyme and was found to be a good candidate as an antidepressant-like compound.

  8. Theoretical DFT study on spectroscopic signature and molecular dynamics of neurotransmitter and effect of hydrogen removal

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Singh, N. P.; Yadav, R. A.

    2013-04-01

    Vibrational spectroscopic study has been made for the serotonin molecule and its deprotonated form. The Infrared and Raman spectra in optimum geometry of these two molecules are calculated using density functional theorem and the normal modes are assigned using potential energy distributions (PEDs) which are calculated using normal coordinate analysis method. The vibrational frequencies of these two molecules are reported and a comparison has been made. The effect of removal of the hydrogen atom from the serotonin molecule upon its geometry and vibrational frequencies are studied. Electronic structures of these two molecules are also studied using natural bond orbital (NBO) analysis. Theoretical Raman spectrum of serotonin at different exciting laser frequencies and at different temperatures are obtained and the results are discussed. Present study reveals that some wrong assignments had been made for serotonin molecule in earlier study.

  9. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies

    NASA Astrophysics Data System (ADS)

    Al-Baghdadi, Shaimaa B.; Hashim, Fanar G.; Salam, Ahmed Q.; Abed, Talib K.; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Reda, Khalid S.; Ahmed, Wahab K.

    2018-03-01

    The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolyl)nitrobenzene (NATN), on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability.

  10. Applicability of DFT model in reactive distillation

    NASA Astrophysics Data System (ADS)

    Staszak, Maciej

    2017-11-01

    The density functional theory (DFT) applicability to reactive distillation is discussed. Brief modeling techniques description of distillation and rectification with chemical reaction is provided as a background for quantum method usage description. The equilibrium and nonequilibrium distillation models are described for that purpose. The DFT quantum theory is concisely described. The usage of DFT in the modeling of reactive distillation is described in two parts. One of the fundamental and very important component of distillation modeling is vapor-liquid equilibrium description for which the DFT quantum approach can be used. The representative DFT models, namely COSMO-RS (Conductor like Screening Model for Real Solvents), COSMOSPACE (COSMO Surface Pair Activity Coefficient) and COSMO-SAC (SAC - segment activity coefficient) approaches are described. The second part treats the way in which the chemical reaction is described by means of quantum DFT method. The intrinsic reaction coordinate (IRC) method is described which is used to find minimum energy path of substrates to products transition. The DFT is one of the methods which can be used for that purpose. The literature data examples are provided which proves that IRC method is applicable for chemical reaction kinetics description.

  11. Spectroscopic investigation, HOMO-LUMO and NLO studies on L-histidinium maleate based on DFT approach

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Stephen, A.; Asirvatham, P. Samuel

    2017-05-01

    The molecular structure of the title compound L-Histidinium Maleate (LHM) was constructed and optimized based on Density Functional Theory method (DFT-B3LYP) with the 6-31G (d,p) basis set. The fundamental vibrational spectral assignment was analyzed with the aid of optimized structure of LHM. The study on electronic properties such as, HOMO-LUMO energies and absorption wavelength were performed using Time dependent DFT (TD-DFT) approach which reveals that energy transfer occur within the molecule. 13C NMR chemical shift values were measured using Gauge independent atomic orbital method (GIAO) and the obtained values are in good agreement with the reported experimental values. Hardness, ionization potential and electrophilicity index also calculated. The electric dipole moment (μtot) and hyperpolarizability (βtot) values of the investigated molecules were computed. The calculated value (β) was 3.7 times higher than that of urea, which confirms the LHM molecule is a potential candidate for NLO applications.

  12. Reduction of aflatoxin B1 to aflatoxicol: a comprehensive DFT study provides clues to its toxicity.

    PubMed

    Karabulut, Sedat; Paytakov, Guvanchmyrat; Leszczynski, Jerzy

    2014-12-01

    Aflatoxicol (AFL) is one of most the important metabolites of aflatoxin B1 (AFB1). AFL can be formed through enzymatic or synthetic reduction of AFB1. Various experimental and theoretical studies have been focused on the AFB1 due to its high toxicity and carcinogenicity. The selective reduction of AFB1 carbonyls, molecular structure of AFL and its effect on toxicity has been studied here by the density functional theory (DFT) method. Although the toxicity of AFL is 18 times lower than that of AFB1, it has been concluded that both molecular structures have similar potency to form an exo-epoxide (AFEP) analogue which can bind to DNA. Calculations revealed that only one of the three possible tautomers of AFL is stable, both in the gas phase and water. The electronic properties of aflatoxicol are calculated as similar to aflatoxin B1 and this may be an explanation of similar carcinogenicity and toxicity of these compounds, which has been proved by experimental results. © 2014 Society of Chemical Industry.

  13. Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z.

    2016-06-01

    In this talk, after a short introduction on the methodologies used for computing dipole polarizability (α), second and third-order hyperpolarizability and susceptibility; the results of theoretical studies performed on density functional theory (DFT) and ab-initio quantum mechanical calculations of nonlinear optical (NLO) properties for a few selected organic compounds and polymers will be explained. The electric dipole moments (μ) and dispersion-free first hyperpolarizabilities (β) for a family of azo-azulenes and a styrylquinolinium dye have been determined by DFT at B3LYP level. To reveal the frequency-dependent NLO behavior, the dynamic α, second hyperpolarizabilities (γ), second (χ(2)) and third-order (χ(3)) susceptibilites have been evaluated using time-dependent HartreeFock (TDHF) procedure. To provide an insight into the third-order NLO phenomena of a series of pyrrolo-tetrathiafulvalene-based molecules and pushpull azobenzene polymers, two-photon absorption (TPA) characterizations have been also investigated by means of TDHF. All computed results of the examined compounds are compared with their previous experimental findings and the measured data for similar structures in the literature. The one-photon absorption (OPA) characterizations of the title molecules have been theoretically obtained by configuration interaction (CI) method. The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps have been revealed by DFT at B3LYP level for azo-azulenes, styrylquinolinium dye, push-pull azobenzene polymers and by parametrization method 6 (PM6) for pyrrolo-tetrathiafulvalene-based molecules.

  14. Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis.

    PubMed

    Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo

    2016-10-05

    Materials engineering is a key for the enhancement of photovoltaics technology. This is particularly true for the novel class of perovskite solar cells. Accurate theoretical modelling can help establish general trends of behavior when addressing structural changes. Here, we consider the effects due to halide substitution in organohalide CH 3 NH 3 PbX 3 perovskites exploring the halide series with X = Cl, Br, I. For this task, we use accurate DFT and GW methods including spin-orbit coupling. We find the expected band gap increase when moving from X = I to Cl, in line with the experimental data. Most notably, the calculated absorption coefficients for I, Br and Cl are nicely reproducing the behavior reported experimentally. A common feature of all the simulated band structures is a significant Rashba effect. This is similar for MAPbI 3 and MAPbBr 3 while MAPbCl 3 shows in general a reduced Rashba interaction coefficient. Finally, a monotonic increase of the exciton reduced masses is calculated when moving from I to Br to Cl, in line with the stronger excitonic character of the lighter perovskite halides.

  15. Relevance of the DFT method to study expanded porphyrins with different topologies.

    PubMed

    Torrent-Sucarrat, Miquel; Navarro, Sara; Cossío, Fernando P; Anglada, Josep M; Luis, Josep M

    2017-12-15

    Meso-aryl expanded porphyrins present a structural versatility that allows them to achieve different topologies with distinct aromaticities. Several studies appeared in the literature studying these topological switches from an experimental and theoretical point of view. Most of these publications include density functional theory calculations, being the B3LYP the most used methodology. In this work, we show that the selection of the functional has a critical role on the geometric, energetic, and magnetic results of these expanded porphyrins, and that the use of an inadequate methodology can even generate spurious stationary points on the potential energy surface. To illustrate these aspects, in this article we have studied different molecular distortions of two expanded porphyrins, [32]-heptaphyrin and [26]-hexaphyrin using 11 DFT functionals and performing single point energy calculations at the local pair natural orbital coupled cluster DLPNO-CCSD(T) method, which have been carried out for benchmarking purposes. For some selected functionals, the dispersion effects have also been evaluated using the D3-Grimme's dispersion correction with Becke-Johnson damping. Our results let us to conclude that the CAM-B3LYP, M05-2X, and M06-2X functionals are the methodologies that provide a more consistent description of these topological switches, while other methods, such as B3LYP, BPE, and BP86, show a biased description. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afroz, Ziya; Zulkarnain,; Ahmad, Afaq, E-mail: afaqahmad3@gmail.com

    2016-05-23

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  17. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    NASA Astrophysics Data System (ADS)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  19. Comparison of discrete Fourier transform (DFT) and principal component analysis/DFT as forecasting tools for absorbance time series received by UV-visible probes installed in urban sewer systems.

    PubMed

    Plazas-Nossa, Leonardo; Torres, Andrés

    2014-01-01

    The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.

  20. DFT Performance Prediction in FFTW

    NASA Astrophysics Data System (ADS)

    Gu, Liang; Li, Xiaoming

    Fastest Fourier Transform in the West (FFTW) is an adaptive FFT library that generates highly efficient Discrete Fourier Transform (DFT) implementations. It is one of the fastest FFT libraries available and it outperforms many adaptive or hand-tuned DFT libraries. Its success largely relies on the huge search space spanned by several FFT algorithms and a set of compiler generated C code (called codelets) for small size DFTs. FFTW empirically finds the best algorithm by measuring the performance of different algorithm combinations. Although the empirical search works very well for FFTW, the search process does not explain why the best plan found performs best, and the search overhead grows polynomially as the DFT size increases. The opposite of empirical search is model-driven optimization. However, it is widely believed that model-driven optimization is inferior to empirical search and is particularly powerless to solve problems as complex as the optimization of DFT.

  1. Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structure of 4-(4-methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole.

    PubMed

    Düğdü, Esra; Ünver, Yasemin; Ünlüer, Dilek; Tanak, Hasan; Sancak, Kemal; Köysal, Yavuz; Işık, Şamil

    2013-05-01

    4-(4-Methoxyphenethyl)-3,5-dimethyl-4H-1,2,4-triazole (3) was synthesized from the reaction of ethyl N'-acetylacetohydrazonate (1) with 2-(4-methoxyphenyl)ethanamine (2). The structure of the title compound 3 has been inferred through IR, (1)H/(13)C NMR, mass spectrometry, elemental analyses and combination of X-ray crystallography and theoretical methods. In addition to the molecular geometry from X-ray determination, the molecular geometry and vibrational frequencies of the title compound 3 in the ground state, were calculated using the density functional method (B3LYP) with the 6-31G(d) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure and the theoretical vibrational frequencies show good agreement with experimental values. The nonlinear optical properties are also addressed theoretically. The predicted nonlinear optical properties of 3 are greater than ones of urea. In addition, DFT calculations of molecular electrostatic potentials and frontier molecular orbitals of the title compound were carried out at the B3LYP/6-31G(d) level of theory. Copyright © 2012. Published by Elsevier B.V.

  2. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  3. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.

    PubMed

    Abo Dena, Ahmed S; Abdel Gaber, Sara A

    2017-06-15

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Spectroscopic and DFT Study of RhIII Chloro Complex Transformation in Alkaline Solutions.

    PubMed

    Vasilchenko, Danila B; Berdyugin, Semen N; Korenev, Sergey V; O'Kennedy, Sean; Gerber, Wilhelmus J

    2017-09-05

    The hydrolysis of [RhCl 6 ] 3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH) 6 ] 3- . Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl 6 ] 3- into [RhCl 5 (OH)] 3- was found to be the rate-determining step with activation parameters of ΔH † = 105 ± 4 kJ mol -1 and ΔS † = 59 ± 10 J K -1 mol -1 . The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH) 6 ] 3- . By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl 6 ] 3- hydrolysis in an acidic solution proceeds as [RhCl 6 ] 3- → [RhCl 5 (H 2 O)] 2- → cis-[RhCl 4 (H 2 O) 2 ] - . However, DFT calculations predict in a basic solution the trans route of substitution [RhCl 6 ] 3- → [RhCl 5 (OH)] 3- → trans-[RhCl 4 (OH) 2 ] 3- is kinetically favored.

  5. Synthesis, spectroscopic characterization, theoretical study and anti-hepatic cancer activity study of 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate, a novel curcumin congener

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Singh, Ranvijay Pratap; Jafri, Asif; Arshad, M.; Banerjee, Monisha

    2017-08-01

    In the present work 4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl 4-nitrobenzoate (2), a novel curcumin ester was synthesized. The molecular structure and spectroscopic analysis were performed using experimental techniques like FT-IR, 1H,13C NMR, mass and UV-visible as well as theoretical calculations. The theoretical calculations were done by DFT level of theory using B3LYP/6-31G (d,p) basis set. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). The electronic properties such as frontier orbitals and band gap energies have been calculated using time dependent density functional theory (TD-DFT). The strength and nature of weak intramolecular interactions have been studied by AIM approach. Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out. The anti-hepatic cancer activity of compound 2 was also carried out.

  6. Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin

    2017-05-01

    Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.

  7. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.

    2017-06-01

    A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.

  8. Use of vibrational spectroscopy to study 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Abdullah, Ebtehal S.; Al-Tamimi, Abdul-Malek S.; Çırak, Çağrı; Ucun, Fatih

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential anti-inflammatory agent namely, 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths, bond angles and dihedral angles) have been calculated using density functional theory methods (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software program. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  9. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study.

    PubMed

    Wander, Matthew C F; Kerisit, Sebastien; Rosso, Kevin M; Schoonen, Martin A A

    2006-08-10

    Uranium is a pollutant whose mobility is strongly dependent on its oxidation state. While U(VI) in the form of the uranyl cation is readily reduced by a range of natural reductants, by contrast complexation of uranyl by carbonate greatly reduces its reduction potential and imposes increased electron transfer (ET) distances. Very little is known about the elementary processes involved in uranium reduction from U(VI) to U(V) to U(IV) in general. In this study, we examine the theoretical kinetics of ET from ferrous iron to triscarbonato uranyl in aqueous solution. A combination of molecular dynamics (MD) simulations and density functional theory (DFT) electronic structure calculations is employed to compute the parameters that enter into Marcus' ET model, including the thermodynamic driving forces, reorganization energies, and electronic coupling matrix elements. MD simulations predict that two ferrous iron atoms will bind in an inner-sphere fashion to the three-membered carbonate ring of triscarbonato uranyl, forming the charge-neutral ternary Fe(2)UO(2)(CO(3))(3)(H(2)O)(8) complex. Through a sequential proton-coupled electron-transfer mechanism (PCET), the first ET step converting U(VI) to U(V) is predicted by DFT to occur with an electronic barrier that corresponds to a rate on the order of approximately 1 s(-1). The second ET step converting U(V) to U(IV) is predicted to be significantly endergonic. Therefore, U(V) is a stabilized end product in this ET system, in agreement with experiment.

  10. Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydroxyurea imprinted polymer

    NASA Astrophysics Data System (ADS)

    Prasad, Bhim Bali; Rai, Garima

    2013-03-01

    In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.

  11. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: electronic and vibrational properties.

    PubMed

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    NASA Astrophysics Data System (ADS)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  13. DFT investigations of hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 °C with proper catalyst. Sodium hydride is a product of the decomposition of NaAlH4 that may affect the dynamics of NaAlH4. The two materials with oxygen contamination such as OH- may influence the kinetics of the dehydriding/rehydriding processes. Thus the solid solubility of OH - groups (NaOH) in NaAlH4 and NaH is studied theoretically by DFT calculations. Magnesium boride [Mg(BH4)2] is has higher hydrogen capacity about 14.9 wt. % and the decomposition temparture of around 250 °C. However one flaw restraining its application is that some polyboron compounds like MgB12H12 preventing from further release of hydrogen. Adding some transition metals that form magnesium transition metal ternary borohydride [MgaTMb(BH4)c] may simply the decomposition process to release hydrogen with ternary borides (MgaTMbBc). The search for the probable ternary borides and the corresponding pseudo phase diagrams as well as the decomposition thermodynamics are performed using DFT calculations and GCLP method to present some possible candidates.

  14. Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers

    NASA Astrophysics Data System (ADS)

    Dubis, Alina T.; Wojtulewski, Sławomir; Filipkowski, Karol

    2013-06-01

    The aromaticity of s-cis and s-trans pyrrol-2-yl carbonyl conformers was studied by FT-IR, 1H NMR spectroscopy and DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The Harmonic Oscillator Model of Aromaticity (HOMA) and Nucleus Independent Chemical Shift (NICS) indices were calculated to estimate π-electron delocalization in the pyrrole ring. The usefulness of infrared spectroscopy in the evaluation of the aromaticity of the homogeneous set of pyrroles is discussed. The influence of 2-substitution on different aspects of aromaticity and stability of the pyrrol-2-yl carbonyl conformers is also discussed. It is concluded that the substitution effect of the title pyrrole derivatives can be explained on the basis of theoretical and experimental measurements of π-electron delocalization, including IR data.

  15. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    PubMed

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

    PubMed

    Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene

    2009-09-07

    We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

  17. Microwave-assisted synthesis, structural characterization, DFT studies, antibacterial and antioxidant activity of 2-methyl-4-oxo-1,2,3,4-tetrahydroquinazoline-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Obafemi, Craig A.; Fadare, Olatomide A.; Jasinski, Jerry P.; Millikan, Sean P.; Obuotor, Efere M.; Iwalewa, Ezekiel O.; Famuyiwa, Samson O.; Sanusi, Kayode; Yilmaz, Yusuf; Ceylan, Ümit

    2018-03-01

    In the present study a new tetrahydroquinazoline-2-carboxylic, C10H10N2O3, 1‧, was synthesized and its structure was characterized by elemental analysis, IR, 1H NMR, 13C NMR data and high-resolution mass spectrometry. The spectral results are in line with the proposed structure. Single crystal X-ray structural analysis of the compound showed that the crystal structure adopts a monoclinic space group P21/c, with the packing of the molecule stabilized by Cdbnd O … …Hsbnd O, Nsbnd H … ….Odbnd Csbnd Osbnd intermolecular hydrogen bonding. The theoretical geometrical parameters of the compound have been calculated using density functional (DFT) and time-dependent density functional (TD-DFT) theory methods and have been used to predict the thermodynamic one-electron redox potential and the electronic absorption property of the compound. The theoretical characterization matched the experimental measurements, showing a good correlation. The calculated HOMO-LUMO gap (4.79 eV) suggests that compound 1‧ could be a potential antioxidant. The synthesized compound was screened for its in vitro antimicrobial activity against selected bacterial strains and antioxidant activity using the TAC, FRAP, NO and ABTS models. In vitro antioxidant activity of 1' showed a moderate activity, but weaker scavenging activity than the standards of ascorbic acid and trolox. Results of the antibacterial activity of the tested compound showed that it possesses a higher activity against Bacillus anthracis, Bacillus cereus, Bacillus polymyxa, Bacillus subtilis and Staphylococcus aureus than the two standard drugs, streptomycin and tetracycline, and better activity than tetracycline against Escherichia coli.

  18. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  19. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.

    PubMed

    Singla, Preeti; Riyaz, Mohd; Singhal, Sonal; Goel, Neetu

    2016-02-21

    Understanding interactions of biomolecules with nanomaterials at the molecular level is crucial to design new materials for practical use. In the present study, adsorption of three distinct types of amino acids, namely, valine, arginine and aspartic acid, over the surface of structurally analogous but chemically different graphene and BN nanosheets has been explored within the formalism of DFT. The explicit dispersion correction incorporated in the computational methodology improves the accuracy of the results by accounting for long range van der Waals interactions and is essential for agreement with experimental values. The real biological environment has been mimicked by re-optimizing all the model structures in an aqueous medium. The study provides ample evidence in terms of adsorption energy, solvation energy, separation distance and charge analysis to conclude that both the nano-surfaces adsorb the amino acids with release of energy and there are no bonded interactions between the two. The polarity of the BN nanosheet provides it an edge over the graphene surface to have more affinity towards amino acids.

  20. Thermodynamic Stability of Heterodimetallic [LnLn'] Complexes: Synthesis and DFT Studies

    DOE PAGES

    Gonzalez-Fabra, Joan; Bandeira, Nuno A. G.; Velasco, Veronica; ...

    2017-03-27

    The solid-state and solution configurations of the heterodimetallic complexes (Hpy)[LaEr(HL) 3(NO 3)(py)(H 2O)] (1), (Hpy)[CeEr(HL) 3(NO 3)(py)(H 2O)] (2), (Hpy)[CeGd(HL) 3(NO 3)(py)(H 2O)] (3), (Hpy)[PrSm(HL) 3(NO 3)(py)(H 2O)] (4), and (Hpy) 2[LaYb(HL) 3(NO 3)(H 2O)](NO 3) (5), in which H 3L is 6-(3-oxo-3-(2-hydroxyphenyl)propionyl)pyridine-2-carboxylic acid and py is pyridine, were analyzed experimentally and by using DFT calculations. Complexes 3, 4, and 5 are described here for the first time, and were analyzed by using single-crystal X-ray diffraction and mass spectrometry. The theoretical study was also extended to the [LaCe] and [LaLu] analogues. The results are consistent with a remarkable selectivity ofmore » the metal distribution within the molecule in the solid state, enhanced by the size difference between the different ions. This selectivity was reduced in solution, particularly for ions with the most similar radii. This unique entry into 4f–4f" heterometallic chemistry establishes for the first time the difference between the selectivity in solution and that in the solid state, as a result of changes to the coordination that follow the dissociation of terminal ligands upon dissolution of the complexes.« less

  1. Doped phosphorene for hydrogen capture: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong

    2018-03-01

    Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.

  2. Theoretical studies on the electronic structure and spectroscopic properties of transition metals bis(dipyrrinate)s

    NASA Astrophysics Data System (ADS)

    Ksenofontov, Alexander A.; Guseva, Galina B.; Antina, Elena V.

    2016-10-01

    Density functional theory (DFT) and Time-dependent density functional theory (TD- DFT) computations have been used to reveal structural, molecular, electronic and spectral-luminescent parameters and features of several homoleptic transition metals bis(dipyrrine) complexes. The influence of complexing agent and ligand nature on the regularities in geometric, spectral-luminescent properties, kinetic and thermal stability changes in the [M2L2] complexes series were studied. Special attention is paid to the influence of the solvating media (PCM/TD-B3LYP/Def2-SVP) on changing spectral-luminescent properties of d-metals bis(dipyrrinate)s. The interpretation of the dependence between spectral-luminescent properties of the complexes and HOMO-LUMO (highest occupied molecular orbital and lowest unoccupied molecular orbital) energy gap's width was given. It was shown that the regularities in changing the helicates' quantum yield depending on the nature of complexing agent, ligand and solvent properties, obtained from quantum-chemical calculations, are in the agreement with our previously obtained experimental data. Thus, structural and spectral-luminescent characteristics of new [M2L2] luminophors can be evaluated with high reliability, and good forecast prospects for their use as fluorescent dyes for optical devices can be made in terms of the results of theoretical studies (B3LYP/Def2-SVP and TD-B3LYP/Def2-SVP).

  3. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  4. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations

    NASA Astrophysics Data System (ADS)

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-03-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P212121 of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity.

  5. The structural, electronic and spectroscopic properties of 4FPBAPE molecule: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tanış, Emine; Babur Sas, Emine; Kurban, Mustafa; Kurt, Mustafa

    2018-02-01

    The experimental and theoretical study of 4-Formyl Phenyl Boronic Acid Pinacol Ester (4FPBAPE) molecule were performed in this work. 1H, 13C NMR and UV-Vis spectra were tested in dimethyl sulfoxide (DMSO). The structural, spectroscopic properties and energies of 4FPBAPE were obtained for two potential conformers from density functional theory (DFT) with B3LYP/6-311G (d, p) and CAM-B3LYP/6-311G (d, p) basis sets. The optimal geometry of those structures was obtained according to the position of oxygen atom upon determining the scan coordinates for each conformation. The most stable conformer was found as the A2 form. The fundamental vibrations were determined based on optimized structure in terms of total energy distribution. Electronic properties such as oscillator strength, wavelength, excitation energy, HOMO, LUMO and molecular electrostatic potential and structural properties such as radial distribution functions (RDF) and probability density depending on coordination number are presented. Theoretical results of 4-FPBAPE spectra were found to be compatible with observed spectra.

  6. Theoretical studies of structure and selectivity of 5-methyl-4-(2-thiazolylazo) resorcinol as a sensor for metal ions: DFT calculation

    NASA Astrophysics Data System (ADS)

    Thaomola, Sukhontip; Sompech, Supachai

    2018-05-01

    The global minimum optimized structures of the free sensor 5-methyl-4-(2-thiazolylazo) resorcinol (5-Me-TAR) and 5-Me-TAR-Cu2+ complexes in the gas phase have been investigated by using Density Functional Theory (DFT) with the def2-TZVP basis set. To compare the selectivity of 5-Me-TAR for metal ions, the binding energy of 5-Me-TAR with various metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pd2+, Cd2+ and Hg2+) were calculated at the same level as the theory. Binding energy values of most transition metal ions are lower than alkaline earth metal ions and alkali metal ions, respectively. The 5-Me-TAR sensor shows the highest selectivity with the Cu2+ ion. Moreover, Dependent Density Functional Theory (TDDFT) results confirm that the 5-Me-TAR-Cu2+ complex is stabilized by the sensor to metal charge transfer process. The computational studies suggested that the 5-Me-TAR is suitable for Cu2+ ion detection sensor development.

  7. A theoretical insight for solvent effect on myoglobin assay of W(CO)4L2 type novel complexes with DFT/TDDFT

    NASA Astrophysics Data System (ADS)

    Üstün, Elvan; Demi˙r, Serpil; Coşkun, Feyzullah; Kaloğlu, Murat; Şahi˙n, Onur; Büyükgüngör, Orhan; Özdemi˙r, İsmail

    2016-11-01

    Novel tetracarbonyl complexes of type W(CO)4L2 (L: 4-chlorobenzylimidazoline; 4-methylbenzylimidazoline; 3,5-dimethylbenzylimidazoline; 2,4,6-trimethylbenzylimidazoline; 2,3,5,6- tetramethylbenzylimidazoline) were synthesized. Then newly synthesized novel compounds were characterized by IR, 1H NMR, 13C NMR and LC-MS. The characterizations of two of the complexes have also been confirmed with single crystal X-Ray diffraction and DFT optimization results of these complexes have been compared with single crystal results. We have investigated the solvent effect on the structure and metal-to-ligand charge transfer (MLCT) transitions with DFT/TDDFT calculations with ORCA package program with BP86 functional.

  8. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 4-acetylpyridine

    NASA Astrophysics Data System (ADS)

    Atilgan, A.; Yurdakul, Ş.; Erdogdu, Y.; Güllüoğlu, M. T.

    2018-06-01

    The spectroscopic (UV-Vis and infrared), structural and some electronic property observations of the 4-acetylpyridine (4-AP) were reported, which are investigated by using some spectral methods and DFT calculations. FT-IR spectra were obtained for 4-AP at room temperature in the region 4000 cm-1- 400 cm-1. In the DFT calculations, the B3LYP functional with 6-311G++G(d,p) basis set was applied to carry out the quantum mechanical calculations. The Fourier Transform Infrared (FT-IR) and FT-Raman spectra were interpreted by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the 4-AP by means of the theoretical and experimental methods.

  9. Aging Oxidation Reactions on Atmospheric Black Carbon by OH Radicals. A Theoretical Modeling Study.

    PubMed

    Rojas, Laura; Peraza, Alexander; Ruette, Fernando

    2015-12-31

    Aging processes of black carbon (BC) particles require knowledge of their chemical reactivities, which have impact on cloud condensation nuclei (CCN) activities, radiant properties and health problems related to air pollutions. In the present work, interactions between several OH radicals with BC (modeled with a coronene molecule) were calculated by using DFT and PM6 codes as described by Mysak et al. Water interaction with BC was also included. Results show that OH radical adsorption is preferred on border sites, independent of the theoretical method employed. Potential energy curves using DFT(TPSS-D3) approach for OH chemisorption showed small-energy barriers, as reported in previous work with PM6. A dipole moment has been created, and the hydrophobic coronene surface is transformed to hydrophilic after the first OH chemisorption. Several stages were found in the BC aging by OH radicals, thus (a) Hydroxylation of coronene by several OH radical would lead to H abstractions directly from the substrate. (b) Abstraction of H from adsorbed OH (at the border sites) drives a C-C bond breaking and the formation of carboxyl groups. (c) Hydrogen abstraction from carboxyl group produces decarboxylation (CO2 plus water) as experimentally obtained. Potential energy curves of one of the reactive path were calculated with the PM6 method. The formation of products was confirmed using DFT. Coronene interaction with O2 was also considered to have a realistic atmospheric environment.

  10. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  11. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: a theoretical study.

    PubMed

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-10

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  13. New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach.

    PubMed

    Anouar, E; Kosinová, P; Kozlowski, D; Mokrini, R; Duroux, J L; Trouillas, P

    2009-09-21

    Ferulic acid is widely distributed in the leaves and seeds of cereals as well as in coffee, apples, artichokes, peanuts, oranges and pineapples. Like numerous other natural polyphenols it exhibits antioxidant properties. It is known to act as a free radical scavenger by H atom transfer from the phenolic OH group. In the present joint experimental and theoretical studies we studied a new mechanism to explain such activities. Ferulic acid can indeed act by radical addition on the alpha,beta-double bond. On the basis of the identification of metabolites formed in an oxidative radiolytic solution and after DFT calculations, we studied the thermodynamic and kinetic aspects of this reaction. Addition and HAT reactions were treated as competitive reactions. The possibility of dimer formation was also investigated from a theoretical point of view; the high barriers we obtained contribute to explaining why we did not observe those compounds as major radiolytic compounds. The DPPH free radical scavenging capacity of ferulic acid and the oxidative products was measured and is discussed on the basis of DFT calculations (BDEs and spin densities).

  14. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.

    2017-05-01

    The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.

  15. Computational study of AuSi{sub n} (n=1-9) nanoalloy clusters invoking DFT based descriptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Prabhat; Kumar, Ajay; Chakraborty, Tanmoy, E-mail: tanmoy.chakraborty@jaipur.manipal.edu, E-mail: tanmoychem@gmail.com

    2016-04-13

    Nanoalloy clusters formed between Au and Si are topics of great interest today from both scientific and technological point of view. Due to its remarkable catalytic, electronic, mechanical and magnetic properties Au-Si nanoalloy clusters have extensive applications in the field of microelectronics, catalysis, biomedicine, and jewelry industry. Density Functional Theory (DFT) is a new paradigm of quantum mechanics, which is very much popular to study the electronic properties of materials. Conceptual DFT based descriptors have been invoked to correlate the experimental properties of nanoalloy clusters. In this venture, we have systematically investigated AuSi{sub n} (n=1-9) nanoalloy clusters in the theoreticalmore » frame of the B3LYP exchange correlation. The experimental properties of AuSi{sub n} (n=1-9) nanoalloy clusters are correlated in terms of DFT based descriptors viz. HOMO-LUMO gap, Electronegativity (χ), Global Hardness (η), Global Softness (S) and Electrophilicity Index (ω). The calculated HOMO-LUMO gap exhibits interesting odd-even alteration behaviour, indicating that even numbered clusters possess higher stability as compare to their neighbour odd numbered clusters. This study also reflects a very well agreement between experimental bond length and computed data.« less

  16. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  17. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation

    NASA Astrophysics Data System (ADS)

    da Silva, Jorge Alberto Valle; Modesto-Costa, Lucas; de Koning, Martijn C.; Borges, Itamar; França, Tanos Celmar Costa

    2018-01-01

    In this work, quaternary and non-quaternary oximes designed to bind at the peripheral site of acetylcholinesterase previously inhibited by organophosphates were investigated theoretically. Some of those oximes have a large number of degrees of freedom, thus requiring an accurate method to obtain molecular geometries. For this reason, the density functional theory (DFT) was employed to refine their molecular geometries after conformational analysis and to compare their 1H and 13C nuclear magnetic resonance (NMR) theoretical signals in gas-phase and in solvent. A good agreement with experimental data was achieved and the same theoretical approach was employed to obtain the geometries in water environment for further studies.

  18. First-Principles DFT Studies of the Vibrational Properties of Germanene Nanoflakes

    NASA Astrophysics Data System (ADS)

    Richardson, Steven; Peroparde, Borja; Andrade, Xavier; Aspuru-Guzik, AláN.

    The germanium analogue of graphene, germanene, is a potentially new atomically thin quantum material which theory predicts will possess unique transport and optoelectronic properties. Recently, there have been a number of experimental efforts to successfully grow two-dimensional films of germanene on noble metal substrates using molecular beam epitaxy. In addition to this top-down approach of synthesizing large scale films of germanene, we would like to focus on a bottom-up approach where nanoflakes of germanene could be used as molecular seeds or precursors to grow large films of two-dimensional germanene. A knowledge of their infrared and Raman spectra will be critical for characterizing these germanene nanoflakes in future experiments. In this work we used density-functional theory (DFT) to compute the vibrational spectra of a selected number of lower order germanene nanoflakes (e.g. hexagermabenzene, germa-naphthalene, germa-anthracene, germa-phenanthrene, germa-pyrene, germa-tetracene, and germa-pentacene). Our DFT studies also reveal that these germanene nanoflakes are vibrationally stable with buckling of these molecules from their normal two-dimensional planar forms which exist in graphene nanoflakes. This research is supported by NSF Grant No. DMR-1231319.

  19. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  20. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: Synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua

    2017-11-01

    Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.

  1. Experimental and theoretical studies on the structure and spectroscopic properties of (E)-1-(2-aminophenyl)-3-(pyridine-4-yl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Cruz Ortiz, Andrés Felipe; Sánchez López, Alberto; García Ríos, Alejandro; Cuenú Cabezas, Fernando; Rozo Correa, Ciro Eduardo

    2015-10-01

    (E)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one (or simply 2-aminochalcone) was synthetized and characterized by elemental analysis, FT-IR, NMR, MS and XRD. Molecular geometry optimization, vibrational harmonic frequencies, 1H and 13C NMR chemical shifts were calculated by ab initio (HF and MP2) and density functional theory (DFT) methods, with B3LYP and B3PW91 functionals, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA software vibrational frequencies were assigned in terms of the potential energy distribution. A detailed interpretation of the FT-IR, NMR and XRD, experimental and calculated, is reported. The HOMO and LUMO energy gap that reflects the chemical activity of the molecule were also studied by DFT and above basis set. All theoretical results correspond to a great extent to experimental ones.

  2. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  3. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2015-02-14

    We report DFT static and dynamic studies on uranyl complexes [UO(2)(NO(3))x(H(2)O)(y)L(z)](2-x) involved in the uranyl extraction from water to an "oil" phase (hexane) by an amide ligand L (N,N-dimethylacetamide). Static DFT results "in solution" (continuum SMD models for water and hexane) predict that the stepwise formation of [UO(2)(NO(3))(2)L(2)] from the UO(2)(H(2)O)(5)(2+) species is energetically favourable, and allow us to compare cis/trans isomers of penta- and hexa-coordinated complexes and key intermediates in the two solvents. DFT-MD simulations of [UO(2)(NO(3))(2)L(2)], [UO(2)(NO(3))(2)(H(2)O)L(2)], and [UO(2)(NO(3))(H(2)O)L(2)](+) species in explicit solvent environments (water, hexane, or the water/hexane interface) represented at the MM or full-DFT level reveal a versatile solvent dependent binding mode of nitrates, also evidenced by metadynamics simulations. In water and at the interface, the latter exchange from bi- to monodentate, via in plane rotational motions in some cases. Remarkably, structures of complexes at the interface are more "water-like" than gas phase- or hexane-like. Thus, the order of U-O(NO(3))/U-O(L) bond distances observed in the gas phase (U-O(nit) < U-OL) is inverted at the interface and in water. Overall, the results are consistent with the experimental observation of uranyl extraction from nitric acid solutions by amide analogues (bearing "fatty" substituents), and allow us to propose possible extraction mechanisms, involving complexation of L "right at the interface". They also point to the importance of the solvent environment and the dynamics on the structure and stability of the complexes.

  5. Use of vibrational spectroscopy to study 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione: A combined theoretical and experimental approach.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Abdullah, Ebtehal S; Al-Tamimi, Abdul-Malek S; Cırak, Cağrı; Ucun, Fatih

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential anti-inflammatory agent namely, 4-benzyl-3-(thiophen-2-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths, bond angles and dihedral angles) have been calculated using density functional theory methods (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software program. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. COMPARATIVE STUDY OF THREE FUNDAMENTAL ORGANIC COMPOUNDS OF CHAIN STRUCTURE OF THREE RINGS An approach based in the molecular descriptors of the DFT (Density Functional Theory)

    NASA Astrophysics Data System (ADS)

    Leon, Neira B. Oscar; Fabio, Mejía Elio; Elizabeth, y. Rincón B.

    2008-04-01

    The organic molecules of a chain structure containing phenyl, oxazole and oxadiazole rings are used in different combinations as active media for tunable lasers. From this viewpoint, we focused in the theoretical study of organic compounds of three rings, which have similar optical properties (fluorescence and laser properties). The main goal of this study is to compare the electronic structure through the analysis of molecular global descriptors defined in the DFT framework of2-[2-X-phenyl]-5-phenyl-1,3-Oxazole, 2-[2-X-phenyl]-5-phenyl-1,3,4-Oxadiazole, and 2-[2-X-phenyl]-5-phenyl-furane with X = H, F and Cl. The basis set used was 6-31G+(d).

  7. Infrared matrix-isolation and theoretical studies of the reactions of ferrocene with ozone.

    PubMed

    Kugel, Roger W; Pinelo, Laura F; Ault, Bruce S

    2015-03-19

    The reactions between ferrocene (Cp2Fe) (2a) and ozone (O3) were studied using low-temperature matrix-isolation techniques coupled with theoretical density functional theory (DFT) calculations. Co-deposition of Ar/Cp2Fe and Ar/O3 gas mixtures onto a cryogenically cooled CsI window produced a dark-green charge-transfer complex, Cp2Fe-O3, that photodecomposed upon red (λ ≥ 600 nm) and infrared (λ ≥ 1000 nm) irradiation but was stable to green or blue irradiation. Products of photodecomposition were characterized by FT-IR, oxygen-18 labeling, and DFT calculations using the B3LYP functionals and the 6-311G++(d,2p) basis set. Likely, photochemical products included four structures having the molecular formula C10H10FeO, identified by DFT calculations based on their calculated infrared spectra and (18)O isotope shifts. Each of these calculated molecules had one intact and fully coordinated η(5)-C5H5 cyclopentadienyl (Cp) ring and (1) an η(5)-C5H5O cyclic ether (pyran ring) (2b), (2) an η(4)-C5H5O linear aldehyde (2c), (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom (2d), or (4) an Fe-O bond and an η(2)-C5H5 (Cp) ring (2e). No conclusive evidence for a gas-phase thermal reaction between ferrocene and ozone was observed under the conditions of these experiments. However, strong evidence for a surface-catalyzed thermal reaction was observed in merged-jet experiments wherein the gases were premixed before deposition. Surface-catalyzed ferrocene-ozone reaction products included a thin film of Fe2O3 observed on the walls of the merged tube as well as cyclopentadiene (C5H6), cyclopentadienone (C5H4O), and further oxidation products observed in the matrix. Possible mechanisms for both the photochemical and the thermal reactions are discussed.

  8. Estimation of the rotamerization constants of different conformations of N-acetylalanine: a theoretical and matrix-isolation FT-IR study.

    PubMed

    Boeckx, Bram; Maes, Guido

    2012-02-01

    The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Stereochemical and conformational study on fenoterol by ECD spectroscopy and TD-DFT calculations.

    PubMed

    Tedesco, Daniele; Zanasi, Riccardo; Wainer, Irving W; Bertucci, Carlo

    2014-03-01

    Fenoterol and its derivatives are selective β2-adrenergic receptor (β2-AR) agonists whose stereoselective biological activities have been extensively investigated in the past decade; a complete stereochemical characterization of fenoterol derivatives is therefore crucial for a better understanding of the effects of stereochemistry on β2-AR binding. In the present project, the relationship between chiroptical properties and absolute stereochemistry of the stereoisomers of fenoterol (1) was investigated by experimental ECD spectroscopy and time-dependent density functional theory (TD-DFT). DFT geometry optimizations were carried out at the RI-B97D/TZVP/IEFPCM(MeOH) level and subsequent TD-DFT calculations were performed using the PBE0 hybrid functional. Despite the large pool of equilibrium conformers found for the investigated compounds and the known limitations of the level of theory employed, the computational protocol was able to reproduce the experimental ECD spectra of the stereoisomers of 1. The main contribution to the overall chiroptical properties was found to arise from the absolute configuration of the chiral center in α-position to the resorcinol moiety. Based on this evidence, a thorough conformational analysis was performed on the optimized DFT conformers, which revealed the occurrence of a different equilibrium between conformational patterns for the diastereomers of fenoterol: the (R,R')/(S,S') enantiomeric pair showed a higher population of folded conformations than the (R,S')/(S,R') pair. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. DFT investigation of the interaction of gold nanoclusters with poly(amidoamine) PAMAM G0 dendrimer

    NASA Astrophysics Data System (ADS)

    Camarada, M. B.

    2016-06-01

    The interaction between PAMAM G0 and gold nanoclusters Aun (n = 2, 4, 6, and 8) was studied theoretically at DFT level. Different coordination sites were explored, including internal and superficial coordination. All stable complexes exhibited external interaction with the amine or carbonyl site, while the core site coordination was not favored. The more stable binding of Aun was registered with the terminal amine group, while the binding at the amide site was relatively weaker. The vertical first ionization potential, electron affinity, Fermi level, and the HOMO-LUMO gap of PAMAM and Aun-PAMAM G0 complexes were also analyzed.

  11. Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF).

    PubMed

    Zheng, Chunmei; Chu, Yuting; Xu, Liwen; Wang, Fengyun; Lei, Wu; Xia, Mingzhu; Gong, Xuedong

    2016-06-01

    Bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF), synthesized in our previous work [1], contains four furazan units connected to the linkage of the azo-group and azoxy-group. For further research, some theoretical characters were studied by the density functional theoretical (DFT) method. The optimized structures and the energy gaps between the HOMO and LUMO were studied at the B3LYP/6-311++G** level. The isodesmic reaction method was used for estimating the enthalpy of formation. The detonation performances were estimated with Kamlet-Jacobs equations based on the predicted density and enthalpy of formation in the solid state. ADAAF was also calculated by the same method for comparison. It was found that the nitramino group of ADNAAF can elongate the length of adjacent C-N bonds than the amino group of ADAAF. The gas-phase and solid-phase enthalpies of formation of ADNAAF are larger than those of ADAAF. The detonation performances of ADNAAF are better than ADAAF and RDX, and similar to HMX. The trigger bond of ADNAAF is the N-N bonds in the nitramino groups, and the nitramino group is more active than the amino group (-NH2).

  12. Theoretical Assessment of Norfloxacin Redox and Photochemistry

    NASA Astrophysics Data System (ADS)

    Musa, Klefah A. K.; Eriksson, Leif A.

    2009-09-01

    Norfloxacin, 1-ethyl-6-fluoro-1,4-dihydo-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, NOR, is an antibiotic drug from the fluoroquinoline family. The different protonation states of this drug formed throughout the pH range is studied by means of density functional theory (DFT) and the spectra of the NOR species computed using time-dependent DFT. Details about their photochemistry are obtained from investigating the highest occupied and lowest unoccupied molecular orbitals. The predominant species under physiological pH, the zwitterion, is the most photoliable one, capable of producing singlet oxygen or/and superoxide radical anions from its triplet state. In addition, the main photodegradation step, defluorination, occurs more easily from this species compared with the other forms. The defluorination from the excited triplet state requires passing a barrier of 16.3 kcal/mol in the case of the zwitterion. The neutral and cationic forms display higher transition barriers, whereas the reaction path of defluorination is completely endothermic for the anionic species. The theoretical results obtained herein are in line with previous experimental data.

  13. Quantitative DFT modeling of product concentration in organometallic reactions: Cu-mediated pentafluoroethylation of benzoic acid chlorides as a case study.

    PubMed

    Jover, Jesús

    2017-11-08

    DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.

  14. Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study

    NASA Astrophysics Data System (ADS)

    Yao, Qi; You, Bin; Zhou, Shuli; Chen, Meng; Wang, Yujiao; Li, Wei

    2014-01-01

    The suitable size hydrophobic cavity and monochlorotriazinyl group as a reactive anchor make MCT-β-CD to be widely used in fabric finishing. In this paper, the inclusion complexes of monochlorotriazinyl-beta-cyclodextrin (MCT-β-CD) with cypermethrin (CYPERM) and permethrin (PERM) are synthesized and analyzed by TG/DSC, FT-IR and Raman spectroscopy. TG/DSC reveals that the decomposed temperatures of inclusion complexes are lower by 25-30 °C than that of physical mixtures. DFT calculations in conjunction with FT-IR and Raman spectral analyses are used to study the structures of MCT-β-CD and their inclusion complexes. Four isomers of trisubstituted MCT-β-CD are designed and DFT calculations reveal that 1,3,5-trisubstituted MCT-β-CD has the lowest energy and can be considered as main component of MCT-β-CD. The ground-state geometries, vibrational wavenumbers, IR and Raman intensities of MCT-β-CD and their inclusion complexes were calculated at B3LYP/6-31G (d) level of theory. Upon examining the optimized geometry of inclusion complex, we find that the CYPERM and PERM are inserted into the toroid of MCT-β-CD from the larger opening. The band at 1646 cm-1 in IR and at 1668 cm-1 in Raman spectrum reveals that monochloroazinyl group of MCT-β-CD exists in ketone form but not in anion form. The noticeable IR and Raman shift of phenyl reveals that these two benzene rings of CYPERM and PERM stays inside the cavity of MCT-β-CD and has weak interaction with MCT-β-CD. This spectroscopy conclusion is consistent with theoretical predicted structure.

  15. Vibrational spectra, optical properties, NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations.

    PubMed

    Elleuch, Nabil; Ben Ahmed, Ali; Feki, Habib; Abid, Younes; Minot, Christian

    2014-01-01

    In this work, we report a combined experimental and theoretical study of a nonlinear optical material, L-Phenylalanine L-Phenylalaninium Perchlorate. Single crystals of the title compound have been grown by slow evaporation of an aqueous solution at room temperature. Theoretical calculations were preceded by redetermination of the crystal X-ray structure. The compound crystallizes in the non-centro symmetric space group P2(1)2(1)2(1) of the orthorhombic system. The FT-IR and Raman spectra of the crystal were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Natural bond orbital analysis was carried out to demonstrate the various inter-and intramolecular interaction that are responsible of the stabilization of the compound. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause of its enhanced charge transfer interaction leading to high NLO activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Toward High-Level Theoretical Studies of Large Biodiesel Molecules: An ONIOM [QCISD(T)/CBS:DFT] Study of the Reactions between Unsaturated Methyl Esters (C nH2 n-1COOCH3) and Hydrogen Radical.

    PubMed

    Zhang, Lidong; Meng, Qinghui; Chi, Yicheng; Zhang, Peng

    2018-05-31

    A two-layer ONIOM[QCISD(T)/CBS:DFT] method was proposed for the high-level single-point energy calculations of large biodiesel molecules and was validated for the hydrogen abstraction reactions of unsaturated methyl esters that are important components of real biodiesel. The reactions under investigation include all the reactions on the potential energy surface of C n H 2 n-1 COOCH 3 ( n = 2-5, 17) + H, including the hydrogen abstraction, the hydrogen addition, the isomerization (intramolecular hydrogen shift), and the β-scission reactions. By virtue of the introduced concept of chemically active center, a unified specification of chemically active portion for the ONIOM (ONIOM = our own n-layered integrated molecular orbital and molecular mechanics) method was proposed to account for the additional influence of C═C double bond. The predicted energy barriers and heats of reaction by using the ONIOM method are in very good agreement with those obtained by using the widely accepted high-level QCISD(T)/CBS theory, as verified by the computational deviations being less than 0.15 kcal/mol, for almost all the reaction pathways under investigation. The method provides a computationally accurate and affordable approach to combustion chemists for high-level theoretical chemical kinetics of large biodiesel molecules.

  17. Binding of urea and thiourea with a barbiturate derivative: experimental and theoretical approach.

    PubMed

    Dixit, Namrata; Shukla, P K; Mishra, P C; Mishra, Lallan; Roesky, Herbert W

    2010-01-14

    A barbiturate derivative [1,5-dihydro-5-[5-pyrimidine-2,4(1H,3H)-dionyl]-2H-chromeno[2,3-d] pyrimidine-2,4(3H)-dione)] (L1) possesses functionalities complementary to amide and thioamide. Hence its binding with urea and thiourea, is monitored using UV-vis and fluorescence titrations as well as isothermal titration calorimetry (ITC) study. Theoretical studies on hydrogen-bonded complexes of L1-urea and L1-thiourea in the gas phase, aqueous, and DMSO medium are carried out using density functional theory (DFT) at the B3LYP/6-31G** level. The theoretical calculations support the experimental results.

  18. A Systematic Theoretical Study of UC6: Structure, Bonding Nature, and Spectroscopy.

    PubMed

    Du, Jiguang; Jiang, Gang

    2017-11-20

    The study of uranium carbides has received renewed attention in recent years due to the potential use of these compounds as fuels in new generations of nuclear reactors. The isomers of the UC 6 cluster were determined by DFT and ab initio methods. The structures obtained using SC-RECP for U were generally consistent with those obtained using an all-electron basis set (ZORA-SARC). The CCSD(T) calculations indicated that two isomers had similar energies and may coexist in laser evaporation experiments. The nature of the U-C bonds in the different isomers was examined via a topological analysis of the electron density, and the results indicated that the U-C bonds are predominantly closed-shell (ionic) interactions with a certain degree of covalent character in all cases, particularly in the linear species. The IR and UV-vis spectra of the isomers were theoretically simulated to provide information that can be used to identify the isomers of UC 6 in future experiments.

  19. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  20. A computational DFT study of structural transitions in textured solid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Parry, Andrew O.; Kalliadasis, Serafim

    2015-11-01

    Fluids adsorbed at walls, in capillary pores and slits, and in more exotic, sculpted geometries such as grooves and wedges can exhibit many new phase transitions, including wetting, pre-wetting, capillary-condensation and filling, compared to their bulk counterparts. As well as being of fundamental interest to the modern statistical mechanical theory of inhomogeneous fluids, these are also relevant to nanofluidics, chemical- and bioengineering. In this talk we will show using a microscopic Density Functional Theory (DFT) for fluids how novel, continuous, interfacial transitions associated with the first-order prewetting line, can occur on steps, in grooves and in wedges, that are sensitive to both the range of the intermolecular forces and interfacial fluctuation effects. These transitions compete with wetting, filling and condensation producing very rich phase diagrams even for relatively simple geometries. We will also discuss practical aspects of DFT calculations, and demonstrate how this statistical-mechanical framework is capable of yielding complex fluid structure, interfacial tensions, and regions of thermodynamic stability of various fluid configurations. As a side note, this demonstrates that DFT is an excellent tool for the investigations of complex multiphase systems. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031.

  1. Synthesis of 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3, 5-dioxohepta-1, 6-dienyl)-2-methoxyphenyl 4-fluorobenzoate, a novel monoester derivative of curcumin, its experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap

    2016-04-01

    Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.

  2. A theoretical study on 3-(4-methoxyphenyl)-1-(pyridin-2-Yl) prop-2-en-1-one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davcir@sakarya.edu.tr

    This study reports the geometric parameters, vibration frequencies, {sup 13}C and {sup 1}H NMR chemical shifts of 3-(4-Methoxyphenyl)-1-(pyridin-2-yl) prop-2-en-1-one (MPP) molecule calculated by B3LYP level of density functional theory (DFT) with 6-311++G(d,p) basis set. {sup 13}C and {sup 1}H NMR chemical shifts were calculated within GIAO approach which is one of the most common approaches. Additionally, 3D molecular surfaces such as molecular electrostatic potential (MEP) and electrostatic potential (ESP), were simulated by the same level. As a result, obtained theoretical results were found to be consistent with experimental ones. All of calculations were carried out Gaussian 09 package program.

  3. Conformational, vibrational spectroscopic and nonlinear optical activity studies on N,N-Di-Boc-2-amino pyridine : A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.

  4. Molecular structure, nonlinear optical studies and spectroscopic analysis of chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one by DFT calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumar, Rajesh; Gupta, Archana; Tandon, Poonam; D'silva, E. Deepak

    2017-12-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of nonlinear optical chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP). The FT-IR and FT-Raman spectra of the molecule in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP level with 6-311++G (d,p) basis set have been carried out to derive useful information about the molecular structure and to assign the relevant electronic and vibrational features. These calculations reveal that the optimized geometry closely resembles the experimental XRD data. The vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of FT-IR and FT-Raman spectra. The UV-vis spectrum was recorded in methanol solution. The excited state properties have been determined by TD-DFT method and the effect of solvent was analyzed by PCM model. The most prominent transition corresponds to π→π∗. The reactivity parameters as chemical potential, global hardness, and electrophilicity index have also been calculated. To provide an explicit assignment and analysis of 13C and 1H NMR spectra, theoretical calculations on chemical shift of the title compound were done through GIAO method at B3LYP/6-311++G (d,p) level. The Mulliken's population analysis shows one of the simplest pictures of charge distribution. The standard statistical thermodynamic functions like heat capacity at constant pressure (Cop,m), entropy (Som) and enthalpy (Hom) were obtained from the theoretical harmonic frequencies for the optimized molecule. The nonlinear optical properties of title molecule are also addressed theoretically. Two contributions, vibrational and electronic, to the electrical properties polarizability and first order hyperpolarizability of 3Br4MSP have been evaluated using the

  5. DFT study of the effect of substituents on the absorption and emission spectra of Indigo

    PubMed Central

    2012-01-01

    Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl), Sulfur (S), Selenium (Se) and Bromine (Br) substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT) with the Becke 3- parameter-Lee-Yang-Parr (B3LYP) functional, where the 6-31 G(d,p) basis set was employed. The configuration interaction singles (CIS) method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased. PMID:22809100

  6. X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole

    NASA Astrophysics Data System (ADS)

    Komrovsky, Fabián; Sperandeo, Norma R.; Vera, D. Mariano A.; Caira, Mino R.; Mazzieri, María R.

    2018-07-01

    N-benzenesulfonyl-1H-1,2,3-benzotriazole (NBSBZT) is a compound with significant trypanocidal and bactericidal activities, which we reported previously. In this work a combined experimental and theoretical study of its structural and molecular properties is communicated. The crystal structure of NBSBZT was determined by single crystal X-ray diffraction. The molecular vibrations and behavior on heating of NBSBZT were investigated by Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and Hot Stage Microscopy (HSM). In parallel, Quantum Chemical calculations based on Density Functional Theory (DFT) and Scaled Quantum Mechanics methods were used to determine the geometrical, energetic and vibrational characteristics of NBSBZT. The study demonstrated that NBSBZT crystallized in the triclinic space group P‾1 (No. 2) with two inversion-related molecules in the unit cell (Z = 2). Its overall molecular conformation can be described by two torsion angles, namely φ1 (N2sbnd N1sbnd S10sbnd C13) = -94.5(2)° and φ2 (N1sbnd S10sbnd C13sbnd C14) = 84.2(2)°. The minimum energy structures found by theoretical calculations showed φ1 = -67.6° and φ2 = 88.0° in vacuum; however, in water, the torsion angles were -77.5° and 88.7°, respectively. The differences in φ1 (Δφ1solid state-vacuum = 26.9° and Δφ1solid state-water = 17.0°) could be attributed to the high intermolecular cohesive forces present in the crystal of NBSBZT. A good correlation between the experimental and theoretical mid-FTIR spectra was found. The DSC, TG and HSM results indicated that NBSBZT was a solvent-free solid, which melted at 128.8 °C but decomposed above 130 °C.

  7. Theoretical and conceptual density functional theory (DFT) study on selectivity of 4-hydroxyquinazoline electrophilic aromatic nitration

    NASA Astrophysics Data System (ADS)

    Makhloufi, A.; Belhadad, O.; Ghemit, R.; Baitiche, M.; Merbah, M.; Benachour, DJ.

    2018-01-01

    In common with other aza-heterocycles, 4-hydroxyquinazoline and their derivatives are important pharmacophores and versatile lead molecule used in several specific biological activities. The potency of these compounds depends on the nature and/or position of their substituents. In this paper, we report a theoretical study of the most probable nitration reaction centers of 4-hydroxyquinazoline for electrophilic attack, the mono and di-nitration was also discussed. In parallel, a computational study has been performed in gas by using the B3LYP/6311 G(d) level. The stability of the four nitro isomers is rationalized by means of the global index and local reactivity indices. Their molecular electrostatic potential (MEP) and Milliken charge were explored. Molecular geometries and NMR H spectra was examined. In addition, stationary points of reactant, transition state and intermediate were optimized in water condensed phase at the same level. The relative energies of the regioisomeric δ-complexes confirm that the substitution at C6 (6-nitro σ-complexes) is favored in these conditions, what was in agreement with our others calculating results (in gas).

  8. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Hamlaoui, Ikram; Bencheraiet, Reguia; Bensegueni, Rafik; Bencharif, Mustapha

    2018-03-01

    In this study, the antioxidant capacity of three chalcone derivatives was evaluated by DPPH free radical scavenging. Experimental data showed low antioxidant activity (IC50±SD) of these molecules in comparison with BHT. The mechanism of DPPH radical scavenging elucidated by means of density functional theory (DFT) calculations. The tested compounds and their corresponding radicals and anions were optimized using B3LYP functional with 6-31G (d,p) basis set in the gas phase. The C-PCM model was used to perform solvent medium calculations. On the basis of theoretical calculations, it was shown that HAT mechanism was predominant in the gas phase, whereas SET-PT and SPLET mechanisms were favored in the presence of the solvent. Moreover, the HOMO orbitals and spin density distribution was evaluated to predict the probable sites for free radical attack.

  9. Study of vibrational spectra and hydrogen bonding network in dimeric and tetrameric model of ampicillin using DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Shukla, Anuradha; Khan, Eram; Tandon, Poonam; Sinha, Kirti

    2017-03-01

    Ampicillin is a β-lactam antibiotic that is active against both gram-positive and gram-negative bacteria and is widely used for the treatment of infections. In this work, molecular properties of ampicillin are calculated on the basis of calculations on its dimeric and tetrameric models using DFT/B3LYP/6-311G(d,p). HOMO-LUMO energy gap shows that chemical reactivity of tetrameric model of ampicillin is higher than the dimeric and monomeric model of ampicillin. To get a better understanding of intra and intermolecular bonding and interactions among bonds, NBO analysis is carried out with tetrameric model of ampicillin, and is further finalized with an 'quantum theory of atoms-in-molecules' (QTAIM) analysis. The binding energy of dimeric model of ampicillin is calculated as -26.84 kcal/mol and -29.34 kcal/mol using AIM and DFT calculations respectively. The global electrophilicity index (ω = 2.8118 eV) of tetrameric model of ampicillin shows that this behaves as a strong electrophile in comparison to dimeric and monomeric model of ampicillin. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. A collective theoretical and experimental vibrational analysis approves the presence of hydrogen bonds in the ampicillin molecule.

  10. On the subsystem formulation of linear-response time-dependent DFT.

    PubMed

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  11. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less

  12. DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mason, Sara E.

    2014-03-01

    We investigate whether well-known DFT-GGA errors in predicting the chemisorption energy (Echem) of CO on transition metal surfaces manifest in analogous NO chemisorption systems. While widely investigated in the case of CO/metal, analogous DFT-GGA errors have long been claimed to be absent in NO/metal chemisorption. Here, we provide theoretical evidence of systematic enhanced back-donation in NO/metal chemisorption at the DFT-GGA level. We use electronic structure analysis to show that the partially filled molecular NO 2π* orbital rehybridizes with the transition metal d-band to form new bonding and anti-bonding states. We relate the back-donation charge transfer associated with chemisorption to the promotion of an electron from the 5σ orbital to the 2π* orbital in the gas-phase NO G2Σ- ← X2Π excitation. We establish linear relationships between Echem and ΔEG ← X and formulate an Echem correction scheme in the style of Mason et al. [Physical Review B 69, 161401(R)]. We apply the NO Echem correction method to the (111) surfaces of Pt, Pd, Rh, and Ir, with NO chemisorption modeled at a coverage of 0.25 ML. We note that the slope of Echemvs. ΔEG ← X and the dipole moment depend strongly on adsorption site for each metal, and we construct an approximate correction scheme which we test using NO/Pt(100) chemisorption.

  13. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin

    2017-12-01

    Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.

  14. DFT with larger supercells explains the band gap formation in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Trimarchi, Giancarlo

    The existence of large band gaps both in the antiferromagnetic (AFM) and the paramagnetic (PM) phases of the classic Mott insulators MnO, FeO, CoO, and NiO has traditionally been discussed in terms of theoretical methods requiring both (i) simple (often primitive) unit cells and (ii) correlated-electron methodologies. We show that if condition (i) is avoided (by using supercells, such as PM special quasi-random structures, in which chemically identical atoms can have different local environments), then even without condition (ii) one can describe the gaps and moments within a single-determinant DFT band structure approach. In this approach gapping is caused by basic structure, magnetism, and bonding effects underlying DFT, not via dynamic correlation (absent from DFT). As long as correlation is simplistically considered as ``anything that DFT does not get right'', gap formation in the AFM and PM phases is not due to correlation. This result defines the minimal theoretical methods needed to explain gapping and points to the possibility that some transition-metal oxides generally considered to have localized electrons detrimental to transport, could, in fact, rejoin the family of electronic semiconductors, to the benefit of a carrier transport technologies. A. Z. supported by DOE-OS-BES-MSE, Grant DE-FG02-13ER46959.

  15. Robust 3D DFT video watermarking

    NASA Astrophysics Data System (ADS)

    Deguillaume, Frederic; Csurka, Gabriela; O'Ruanaidh, Joseph J.; Pun, Thierry

    1999-04-01

    This paper proposes a new approach for digital watermarking and secure copyright protection of videos, the principal aim being to discourage illicit copying and distribution of copyrighted material. The method presented here is based on the discrete Fourier transform (DFT) of three dimensional chunks of video scene, in contrast with previous works on video watermarking where each video frame was marked separately, or where only intra-frame or motion compensation parameters were marked in MPEG compressed videos. Two kinds of information are hidden in the video: a watermark and a template. Both are encoded using an owner key to ensure the system security and are embedded in the 3D DFT magnitude of video chunks. The watermark is a copyright information encoded in the form of a spread spectrum signal. The template is a key based grid and is used to detect and invert the effect of frame-rate changes, aspect-ratio modification and rescaling of frames. The template search and matching is performed in the log-log-log map of the 3D DFT magnitude. The performance of the presented technique is evaluated experimentally and compared with a frame-by-frame 2D DFT watermarking approach.

  16. Theoretical Study on Sers of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Chen, Yan-Li; Tian, Zhong-Qun

    2016-06-01

    Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) has been used to characterize adsorbed species widely but reaction intermediates rarely on electrodes. In previous studies, the observed SERS signals were proposed from surface benzyl species due to the electrochemical reduction of benzyl chloride on silver electrode surfaces. In this work, we reinvestigated the vibrational assignments of benzyl chloride and benzyl radical as the reaction intermediate. On the basis of density functional theoretical (DFT) calculations and normal mode analysis, our systematical results provide more reasonable new assignments for both surface species. Further, we investigated adsorption configurations, binding energies, and vibrational frequency shifts of benzyl radical interacting with silver. Our calculated results show that the wagging vibration displays significant vibrational frequency shift, strong coupling with some intramolecular modes in the phenyl ring, and significant changes in intensity of Raman signals. The study also provides absolute Raman intensity in benzyl halides and discuss the enhancement effect mainly due to the binding interaction with respect to free benzyl radical.

  17. Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation.

    PubMed

    Casida, Mark E; Huix-Rotllant, Miquel

    2016-01-01

    In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.

  18. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies.

    PubMed

    Guennoun, L; Zaydoun, S; El Jastimi, J; Marakchi, K; Komiha, N; Kabbaj, O K; El Hajji, A; Guédira, F

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400cm(-1) and 3600-50cm(-1) respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  20. Phenothiazine-anthraquinone donor-acceptor molecules: synthesis, electronic properties and DFT-TDDFT computational study.

    PubMed

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-09-17

    Two donor-acceptor molecules with different pi-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and pi --> pi* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  1. Photoinduced interaction studies on N-(2-methylthiophenyl)-2-hydroxy-1-naphthadiamine with TiO2 nanoparticles: a combined experimental and theoretical (DFT and spectroscopic) approach.

    PubMed

    Pushpam, S; Gayathri, S; Ramakrishnan, V

    2014-12-10

    Schiff base derivative synthesized by the reaction of 2-(methylthio) aniline and 2-hydroxy-1-naphthaldehyde exhibits keto-amine tautomerism in methanol solvent. The fluorescence quenching of N-(2-methyl thiophenyl)-2-hydroxy-1-naphthadiamine (NMTHN) by TiO2 nanoparticles in methanol has been studied. The excitation and emission peaks have been observed at 439 and 509nm respectively. The apparent association constant has been deduced from the absorption spectral changes of NMTHN-TiO2 nanoparticles using Bensi-Hildebrand equation. The number of binding sites and the binding constant have been calculated from the relevant fluorescence data. Quenching of fluorescence of NMTHN by TiO2 could be due to a dynamic mode. Density Functional Theory (DFT) calculations also have been performed to study the charge distribution of NMTHN-TiO2 both in ground and excited states. The HOMO-LUMO analysis of NMTHN-TiO2 in the ground state has been made. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Palladium(II) complexes bearing di-(2-picolyl)amine functionalized chrysin fragments. An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    González-Montiel, Simplicio; Valdez-Calderón, Alejandro; Vásquez-Pérez, J. Manuel; Torres-Valencia, J. Martín; Martínez-Otero, Diego; López, Jorge A.; Cruz-Borbolla, Julián

    2017-10-01

    A new series of chrysin derivatives containing the di-(2-picolyl)amine (2a-d) moiety have been designed, synthesized, and treated with PdCl2·2CH3CN allowing the preparation of new cationic Palladium(II) complexes (3a-d). Solution-phase studies by 1H NMR spectroscopy of 3a-d revealed that the protons of the methylene groups of the di(2-picolyl)amine fragment are diasterotopic. GIAO/DFT studies were performed to predict the molecular structures of 3a-d by comparing the experimental and theoretical 1H-NMR chemical shifts. The molecular structure of 3c was determined by X-ray crystallographic analysis revealing that di-(2-picolyl)amine fragment is coordinated to the palladium center in a κ3-N,N,N-tridentate fashion in an overall square-planar geometry completed with a chloride atom.

  3. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Prabhakaran, A.

    2014-08-01

    In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  4. Theoretical and experimental prediction of the redox potentials of metallocene compounds

    NASA Astrophysics Data System (ADS)

    Li, Ya-Ping; Liu, Hai-Bo; Liu, Tao; Yu, Zhang-Yu

    2017-11-01

    The standard redox electrode potential ( E°) values of metallocene compounds are obtained theoretically with density functional theory (DFT) method at B3LYP/6-311++G( d, p) level and experimentally with cyclic voltammetry (CV). The theoretical E° values of metallocene compounds are in good agreement with experimental ones. We investigate the substituent effects on the redox properties of metallocene compounds. Among the four metallocene compounds, the E° values is largest for titanocene dichloride and smallest for ferrocene.

  5. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies.

    PubMed

    Escorihuela, Jorge; Das, Anita; Looijen, Wilhelmus J E; van Delft, Floris L; Aquino, Adelia J A; Lischka, Hans; Zuilhof, Han

    2018-01-05

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH ⧧ ) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH ⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

  6. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    PubMed Central

    2017-01-01

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne–1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3–8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches. PMID:29260879

  7. Understanding cage effects in imidazolium ionic liquids by 129Xe NMR: MD simulations and relativistic DFT calculations.

    PubMed

    Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea

    2014-12-04

    (129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding.

  8. Spectroscopic, Homo-Lumo and NLO studies of tetra fluoro phthalate doped Coumarin crystals using DFT method

    NASA Astrophysics Data System (ADS)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2017-08-01

    In the present examination, a methodical study has been done on the development of unadulterated and Coumarin doped Tetrafluoro Phthalate precious stones. Powder X-beam diffraction studies were done and the cross section parameters were computed by minimum square technique in pure and doped crystals. FT-IR, UV-Vis, Thermal, Micro-hardness and Dielectric studies were additionally done for the pure and doped crystals. The tentatively watched FT-IR and FT-Raman groups were allotted to various ordinary methods of the atom. The steadiness and charge delocalization of the particle were likewise concentrations were done by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the particle. Atomic electrostatic potential has been broken down the electronic properties such as excitation energies, oscillator quality, wavelengths and HOMO-LUMO energies were acquired by time-subordinate DFT (TD-DFT) approach. The SHG of pure and doped TFP stones were examined through Nd:YAG Q-exchanged laser.

  9. De(side chain) model of epothilone: bioconformer interconversions DFT study.

    PubMed

    Rusinska-Roszak, Danuta; Lozynski, Marek

    2009-07-01

    Using ab initio methods, we have studied conformations of the de(sidechain)de(dioxy)difluoroepothilone model to quantify the effect of stability change between the exo and endo conformers of the epoxy ring. The DFT minimization of the macrolactone ring reveals four low energy conformers, although MP2 predicted five stable structures. The model tested with DFT hybride functional (B3LYP/6-31+G(d,p)) exhibits the global minimum for one of the exo forms (C), experimentally observed in the solid state, but unexpectedly with the MP2 electron correlation method for the virtual endo form (W). Using the QST3 technique, several pathways were found for the conversion of the low energy conformers to the other low energy exo representatives, as well as within the endo analog subset. The potential energy relationships obtained for several exo forms suggest a high conformational mobility between three, experimentally observed, conformers. The high rotational barrier, however, excludes direct equilibrium with experimental EC-derived endo form S. The highest calculated transition state for the conversion of the most stable exo M interligand to the endo S form is approximately a 28 kcal/mol above the energy of the former. The two-step interconversion of the exo H conformer to the endo S requires at least 28 kcal/mol. Surprisingly, we found that the transition state energy of the H form to the virtual endo W has the acceptable value of about 9 kcal/mol and the next energy barrier for free interconversion of endo W to endo S is 13 kcal/mol.

  10. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    PubMed

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  11. Effect of tellurium concentration on the structural, electronic and mechanical properties of beryllium sulphide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.

    2018-05-01

    The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.

  12. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    PubMed

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Theoretical Investigation of the Electronic Structure of Fe(II) Complexes at Spin-State Transitions

    PubMed Central

    2013-01-01

    The electronic structure relevant to low spin (LS)↔high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+ (1) (tz = 1H-tetrazole), [Fe(bipy)3]2+ (2) (bipy = 2,2′-bipyridine), and [Fe(terpy)2]2+ (3) (terpy = 2,2′:6′,2″-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT), and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS–HS states (ΔEHL) applying the above methods and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two-dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed at both the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet–triplet and triplet–quintet states are separated along different coordinates, i.e., different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the

  14. DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO) m quantum dots interacting with CO, NO2 and SO3 molecules

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sankarasubramanian; Shankar, Ramasamy; Kolandaivel, Ponmalai

    2018-03-01

    Hollow spherical (HS) and hollow cubic (HC) (ZnO) m quantum dots (QDs) were constructed and optimized using density functional theory (DFT) method. CO, NO2 and SO3 molecules were used to interact with the HC and HS (ZnO) m QDs at the centre and on the surface of the QDs. The changes in the electronic energy levels of HC and HS (ZnO) m QDs due to the interactions of CO, NO2 and SO3 molecules have been studied. The electronic and spectroscopic properties, such as density of states, HOMO-LUMO energy gap, absorption spectra, IR and Raman spectra of HC and HS (ZnO) m QDs have been studied using DFT and Time dependent-DFT (TD-DFT) methods. The interaction energy values show that the SO3 molecule has strongly interacted with HC and HS (ZnO) m QDs than the CO and NO2 molecules. The results of the density of states show that the HC QDs have peaks that are very close to each other, whereas the same is found to be broad in the HS QDs. The HOMO-LUMO energy gap is more for the HS QDs than the HC QDs, and also it gets decreased, when the NO2 and SO3 molecules interact at the centre of the HC and HS (ZnO) m QDs. The blue and red shifts were observed in the absorption spectra of HS and HC QDs. The natural transition orbital (NTO) plot reveals that the interaction of the molecules on the surface of the QDs reduce the chance of electron-hole recombination; hence the energy gap increases for NO2 and SO3 molecular interactions on the surface of the HC and HS (ZnO) m QDs. The vibrational assignments have been made for HC and HS QDs interacting with CO, NO2 and SO3 molecules.

  15. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  16. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.

    PubMed

    Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo

    2009-09-08

    Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.

  17. Time dependent-density functional theory (TD-DFT) and experimental studies of UV-Visible spectra and cyclic voltammetry for Cu(II) complex with Et2DTC

    NASA Astrophysics Data System (ADS)

    Valle, Eliana Maira A.; Maltarollo, Vinicius Gonçalves; Almeida, Michell O.; Honorio, Kathia Maria; dos Santos, Mauro Coelho; Cerchiaro, Giselle

    2018-04-01

    In this work, we studied the complexation mode between copper(II) ion and the specific ligand investigated as carriers of metals though biological membranes, diethyldithiocarbamate (Et2DTC). It is important to understand how this occurs because it is an important intracellular chelator with potential therapeutic applications. Theoretical and experimental UV visible studies were performed to investigate the complexation mode between copper and the ligand. Electrochemical studies were also performed to complement the spectroscopic analyses. According to the theoretical calculations, using TD-DFT (Time dependent density functional theory), with B3LYP functional and DGDVZP basis set, implemented in Gaussian 03 package, it was observed that the formation of the complex [Cu(Et2DTC)2] is favorable with higher electron density over the sulfur atoms of the ligand. UV/Vis spectra have a charge transfer band at 450 nm, with the DMSO-d6 band shift from 800 to 650 nm. The electrochemical experiments showed the formation of a new redox process, referring to the complex, where the reduction peak potential of copper is displaced to less positive region. Therefore, the results obtained from this study give important insights on possible mechanisms involved in several biological processes related to the studied system.

  18. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  19. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H.

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Paulimore » (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.« less

  20. Naphtyl- and pyrenyl-flavylium dyads: Synthesis, DFT and optical properties

    NASA Astrophysics Data System (ADS)

    Aguilar-Castillo, Bethsy Adriana; Sánchez-Bojorge, Nora Aydee; Chávez-Flores, David; Camacho-Dávila, Alejandro A.; Pasillas-Ornelas, Eddie; Rodríguez-Valdez, Luz-María; Zaragoza-Galán, Gerardo

    2018-03-01

    A one-step preparation of flavylium salts containing naphtyl and pyrenyl moieties is described hereafter. Flavylium salts were successfully characterized by 1H NMR spectroscopy and ESI-MS spectrometry. Theoretical calculations were carried out by means of Density Functional Theory in order to simulate flavylium cation electronic transitions. Molecular simulation of -naphtyl derivatives displayed a coplanar conformation between naphthalene and benzopyrylium moieties. In contrast, DFT analysis exhibited a non-coplanar arrangement of pyrene and benzopyrylium units. These former statements in coherence with the absorption experiments where the naphtyl-flavylium dyads shows a red-shifted maximum absorption band with respect to pyrene dyads, led us to conclude that these bathochromic effects are associated with a more planar conformation.

  1. Tuning the physical properties of organic sensitizers by replacing triphenylamine with new donors for dye sensitized solar cells - a theoretical approach.

    PubMed

    Ramkumar, Sekar; Manidurai, Paulraj

    2017-02-15

    New donor molecules with low ionization potential have been theoretically designed by replacing the benzene moieties in triphenylamine (TPA) with thiophene as well as furan. The designed new donors also exhibited planar structure, making an angle of 120° around the nitrogen atom that results in resonance effects through π-bonds of aryl rings. New sensitizers have been theoretically studied using DFT and TD-DFT by adopting these designed donors. UV-Vis absorption spectra, light harvesting ability (LHE) and electron injection ability (ΔG inject ) of the designed sensitizers have been calculated by taking L0 as reference. Orbital overlapping between donor and acceptor facilitates intra-molecular charge transfer, thereby increasing the interfacial electron injection from the sensitizer to the semiconductor nanoparticles. Our theoretical results demonstrate that sensitizers DTPA-AA and DFPA-AA have broader absorption and lower ΔG inject respectively compare to L0, this opens a new way for designing sensitizers for dye sensitized solar cells (DSSCs). All the dyes designed were found to be good light harvesters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures.

    PubMed

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-15

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures

    NASA Astrophysics Data System (ADS)

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-01

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed.

  4. ONIOM DFT/PM3 calculations on the interaction between dapivirine and HIV-1 reverse transcriptase, a theoretical study.

    PubMed

    Liang, Y H; Chen, F E

    2007-08-01

    Theoretical investigations of the interaction between dapivirine and the HIV-1 RT binding site have been performed by the ONIOM2 (B3LYP/6-31G (d,p): PM3) and B3LYP/6-31G (d,p) methods. The results derived from this study indicate that this inhibitor dapivirine forms two hydrogen bonds with Lys101 and exhibits strong π-π stacking or H…π interaction with Tyr181 and Tyr188. These interactions play a vital role in stabilizing the NNIBP/dapivirine complex. Additionally, the predicted binding energy of the BBF optimized structure for this complex system is -18.20 kcal/mol.

  5. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    NASA Astrophysics Data System (ADS)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  6. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  7. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  8. DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M.R.; Fried, L.E.

    1998-11-26

    The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less

  9. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  10. Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone

    NASA Astrophysics Data System (ADS)

    Sroczyński, Dariusz; Malinowski, Zbigniew

    2017-12-01

    The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.

  11. HCOOH decomposition on Pt(111): A DFT study

    DOE PAGES

    Scaranto, Jessica; Mavrikakis, Manos

    2015-10-13

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO 2 and H 2 or dehydration leading to CO and H 2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We alsomore » considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. Here, we found that CO 2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.« less

  12. HCOOH decomposition on Pt(111): A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaranto, Jessica; Mavrikakis, Manos

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO 2 and H 2 or dehydration leading to CO and H 2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We alsomore » considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. Here, we found that CO 2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.« less

  13. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT-D2 study

    NASA Astrophysics Data System (ADS)

    Saqlain, Muhammad Adnan; Hussain, Akhtar; Siddiq, Muhammad; Leitão, Alexandre A.

    2018-03-01

    With the help of DFT-D2 methodology, we have investigated the adsorption of water on clean anatase(001) and Au/anatase(001). In the former case, adsorption energies of H2O differ to small extent computed employing GGA = PW91 and DFT-D2 methods. While the GGA = PW91 predicts that water would desorb close to 650 K on the TiO2 surface, the DFT-D2 predicts that desorption is most likely to occur above 700 K. A comparison of water adsorption on TiO2 and Au/TiO2 surfaces shows that the TiO2 prefers dimer adsorption whereas the Au/TiO2 prefers monomer adsorption. We found that the diffusion of surface hydroxyls on to the Au cluster from the Au/TiO2 periphery is unlikely and it seems that the CO oxidation would occur at the Au/TiO2 boundary. The results show that water dissociation and CO oxidation steps occur easily on Au/TiO2 indicating that this could be good alternative catalyst for water gas shift reaction industry.

  14. DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kannappan, V.; Sathyanarayanamoorthi, V.

    2016-10-01

    Extensive quantum mechanical studies are carried out on Celecoxib (CXB), a new generation drug to understand the vibrational and electronic spectral characteristics of the molecule. The vibrational frequencies of CXB are computed by HF and B3LYP methods with 6-311++G (d, p) basis set. The theoretical scaled vibrational frequencies have been assigned and they agreed satisfactorily with experimental FT-IR and Raman frequencies. The theoretical maximum wavelength of absorption of CXB are calculated in water and ethanol by TD-DFT method and these values are compared with experimentally determined λmax values. The spectral and Natural bonds orbital (NBO) analysis in conjunction with spectral data established the presence of intra molecular interactions such as mesomeric, hyperconjugative and steric effects in CXB. The electron density at various positions and reactivity descriptors of CXB indicate that the compound functions as a nucleophile and establish that aromatic ring system present in the molecule is the site of drug action. Electronic distribution and HOMO - LUMO energy values of CXB are discussed in terms of intra-molecular interactions. Computed values of Mulliken charges and thermodynamic properties of CXB are reported.

  15. Armchair and zigzag nanoribbons of gold and silver: A DFT study

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2018-04-01

    This paper presents the results from a DFT-based computational study of structural and electronic properties of zigzag and armchair edge shaped nanoribbons of gold and silver in hexagonal phase. The cohesive energy of the considered nanoribbons are found to be more than the corresponding 2D counterpart, thereby, suggesting Au and Ag nanoribbons to be more stable in 1D as compared to 2D. All nanoribbons are found to be metallic with a modulation in quantum ballistic conductance with length and edge type of the nanoribbon. Au nanoribbons are found to have higher conductance than Ag nanoribbon. There is increase in conductance with increase in length of nanoribbon.

  16. Synthesis, characterization, crystal structure and DFT study of two new polymorphs of a Schiff base (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile

    NASA Astrophysics Data System (ADS)

    Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.

    2016-02-01

    Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.

  17. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  18. The effect of Cu(2+) chelation on the direct photolysis of oxytetracycline: A study assisted by spectroscopy analysis and DFT calculation.

    PubMed

    Jin, Xin; Qiu, Shanshan; Wu, Ke; Jia, Mingyun; Wang, Fang; Gu, Chenggang; Zhang, Aiqian; Jiang, Xin

    2016-07-01

    The extensive usage of OTC and Cu(2+) in livestock and poultry industry caused high residues in natural environment. Co-contamination of OTC and Cu(2+) was a considerable environmental problem in surface waters. In this study, Cu(2+) mediated direct photolysis of OTC was studied. Cu(2+) chelating with OTC was found to greatly inhibit OTC photodegradation. To reveal the chelation mechanism of OTC-Cu complexes, multiple methods including UV-Vis absorption spectra, Infrared (IR) spectra, mass spectroscopy, and density functional theoretical (DFT) modeling were performed. Four OTC-Cu complexes were proposed. Cu(2+) preferably bond to O11O12 site with the binding constants logK = 8.19 and 7.86 for CuHL+ and CuL±, respectively. The second chelating site was suggested to be O2O3 with the binding constants of logK = 4.41 and 4.62 for Cu2HL3+ and Cu2L2+, respectively. The suppressed quantum yield of OTC by Cu2+ chelation was accused for their intra-/inter-molecular electron transfer, by which the energy in activated states was distributed. The occurrence of electron transfer between BCD ring and A ring also from BCD ring to Cu was evidenced by the TD-DFT result only for the OTC-Cu complexes. Besides, the cyclic voltammetry measurement also suggested one OTC-Cu(II)/OTC-Cu(I) redox couple. These results suggested that the persistence of OTC in environmental surface waters will probably be underestimated for neglecting the chelating effect of Cu2+. The photolysis quantum yield of OTC-Cu complexes, as well as the specific molar absorption constants, the equilibrium binding constants of Cu2+ with OTC could contribute to more accurate kinetic models of OTC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DNA bases assembled on the Au(110)/electrolyte interface: a combined experimental and theoretical study.

    PubMed

    Salvatore, Princia; Nazmutdinov, Renat R; Ulstrup, Jens; Zhang, Jingdong

    2015-02-19

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional theory (DFT) calculations have been employed in the present study to address the adsorption of the four nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T), on the Au(110)-electrode surface. Au(110) undergoes reconstruction to the (1 × 3) surface in electrochemical environment, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy and geometry of the DNA bases in different adsorbate orientations. The optimized geometry is further used to compute models for STM images which are compared with the recorded STM images. This has provided insight into the physical nature of the adsorption. The specific orientations of A, C, G, and T on Au(110) and the nature of the physical adsorbate/surface interaction based on the combination of the experimental and theoretical studies are proposed, and differences from nucleobase adsorption on Au(111)- and Au(100)-electrode surfaces are discussed.

  20. A theoretical study of colloidal forces near an amphiphilic polymer brush

    NASA Astrophysics Data System (ADS)

    Wu, Jianzhong

    2011-03-01

    Polymer-based ``non-stick'' coatings are promising as the next generation of effective, environmentally-friendly marine antifouling systems that minimize nonspecific adsorption of extracellular polymeric substances (EPS). However, design and development of such systems are impeded by the poor knowledge of polymer-mediated interactions of biomacromolecules with the protected substrate. In this work, a polymer density functional theory (DFT) is used to predict the potential of mean force between spherical biomacromolecules and amphiphilic copolymer brushes within a coarse-grained model that captures essential nonspecific interactions such as the molecular excluded volume effects and the hydrophobic energies. The relevance of theoretical results for practical control of the EPS adsorption is discussed in terms of the efficiency of different brush configurations to prevent biofouling. It is shown that the most effective antifouling surface may be accomplished by using amphiphilic brushes with a long hydrophilic backbone and a hydrophobic end at moderate grafting density.

  1. Theoretical development and first-principles analysis of strongly correlated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated anmore » alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.« less

  2. Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Zainuri, D. Alwani; Arshad, Suhana; Khalib, N. Che; Razak, I. Abdul; Pillai, Renjith Raveendran; Sulaiman, S. Fariza; Hashim, N. Shafiqah; Ooi, K. Leong; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-01-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system with P21/c space group with the unit cell parameters of a = 16.147 (2) Å, b = 14.270 (2) Å, c = 5.9058 (9) Å, β = 92.577 (3)° and Z = 4. The molecular geometry obtained from X-Ray structure determination was optimized by Density Functional Theory (DFT) using B3LYP/6-31G+(d, p)/Lanl2dz(f) method in the ground state. The IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. In order to investigate local reactivity properties of the title molecule, we have conducted DFT calculations of average local ionization energy surface and Fukui functions which were mapped to the electron density surface. In order to predict the open air stability and possible degradation properties, within DFT approach, we have also calculated bond dissociation energies. 1H and 13C NMR spectra were recorded and chemical shifts were calculated theoretically and compared with the experimental values. In addition, in vitro antimicrobial results show that the title compound has great potential of antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus bacteria and antifungal activity against Candida albicans in comparison to some reported chalcone derivatives. Antioxidant studies revealed the highest metal chelating activity of this compound.

  3. Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline

    NASA Astrophysics Data System (ADS)

    Ceylan, Ümit; Tarı, Gonca Özdemir; Gökce, Halil; Ağar, Erbil

    2016-04-01

    Crystal structure of the title compound, 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, C13H12N2O2S, has been synthesized and characterized by FT-IR and UV-Vis spectrum. The compound crystallized in the monoclinic space group P 21/c with a = 11.3578 (4) Å, b = 7.4923 (2) Å, c = 14.9676 (6) Å and β = 99.589 (3)° and Z = 4 in the unit cell. The molecular geometry was also calculated using the Gaussian 03 software and structure was optimized using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set in ground state. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311++G(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. It was seen that the optimized structure was in excellent agreement with the X-ray crystal structure. The energetic behaviors of the title compound in solvent media were examined using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set applying the polarizable continuum model (PCM). In addition, the molecular orbitals (FMOs) analysis, molecular electrostatic potential (MEP), nonlinear optical and thermodynamic properties of the title compound were performed using the same methods with the 6-311++G(d,p) basis set.

  4. An innovative method for the non-destructive identification of photodegradation products in solid state: 1H-14N NMR-NQR and DFT/QTAIM study of photodegradation of nifedipine (anti-hypertensive) to nitrosonifedipine (potential anti-oxidative).

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Zagar, V

    2012-08-30

    Stability of the antihypertensive drug nifedipine (NIF) has been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT). Photodegradation of NIF to its metabolite in vivo nitrosonifedipine, NO-NIF (antioxidative agent) upon long term daylight exposure was detected and the changes in the molecular structure of NIF were analysed. The photoconversion of NIF to NO-NIF in solid was found to be accompanied with the electron density redistribution at nitrogen sites (NH to N and NO(2) to NO) and proved to be successfully detected with identification of photoproducts by (1)H-(14)N NQDR and DFT methods. The increase in the e(2)qQ/h and η describing EFG tendency towards non-spherical symmetry was significantly greater upon the reduction of NO(2) site than upon hydrogen abstraction from NH site. The level of sensitivity of detection of the photodegradation product was about 1% of the original sample. The Quantum Theory of Atoms in Molecules (QTAIM) analysis has been found useful in predicting photoreactive sites in the molecules and finding the explanation of differences in reactivity between parent NIF and its photoproduct NO-NIF. Using NIF as a model, this study demonstrates the suitability of NQDR supported by DFT for non-destructive determination of the photodegradation products in solid state. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Water adsorption on a copper formate paddlewheel model of CuBTC: A comparative MP2 and DFT study

    NASA Astrophysics Data System (ADS)

    Toda, Jordi; Fischer, Michael; Jorge, Miguel; Gomes, José R. B.

    2013-11-01

    Simultaneous adsorption of two water molecules on open metal sites of the HKUST-1 metal-organic framework (MOF), modeled with a Cu2(HCOO)4 cluster, was studied by means of density functional theory (DFT) and second-order Moller-Plesset (MP2) approaches together with correlation consistent basis sets. Experimental geometries and MP2 energetic data extrapolated to the complete basis set limit were used as benchmarks for testing the accuracy of several different exchange-correlation functionals in the correct description of the water-MOF interaction. M06-L and some LC-DFT methods arise as the most appropriate in terms of the quality of geometrical data, energetic data and computational resources needed.

  6. Blue M2: an intermediate melanoidin studied via conceptual DFT.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2018-05-31

    In this computational study, ten density functionals, viz. CAM-B3LYP, LC-ω PBE, M11, M11L, MN12L, MN12SX, N12, N12SX, ω B97X, and ω B97XD, related to the Def2TZVP basis sets, are assessed together with the SMD solvation model for calculation of the molecular properties and structure of blue-M2 intermediate melanoidin pigment. All the chemical reactivity descriptors for the system are calculated via conceptual density functional theory (DFT). The active sites suitable for nucleophilic, electrophilic, and radical attacks are selected by linking them with the Fukui function indices, electrophilic Parr functions, and condensed dual descriptors Δf(r), respectively. The prediction of the maximum absorption wavelength is considerably accurate relative to its experimental value. The study reveals that the MN12SX and N12SX density functionals are the most appropriate density functionals for predicting the chemical reactivity of the molecule under study.

  7. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Theoretical study on the mechanism of the gas-phase elimination kinetics of alkyl chloroformates

    NASA Astrophysics Data System (ADS)

    Alcázar, Jackson J.; Marquez, Edgar; Mora, José R.; Cordova-Sintjago, Tania; Chuchani, Gabriel

    2016-03-01

    The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates- ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) - have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ-H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.

  9. Theoretical investigation of the weak interaction between graphene and alcohol solvents

    NASA Astrophysics Data System (ADS)

    Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan

    2017-05-01

    The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.

  10. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  11. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    PubMed

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  12. Plane-Wave DFT Methods for Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.

    A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.

  13. Potential energy distribution (PED) analysis of DFT calculated IR spectra of the most stable Li, Na, and Cu(I) diformate molecules

    NASA Astrophysics Data System (ADS)

    Jamróz, M. H.; Dobrowolski, J. Cz.

    2001-05-01

    For the most stable Li, Na, and Cu(I) diformates we present the vibrational spectra, supported by potential energy distribution (PED) analysis, and the interaction energies between formic acid and metal formate by the DFT (B3PW91) method. PED analysis of the theoretical spectra forms the basis for the elucidation of the future matrix isolation IR spectra.

  14. Multicomponent DFT study of geometrical H/D isotope effect on hydrogen-bonded organic conductor, κ-H3(Cat EDT-ST)2

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori

    2017-04-01

    We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.

  15. Synthesis and characterization of a new zinc(II) complex with tetradentate azo-thioether ligand: X-ray structure, DNA binding study and DFT calculation

    NASA Astrophysics Data System (ADS)

    Mondal, Apurba Sau; Pramanik, Ajoy Kumar; Patra, Lakshman; Manna, Chandan Kumar; Mondal, Tapan Kumar

    2017-10-01

    A new zinc(II) complex, [Zn(L)(H2O)](ClO4) (1) with azo-thioether containing NSNO donor ligand, 3-(2-(2-((pyridin-2-ylmethyl)thio)phenyl)hydrazono)pentane-2,4-dione (HL) is synthesized and characterized by several spectroscopic techniques. The distorted square based pyramidal (DSBP) geometry is confirmed by single crystal X-ray structure. The ability of the complex to bind with CT DNA is investigated by UV-vis method and the binding constant is found to be 4.16 × 104 M-1. Competitive binding study with ethidium bromide (EB) by fluorescence method suggests that the zinc(II) complex efficiently displaces EB from EB-DNA. The Stern-Volmer dynamic quenching constant, Ksv is found to be 1.2 × 104 M-1. Theoretical calculations by DFT and TDDFT/CPCM methods are used to interpret the electronic structure and UV-vis spectrum of the complex.

  16. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  17. Adsorption of rare gases on the C20 nanocage: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Rahimi, Rezvan; Kamalinahad, Saeedeh; Solimannejad, Mohammad

    2018-03-01

    The adsorption of rare gases (Rg) on the external surface of pristine and Sc-doped C20 (ScC19) nanocage is investigated using density functional theory (DFT). Also, time-dependent density functional theory (TD-DFT) and natural bond orbital (NBO) calculations are performed at the CAM-B3LYP/6-31G (d) level. The NBO analyses indicate that the adsorption of Rg molecules with studied nanocage significantly alters its electronic nature. Theoretical results have shown that Rg is weakly adsorbed on the pristine C20, so this nanocage cannot be a proper sensor for detecting and sensing rare gases. In order to improve properties of the nanocage as a promising sensor, Sc-doping process was investigated. The more negative adsorption energies (Eads) of Rg/ScC19 means that adsorption of Rg on the surface of ScC19 is energetically more favored than C20 and other nano-structures as reported in previous studies. It is expected that significant changes in the electronic properties caused by Rg may be used for designing new sensors for detection of rare gases.

  18. Synthesis, characterisation and DFT studies of three Schiff bases derived from histamine

    NASA Astrophysics Data System (ADS)

    Touafri, Lasnouni; Hellal, Abdelkader; Chafaa, Salah; Khelifa, Abdellah; Kadri, Abdelaziz.

    2017-12-01

    In this paper, we report first, the synthesis and characterisation of three Schiff bases derived from histamine by condensation of histamine with various aldehydes. Then, we present a detailed DFT study based on B3LYP/6-31G(d,p) of geometrical structures and electronic properties of these compounds. The study was extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionisation potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Electrophilicity (ω), Electronegativity (χ) and Polarisability (α). The calculated HOMO and LUMO energy reveals that the charge transfers occurring within the molecule. On the basis of vibration analyses, the thermodynamic properties of the titles compound were also calculated.

  19. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    NASA Astrophysics Data System (ADS)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  20. Solution and solid-state effects on NMR chemical shifts in sesquiterpene lactones: NMR, X-ray, and theoretical methods.

    PubMed

    Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula

    2012-01-12

    Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.

  1. DFT:B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in skin dermis of healthy young, healthy elderly, and diabetic elderly women

    NASA Astrophysics Data System (ADS)

    Téllez Soto, Claudio Alberto; Pereira, Liliane; dos Santos, Laurita; Rajasekaran, Ramu; Fávero, Priscila; Martin, Airton Abrahão

    2016-12-01

    In the confocal Raman spectra of skin dermis, the band area in the spectral region of proline and hydroxyproline varies according to the age and health condition of the volunteers, classified as healthy young women, healthy elderly women, and diabetic elderly women. Another observation refers to the intensity variation and negative Raman shift of the amide I band. To understand these effects, we adopted a model system using the DFT/B3LYP:3-21G procedure, considering the amino acid chain formed by glycine, hydroxyproline, proline, and alanine, which interacts with two and six water molecules. Through these systems, polarizability variations were analyzed to correlate its values with the observed Raman intensities of the three groups of volunteers and to assign the vibrational spectra of the skin dermis. As a way to correlate other experimental trends, we propose a model of chemical reaction of water interchange between the bonding amino acids, in which water molecules are attached with glucose by hydrogen bonds. The theoretical results are in accordance with the observed experimental trends.

  2. Electron configuration and hydrogen-bonding pattern in several thymine and uracil analogues studied by 1H-14N NQDR and DFT/QTAIM.

    PubMed

    Seliger, Janez; Žagar, Veselko; Latosińska, Magdalena; Latosińska, Jolanta Natalia

    2012-08-02

    Some thio- and aza-derivatives of natural nucleobases uracil and thymine: 2-thiouracil, 4-thiouracil, 6-methyl-2-thiouracil, 6-azauracil, and 6-aza-2-thiothymine have been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT)/Quantum Theory of Atoms in Molecules (QTAIM). The (14)N resonance frequencies have been measured at 173 and 295 K and assigned to particular nitrogen sites (-N═ and -NH-). The temperature factor has been found negligible. The changes in the molecular skeletons, electric charge distribution, intermolecular interactions pattern, and molecular aggregations caused by oxygen replacement with sulfur and carbon replacement with nitrogen are discussed in detail. Correlations between all the principal components of the (14)N quadrupole coupling tensor have been found helpful in the search for the experimental (14)N NQR frequencies, their assignment to a particular nitrogen positions and estimation of the strength of the inter- and intramolecular interactions. The variation in the NQR parameters have been mainly related to the variation in the population of π-electron orbital. For thiouracil derivatives a general trend is that the stronger the hydrogen bond is, the lower is the asymmetry parameter, while for thymine and 6-aza-2-thiotymine, the opposite relation holds. Differences in correlations of the principal components of the (14)N quadrupole coupling tensor at the amino and iminonitrogen positions in heterocyclic rings are discussed. The effect of C→H and C→N substitution at the amino nitrogen position and C→N substitution at the iminonitrogen position on the quadrupole coupling tensor is analyzed. This study also demonstrates the advantages of combining NQR and DFT/QTAIM to predict an unsolved crystalline structure of 4-thiouracil.

  3. Probing the adsorption mechanism in thiamazole bound to the silver surface with Surface-enhanced Raman Scattering and DFT

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Thomas, Susy; Sarkar, Anjana; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-09-01

    Surface-enhanced Raman scattering (SERS) of thiamazole have been investigated in aqueous solution. Thiamazole is an important anti-thyroid drug that is used in the treatment of hyperthyroidism (over activity of the thyroid gland). Due to its medicinal importance, the surface adsorption properties of thiamazole have been studied. The experimental Raman and SERS data are supported with DFT calculations using B3LYP functional with LANL2DZ basis set. From the SERS spectra as well as theoretical calculations, it has been inferred that thiamazole is chemisorbed to the silver surface directly through the sulphur atom and the ring N atom, with a tilted orientation.

  4. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Dispersion interactions with linear scaling DFT: a study of planar molecules on charged polar surfaces

    NASA Astrophysics Data System (ADS)

    Andrinopoulos, Lampros; Hine, Nicholas; Haynes, Peter; Mostofi, Arash

    2010-03-01

    The placement of organic molecules such as CuPc (copper phthalocyanine) on wurtzite ZnO (zinc oxide) charged surfaces has been proposed as a way of creating photovoltaic solar cellsfootnotetextG.D. Sharma et al., Solar Energy Materials & Solar Cells 90, 933 (2006) ; optimising their performance may be aided by computational simulation. Electronic structure calculations provide high accuracy at modest computational cost but two challenges are encountered for such layered systems. First, the system size is at or beyond the limit of traditional cubic-scaling Density Functional Theory (DFT). Second, traditional exchange-correlation functionals do not account for van der Waals (vdW) interactions, crucial for determining the structure of weakly bonded systems. We present an implementation of recently developed approachesfootnotetextP.L. Silvestrelli, P.R.L. 100, 102 (2008) to include vdW in DFT within ONETEPfootnotetextC.-K. Skylaris, P.D. Haynes, A.A. Mostofi and M.C. Payne, J.C.P. 122, 084119 (2005) , a linear-scaling package for performing DFT calculations using a basis of localised functions. We have applied this methodology to simple planar organic molecules, such as benzene and pentacene, on ZnO surfaces.

  6. Dipole moments and solvatochromism of metal complexes: principle photophysical and theoretical approach.

    PubMed

    Loukova, Galina V; Milov, Alexey A; Vasiliev, Vladimir P; Minkin, Vladimir I

    2016-07-21

    For metal-based compounds, the ground- and excited-state dipole moments and the difference thereof are, for the first time, obtained both experimentally and theoretically using solvatochromic equations and DFT/B3LYP/QZVP calculations. The approach is suggested to be promising and easily accessible, and can be universal to elucidate the electronic properties of metal-based compounds.

  7. Optimized structure and thermochemical properties of flavonoids determined by the CHIH(medium) DFT model chemistry versus experimental techniques

    NASA Astrophysics Data System (ADS)

    Mendoza-Wilson, Ana María.; Lardizabal-Gutiérrez, Daniel; Torres-Moye, Enrique; Fuentes-Cobas, Luis; Balandrán-Quintana, René R.; Camacho-Dávila, Alejandro; Quintero-Ramos, Armando; Glossman-Mitnik, Daniel

    2007-12-01

    The purpose of this work was to evaluate the accuracy of the CHIH(medium)-DFT model chemistry (PBEg/CBSB2 ∗∗//PBEg/CBSB4) in the determination of the optimized structure and thermochemical properties of heterocyclic systems of medium size such as flavonoids, wherefore were selected three of the most abundant flavonoids in vegetable tissues, and which posses the higher antioxidant activity: quercetin, (+)-catechin and cyanidin. As reference systems were employed three cyclic compounds: phenol, catechol and resorcinol. The thermochemical properties evaluated were enthalpy of formation, bond dissociation enthalpy (BDE) and ionization potential (IP), following the scheme of isodesmic reactions. The theoretical results were compared with experimental data generated by X-ray diffraction and calorimetric techniques realized in part by us, whereas other data were taken from the literature. The results obtained in this work reveal that the CHIH(medium)-DFT model chemistry represents an accurate computational tool to calculate structural and thermochemical properties in the studied flavonoid and reference compounds. The average absolute deviation of enthalpy of formation for reference compounds was 3.0 kcal/mol, 2.64 kcal/mol for BDE, and 2.97 kcal/mol for IP.

  8. Structures, mechanical properties, equations of state, and electronic properties of β-HMX under hydrostatic pressures: a DFT-D2 study.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; De, Suvranu

    2014-10-07

    We report the hydrostatic compression studies of the β-polymorph of a cyclotetramethylene tetranitramine (HMX) energetic molecular crystal using DFT-D2, a first-principles calculation based on density functional theory (DFT) with van der Waals (vdW) corrections. The molecular structure, mechanical properties, electronic properties, and equations of state of β-HMX are investigated. For the first time, we predict the elastic constants of β-HMX using DFT-D2 studies. The equations of state under hydrostatic compression are studied for pressures up to 100 GPa. We found that the N-N bonds along the minor axis are responsible for the sensitivity of β-HMX. The analysis of the charge distribution shows that the electronic charge is transferred from hydrogen atoms to nitro groups with the amount of 0.131 and 0.064e for the nitro groups along the minor axis and major axis, respectively, when pressure changes from 0 GPa to 100 GPa. The electronic energy band gap changes from direct at a pressure of 0 GPa to indirect at a pressure of 50 GPa and higher. The band gap decreases with respect to an increase in pressure, implying that the impact sensitivity increases with compression. Our study suggests that the van der Waals interactions are critically important in modeling the mechanical properties of this molecular crystal.

  9. A DFT and QTAIM study of the adsorption of organic molecules over the copper-doped coronene and circumcoronene

    NASA Astrophysics Data System (ADS)

    Malček, Michal; Cordeiro, M. Natalia D. S.

    2018-01-01

    Graphene based materials are nowadays extensively studied because of their potential applications as gas sensors, biosensors or adsorbents. Doping the graphene surface with heteroatoms or transition metals can improve its electronic properties and chemical reactivity. Polyaromatic hydrocarbons coronene and circumcoronene can be used as models of tiny graphene quantum dots. The adsorption of a set of organic molecules (water, hydrogen peroxide, hydrogen sulfide, methanol, ethanol and oxygen molecule) over the copper-doped coronene and circumcoronene was theoretically studied using density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM). In the case of coronene, only one site was considered for the Cu-doping, whereas in the case of circumcoronene being a polyaromatic hydrocarbon composed of 54 carbon atoms, three different sites for Cu-doping were considered. For the systems under study, the adsorption of O2 was found energetically the most favorable, with energetic outcome ranging from -3.1 to -3.7 eV related to the position of dopant Cu atom. Changes in the topology of charge densities at Cu and in its vicinity after the adsorption of studied molecules were investigated in the framework of QTAIM. In addition, QTAIM analysis of bond critical points (BCP) was employed to study the character of the newly formed chemical bonds. The results of this study point out the suitability of Cu-doped graphene materials as sensors and/or adsorbents in practical applications.

  10. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).

  11. Comparative study of DFT+U functionals for non-collinear magnetism

    NASA Astrophysics Data System (ADS)

    Ryee, Siheon; Han, Myung Joon

    2018-07-01

    We performed comparative analysis for DFT+U functionals to better understand their applicability to non-collinear magnetism. Taking LiNiPO4 and Sr2IrO4 as examples, we investigated the results out of two formalisms based on charge-only density and spin density functional plus U calculations. Our results show that the ground state spin order in terms of tilting angle is strongly dependent on Hund J. In particular, the opposite behavior of canting angles as a function of J is found for LiNiPO4. The dependence on the other physical parameters such as Hubbard U and Slater parameterization is investigated. We also discuss the formal aspects of these functional dependences as well as parameter dependences. The current study provides useful information and important intuition for the first-principles calculation of non-collinear magnetic materials.

  12. Experimental and theoretical study of the electronic structure of single-crystal BaBiO3

    NASA Astrophysics Data System (ADS)

    Balandeh, Shadi; Green, Robert J.; Foyevtsova, Kateryna; Chi, Shun; Foyevtsov, Oleksandr; Li, Fengmiao; Sawatzky, George A.

    2017-10-01

    High quality single crystals of BaBiO3 were grown by congruent melting technique and characterized with x-ray diffraction, x-ray photoemission, and transport property studies. The perovskite oxide BaBiO3 is a negative charge transfer gap high Tc oxide parent superconducting compound exhibiting self-doping of holes into the oxygen 2 p band. We study the low energy scale valence and conduction bands in detail from both a theoretical perspective as well as through x ray, absorption/emission, and photoelectron spectroscopies. X-ray spectroscopy verifies the results of density functional theory (DFT) regarding the overall band structure featuring strong O 2 p character of the empty antibonding combination of the hybridized Bi 6 s and O 2 p states. From the analysis of the core level line shapes we conclude that the dominant O 2 p -Bi 6 s hybridization energy scale determines the low energy scale electronic structure. This analysis provides further insight into the importance of self-doped oxygen 2 p states in this high Tc family of oxides.

  13. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: Chemical, electrochemical, surface and DFT studies

    NASA Astrophysics Data System (ADS)

    Verma, Chandrabhan; Haque, J.; Ebenso, Eno E.; Quraishi, M. A.

    2018-06-01

    In present study two condensation products of melamine (triazine) and glyoxal namely, 2,2-bis(4,6-diamino-1,3,5-triazin-2-ylamino)acetaldehyde (ME-1) and (N2,N2‧E,N2,N2‧E)-N2,N2‧-(ethane-1,2-diylidene)-bis-(1,3,5-triazine-2,4,6-triamine) (ME-2) are tested as mild steel corrosion inhibitors in acidic solution (1M HCl). The inhibition efficiency of ME-1 and ME-2 increases with increase in their concentrations and maximum values of 91.47% and 94.88% were derived, respectively at 100 mgL-1 (34.20 × 10-5 M) concentration. Adsorption of ME-1 and ME-2 on the surface of metal obeyed the Langmuir adsorption isotherm. Polarization investigation revealed that ME-1 and ME-2 act as mixed type inhibitors with minor cathodic prevalence. The chemical and electrochemical analyses also supported by surface characterization methods where significant smoothness in the surface morphologies was observed in the images of SEM and AFM spectra. Several DFT indices such as EHOMO and ELUMO, ΔE, η, σ, χ, μ and ΔN were derived for both ME-1 and ME-2 molecules and correlated with experimental results. The DFT studies have also been carried out for protonated or cationic form of the inhibitor molecules by considering that in acidic medium the heteroatoms of organic inhibitors easily undergo protonation. The experimental and density functional theory (DFT) studies (neutral and protonated) were in good agreement.

  14. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.

    2017-04-01

    4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This

  15. Electronic structure, hydrogen bonding and spectroscopic profile of a new 1,2,4-triazole-5(4H)-thione derivative: A combined experimental and theoretical (DFT) analysis

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, Abdul-Malek S.

    2016-09-01

    Density functional theory has been implemented to study the electronic structure, molecular properties and vibrational spectra of 3-(adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione, a novel 1,2,4-triazole-5(4H)-thione derivative. Hydrogen bonded dimer of the title molecule has been studied using B3LYP, M06-2X and X3LYP functionals at 6-311++ G(d,p) level of theory. The intermolecular hydrogen bonding has been studied using NBO analysis of the dimer. Bader's AIM theory was also used to evaluate the strength as well as the hydrogen bonding characteristics. Experimental FT-IR and FT-Raman spectra of the title molecule were related with the spectral data obtained with DFT/B3LYP method. The 1H NMR chemical shifts of the title molecule were calculated by the GIAO method and compared with experimental results. Dipole moment, polarizability (α), first order static hyperpolarizability (β) along with molecular electrostatic potential surface have been calculated. Frequency-dependent first hyperpolarizabilities, β(-2ω;ω,ω) and β(-ω;ω,0) have also been evaluated to study the non-linear optical behavior of the title compound. UV-Vis spectrum of the title molecule was recorded and TD-DFT method has been used to calculate six lowest excited states and the corresponding excitation energies.

  16. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  17. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less

  18. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  19. Synthesis, characterization and DFT studies of two new silver(I) complexes with 3,4-lutidine

    NASA Astrophysics Data System (ADS)

    Soliman, Saied M.; Assem, Rania; Abu-Youssef, Morsy A. M.; Kassem, Taher S.

    2015-04-01

    The synthesis, characterization and molecular structure of two new Ag(I) complexes with 3,4-lutidine (34lut) have been reported. The [Ag(34lut)3(OAC)]; 1 and [Ag(34lut)2(TFA)]; 2 complexes, where OAC and TFA are acetate and trifluoroacetate respectively, have been characterized using elemental analysis, FTIR, NMR and mass spectra. Their molecular structures were calculated using DFT quantum chemical calculations. Both 1 and 2 were found to have distorted tetrahedral geometry around the Ag(I). The spectroscopic properties of the studied complexes have been calculated using the same level of theory. The Infrared vibrational frequencies of the COO stretches confirmed that the OAC is monodentate in 1 while the TFA is bidentate in 2. The calculated polarizability (α0) and HOMO-LUMO energy gap (ΔE) values indicated that 1 has higher NLO activity than 2. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The calculated 1H NMR chemical shift values using GIAO approach showed good correlations with the experimental data. The interaction energies using the second order perturbation theory have been used to study the different intramolecular charge transfer interactions in the studied complexes. The NBO calculations indicated that both the Agsbnd O bonds are almost identical in 2 but not in 1.

  20. Relationship between Solvation Thermodynamics from IST and DFT Perspectives.

    PubMed

    Levy, Ronald M; Cui, Di; Zhang, Bin W; Matubayasi, Nobuyuki

    2017-04-20

    Inhomogeneous solvation theory (IST) and classical density functional theory (DFT) each provide a framework for relating distribution functions of solutions to their thermodynamic properties. As reviewed in this work, both IST and DFT can be formulated in a way that use two "end point" simulations, one of the pure solvent and the other of the solution, to determine the solute chemical potential and other thermodynamic properties of the solution and of subvolumes in regions local to the solute containing hydrating waters. In contrast to IST, where expressions for the excess energy and entropy of solution are the object of analysis, in the DFT end point formulation of the problem, the solute-solvent potential of mean force (PMF) plays a central role. The indirect part of the PMF corresponds to the lowest order (1-body) truncation of the IST expression. Because the PMF is a free energy function, powerful numerical methods can be used to estimate it. We show that the DFT expressions for the solute excess chemical potential can be written in a form which is local, involving integrals only over regions proximate to the solute. The DFT end point route to estimating solvation free energies provides an alternative path to that of IST for analyzing solvation effects on molecular recognition and conformational changes in solution, which can lead to new insights. In order to illustrate the kind of information that is contained in the solute-solvent PMF, we have carried out simulations of β-cyclodextrin in water. This solute is a well studied "host" molecule to which "guest" molecules bind; host-guest systems serve as models for molecular recognition. We illustrate the range of values the direct and indirect parts of the solute-solvent PMF can have as a water molecule is brought to the interface of β-cyclodextrin from the bulk; we discuss the "competition" between these two terms, and the role it plays in molecular recognition.

  1. Understanding density functional theory (DFT) and completing it in practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayoko, Diola

    2014-12-15

    We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma andmore » Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.« less

  2. Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives

    NASA Astrophysics Data System (ADS)

    Süleymanoğlu, Nevin; Ünver, Yasemin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Gökhan

    2017-09-01

    4-amino-1,2,4-triazole derivatives; 4-amino-1-((5-mercapto-1,3,4-oxadiazole-2-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (1) and 4-amino-1-((4-amino-5 mercapto-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (2) were studied theoretically by Density Functional Theory (DFT) method with 6-311++G(d,p) basis set, structural and some spectroscopic parameters were determined. Significant differences between the experimental and calculated values of vibrational frequencies and chemical shifts were explained by the presence of intermolecular (Ssbnd H⋯O and Ssbnd H⋯N type) hydrogen bonds in structures. The Molecular Electrostatic Potential (MEP) maps obtained at B3LYP/6-311G++(d,p) support the existence of hydrogen bonds. Compounds were tested against to Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. Antileishmanial activity of 4-amino-1,2,4-triazole derivative (2) is remarkable.

  3. Experimental, DFT and molecular docking studies on 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Singh, Ravindra Kumar

    2016-10-01

    A new coumarin derivative 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol (COMSB) was synthesized and characterized with the help of 1H,13C NMR, FT-IR, FT-Raman and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. The UV-Vis spectrum studied by TD-DFT theory, with a hybrid exchange-correlation functional using Coulomb-attenuating method (CAM-B3LYP) in solvent phase gives similar pattern of bands, at energies and is consistent with that of experimental findings. The detailed analysis of vibrational (IR and Raman) spectra and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. Intra-molecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Computed first static hyperpolarizability (β0 = 8.583 × 10-30 esu) indicates non-linear optical (NLO) response of the molecule. Molecular docking studies show that the title molecule may act as potential acetylcholine esterase (AChE) inhibitor.

  4. Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite.

    PubMed

    Silva, Alexander Martins; Nascimento, Marco Antonio Chaer

    2008-09-25

    A theoretical study on the nitration of methane by acyl nitrate catalyzed by HZSM-5 zeolite is reported. The zeolite was represented by a "double ring" 20T cluster. The calculations were performed at the DFT/X3LYP/6-31G** and MP2/6-31G** levels. The first step of the mechanism involves the protonation of the acyl nitrate by the zeolite and the formation of a nitronium-like ion. The reaction proceeds through a concerted step with the attack of the methane molecule by the nitronium-like ion and the simultaneous transfer of a proton from the methane molecule to the zeolite, thus reconstructing the acidic site. The activation energies for the first and second steps of this reaction are, respectively, 14.09 and 10.14 kcal/mol at X3LYP/6-31G** level and 16.68 and 13.85 kcal/mol at the MP2/6-31G**.

  5. A combined TD-DFT and spectroscopic investigation of the solute-solvent interactions of efavirenz

    NASA Astrophysics Data System (ADS)

    Jordaan, Maryam A.; Singh, Parvesh; Martincigh, Bice S.

    2016-03-01

    Efavirenz, commercially known as Sustiva® or Stocrin®, is a first-line antiretroviral treatment for HIV/AIDS. The clinical efficacy of efavirenz is, however, hindered by its solubility. We sought to investigate the solute-solvent effects of efavirenz by means of a combined qualitative study implementing UV-visible spectrophotometry, 1H NMR spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The UV spectrum displayed two main absorbance maxima, band I and band II at 246-260 and 291-295 nm, respectively. A general bathochromic shift was noticed from the non-polar solvent cyclohexane to the most polar solvent DMSO (≈ 13.69 nm) in band I and a smaller bathochromic (≈ 2.17 nm) and hyperchromic shift was observed in band II. We propose that these observations are due to the role of the amino (NH) and carbonyl (CO) functionalities which induce charge-transfer and intra- and inter-molecular hydrogen bonding. The aromatic and amine protons showed the most deshielded effects in the observed chemical shifts (δ) in the more polar DMSO-d6 solvent relative to CDCl3. The 1H NMR chemical shifts observed are due to the increased delocalization of the lone pair electrons of the amino nitrogen with increased polarity of the more polar DMSO solvent. The theoretical reproduction of the UV and 1H NMR spectra by means of TD-DFT is in good agreement with the experimental results.

  6. Corrosion study of mild steel in aqueous sulfuric acid solution using 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid - an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Mehmeti, Valbonë V.; Berisha, Avni R.

    2017-08-01

    The corrosion behavior of mild steel in 0.1M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1) and Fe2O3 (1 1 1) surface. The molecules were also studied with the density functional theory (DFT), using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using density functional theory with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results.

  7. A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds

    NASA Astrophysics Data System (ADS)

    Zara, Zeenat; Iqbal, Javed; Ayub, Khurshid; Irfan, Muhammad; Mahmood, Athar; Khera, Rasheed Ahmad; Eliasson, Bertil

    2017-12-01

    A comparative study of UV/Visible spectra of carboline and carbazole derivatives was conducted by employing the Density Functional Theory (DFT) approach. In this study, the geometries of ground and excited states, excitation energy and absorption spectra were estimated by using seven different DFT functional; CAM-B3LYP, B3LYP, MPW1PW91, PBE, B3PW91, WB97XD and HSE06 with 6-31G basis set. Moreover, five different basis sets 3-21G, 6-31G, DGDZVP, DGTZVP and SDD were also investigated with the CAM-B3LYP and WB97XD functional to take out the best combination of functional and basis set. CAM-B3LYP/6-31G and WB97XD/DGDZVP combination were found to have closest agreement with the experimental values of β-carboline derivatives and carbazole derivatives, respectively. This study provided an insight about the electronic characteristics of the selected compounds and provided an effective tool for developing and designing the better UV absorber compounds.

  8. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  9. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  10. Theoretical Analysis of Optical Absorption and Emission in Mixed Noble Metal Nanoclusters.

    PubMed

    Day, Paul N; Pachter, Ruth; Nguyen, Kiet A

    2018-04-26

    In this work, we studied theoretically two hybrid gold-silver clusters, which were reported to have dual-band emission, using density functional theory (DFT) and linear and quadratic response time-dependent DFT (TDDFT). Hybrid functionals were found to successfully predict absorption and emission, although explanation of the NIR emission from the larger cluster (cluster 1) requires significant vibrational excitation in the final state. For the smaller cluster (cluster 2), the Δ H(0-0) value calculated for the T1 → S0 transition, using the PBE0 functional, is in good agreement with the measured NIR emission, and the calculated T2 → S0 value is in fair agreement with the measured visible emission. The calculated T1 → S0 phosphorescence Δ H(0-0) for cluster 1 is close to the measured visible emission energy. In order for the calculated phosphorescence for cluster 1 to agree with the intense NIR emission reported experimentally, the vibrational energy of the final state (S0) is required to be about 0.7 eV greater than the zero-point vibrational energy.

  11. Theoretical investigation of structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys using DFT based FP-LAPW approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-11-01

    Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  12. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  13. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    PubMed

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  14. Synthesis, crystal structure and DFT studies of a dual fluorescent ketamine: Structural changes in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Latha, V.; Balakrishnan, C.; Neelakantan, M. A.

    2015-07-01

    A fluorescent probe 2Z,2‧Z-3,3‧-(4,4‧-methylenebis(4,1-phenylene) bis(azanediyl))bis (1,3-diphenylprop-2-en-1-one) (L) was synthesized and characterized by IR, 1H NMR, ESI-mass, UV-visible and fluorescence spectral techniques. The single crystal analysis illustrates the existence of L in ketamine form. The crystal structure is stabilized by intramolecular and intermolecular hydrogen bonding. The thermal stability of L was studied by TG analysis. The fluorescence spectrum of L shows dual emission, and is due to excited state intramolecular proton transfer (ESIPT) process. This is supported by the high Stokes shift value. Electronic structure calculations of L in the ground and excited state have been carried out using DFT and TD-DFT at B3LYP/6-31G (d,p) level, respectively. The vibrational spectrum was computed at this level and compared with experimental values. Major orbital contributions for the electronic transitions were assigned with the help of TD-DFT. The changes in the Mulliken charge, bond lengths and bond angles between the ground and excited states of the tautomers demonstrate that twisted intramolecular charge transfer (TICT) process occurs along with ESIPT in the excited state.

  15. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  16. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  17. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.

    PubMed

    Muzomwe, Mayawila; Boeckx, Bram; Maes, Guido; Kasende, Okuma E

    2013-05-01

    The FT-IR spectrum of 1-Naphthol isolated in an argon matrix is performed and compared to the infrared spectra calculated at the DFT (B3LYP)/6-31+G(d) level for cis-1-Naphthol and trans-1-Naphthol rotamers in order to clarify the existence of both rotamers in the standard temperature. Comparison of the computed and the experimental matrix spectra reveals the presence in 1-Naphthol argon matrices in the standard temperature of both cis and trans rotameric forms of 1-Naphthol, the last predominating. The relative stability of the trans-1-Naphthol rotamer has also been supported by a fit comparison between the difference of predicted total energy (ETC) of both rotamers of 0.00195 a.u. corresponding to 5.12 kJ mol(-1) and the variation of the standard free Gibbs energy of rotamerization (ΔGr°) of 5.06 kJ mol(-1). Almost all 51 active vibrational modes of 1-Naphthol have been assigned. The stretching vibration of the OH group (νOH) appears to be the unique vibrational mode distinguishing the cis-1-NpOH rotamer from the trans-1-NpOH rotamer in FT-IR spectrum. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Muon contact hyperfine field in metals: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  19. Novel CoIII complexes containing fluorescent coumarin-N-acylhydrazone hybrid ligands: Synthesis, crystal structures, solution studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Areas, Esther S.; Bronsato, Bruna Juliana da S.; Pereira, Thiago M.; Guedes, Guilherme P.; Miranda, Fábio da S.; Kümmerle, Arthur E.; da Cruz, Antônio G. B.; Neves, Amanda P.

    2017-12-01

    A series of new CoIII complexes of the type [Co(dien)(L1 -L3)]ClO4 (1-3), containing fluorescent coumarin-N-acylhydrazonate hybrid ligands, (E)-N‧-(1-(7-oxido-2-oxo-2H-chromen-3-yl)ethylidene)-4-R-benzohydrazonate [where R = H (L12 -), OCH3 (L22 -) or Cl (L32 -)], were obtained and isolated in the low spin CoIII configuration. Single-crystal X-ray diffraction showed that the coumarin-N-acylhydrazones act as tridentate ligands in their deprotonated form (L2 -). The cation (+ 1) complexes contain a diethylenetriamine (dien) as auxiliary ligand and their structures were calculated by DFT studies which were also performed for the CoII (S = 1/2 and S = 3/2) configurations. The LS CoII (S = 1/2) concentrated the spin density on the O-Co-O axis while the HS CoII (S = 3/2) exhibited a broad spin density distribution around the metallic center. Cyclic voltammetry studies showed that structural modifications made in the L2 - ligands caused a slight influence on the electronic density of the metal center, and the E1/2 values for the CoIII/CoII redox couple increased following the electronic effect of the R-substituent, in the order: 2 (R = OCH3) < 1 (R = H) < 3 (R = Cl). The theoretical redox potentials (E°) of the process CoIII → CoII were calculated for both CoII spin states (S = 1/2 and S = 3/2) and a better correlation was found for CoIII → CoII (S = 1/2), compared with experimental values vs SHE (E°calc = - 0.37, - 0.36 and - 0.32 V vs E°exp. = - 0.371, - 0.406 and - 0.358 V, for 1-3 respectively). Complexes 1-3 exhibited a very intense absorption band around 470 nm, assigned by DFT calculations as π-π* transitions from the delocalized coumarin-N-acylhydrazone system. 1-3 were very stable in MeOH for several days. Likewise, 1-3 were stable in phosphate buffer containing sodium ascorbate after 15 h, which was attributed to the high chelate effect and σ-donor ability of the L2 - and dien ligands.

  20. Regioselectivity of intermolecular Pauson-Khand reaction of aliphatic alkynes: experimental and theoretical study of the effect of alkyne polarization.

    PubMed

    Fager-Jokela, Erika; Muuronen, Mikko; Khaizourane, Héléa; Vázquez-Romero, Ana; Verdaguer, Xavier; Riera, Antoni; Helaja, Juho

    2014-11-21

    Generally judged poor electronic regioselectivity of alkyne insertion in intermolecular Pauson-Khand reaction (PKR) has severely restricted its synthetic applications. In our previous rational study concerning diarylalkynes (Fager-Jokela, E.; Muuronen, M.; Patzschke, M.; Helaja, J. J. Org. Chem. 2012, 77, 9134-9147), both experimental and theoretical results indicated that purely electronic factors, i.e., alkyne polarization via resonance effect, induced the observed modest regioselectivity. In the present work, we substantiate that the alkyne polarization via inductive effect can result notable, synthetically valuable regioselectivity. Computational study at DFT level was performed to disclose the electronic origin of the selectivity. Overall, the NBO charges of alkynes correlated qualitatively with regioisomer outcome. In a detailed computational PKR case study, the obtained Boltzmann distributions of the transition state (TS) populations correlate closely with experimental regioselectivity. Analysis of the TS-structures revealed that weak interactions, e.g., hydrogen bonding and steric repulsion, affect the regioselectivity and can easily override the electronic guidance.

  1. Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Ali, Omayma A. M.

    2018-06-01

    Bis-(salicylaldehyde)phenylenediimine Schiff base (H2salphen) reacted oxidatively with the triruthenium dodecacarbonyl complex, [Ru3(CO)12] to give the dicarbonyl derivative [Ru(CO)2(salphen)], 1. In presence of a secondary ligand L (L = pyridine, triphenyl phosphine, 2-aminobenzimidazole or thiourea), the monocarbonyl derivatives [Ru(CO)(salphen)L], 2-5, were isolated. When the bipyridine (bpy) ligand was used as a secondary ligand, the dicarbonyl complex [Ru(CO)2(Hsalphen)(bpy)], 6, was obtained. In complexes 1-5, the Schiff base ligand acted as a tetradentate, while it coordinated as a bidentate in complex 6. The structure and stoichiometry of the complexes were investigated by the conventional analytical and spectroscopic techniques, which revealed that they have several structural arrangements. The structures of ligand and complexes were verified by theoretical calculations based on accurate DFT approximations. The relative reactivities were estimated using chemical descriptors analysis. Biological activities of the complexes against the Escherchia coli and Staphylococcus aureus bacteria were screened.

  2. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente

    2017-03-01

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30 °C, in contrast with the higher temperatures published up to date ( 130 °C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90 °C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident.

  3. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations.

    PubMed

    Colmenero, Francisco; Bonales, Laura J; Cobos, Joaquín; Timón, Vicente

    2017-03-05

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30°C, in contrast with the higher temperatures published up to date (~130°C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90°C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The keto-enol equilibrium and thermal conversion kinetics of 2- and 4-hydroxyacetophenone in the gas phase: a DFT study

    NASA Astrophysics Data System (ADS)

    Monascal, Yeljair; Gallardo, Eliana; Cartaya, Loriett; Maldonado, Alexis; Bentarcurt, Yenner; Chuchani, Gabriel

    2018-01-01

    Keto-enol tautomeric equilibrium and the mechanism of thermal conversion of 2- and 4-hydroxyacetophenone in gas phase have been studied by means of electronic structure calculations using density functional theory (DFT). A topological analysis of electron density evidence that the structure of keto and enol forms of 2-hydroxyacetophenone are stabilised by a relatively strong intramolecular hydrogen bond. 2- and 4-hydroxyacetophenone undergo deacetylation reactions yielding phenol and ketene. Two possible mechanisms are considered for these eliminations: the process takes place from the keto form (mechanism A), or occurs from the enolic form of the substrate (mechanism B). Quantum chemical calculations support the mechanism B, being found a good agreement with the experimental activation parameters. These results suggest that the rate-limiting step is the reaction of the enol through a concerted, non-synchronous, semi-polar, four-membered cyclic transition state (TS). The most advanced reaction coordinate in the TS is the rupture of O1...H1 bond, with an evolution in the order of 79.7%-80.9%. Theoretical results also suggest a three-step mechanism for the phenyl acetate formation from 2-hydroxyacetophenone.

  5. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    NASA Astrophysics Data System (ADS)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  6. Theoretical Study of Effect of Introducing π-Conjugation on Efficiency of Dye-Sensitized Solar Cell.

    PubMed

    Lee, Geon Hyeong; Kim, Young Sik

    2018-09-01

    In this study, phenoxazine (PXZ)-based dye sensitizers with triphenylamine (TPA) as a dual-electron donor and thiophen and benzothiadiazole (BTD) or 4,7-diethynylbenzo[c][1,2,5]thiadiazole (DEBT) as an electron acceptor (dye1, dye2, and dye3) were designed and investigated. dye3 can significantly stabilize the lowest unoccupied molecular orbital (LUMO) energy level of an organic dye. We used density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to better understand the factors responsible for the photovoltaic performance. The absorption spectrum of the dyes showed different forms because of the different energy levels of the molecular orbital (MO) of each dye and the intramolecular energy transfer (EnT). Among the three dyes, dye3 showed greater red-shift, broader absorption spectra, and higher molar extinction coefficient. These results indicate that adding a withdrawing unit and π-conjugation to a dye can result in good photovoltaic properties for dye-sensitized solar cells (DSSCs).

  7. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    PubMed

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-05-05

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  8. Optical Gaps in Pristine and Heavily Doped Silicon Nanocrystals: DFT versus Quantum Monte Carlo Benchmarks.

    PubMed

    Derian, R; Tokár, K; Somogyi, B; Gali, Á; Štich, I

    2017-12-12

    We present a time-dependent density functional theory (TDDFT) study of the optical gaps of light-emitting nanomaterials, namely, pristine and heavily B- and P-codoped silicon crystalline nanoparticles. Twenty DFT exchange-correlation functionals sampled from the best currently available inventory such as hybrids and range-separated hybrids are benchmarked against ultra-accurate quantum Monte Carlo results on small model Si nanocrystals. Overall, the range-separated hybrids are found to perform best. The quality of the DFT gaps is correlated with the deviation from Koopmans' theorem as a possible quality guide. In addition to providing a generic test of the ability of TDDFT to describe optical properties of silicon crystalline nanoparticles, the results also open up a route to benchmark-quality DFT studies of nanoparticle sizes approaching those studied experimentally.

  9. Characterization of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.

    2015-07-01

    In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).

  10. Molecular structure, vibrational spectra and DFT computational studies of melaminium N-acetylglycinate dihydrate

    NASA Astrophysics Data System (ADS)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.

    2016-10-01

    Melaminium N-acetylglycinate dihydrate, an organic material has been synthesized and characterized by X-ray diffraction, FT-IR, and FT-Raman spectroscopies for the protiated and deuteriated crystals. The title complex crystallizes in the triclinic system, and the space group is P-1 with a = 5.642(1) Å, b = 7.773(2) Å, c = 15.775(3) Å, α = 77.28(1)°, β = 84.00(1)°, γ = 73.43(1)° and Z = 2. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional method (B3LYP) with the 6-311++G(d,p) basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. The intermolecular hydrogen bonding interactions of the title compound have been investigated using the natural bonding orbital analysis. It reveals that the O-H···O, N-H···N and N-H···O intermolecular interactions significantly influence crystal packing of this molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, thermodynamic properties, frontier orbitals and chemical reactivity descriptors were also performed at 6-311++G(d,p) level of theory.

  11. Diaminomaleonitrile-based azo receptors: Synthesis, DFT studies and their antibacterial activities

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Hamid; Arab, Vajihe; Rezaeian, Khatereh; Talei, Gholam Reza; Pass, Maryam; Shabani, Nafiseh

    2017-02-01

    New unsymmetric diaminomaleonitrile-based azo receptors (H3Ln, n = 1-3) have been synthesized via condensation reaction of 5-(4-X-phenyl)-azo-salicyladehyde (X = NO2, OMe and CH3) with 2-amino-3-(5-bromo-2-hydroxybenzylamino)maleonitrile. The solvatochromic behaviors of the molecules were probed by studying their UV-Vis spectra in five pure organic solvents of different polarities. The p-NO2 substituted receptor shows a dramatic color change from yellow to blue upon the addition of fluoride ion in CH3CN. This capability was studied by systematic TD-DFT calculations. These compounds were assayed for their in vitro antibacterial activities against Gram-positive (S. aureus, S. epidermidis and L. monocytogenes) and Gram-negative (E. coli, P. aeruginosa and K. pneumonia.) bacteria by disc diffusion method. The results indicated that the compounds show good inhibition against Gram positive bacteria namely L. monocytogenes as compared to standard drugs.

  12. A theoretical DFT study on the structural parameters and azide-tetrazole equilibrium in substituted azidothiazole systems.

    PubMed

    Abu-Eittah, Rafie H; El-Kelany, Khaled E

    2012-12-01

    Azido-tetrazole equilibrium is sensitive to: substitution, solvent, temperature and phase. In this work, the effects of the type and position of substitution on the thiazole ring of azidothiazoles on its structural parameters and on the azido-tetrazole equilibrium have been theoretically investigated using the density functional procedures at the B3LYP/6-311G(∗∗) level of theory. This study includes the investigation of the equilibrium geometry, the transformation of the trans-conformer to the cis one then the ring closure to the tetrazole isomer. The transition states of the two steps were located, confirmed and the structural parameters were calculated. In all the steps of calculations, geometry optimization was considered. The results obtained indicate that substitution by: -NO(2) and -CN group shifts the equilibrium to the azide side and in some cases the tetrazole isomer is not obtained. On the other hand, substitution by: -NH(2) and -OH groups shifts the equilibrium to the tetrazole side and in some cases the azide isomer is not obtained and if formed changes spontaneously to the tetrazole isomer. The decisive parameters which determine the position of the equilibrium are: charge density on atoms N3 and N8, rearrangement of bond length and bond angles during the process of cyclization and variation of dipole moment as a result of cyclization. Results of this work indicate that substitution on C5 is more efficient than substitution on C4 of the thiazole ring. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters

    NASA Astrophysics Data System (ADS)

    Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro

    2018-03-01

    Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.

  14. Hydrogen bond strengthening between o-nitroaniline and formaldehyde in electronic excited states: A theoretical study

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, An Yong

    2018-06-01

    To study the hydrogen bonds upon photoexcited, the time dependent density function method (TD DFT) was performed to investigate the excited state hydrogen bond properties of between o-nitroaniline (ONA) and formaldehyde (CH2O). The optimized structures of the complex and the monomers both in the ground state and the electronically excited states are calculated using DFT and TD DFT method respectively. Quantum chemical calculations of the electronic and vibrational absorption spectra are also carried out by TD DFT method at the different level. The complex ONA⋯CH2O forms the intramolecular hydrogen bond and intermolecular hydrogen bonds. Since the strength of hydrogen bonds can be measured by studying the vibrational absorption spectra of the characteristic groups on the hydrogen bonding acceptor and donor, it evidently confirms that the hydrogen bonds is strengthened in the S1/S2/T1 excited states upon photoexcitation. As a result, the hydrogen bonds cause that the CH stretch frequency of the proton donor CH2O has a blue shift, and the electron excitations leads to a frequency red shift of Ndbnd O and Nsbnd H stretch modes in the o-nitroaniline(ONA) and a small frequency blue shift of CH stretch mode in the formaldehyde(CH2O) in the S1 and S2 excited states. The excited states S1, S2 and T1 are locally excited states where only the ONA moiety is excited, but the CH2O moiety remains in its ground state.

  15. DFT studies of hydrocarbon combustion on metal surfaces.

    PubMed

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  16. Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae

    2011-03-01

    Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.

  17. An EQT-cDFT approach to determine thermodynamic properties of confined fluids.

    PubMed

    Mashayak, S Y; Motevaselian, M H; Aluru, N R

    2015-06-28

    We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.

  18. A Theoretical Study of 8-Chloro-9-Hydroxy-Aflatoxin B₁, the Conversion Product of Aflatoxin B₁ by Neutral Electrolyzed Water.

    PubMed

    Escobedo-González, René; Méndez-Albores, Abraham; Villarreal-Barajas, Tania; Aceves-Hernández, Juan Manuel; Miranda-Ruvalcaba, René; Nicolás-Vázquez, Inés

    2016-07-21

    Theoretical studies of 8-chloro-9-hydroxy-aflatoxin B₁ (2) were carried out by Density Functional Theory (DFT). This molecule is the reaction product of the treatment of aflatoxin B₁ (1) with hypochlorous acid, from neutral electrolyzed water. Determination of the structural, electronic and spectroscopic properties of the reaction product allowed its theoretical characterization. In order to elucidate the formation process of 2, two reaction pathways were evaluated-the first one considering only ionic species (Cl⁺ and OH(-)) and the second one taking into account the entire hypochlorous acid molecule (HOCl). Both pathways were studied theoretically in gas and solution phases. In the first suggested pathway, the reaction involves the addition of chlorenium ion to 1 forming a non-classic carbocation assisted by anchimeric effect of the nearest aromatic system, and then a nucleophilic attack to the intermediate by the hydroxide ion. In the second studied pathway, as a first step, the attack of the double bond from the furanic moiety of 1 to the hypochlorous acid is considered, accomplishing the same non-classical carbocation, and again in the second step, a nucleophilic attack by the hydroxide ion. In order to validate both reaction pathways, the atomic charges, the highest occupied molecular orbital and the lowest unoccupied molecular orbital were obtained for both substrate and product. The corresponding data imply that the C₉ atom is the more suitable site of the substrate to interact with the hydroxide ion. It was demonstrated by theoretical calculations that a vicinal and anti chlorohydrin is produced in the terminal furan ring. Data of the studied compound indicate an important reduction in the cytotoxic and genotoxic potential of the target molecule, as demonstrated previously by our research group using different in vitro assays.

  19. Theoretical and vibrational study of N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)-quinazolin-4-amine (gefitinib)

    NASA Astrophysics Data System (ADS)

    Mıhçıokur, Özlem; Özpozan, Talat

    2015-12-01

    N-(3-chloro-4fluoro-phenyl)-7-methoxy-6-(3-morpholin-4ylpropoxy)-quinazolin-4-amine (GEF), a quinalizoline derivative used as new anti-cancer agent, designed to target activity of epidermal growth factor receptor (EGFR) promoting the growth, division and spread of cancer cells, was examined from the vibrational and theoretical point of view. All calculations have been carried out both in gaseous and aqueous phases. In the calculations of both phases, the molecule has been optimized through conformer analysis beginning with the x-ray data. The conformer analyses have been carried out in each phases and the geometrical differences between the most stable structures in gaseous and in aqueous phases have been discussed. The solvent effect for GEF in aqueous solution was simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. NBO analysis has been performed to indicate the presence of intramolecular charge transfer. The complete assignments of the vibrational spectra (IR&Raman) were made with the aid of calculated spectra both in gaseous and aqueous phases. The observed spectral data of the title compound were compared with the calculated spectra obtained by DFT/B3LYP and DFT/B3PW91 methods using 6-31G(d,p) basis set. The theoretical results were found to be in good agreement with the measured experimental data especially for the interpretation of intra molecular interactions.

  20. Ethylene dissociation on flat and stepped Ni(1 1 1): A combined STM and DFT study

    NASA Astrophysics Data System (ADS)

    Vang, Ronnie T.; Honkala, Karoliina; Dahl, Søren; Vestergaard, Ebbe K.; Schnadt, Joachim; Lægsgaard, Erik; Clausen, Bjerne S.; Nørskov, Jens K.; Besenbacher, Flemming

    2006-01-01

    The dissociative adsorption of ethylene (C 2H 4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges. DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces. The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms. Finally a high surface area NiAg alloy catalyst supported on MgAl 2O 4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.

  1. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    NASA Astrophysics Data System (ADS)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  2. Theoretical and experimental study for the biomimetic recognition of levothyroxine hormone on magnetic molecularly imprinted polymer.

    PubMed

    Moura, Silio Lima; Fajardo, Laura Martinez; Cunha, Leonardo Dos Anjos; Sotomayor, Maria Del Pilar Taboada; Machado, Francisco Bolivar Correto; Ferrão, Luiz Fernando Araújo; Pividori, Maria Isabel

    2018-06-01

    This study addresses the rational design of a magnetic molecularly imprinted polymer (magnetic-MIP) for the selective recognition of the hormone levothyroxine. The theoretical study was carried out by the density functional theory (DFT) computations considering dispersion interaction energies, and using the D2 Grimme's correction. The B97-D/def2-SV(P)/PCM method is used not only for studying the structure of the template the and monomer-monomer interactions, but also to assess the stoichiometry, noncovalent binding energies, solvation effects and thermodynamics properties such as binding energy. Among the 13 monomers studied in silico, itaconic acid is the most suitable according to the thermodynamic values. In order to assess the efficiency of the computational study, three different magnetic-MIPs based on itaconic acid, acrylic acid and acrylamide were synthesized and experimentally compared. The theoretical results are in agreement with experimental binding studies based on laser confocal microscopy, magneto-actuated immunoassay and electrochemical sensing. Furthermore, and for the first time, the direct electrochemical sensing of L-thyroxine preconcentrated on magnetic-MIP was successfully performed on magneto-actuated electrodes within 30 min with a limit of detection of as low as 0.0356 ng mL -1 which cover the clinical range of total L-thyroxine. Finally, the main analytical features were compared with the gold standard method based on commercial competitive immunoassays. This work provides a thoughtful strategy for magnetic molecularly imprinted polymer design, synthesis and application, opening new perspectives in the integration of these materials in magneto-actuated approaches for replacing specific antibodies in biosensors and microfluidic devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  4. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1)

    PubMed Central

    Kunde, Dale A.; Taylor, Robyn L.; Pyecroft, Stephen B.; Sohal, Sukhwinder Singh; Snow, Elizabeth T.

    2017-01-01

    Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1’s cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild. PMID:28591206

  5. The photophysics of fac-[Re(CO)3(NN)(bpa)](+) complexes: a theoretical/experimental study.

    PubMed

    Sousa, S F; Sampaio, R N; Barbosa Neto, N M; Machado, A E H; Patrocinio, A O T

    2014-08-01

    The influence of the polypyridyl ligand on the photophysics of fac-[Re(CO)3(NN)(bpa)](+), bpa = 1,2-bis-(4-pyridyl)ethane and NN = 1,10-phenanthroline (phen), pyrazino[2,3-f][1,10]-phenanthroline (dpq), and dipyrido[3,2-a:2'3'-c]phenazine (dppz) has been investigated by steady state and time-resolved emission spectroscopy combined with theoretical calculations using time-dependent density functional theory (TD-DFT). The fac-[Re(CO)3(phen)(bpa)](+) is a typical MLCT emitter in acetonitrile with ϕ = 0.11 and τ = 970 ns. The emission lifetime and quantum yield decrease significantly in fac-[Re(CO)3(dpq)(bpa)](+) (ϕ = 0.05; τ = 375 ns) due to the presence of a close lying dark charge transfer state located at the pyrazine ring of dpq, as indicated by TD-DFT data. The luminescence of these complexes is quenched by hydroquinone with kq = (2.9 ± 0.1) × 10(9) and (2.6 ± 0.1) × 10(9) L mol(-1) s(-1), respectively, for NN = phen or dpq. These values are increased respectively to (4.6 ± 0.1) × 10(9) and (4.2 ± 0.1) × 10(9) L mol(-1) s(-1) in the 1 : 1 H2O-CH3CN mixture. In this medium Stern-Volmer constants determined by steady-state and time-resolved measurements differ from each other, which is indicative of static quenching, i.e. the pre-association of hydroquinone and the complexes through hydrogen bonding between the remote N-atom in the bpa ligand (KA ≅ 1-2 × 10(1) L mol(-1)), followed by a concerted proton-electron transfer. In contrast to other investigated complexes, fac-[Re(CO)3(dppz)(bpa)](+) is weakly emissive in acetonitrile at room temperature (ϕ ≅ 10(-4)) and does not exhibit a rigidochromic effect. This photophysical behaviour as well as TD-DFT data indicate that the lowest lying triplet excited state can be described as (3)ILdppz. The results provide additional insight into the influence of the polypyridyl ligand on the photophysical properties of Re(I) complexes.

  6. Benzimidazole ligands in the corrosion inhibition for carbon steel in acid medium: DFT study of its interaction on Fe30 surface

    NASA Astrophysics Data System (ADS)

    Garcia-Ochoa, E.; Guzmán-Jiménez, S. J.; Hernández, J. Guadalupe; Pandiyan, Thangarasu; Vásquez-Pérez, José M.; Cruz-Borbolla, Julián

    2016-09-01

    The corrosion inhibition of N,N‧-bis(benzimidazole-2-yl-methyl)amine (L1) and N, N‧-bis(benzimidazole-2-yl-methyl)hydroxyethylamine (L2) was analyzed by electrochemical and theoretical methods. The data show that ligands form an adsorption layer over an iron surface, obeying the Langmuir isotherm (Δ Gads° of -32.96 kJ mol-1); the value are higher than -20 kJ mol-1 but less than -40 kJ mol-1, belonging to a conversion stage of physical adsorption to chemical adsorption or a comprehensive adsorption. This is consistent with fractal dimension of the electrode surface, estimated by an impedance depression angle of a semicircle that the surface is homogeneously covered by the formation of an inhibitor film. Furthermore, the electronic parameters of the ligands were analyzed by DFT, showing that L1 and L2 possesses corrosion inhibition properties that give up its p orbital electron density through its HOMO orbital to the metal LUMO to form an adsorption layer, and this has been proved theoretically by the interaction of ligands with Fe30. In addition, we have collected corrosion inhibition data for around 70 organic compounds reported in the literature, and the inhibition data plotted against different inhibitors, showing that amine ligands are good corrosion inhibitors.

  7. Theoretical Characterizaiton of Visual Signatures

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  8. A DFT study of the mechanism and the regioselectivity of [3 + 2] cycloaddition reactions of nitrile oxides with α,β-acetylenic aldehyde

    NASA Astrophysics Data System (ADS)

    Sobhi, Chafia; Nacereddine, Abdelmalek Khorief; Nasri, Lilia; Lechtar, Zohra; Djerourou, Abdelhafid

    2016-11-01

    A DFT study of the (32CA) reaction of a series of some nitrile oxides with electron-deficient alkyne (3-phenylpropionlaldehyde) in gas phase and in toluene has been carried out using B3LYP functional with 6-31G(d) basis set. Two reactive channels 4- and 5-associated with the two regioisomeric modes have been located and characterised. These 32CA reactions are characterised by a low asynchronous one-step mechanism with a low-polar character. Analysis of the DFT reactivity indices indicates that the nucleophilic centre of the different nitrile oxides accounts for the 4-regioselectivity. Our calculations are in a good agreement with the experimental findings.

  9. Relativistic DFT investigation of electronic structure effects arising from doping the Au25 nanocluster with transition metals.

    PubMed

    Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M

    2017-10-26

    We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.

  10. Synthesis and characterization of a series of isoniazid hydrazones. Spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2017-04-01

    A family of hydrazones of isoniazid and a group of hydroxybenzalaldehydes (vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde) were obtained and fully characterized. The results, including theoretical data, are comparatively analyzed along with the already reported hydrazone of o-vanillin. The crystal structures of three compounds were determined. The hydrazones obtained from halogenated aldehydes are isomorphic and chiral to each other. Structures are further stabilized by (pyr)NH+⋯Cl- and OwH⋯Cl- bonds. The vanillin hydrazone shows a conformer that differs from the previously reported. Neighboring molecules are linked to each other through OH⋯N(pyr) bonds, giving rise to a nearly planar polymeric structure. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by DFT. Results are extended to describe the 5-bromovanillin hydrazone. FTIR, NMR and electronic spectra were measured and assigned with the help of computational calculations.

  11. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    PubMed

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  12. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies

    NASA Astrophysics Data System (ADS)

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-01

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H2O/CH3OH and H2O/CD3OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (XME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture.

  13. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  14. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. Copyright © 2013 Elsevier B

  15. Structural and vibrational properties of oxcarbazepine, an anticonvulsant substance by using DFT and SCRF calculations

    NASA Astrophysics Data System (ADS)

    Ladetto, María F.; Márquez, María B.; Brandán, Silvia A.

    2014-10-01

    In this work, we have presented a structural and vibrational study on the properties in gas and aqueous solution phases of oxcarbazepine, a polymorphic anticonvulsant substance, combining the available IR and Raman spectra with Density Functional Theory (DFT) calculations. Two stable C1 and C2 forms for the title molecule were theoretically determined by using the hybrid B3LYP/6-31G* method. The integral equation formalism variant polarised continuum model (IEFPCM) was employed to study the solvent effects by means of the self-consistent reaction field (SCRF) method. The vibrational spectra for the two forms of oxcarbazepine were completely assigned together with two dimeric species also observed in the solid phase. The presences of the two C1 and C2 forms together with the two dimeric species are supported by the IR and Raman bands between 1424 and 125 cm-1. Here, the properties for both forms of oxcarbazepine are compared and discussed.

  16. Insufficient Hartree–Fock Exchange in Hybrid DFT Functionals Produces Bent Alkynyl Radical Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyeyemi, Victor B.; Keith, John A.; Pavone, Michele

    2012-01-11

    Density functional theory (DFT) is often used to determine the electronic and geometric structures of molecules. While studying alkynyl radicals, we discovered that DFT exchange-correlation (XC) functionals containing less than ~22% Hartree–Fock (HF) exchange led to qualitatively different structures than those predicted from ab initio HF and post-HF calculations or DFT XCs containing 25% or more HF exchange. We attribute this discrepancy to rehybridization at the radical center due to electron delocalization across the triple bonds of the alkynyl groups, which itself is an artifact of self-interaction and delocalization errors. Inclusion of sufficient exact exchange reduces these errors and suppressesmore » this erroneous delocalization; we find that a threshold amount is needed for accurate structure determinations. Finally, below this threshold, significant errors in predicted alkyne thermochemistry emerge as a consequence.« less

  17. Experimental and DFT studies on DNA binding and photocleavage of two cationic porphyrins. Effects of the introduction of a carboxyphenyl into pyridinium porphyrin.

    PubMed

    Zhao, Ping; Xu, Lian-Cai; Huang, Jin-Wang; Liu, Jie; Yu, Han-Cheng; Zheng, Kang-Cheng; Ji, Liang-Nian

    2008-12-15

    The DNA-binding affinities and DNA photocleavage abilities of cationic porphyrin, 5-(4-carboxyphenyl)-10,15,20-tris(4-methylpyridiniumyl)porphyrin (CTMPyP), and its reference compound meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (H2TMPyP) have been investigated. The DNA-binding behaviors of the two compounds in NaH2PO4 buffer were compared systematically by using absorption, fluorescence and circular dichroism (CD) spectra, thermal denaturation as well as viscosity measurements. The experimental results show that CTMPyP binds to DNA in an outside binding mode, while H2TMPyP in an intercalative mode. Photocleavage experiments reveal that both two compounds employ 1O2-mediated mechanism in cleaving DNA and H2TMPyP can cleave DNA more efficiently than CTMPyP. Theoretical calculations were carried out with the density functional theory (DFT), and the calculated results indicate that the character and energies of some frontier orbitals of CTMPyP are quite different from those of H2TMPyP. These theoretical results can be used to explain their different DNA-binding modes and affinities to a certain extent.

  18. FAST TRACK COMMUNICATION A DFT + DMFT approach for nanosystems

    NASA Astrophysics Data System (ADS)

    Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S.

    2010-11-01

    We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 <= N <= 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience.

  19. Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT

    NASA Astrophysics Data System (ADS)

    Selli, Daniele; Fazio, Gianluca; Di Valentin, Cristiana

    2017-10-01

    TiO2 nanoparticles (NPs) are nowadays considered fundamental building blocks for many technological applications. Morphology is found to play a key role with spherical NPs presenting higher binding properties and chemical activity. From the experimental point of view, the characterization of these nano-objects is extremely complex, opening a large room for computational investigations. In this work, TiO2 spherical NPs of different sizes (from 300 to 4000 atoms) have been studied with a two-scale computational approach. Global optimization to obtain stable and equilibrated nanospheres was performed with a self-consistent charge density functional tight-binding (SCC-DFTB) simulated annealing process, causing a considerable atomic rearrangement within the nanospheres. Those SCC-DFTB relaxed structures have been then optimized at the DFT(B3LYP) level of theory. We present a systematic and comparative SCC-DFTB vs DFT(B3LYP) study of the structural properties, with particular emphasis on the surface-to-bulk sites ratio, coordination distribution of surface sites, and surface energy. From the electronic point of view, we compare HOMO-LUMO and Kohn-Sham gaps, total and projected density of states. Overall, the comparisons between DFTB and hybrid density functional theory show that DFTB provides a rather accurate geometrical and electronic description of these nanospheres of realistic size (up to a diameter of 4.4 nm) at an extremely reduced computational cost. This opens for new challenges in simulations of very large systems and more extended molecular dynamics.

  20. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2017-04-01

    We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.

  1. DFT study of conformational and vibrational characteristics of 2-(2-hydroxyphenyl)benzothiazole molecule.

    PubMed

    Pandey, Urmila; Srivastava, Mayuri; Singh, R P; Yadav, R A

    2014-08-14

    The conformational and IR and Raman spectral studies of 2-(2-hydroxyphenyl)benzothiazole have been carried out by using the DFT method at the B3LYP/6-311++G(**) level. The detailed vibrational assignments have been done on the basis of calculated potential energy distributions. Comparative studies of molecular geometries, atomic charges and vibrational fundamentals of all the conformers have been made. There are four possible conformers for this molecule. The optimized geometrical parameters obtained by B3LYP/6-311++G(**) method showed good agreement with the experimental X-ray data. The atomic polar tensor (APT) charges, Mulliken atomic charges, natural bond orbital (NBO) analysis and HOMO-LUMO energy gap of HBT and its conformers were also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties.

    PubMed

    Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A

    2014-01-24

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Analyte interactions with a new ditopic dansylamide-nitrobenzoxadiazole dyad: a combined photophysical, NMR, and theoretical (DFT) study.

    PubMed

    Bhoi, Abhas Kumar; Das, Sudhir Kumar; Majhi, Debashis; Sahu, Prabhat Kumar; Nijamudheen, A; N, Anoop; Rahaman, Abdur; Sarkar, Moloy

    2014-08-21

    due to transition-metal ion binding. Theoretical (density functional theory) studies are also performed for the better understanding of the receptor-analyte interaction. Interestingly, negative cooperativity in binding is observed when the interaction of this system is studied in the presence of both Zn(2+) and F(-). Fluorescence microscopy studies also revealed that the newly developed fluorescent sensor system can be employed as an imaging probe in live cells.

  4. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng

    2017-09-01

    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01 M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532 nm. The title chalcone exhibited significant two-photon absorption (β = 35.8 × 10- 5 cm W- 1), negative nonlinear refraction (n2 = - 0.18 × 10- 8 cm2 W- 1) and optical limiting (OL threshold = 2.73 kJ cm- 2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31 + G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(- 2ω;ω,ω) at input frequency ω = 0.04282 a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good

  5. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one.

    PubMed

    Maidur, Shivaraj R; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng

    2017-09-05

    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P2 1 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1 H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532nm. The title chalcone exhibited significant two-photon absorption (β=35.8×10 -5 cmW -1 ), negative nonlinear refraction (n 2 =-0.18×10 -8 cm 2 W -1 ) and optical limiting (OL threshold=2.73kJcm -2 ) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31+G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1 H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(-2ω;ω,ω) at input frequency ω=0.04282a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement

  6. Structural investigation of (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid: X-ray crystal structure, spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah

    2016-09-01

    The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.

  7. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Is the Bethe–Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD

    PubMed Central

    2017-01-01

    Developing ab initio approaches able to provide accurate excited-state energies at a reasonable computational cost is one of the biggest challenges in theoretical chemistry. In that framework, the Bethe–Salpeter equation approach, combined with the GW exchange-correlation self-energy, which maintains the same scaling with system size as TD-DFT, has recently been the focus of a rapidly increasing number of applications in molecular chemistry. Using a recently proposed set encompassing excitation energies of many kinds [J. Phys. Chem. Lett.2016, 7, 586–591], we investigate here the performances of BSE/GW. We compare these results to CASPT2, EOM-CCSD, and TD-DFT data and show that BSE/GW provides an accuracy comparable to the two wave function methods. It is particularly remarkable that the BSE/GW is equally efficient for valence, Rydberg, and charge-transfer excitations. In contrast, it provides a poor description of triplet excited states, for which EOM-CCSD and CASPT2 clearly outperform BSE/GW. This contribution therefore supports the use of the Bethe–Salpeter approach for spin-conserving transitions. PMID:28301726

  9. A RRKM study and a DFT assessment on gas-phase fragmentation of formamide-M(2+) (M = Ca, Sr).

    PubMed

    Martín-Sómer, Ana; Gaigeot, Marie-Pierre; Yáñez, Manuel; Spezia, Riccardo

    2014-07-28

    A kinetic study of the unimolecular reactivity of formamide-M(2+) (M = Ca, Sr) systems was carried out by means of RRKM statistical theory using high-level DFT. The results predict M(2+), [M(NH2)](+) and [HCO](+) as the main products, together with an intermediate that could eventually evolve to produce [M(NH3)](2+) and CO, for high values of internal energy. In this framework, we also evaluated the influence of the external rotational energy on the reaction rate constants. In order to find a method to perform reliable electronic structure calculations for formamide-M(2+) (M = Ca, Sr) at a relatively low computational cost, an assessment of different methods was performed. In the first assessment twenty-one functionals, belonging to different DFT categories, and an MP2 wave function method using a small basis set were evaluated. CCSD(T)/cc-pWCVTZ single point calculations were used as reference. A second assessment has been performed on geometries and energies. We found BLYP/6-31G(d) and G96LYP/6-31+G(d,p) as the best performing methods, for formamide-Ca(2+) and formamide-Sr(2+), respectively. Furthermore, a detailed assessment was done on RRKM reactivity and G96LYP/6-31G(d) provided results in agreement with higher level calculations. The combination of geometrical, energetics and kinetics (RRKM) criteria to evaluate DFT functionals is rather unusual and provides an original assessment procedure. Overall, we suggest using G96LYP as the best performing functional with a small basis set for both systems.

  10. 27ps DFT Molecular Dynamics Simulation of a-maltose: A Reduced Basis Set Study.

    USDA-ARS?s Scientific Manuscript database

    DFT molecular dynamics simulations are time intensive when carried out on carbohydrates such as alpha-maltose, requiring up to three or more weeks on a fast 16-processor computer to obtain just 5ps of constant energy dynamics. In a recent publication [1] forces for dynamics were generated from B3LY...

  11. Conformations of n-butyl imidazole: matrix isolation infrared and DFT studies.

    PubMed

    Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-03-15

    Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg(±)tt, tg(±)g(∓)t, tg(±)g(±)t, tg(±)tg(±), tg(±)tg(∓), tg(±)g(∓)g(∓), tg(±)g(±)g(±), tg(±)g(∓)g(±) and tg(±)g(±)g(∓) structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg(±)tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Properties of MgO to 1.2 TPa from high-precision experiments on Sandia's Z machine and first-principles simulations using QMC and DFT

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2015-11-01

    MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine the phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility a low entropy solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. The calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties requires particular care because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. Finally, understanding the behavior of MgO as the pressure releases from the Hugoniot state is a key ingredient to modeling giant impact events. We explore this regime both through additional DFT calculations and by observing the release state of the MgO into lower impedance materials. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U

  13. Combined experimental and theoretical study on the reactivity of compounds I and II in horseradish peroxidase biomimetics.

    PubMed

    Ji, Li; Franke, Alicja; Brindell, Małgorzata; Oszajca, Maria; Zahl, Achim; van Eldik, Rudi

    2014-10-27

    For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or

  14. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Benchmark results and theoretical treatments for valence-to-core x-ray emission spectroscopy in transition metal compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, D. R.; Seidler, G. T.; Kas, Joshua J.

    We report measurement of the valence-to-core (VTC) region of the K-shell x-ray emission spectra from several Zn and Fe inorganic compounds, and their critical comparison with several existing theoretical treatments. We find generally good agreement between the respective theories and experiment, and in particular find an important admixture of dipole and quadrupole character for Zn materials that is much weaker in Fe-based systems. These results on materials whose simple crystal structures should not, a prior, pose deep challenges to theory, will prove useful in guiding the further development of DFT and time-dependent DFT methods for VTC-XES predictions and their comparisonmore » to experiment.« less

  16. Efficiency enhancement of black dye-sensitized solar cells by newly synthesized D-π-A coadsorbents: a theoretical study.

    PubMed

    Azar, Yavar T; Payami, Mahmoud

    2014-05-28

    In this work, using the DFT and TDDFT, we have theoretically studied the electronic and optical properties of the two recently synthesized coadsorbents Y1 and Y2, which were aimed to enhance the efficiency of the black dye-sensitized solar cells. To determine the solvatochromic shifts, both the implicit and mixed implicit-explicit models have been used. The connection between the solvatochromic shifts and the changes in dipole moments in the excitation process is discussed. The difference in excitation charge transfer is utilized to explain the experimentally observed difference in Jsc for Y1 and Y2. Investigating the interactions of I2 molecules in the electrolyte solution with the coadsorbents showed that with Y1 the recombination loss was weakened through decreasing the I2 concentration near the TiO2 surface, whereas with Y2 it was increased. As a result, the higher values of both Jsc and Voc with the Y1 coadsorbent explain its experimentally observed higher efficiency. The present study sheds light on how to design and engineer newer coadsorbents or organic dyes for higher efficiencies.

  17. Implementation of DFT application on ternary optical computer

    NASA Astrophysics Data System (ADS)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei

    2018-03-01

    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  18. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  19. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I.

    PubMed

    Andrade-Ochoa, S; García-Machorro, J; Bello, Martiniano; Rodríguez-Valdez, L M; Flores-Sandoval, C A; Correa-Basurto, J

    2017-08-03

    Human immunodeficiency virus type-1 (HIV-1) has infected more than 40 million people around the world. HIV-1 treatment still has several side effects, and the development of a vaccine, which is another potential option for decreasing human infections, has faced challenges. This work presents a computational study that includes a quantitative structure activity relationship(QSAR) using density functional theory(DFT) for reported peptides to identify the principal quantum mechanics descriptors related to peptide activity. In addition, the molecular recognition properties of these peptides are explored on major histocompatibility complex I (MHC-I) through docking and molecular dynamics (MD) simulations accompanied by the Molecular Mechanics Generalized Born Surface Area (MMGBSA) approach for correlating peptide activity reported elsewhere vs. theoretical peptide affinity. The results show that the carboxylic acid and hydroxyl groups are chemical moieties that have an inverse relationship with biological activity. The number of sulfides, pyrroles and imidazoles from the peptide structure are directly related to biological activity. In addition, the HOMO orbital energy values of the total absolute charge and the Ghose-Crippen molar refractivity of peptides are descriptors directly related to the activity and affinity on MHC-I. Docking and MD simulation studies accompanied by an MMGBSA analysis show that the binding free energy without considering the entropic contribution is energetically favorable for all the complexes. Furthermore, good peptide interaction with the most affinity is evaluated experimentally for three proteins. Overall, this study shows that the combination of quantum mechanics descriptors and molecular modeling studies could help describe the immunogenic properties of peptides from HIV-1.

  20. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  1. Why is MP2-Water "Cooler" and "Denser" than DFT-Water?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willow, Soohaeng Y.; Zeng, Xiao Cheng; Xantheas, Sotiris S.

    To maintain water in the liquid phase at the correct (1 g/cm3) density during first-principles simulations, density-functional theory (DFT) with a dispersionless generalized-gradient-approximation (GGA) functional requires a much higher temperature and pressure than the ambient conditions. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water performed by Del Ben et al. [J. Chem. Phys. Lett. 4, 3753 (2013); J. Chem. Phys. 143, 054506 (2015)] and by us [Willow et al., Sci. Rep. 5, 14358 (2015)] required a lower temperature and a negative pressure than DFT to keep water liquid. Here, we present a unifying explanation of these trendsmore » derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the calculated temperature and pressure of the liquid phase are strongly correlated with the polarizability of water and the dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for water to be liquid. In MP2 and DFT/GGA, the dispersion interaction is stronger and weaker (or lacking), respectively. This explains why liquid water contracts uniformly and becomes too dense in MP2, whereas the opposite is the case for dispersionless DFT/GGA.« less

  2. Ag nanoparticle decorated molybdenum oxide structures: growth, characterization, DFT studies and their application to enhanced field emission

    NASA Astrophysics Data System (ADS)

    Guha, Puspendu; Ghosh, Arnab; Thapa, Ranjit; Mathan Kumar, E.; Kirishwaran, Sabari; Singh, Ranveer; Satyam, Parlapalli V.

    2017-10-01

    We report a simple single step growth of α-MoO3 structures and energetically suitable site specific Ag nanoparticle (NP) decorated α-MoO3 structures on varied substrates, having almost similar morphologies and oxygen vacancies. We elucidate possible growth mechanisms in light of experimental findings and density functional theory (DFT) calculations. We experimentally establish and verified by DFT calculations that the MoO3(010) surface is a weakly interacting and stable surface compared to other orientations. From DFT study, the binding energy is found to be higher for (100) and (001) surfaces (˜-0.98 eV), compared to the (010) surface (˜-0.15 eV) and thus it is likely that Ag NP formation is not favorable on the MoO3(010) surface. The Ag decorated MoO3 (Ag-MoO3) nanostructured sample shows enhanced field emission properties with an approimately 2.1 times lower turn-on voltage of 1.67 V μm-1 and one order higher field enhancement factor (β) of 8.6 × 104 compared to the MoO3 sample without Ag incorporation. From Kelvin probe force microscopy measurements, the average local work function (Φ) is found to be approximately 0.47 eV smaller for the Ag-MoO3 sample (˜5.70 ± 0.05 eV) compared to the MoO3 sample (˜6.17 ± 0.05 eV) and the reduction in Φ can be attributed to the shifting Fermi level of MoO3 toward vacuum via electron injection from Ag NPs to MoO3. The presence of oxygen vacancies together with Ag NPs lead to the highest β and lowest turn-on field among the reported values under the MoO3 emitter category.

  3. Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics.

    PubMed

    Yang, Caiqin; Guo, Wei; Lin, Yulong; Lin, Qianqian; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2018-05-30

    In this study, a new cocrystal of felodipine (Fel) and glutaric acid (Glu) with a high dissolution rate was developed using the solvent ultrasonic method. The prepared cocrystal was characterized using X-ray powder diffraction, differential scanning calorimetry, thermogravimetric (TG) analysis, and infrared (IR) spectroscopy. To provide basic information about the optimization of pharmaceutical preparations of Fel-based cocrystals, this work investigated the thermal decomposition kinetics of the Fel-Glu cocrystal through non-isothermal thermogravimetry. Density functional theory (DFT) simulations were also performed on the Fel monomer and the trimolecular cocrystal compound for exploring the mechanisms underlying hydrogen bonding formation and thermal decomposition. Combined results of IR spectroscopy and DFT simulation verified that the Fel-Glu cocrystal formed via the NH⋯OC and CO⋯HO hydrogen bonds between Fel and Glu at the ratio of 1:2. The TG/derivative TG curves indicated that the thermal decomposition of the Fel-Glu cocrystal underwent a two-step process. The apparent activation energy (E a ) and pre-exponential factor (A) of the thermal decomposition for the first stage were 84.90 kJ mol -1 and 7.03 × 10 7  min -1 , respectively. The mechanism underlying thermal decomposition possibly involved nucleation and growth, with the integral mechanism function G(α) of α 3/2 . DFT calculation revealed that the hydrogen bonding between Fel and Glu weakened the terminal methoxyl, methyl, and ethyl groups in the Fel molecule. As a result, these groups were lost along with the Glu molecule in the first thermal decomposition. In conclusion, the formed cocrystal exhibited different thermal decomposition kinetics and showed different E a , A, and shelf life from the intact active pharmaceutical ingredient. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Conformational properties of chiral tobacco alkaloids by DFT calculations and vibrational circular dichroism: (-)-S-anabasine.

    PubMed

    Rodríguez Ortega, P G; Montejo, M; Márquez, F; López González, J J

    2015-07-01

    A thorough DFT and MM study of the conformational landscape, molecular and electronic structures of (-)-S-anabasine is reported aimed to reveal the mechanism controlling its conformational preference. Although the conformational flexibility and diversity of this system is quite extensive, only two structures are populated both in gas-phase and solution (CCl4 and DMSO). NBO-aided electronic structure analyses performed for the eight conformers representing minima in the potential energy surface of (-)-S-anabasine indicate that both steric and electrostatic factors are determinant in the conformational distribution of the sample in gas phase. Nonetheless, hyperconjugative effects are the key force tipping the balance in the conformational equilibrium between the two main rotamers. Increasing the polarity of the medium (using the IEF-PCM formalism) barely affect the conformational energy profile, although a slight increase in the theoretical population of those structures more affected by electrostatic interactions is predicted. The validity of the theoretical models and calculated conformers populations are endorsed by the accurate reproduction of the IR and VCD spectra (recorded in pure liquid and in CCl4 solution) of the sample (that have been firstly recorded and assigned in the present work) which are consistent with the occurrence of a 2:1 conformational ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Saravanan, R. R.; Seshadri, S.; Gunasekaran, S.; Mendoza-Meroño, R.; Garcia-Granda, S.

    2015-03-01

    Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT-B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.

  7. A Theoretical Study of 8-Chloro-9-Hydroxy-Aflatoxin B1, the Conversion Product of Aflatoxin B1 by Neutral Electrolyzed Water

    PubMed Central

    Escobedo-González, René; Méndez-Albores, Abraham; Villarreal-Barajas, Tania; Aceves-Hernández, Juan Manuel; Miranda-Ruvalcaba, René; Nicolás-Vázquez, Inés

    2016-01-01

    Theoretical studies of 8-chloro-9-hydroxy-aflatoxin B1 (2) were carried out by Density Functional Theory (DFT). This molecule is the reaction product of the treatment of aflatoxin B1 (1) with hypochlorous acid, from neutral electrolyzed water. Determination of the structural, electronic and spectroscopic properties of the reaction product allowed its theoretical characterization. In order to elucidate the formation process of 2, two reaction pathways were evaluated—the first one considering only ionic species (Cl+ and OH−) and the second one taking into account the entire hypochlorous acid molecule (HOCl). Both pathways were studied theoretically in gas and solution phases. In the first suggested pathway, the reaction involves the addition of chlorenium ion to 1 forming a non-classic carbocation assisted by anchimeric effect of the nearest aromatic system, and then a nucleophilic attack to the intermediate by the hydroxide ion. In the second studied pathway, as a first step, the attack of the double bond from the furanic moiety of 1 to the hypochlorous acid is considered, accomplishing the same non-classical carbocation, and again in the second step, a nucleophilic attack by the hydroxide ion. In order to validate both reaction pathways, the atomic charges, the highest occupied molecular orbital and the lowest unoccupied molecular orbital were obtained for both substrate and product. The corresponding data imply that the C9 atom is the more suitable site of the substrate to interact with the hydroxide ion. It was demonstrated by theoretical calculations that a vicinal and anti chlorohydrin is produced in the terminal furan ring. Data of the studied compound indicate an important reduction in the cytotoxic and genotoxic potential of the target molecule, as demonstrated previously by our research group using different in vitro assays. PMID:27455324

  8. On the number of multiplications necessary to compute a length-2 exp n DFT

    NASA Technical Reports Server (NTRS)

    Heideman, M. T.; Burrus, C. S.

    1986-01-01

    The number of multiplications necessary and sufficient to compute a length-2 exp n DFT is determined. The method of derivation is shown to apply to the multiplicative complexity results of Winograd (1980, 1981) for a length-p exp n DFT, for p an odd prime number. The multiplicative complexity of the one-dimensional DFT is summarized for many possible lengths.

  9. Adaptive DFT-based Interferometer Fringe Tracking

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.

  10. Molecular structure, spectroscopic studies, and coppersbnd oxygen bond strength of α-methyl and α-ethyl derivatives of copper (II) acetylacetonate; Experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Seyedkatouli, Seyedabdollah; Vakili, Mohammad; Tayyari, Sayyed Faramarz; Afzali, Raheleh

    2018-05-01

    This paper presents a combined experimental and theoretical study on the Cusbnd O bond strength of copper (II) α-methylacetylacetonate, Cu(3-Meacac)2, and copper (II) α-ethylacetylacetonate, Cu(3-Etacac)2, complexes in comparison to that in copper (II) acetylacetonate, Cu(acac)2. For this purpose, the molecular structure, UV spectra, and complete vibrational assignment of target molecules were investigated by DFT, Natural Bond Orbital (NBO) theory, and Atoms-in-Molecules (AIM) analysis at the B3LYP/6-311G* level of theory. The mentioned results are compared with those in Cu(acac)2. Fourier transform-Raman, IR, and UV spectra of these complexes have been also recorded. A complete assignment of the observed band frequencies has been done. All theoretical and experimental spectroscopic results are consisting with a stronger metal-oxygen bond in Cu(3-Meacac)2 and Cu(3-Etacac)2 complexes compared with Cu(acac)2. In addition, these results confirm that there is no significant difference between the Cusbnd O bond strength of the Cu(3-Meacac)2 and Cu(3-Etacac)2 complexes.

  11. Charge transport, interfacial interactions and synergistic mechanisms in BiNbO4/MWO4 (M = Zn and Cd) heterostructures for hydrogen production: insights from a DFT+U study.

    PubMed

    Opoku, Francis; Kuben Govender, Krishna; van Sittert, Cornelia Gertina Catharina Elizabeth; Poomani Govender, Penny

    2017-10-25

    In the 21st century, the growing demand of global energy is one of the key challenges. The photocatalytic generation of hydrogen has attracted extensive attention to discuss the increasing global demand for sustainable and clean energy. However, hydrogen evolution reactions normally use the economically expensive rare noble metals and the processes remain a challenge. Herein, low-cost BiNbO 4 /MWO 4 (010) heterostructures are studied for the first time to check their suitability towards photocatalytic hydrogen production. A theoretical study with the aid of density functional theory (DFT) is used to investigate the synergistic effect, ionisation energy, electron affinities, charge transfer, electronic properties and the underlying mechanism for hydrogen generation of BiNbO 4 /MWO 4 (010) heterostructures. The experimental band gaps of bulk ZnWO 4 , CdWO 4 and BiNbO 4 are well reproduced using the DFT+U method. The calculated band edge position shows a type-II staggered band alignment and the charge transfer between BiNbO 4 and MWO 4 monolayers results in a large interfacial built-in potential, which will favour the separation of charge carriers in the heterostructures. The effective mass of the photoinduced holes is higher compared to the electrons, making the heterostructures useful in hydrogen production. The relatively low ionisation energy and electron affinity for the heterostructures compared to the monolayers make them ideal for photocatalysis applications due to their small energy barrier for the injection of electrons and creation of holes. The BiNbO 4 /MWO 4 (010) heterostructures are more suitable for photocatalytic hydrogen production due to their strong reducing power relative to the H + /H 2 O potential. This study sheds light on the less known BiNbO 4 /ZnWO 4 (010) heterostructures and the fully explored electronic and optical properties will pave way for future photocatalytic water splitting applications.

  12. C dbnd N sbnd N dbnd C conformational isomers of 2'-hydroxyacetophenone azine: FTIR matrix isolation and DFT study

    NASA Astrophysics Data System (ADS)

    Grzegorzek, Joanna; Mielke, Zofia; Filarowski, Aleksander

    2010-07-01

    2'-hydroxyacetophenone azine (APA) has been studied by matrix isolation infrared spectroscopy and quantum chemical calculations. The DFT/B3LYP/6-311++G(2d,2p) calculations demonstrated the existence of two conformers for the lowest energy E/ E configuration of APA, a s- trans and a gauche ones. The conformers are characterized by similar energies and differ in the value of a C dbnd N sbnd N dbnd C angle, that was calculated to be 180° for a planar s-trans conformer and 155° for a non-planar gauche one . The calculated barrier for conformational interconversion is also very low, ca. 1 kJ mol -1 for the conversion from a gauche conformer to a trans one. The FTIR spectra of an argon matrix doped with APA from a vapour above solid sample evidence the presence of both conformers that exhibit reversible interconversion at matrix temperatures. The comparison of the theoretical spectra with the experimental ones and reversible temperature dependence of the experimental spectra allowed for unambiguous spectroscopic characterization of the trans and gauche conformers. The experiment also demonstrated that a gauche conformer is more stable than a trans one. The spectra analysis indicates that transformation from a trans conformer to a gauche one weakens the intramolecular O sbnd H⋯N bonds in the molecule.

  13. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  14. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  15. Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A

    NASA Astrophysics Data System (ADS)

    Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.

    2017-02-01

    Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.

  16. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies.

    PubMed

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-15

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H 2 O/CH 3 OH and H 2 O/CD 3 OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (X ME  < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) Study.

    PubMed

    Kang, Guo-Jun; Song, Chao; Ren, Xue-Feng

    2016-11-25

    The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH₃-YD2 and TPhe-YD) were systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO₂ cluster were fully investigated. From the analyses of natural bond orbital (NBO), extended charge decomposition analysis (ECDA), and electron density variations (Δρ) between the excited state and ground state, it was found that the introduction of N(CH₃)₂ and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT) character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH₃)₂ and 1,1,2-triphenylethene groups. NCH₃-YD2 with N(CH₃)₂ groups in the donor part is an effective way to improve the interactions between the dyes and TiO₂ surface, light having efficiency (LHE), and free energy change (ΔG inject ), which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs).

  18. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies

    NASA Astrophysics Data System (ADS)

    Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine

    2014-09-01

    A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.

  19. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline

    NASA Astrophysics Data System (ADS)

    Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.

    2017-11-01

    In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .

  20. Study of the docking of competitive inhibitors at a model of tyrosinase active site: insights from joint broken-symmetry/Spin-Flip DFT computations and ELF topological analysis

    PubMed Central

    de la Lande, A.; Maddaluno, J.; Parisel, O.; Darden, T. A.; Piquemal, J-P

    2010-01-01

    Following our previous study (Piquemal et al., New J. Chem., 2003, 27, 909), we present here a DFT study of the inhibition of the Tyrosinase enzyme. Broken-symmetry DFT computations are supplemented with Spin-Flip TD-DFT calculations, which, for the first time, are applied to such a dicopper enzyme. The chosen biomimetic model encompasses a dioxygen molecule, two Cu(II) cations, and six imidazole rings. The docking energy of a natural substrate, namely phenolate, together with those of several inhibitor and non-inhibitor compounds, are reported and show the ability of the model to rank the most potent inhibitors in agreement with experimental data. With respect to broken-symmetry calculations, the Spin-Flip TD-DFT approach reinforces the possibility for theory to point out potent inhibitors: the need for the deprotonation of the substrates, natural or inhibitors, is now clearly established. Moreover, Electron Localization Function (ELF) topological analysis computations are used to deeply track the particular electronic distribution of the Cu-O-Cu three-center bonds involved in the enzymatic Cu2O2 metallic core (Piquemal and Pilmé, J. Mol. Struct.: Theochem, 2006, 77, 764). It is shown that such bonds exhibit very resilient out-of-plane density expansions that play a key role in docking interactions: their 3D-orientation could be the topological electronic signature of oxygen activation within such systems. PMID:20396590

  1. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.

    PubMed

    Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  2. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  3. A fast D.F.T. algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.

  4. Experimental and theoretical debate on efficient second harmonic generation in Bis (Cinnamic acid): Hexamine cocrystal

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.

    2014-02-01

    Second harmonic generation (SHG) in Bis (Cinnamic acid): Hexamine cocrystal was extensively analyzed through charge transfer (CT). The CT interactions through hydrogen bonding were well established with the aid of vibrational analysis and Natural Bond Orbital (NBO) analysis. The retentivity of coplanar nature of the cinnamic acid in the cocrystal was confirmed through UV-Visible spectroscopy and supported by Raman studies. Structural analysis indicated the quinoidal character of the given material presenting a high SHG efficiency. The first order hyperpolarizability value was calculated theoretically by density functional theory (DFT) and Hartree-Fock (HF) methods in support for the large value of SHG.

  5. Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family

    NASA Astrophysics Data System (ADS)

    Arrue, Lily; Rey, Marina; Rubilar-Hernandez, Carlos; Correa, Sebastian; Molins, Elies; Norambuena, Lorena; Zarate, Ximena; Schott, Eduardo

    2017-11-01

    Nitrogen compounds are widely investigated due to their pharmacological properties such as antihypertensive, antinociceptive, antibacterial, antifungal, analgesic, anticancer and inhibition activities and lately even as pesticide. In this context, we present the synthesis of new compounds: (E)-6-(3,4-dimethoxyphenyl)-3-(3-(3,4-dimethoxyphenyl)acryloyl)-1-(4-R-phenyl)- 5,6-dihydropyridazin-4(1H)-one (with R = sbnd H(1), -Cl(2), -Br(3), sbnd I(4) and sbnd COOH(5)) that was carried out by reaction of (1E, 6E)-1,7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione with a substituted phenylamine with general formula p-R-C6H4sbnd NH2 (R = sbnd H (1), sbnd Cl (2), -Br(3), sbnd I(4) and sbnd COOH(5)). This is the first synthesis report of a pyridazinone using as precursors a curcuminoid derivative and a diazonium salt formed in situ. All compounds were characterized by EA, FT-IR, UV-Vis, Emission,1H- and13C-NMR spectroscopy and the crystalline and molecular structure of 4 was solved by X-rays diffraction method. DFT and TD-DFT quantum chemical calculations were also employed to characterize the compounds and provide a rational explanation to the spectroscopic properties. To assess the biological activity of the systems, we focused on pesticide tests on compound 2, which showed an inhibitory effect in plant growth of Agrostis tenuis Higland.

  6. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2016-03-01

    The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd-ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (ΔHL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and ΔHL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

  7. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    PubMed

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír

    2016-09-01

    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods.

  8. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    PubMed

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study

    NASA Astrophysics Data System (ADS)

    Devi, Anjna; Singh, Amarjeet

    2018-04-01

    In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.

  10. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  11. Secure Image Transmission over DFT-precoded OFDM-VLC systems based on Chebyshev Chaos scrambling

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Qiu, Weiwei

    2017-08-01

    This paper proposes a physical layer image secure transmission scheme for discrete Fourier transform (DFT) precoded OFDM-based visible light communication systems by using Chebyshev chaos maps. In the proposed scheme, 256 subcarriers and QPSK modulation are employed. The transmitted digital signal of the image is encrypted with a Chebyshev chaos sequence. The encrypted signal is then transformed by a DFT precoding matrix to reduce the PAPR of the OFDM signal. After that, the encrypted and DFT-precoded OFDM are transmitted over a VLC channel. The simulation results show that the proposed image security transmission scheme can not only protect the DFT-precoded OFDM-based VLC from eavesdroppers but also improve BER performance.

  12. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    PubMed

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparative DFT study of structure, reactivity and IR spectra of phosphorus-containing dendrons with Pdbnd Nsbnd Pdbnd S linkages, vinyl and azide functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Gottis, S.; Laurent, R.; Kovalenko, V. I.

    2015-07-01

    Fourier transform IR spectra of the first generation dendrons built from thiophosphoryl core with terminal Psbnd Cl groups, vinyl (G1) and azide (G2) functional group at the level of the core have been recorded. The optimized geometries of low energy isomers of G1 and G2 have been calculated by density functional (DFT) method at the PBE/TZ2P level of theory. DFT is used for analyzing the properties of each structural part (core, branches, surface). It was found that the repeated branching units of G1 and G2 contain planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd Prbond2 fragments. DFT results for the structure of G1 and G2 are in good agreement with X-ray diffraction measurements. A complete vibrational assignment is proposed for different parts of G1 and G2. The global and local reactivity descriptors have been used to characterize the reactivity pattern of the core functional and terminal groups. Natural bond orbital (NBO) analysis has been applied to comparative study of charge delocalization. Our study reveals why azide group linked to phosphorus has a different reactivity when compared to organic azides.

  14. Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants.

    PubMed

    Liu, Yan; Wang, Lianjun; Wang, Guixiang; Du, Hongchen; Gong, Xuedong

    2012-04-01

    In an attempt to find superior propellants, 2-diazo-4,6-dinitrophenol (DDNP) and its -NO(2), -NH(2), -CN, -NC, -ONO(2), and -NF(2) derivatives were studied at the B3LYP/6-311++G level of density functional theory (DFT). Sensitivity was evaluated using bond dissociation enthalpies (BDEs) and molecular surface electrostatic potentials. The C-NO(2) bond appears to be the trigger bond during the thermolysis process for these compounds, except for the -ONO(2) and -NF(2) derivatives. Electrostatic potential results show that electron-withdrawing substituents make the charge imbalance more anomalous, which may change the strength of the bond, especially the weakest trigger bond. Most of the DDNP derivatives have the impact sensitivities that are higher than that of DDNP, making them favorable for use as solid propellants in micro-rockets. The theoretical densities (ρ), heats of formation (HOFs), detonation energies (Q), detonation pressures (P), and detonation velocities (D) of the compounds were estimated. The effects of various substituent groups on ρ, HOF, Q, D, and P were investigated. Some derivatives exhibit perfect detonation properties. The calculated relative specific impulses (I (r,sp)) of all compounds except for -NH(2) derivatives were higher than that of DDNP, and also meet the requirements of propellants.

  15. PCM/TD-DFT analysis of 1-bromo-2,3-dichlorobenzene--a combined study of experimental (FT-IR and FT-Raman) and theoretical calculations.

    PubMed

    Arivazhagan, M; Muniappan, P; Meenakshi, R; Rajavel, G

    2013-03-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 1-bromo-2,3-dichlorobenzene (BDCB). The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The relationship between the structure and absorption spectrum and effects of solvents have been discussed. It turns that the hybrid PBE1PBE functional with 6-311+G(d,p) basis provide reliable λ(max) when solvent effects are included in the model. The NBO analysis reveals that the studied compound presents a structural characteristic of electron-transfer within the compound. The frontier molecular orbitals (HOMO-LUMO) are responsible for the electron polarization and electron-transfer properties. The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MESP). Besides, (13)C and (1)H have been calculated using the gauge-invariant atomic orbital (GIAO) method. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Furthermore, the studied compound can be used as a good nonlinear optical material due to the higher value of first hyper polarizability (5.7 times greater than that of urea (0.37289×10(-30) esu)). Finally, it is worth to mentioning that solvent induces a considerable red shift of the absorption maximum going from the gas phase, and a slight blue shift of the transition S(0)→S(1) going from less polar to more polar solvents. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. One-dimensional mercury(II) halide coordination polymers of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine ligand: Synthesis, crystal structure, spectroscopic and DFT studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghatforoush, Lotfali, E-mail: saghatforoush@gmail.com; Khoshtarkib, Zeinab; Amani, Vahid

    2016-01-15

    Three new coordination polymers, [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl (1), Br (2)) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} (3) (bptz=3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) were synthesized. X-ray structural analysis indicated that compounds 1 and 2 are composed of one-dimensional (1D) linear chains while the compound 3 has 1D stair-stepped structure. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that compound 1 and 2 are direct band gap semiconductors; however, compound 3 is an indirect semiconductor. The linear optical properties of the compounds are also calculated by DFT method. According to the DFT calculations, the observed emission bandmore » of the compounds in solid state is due to electron transfer from an excited bptz-π* state (CBs) to the top of VBs. {sup 1}H NMR spectra of the compounds indicate that, in solution phase, the compounds don’t decompose completely. Thermal stability of the compounds is studied using TG, DTA methods. - Graphical abstract: Synthesis, crystal structure and emission spectra of [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} are presented. The electronic band structure and linear optical properties of the compounds are calculated by the DFT method. - Highlights: • Three 1D Hg(II) halide coordination polymers with bptz ligand have been prepared. • The structures of the compounds are determined by single crystal XRD. • DFT calculations show that [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) have a direct band gap. • DFT calculations show that [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} has an indirect band gap. • The compounds show an intraligand electron transfer emission band in solid state.« less

  17. DFT Studies on Interaction between Lanthanum and Hydroxyamide

    NASA Astrophysics Data System (ADS)

    Pati, Anindita; Kundu, T. K.; Pal, Snehanshu

    2018-03-01

    Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.

  18. Experimental and theoretical studies on tautomeric structures of a newly synthesized 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Cukurovali, Alaaddin; Subasi, Nuriye Tuna; Onaran, Abdurrahman; Ece, Abdulilah; Eker, Sıtkı; Kani, Ibrahim

    2018-02-01

    In the present study, a single crystal of a Schiff base, 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol, was synthesized. The structure of the synthesized crystal was confirmed by 1H and 13C NMR spectroscopic and X-ray diffraction analysis techniques. Experimental and theoretical studies were carried out on two tautomeric structures. It has been observed that the title compound studied can be in two different tautomeric forms, phenol-imine and keto-amine. Theoretical calculations have been performed to support experimental results. Accordingly, the geometric parameters of the compound were optimized by the density functional theory (DFT) method using the Gaussian 09 and Quantum Espresso (QE) packet program was used for periodic boundary conditions (PBC) studies. Furthermore, the compound was also tested for in vitro antifungal activity against Sclerotinia sclerotiorum, Alternaria solani, Fusarium oxysporum f. sp. lycopersici and Monilinia fructigena plant pathogens. Promising inhibition profiles were observed especially towards A. solani. Finally, molecular docking studies and post-docking procedure based on Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) were also carried out to get insight into the compound's binding interactions with the potential. Although theoretical calculations showed that the phenol-imine form was more stable, keto-amine form was predicted to have better binding affinity which was concluded to result from loss of rotational entropy in phenol-imine upon binding. The results obtained here from both experimental and computational methods might serve as a potential lead in the development of novel anti-fungal agents.

  19. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    PubMed

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  20. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.

    2016-10-01

    The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.

  1. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  2. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT.

    PubMed

    Sert, Yusuf; El-Emam, Ali A; Al-Deeb, Omar A; Al-Turkistani, Abdulghafoor A; Ucun, Fatih; Cırak, Cağrı

    2014-05-21

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.

    2018-03-01

    The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.

  4. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  5. ¹J(CH) couplings in Group 14/IVA tetramethyls from the gas-phase NMR and DFT structural study: a search for the best computational protocol.

    PubMed

    Nazarski, Ryszard B; Makulski, Włodzimierz

    2014-08-07

    Four tetramethyl compounds EMe4 (E = C, Si, Ge, and Pb) were studied by high-resolution NMR spectroscopy in gaseous and liquid states at 300 K. Extrapolation of experimental vapor-phase C-H J-couplings to a zero-pressure limit permitted determining the (1)J(0,CH)s in methyl groups of their nearly isolated molecules. Theoretical predictions of the latter NMR parameters were also performed in a locally dense basis sets/pseudopotential (Sn, Pb) approach, by applying a few DFT methods pre-selected in calculations of other gas-phase molecular properties of all these species and SnMe4 (bond lengths, C-H stretching IR vibrations). A very good agreement theory vs. experiment was achieved with some computational protocols for all five systems. The trends observed in their geometry and associated coupling constants ((1)J(CH)s, (2)J(HH)s) are discussed and rationalized in terms of the substituent-induced rehybridization of the methyl group (treated as a ligand) carbon, by using Bent's rule and the newly proposed, theoretically derived values of the Mulliken electronegativity (χ) of related atoms and groups. All these χ data for the Group-14/IVA entities were under a lot of controversy for a very long time. As a result, the recommended χ values are semi-experimentally confirmed for the first time and only a small correction is suggested for χ(Ge) and χ(GeMe3).

  6. Stages of Se adsorption on Au(111): A combined XPS, LEED, TOF-DRS, and DFT study

    NASA Astrophysics Data System (ADS)

    Ruano, G.; Tosi, E.; Sanchez, E.; Abufager, P.; Martiarena, M. L.; Grizzi, O.; Zampieri, G.

    2017-08-01

    We have studied the adsorption of Se on the surface Au(111) using XPS, TOF-DRS, LEED and DFT calculations. The use of a doser that operates in vacuum allowed us to investigate all the stages of the adsorption from the clean surface up to the formation of multilayers. In the monolayer regime we have found two ordered phases with distinctive LEED patterns. The LEED pattern of the first phase presents three fractional spots arranged symmetrically around the positions of the spots in a √3x√3 pattern. The analysis of this pattern suggests the formation of either a nxn superstructure of √3x√3 domains with n=19 or n=22, or that the adsorption occurs without removing the 22x√3 herringbone reconstruction of the gold surface. This last possibility is in accordance with DFT calculations which show that the charge transfer to a Se adsorbate might not be enough to destabilize the surface reconstruction. Increasing the coverage, beyond 0.3 ML a new LEED pattern appears with broad spots which upon annealing at 150 °C become well defined indicating a 1×8 periodicity. At the highest doses we have observed the formation of multilayers with no discernible LEED pattern. The comparison with adsorption experiments carried out in liquid solutions show similarities and also some important differences.

  7. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  8. A study of vibrational spectra and investigations of charge transfer and chemical bonding features of 2-chloro benzimidazole based on DFT computations

    NASA Astrophysics Data System (ADS)

    Muthunatesan, S.; Ragavendran, V.

    2015-01-01

    Benzimidazoles are bicyclic heteroatomic molecules. Polycyclic heteroatomic molecules have extensive coupling of different modes leading to strong coupling of force constants associated with the various chemical bonds of the molecules. To carry out a detailed vibrational spectroscopic analysis of such a bicyclic heteroatomic molecule, FT-IR and FT-Raman spectra of 2-chloro benzimidazole (CBZ) have been recorded in the condensed phase. Density Functional Theory calculations in the B3LYP/6-31G* level have been carried out to determine the optimized geometry and vibrational frequencies. In order to obtain a close agreement between theoretical and observed frequencies and hence to perform a reliable assignment, the theoretical DFT force field was transformed from Cartesian to local symmetry co-ordinates and then scaled empirically using SQM methodology. The SQM treatment resulted in a RMS deviation of 9.4 cm-1. For visual comparison, the observed and calculated spectra are presented on a common wavenumber scale. From the NBO analysis, the electron density (ED) charge transfers in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated Homo and Lumo energies show that charge transfer occurs within the molecule. The results obtained from the vibrational, NBO and HOMO-LUMO analyses have been properly tabulated.

  9. Coumarin-indole conjugate donor-acceptor system: Synthesis, photophysical properties, anion sensing ability, theoretical and biological activity studies of two coumarin-indole based push-pull dyes

    NASA Astrophysics Data System (ADS)

    Aksungur, Tuğçe; Aydıner, Burcu; Seferoğlu, Nurgül; Özkütük, Müjgan; Arslan, Leyla; Reis, Yasemin; Açık, Leyla; Seferoğlu, Zeynel

    2017-11-01

    Two coumarin-indole conjugate fluorescent dyes having donor-acceptor-donor (D-A-D) (CI-1 and CI-2) were synthesized, and characterized using IR, 1H/13C NMR and HRMS. The absorption and emission properties of the dyes were determined in different solvents. The anion sensitivity and selectivity of the dyes were studied with some anions (CN-, F-, AcO-, Cl-, Br-, I-, HSO4- and H2PO4-) in DMSO, and their interaction mechanisms were evaluated by spectrophotometric and 1H NMR titration techniques. In addition, the molecular and electronic structures of CI-1, as well as the molecular complexes of CI-1, formed with the anions (F- and AcO-), were obtained theoretically and confirmed by DFT and TD-DFT calculations. CI-1 behaves as a colorimetric chemosensor for selective and sensitive detection of CN- in DMSO/H2O (9:1) over other competing anions such as F- and AcO-. However, only CN- interacts with chromophore CI-2 via Michael addition and the main absorption maxima shifts hypsochromically with an observed distinctive color change from orange to yellow. For using as a optic dye, the thermal stability properties of the dyes was determined by TGA (Thermal Gravimetric Analysis). Antimicrobial, antifungal and DNA-ligand interaction studies of the dyes were also examined. The dyes cause conformational changes on DNA and selectively bind to nucleotides of A/A and G/G.

  10. Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study

    PubMed Central

    Krupski, Katarzyna; Moors, Marco; Jóźwik, Paweł; Kobiela, Tomasz; Krupski, Aleksander

    2015-01-01

    Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface are observed.

  11. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A DFT+U study of A-site and B-site substitution in BaFeO3-δ.

    PubMed

    Baiyee, Zarah Medina; Chen, Chi; Ciucci, Francesco

    2015-09-28

    BaFeO3-δ (BFO)-based perovskites have emerged as cheap and effective oxygen electrocatalysts for oxygen reduction reaction at high temperatures. The BFO cubic phase facilitates a high oxygen deficiency and is commonly stabilised by partial substitution. Understanding the electronic mechanisms of substitution and oxygen deficiency is key to rational material design, and can be realised through DFT analysis. In this work an in-depth first principle DFT+U study is undertaken to determine site distinctive characteristics for 12.5%, Y, La and Ce substitutions in BFO. In particular, it is shown that B-site doped structures exhibit a lower energy cost for oxygen vacancy formation relative to A site doping and pristine BFO. This is attributed to the stabilisation of holes in the oxygen sub-lattice and increased covalency of the Fe-O bonds of the FeO6 octahedra in B-site-substituted BFO. Charge analysis shows that A-site substitution amounts to donor doping and consequently impedes the accommodation of other donors (i.e. oxygen vacancies). However, A-site substitution may also exhibit a higher electronic conductivity due to less lattice distortion for oxygen deficiency compared to B-site doped structures. Furthermore, analysis of the local structural effects provides physical insight into stoichiometric expansions observed for this material.

  13. Combined MCD/DFT/TDDFT Study of the Electronic Structure of Axially Pyridine Coordinated Metallocorroles.

    PubMed

    Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N

    2015-05-18

    A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO < ΔLUMO [ΔHOMO is the energy difference between two highest energy corrole-centered π-orbitals and ΔLUMO is the energy difference between two lowest energy corrole-centered π*-orbitals originating from ML ± 4 and ML ± 5 pairs of perimeter] condition is present for each complex, which results in an unusual sign-reversed sequence for π-π* transitions in their MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.

  14. Electronic structure and nature of the ground state of the mixed-valence binuclear tetra(mu-1,8-naphthyridine-N,N')-bis(halogenonickel) tetraphenylborate complexes: experimental and DFT characterization.

    PubMed

    Bencini, Alessandro; Berti, Elisabetta; Caneschi, Andrea; Gatteschi, Dante; Giannasi, Elisa; Invernizzi, Ivana

    2002-08-16

    The ground state electronic structure of the mixed-valence systems [Ni(2)(napy)(4)X(2)](BPh(4)) (napy=1,8-naphthyridine; X=Cl, Br, I) was studied with combined experimental (X-ray diffraction, temperature dependence of the magnetic susceptibility, and high-field EPR spectroscopy) and theoretical (DFT) methods. The zero-field splitting (zfs) ground S=3/2 spin state is axial with /D/ approximately 3 cm(-1). The iodide derivative was found to be isostructural with the previously reported bromide complex, but not isomorphous. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a=17.240(5), b=26.200(5), c=11.340(5) A, beta=101.320(5) degrees. DFT calculations were performed on the S=3/2 state to characterize the ground state potential energy surface as a function of the nuclear displacements. The molecules can thus be classified as Class III mixed-valence compounds with a computed delocalization parameter, B=3716, 3583, and 3261 cm(-1) for the Cl, Br, and I derivatives, respectively.

  15. Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: a DFT study.

    PubMed

    Liu, Hongyan; Qin, Qiaoyun; Zhang, Riguang; Ling, Lixia; Wang, Baojun

    2017-09-13

    The adsorption and reactions of CO 2 and H 2 O on both monoclinic and hexagonal crystal K 2 CO 3 were investigated using the density functional theory (DFT) approach. The calculated adsorption energies showed that adsorption of H 2 O molecules was clearly substantially stronger on the K 2 CO 3 surface than the adsorption of CO 2 , except on the (001)-1 surface of hexagonal K 2 CO 3 , where CO 2 is competitively adsorbed with H 2 O. Carbonation reactions easily occur on pure K 2 CO 3 and involve two parallel paths: one is where adsorbed H 2 O reacts with molecular CO 2 in gas to form the bicarbonate, while the other is where H 2 O dissociates into OH and H before bicarbonate formation, and then OH reacts with gaseous CO 2 to form a bicarbonate. Our results indicate that adding a support or promoter or using a special technique to expose more (001)-1 surfaces in hexagonal K 2 CO 3 may improve the conversion of CO 2 to the bicarbonate, which provides a theoretical direction for the experimental preparation of the K 2 CO 3 sorbent to capture CO 2 .

  16. Experimental and theoretical IR study of methyl thioglycolate, CH3OC(O)CH2SH, in different phases: Evidence of a dimer formation

    NASA Astrophysics Data System (ADS)

    Bava, Yanina B.; Tamone, Luciana M.; Juncal, Luciana C.; Seng, Samantha; Tobón, Yeny A.; Sobanska, Sophie; Picone, A. Lorena; Romano, Rosana M.

    2017-07-01

    The IR spectrum of methyl thioglycolate (MTG) was studied in three different phases, and interpreted with the aid of DFT calculations. The gas phase IR spectrum was explainable by the presence of the most stable conformer (syn-gauche-(-)gauche) only, while the IR spectrum of the liquid reveals strong intermolecular interactions, coincident with the formation of a dimeric form. The matrix-isolated spectra allow the identification of the second conformer (syn-gauche-gauche), in addition to the most stable form. The MTG dimer was also isolated by increasing the proportion of MTG in the matrix. The theoretical most stable structure of the dimer, which calculated IR spectrum agrees very well with the experimental one, is stabilized by a double interaction of the lone pair of the O atom of each of the Cdbnd O groups with the antibonding orbitals σ* (Ssbnd H).

  17. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  18. Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study

    DOE PAGES

    Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon

    2018-01-17

    A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less

  19. Functionalization of ( n, 0) CNTs ( n = 3-16) by uracil: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Harismah, Kun; Jafari, Elham; Gülseren, Oğuz; Rad, Ali Shokuhi

    2018-01-01

    Density functional theory (DFT) calculations were performed to investigate stabilities and properties for uracil (U)-functionalized carbon nanotubes (CNTs). To this aim, the optimized molecular properties were evaluated for ( n, 0) models of CNTs ( n = 3-16) in the original and U-functionalized forms. The results indicated that the dipole moments and energy gaps were independent of tubular diameters whereas the binding energies showed that the U-functionalization could be better achieved for n = 8-11 curvatures of ( n, 0) CNTs. Further studies based on the evaluated atomic-scale properties, including quadrupole coupling constants ( C Q ), indicated that the electronic properties of atoms could detect the effects of diameters variations of ( n, 0) CNTs, in which the effects were very much significant for the atoms around the U-functionalization regions. Finally, the achieved results of singular U, original CNTs, and CNT-U hybrids were compared to each other to demonstrate the stabilities and properties for the U-functionalized ( n, 0) CNTs.

  20. Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon

    A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less

  1. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    NASA Astrophysics Data System (ADS)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  2. Strain-induced insulator-to-metal transition in LaTiO3 within DFT + DMFT

    NASA Astrophysics Data System (ADS)

    Dymkowski, Krzysztof; Ederer, Claude

    2014-04-01

    We present results of combined density functional theory plus dynamical mean-field theory (DFT + DMFT) calculations, which show that the Mott insulator LaTiO3 undergoes an insulator-to-metal transition under compressive epitaxial strain of about -2%. This transition is driven by strain-induced changes in the crystal-field splitting between the Ti t2g orbitals, which in turn are intimately related to the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure. An accurate treatment of the underlying crystal structure is therefore crucial for a correct description of the observed metal-insulator transition. Our theoretical results are consistent with recent experimental observations and demonstrate that metallic behavior in heterostructures of otherwise insulating materials can emerge also from mechanisms other than genuine interface effects.

  3. New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses

    NASA Astrophysics Data System (ADS)

    Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2017-03-01

    In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.

  4. The structure of N2 adsorbed on the rumpled NaCl(100) surface—A combined LEED and DFT-D study

    NASA Astrophysics Data System (ADS)

    Vogt, Jochen

    2012-11-01

    The structure of N2 physisorbed on the NaCl(100) single crystal surface is investigated by means of quantitative low-energy electron diffraction (LEED) in combination with dispersion corrected density functional theory (DFT-D). In the temperature range between 20 K and 45 K, a p(1 × 1) structure is observed in the LEED experiment. According to the structure analysis based on the measured diffraction spot intensity profiles, the N2 molecules are adsorbed over the topmost Na+ ions. The experimental distance of the lower nitrogen to the Na+ ion underneath is (2.55 ± 0.07) Å; the corresponding DFT-D value is 2.65 Å. The axes of the molecules are tilted (26 ± 3)° with respect to the surface normal, while in the zero Kelvin optimum structure from DFT-D, the molecules have a perpendicular orientation. The experimental monolayer heat of adsorption, deduced from a Fowler-Guggenheim kinetic model of adsorption is -(13.6 ± 1.6) kJ mol-1, including a lateral molecule-molecule interaction energy of -(2.0 ± 0.4) kJ mol-1. The zero Kelvin adsorption energy from DFT-D, including zero point energy correction, is -15.6 kJ mol-1; the molecule-molecule interaction is -2.4 kJ mol-1. While the rumpling of the NaCl(100) surface is unchanged upon adsorption of nitrogen, the best-fit root mean square thermal displacements of the ions in the topmost substrate layer are significantly reduced.

  5. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  6. Mono azo dyes derived from 5-nitroanthranilic acid: Synthesis, absorption properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir

    2017-08-01

    Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.

  7. Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard

    2015-03-01

    We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).

  8. DFT calculations on molecular structure, spectral analysis, multiple interactions, reactivity, NLO property and molecular docking study of flavanol-2,4-dinitrophenylhydrazone

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra Kumar; Singh, Ashok Kumar

    2017-02-01

    A new flavanol-2,4-dinitrophenylhydrazone (FDNP) was synthesized and its structure was confirmed by FT-IR, FT-Raman, 1H NMR, mass spectrometry and elemental analysis. All quantum chemical calculations were carried out at level of density functional theory (DFT) with B3LYP functional using 6-311++ G (d,p) basis atomic set. UV-Vis absorption spectra for the singlet-singlet transition computed for fully optimized ground state geometry using Time-Dependent-Density Functional Theory (TD-DFT) with CAM-B3LYP functional was found to be in consistent with that of experimental findings. Analysis of vibrational (FT-IR and FT-Raman) spectrum and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. HOMO-LUMO analysis was performed and reactivity descriptors were calculated. Calculated global electrophilicity index (ω = 7.986 eV) shows molecule to be a strong electrophile. 1H NMR chemical shift calculated with the help of gauge-including atomic orbital (GIAO) approach shows agreement with experimental data. Various intramolecular interactions were analysed by AIM approach. DFT computed total first static hyperpolarizability (β0 = 189.03 × 10-30 esu) indicates that title molecule can be used as attractive future NLO material. Solvent induced effects on the NLO properties studied by using self-consistent reaction field (SCRF) method shows that β0 value increases with increase in solvent polarity. To study the thermal behaviour of title molecule, thermodynamic properties such as heat capacity, entropy and enthalpy change at various temperatures have been calculated and reported. Molecular docking results suggests title molecule to be a potential kinase inhibitor and might be used in future for designing of new anticancer drug.

  9. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Adaptive DFT-Based Interferometer Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  11. Structural, spectral, NLO and MEP analysis of the [MgO2Ti2(OPri)6], [MgO2Ti2(OPri)2(acac)4] and [MgO2Ti2(OPri)2(bzac)4] by DFT method

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2015-06-01

    Quantum chemical calculations are performed on [MgO2Ti2(OPri)6] and [MgO2Ti2(OPri)2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, 1H and 13C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.

  12. Evaluation of DFT methods for computing the interaction energies of homomolecular and heteromolecular dimers of monosubstituted benzene

    NASA Astrophysics Data System (ADS)

    Godfrey-Kittle, Andrew; Cafiero, Mauricio

    We present density functional theory (DFT) interaction energies for the sandwich and T-shaped conformers of substituted benzene dimers. The DFT functionals studied include TPSS, HCTH407, B3LYP, and X3LYP. We also include Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory calculations (MP2), as well as calculations using a new functional, P3LYP, which includes PBE and HF exchange and LYP correlation. Although DFT methods do not explicitly account for the dispersion interactions important in the benzene-dimer interactions, we find that our new method, P3LYP, as well as HCTH407 and TPSS, match MP2 and CCSD(T) calculations much better than the hybrid methods B3LYP and X3LYP methods do.

  13. A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine

    NASA Astrophysics Data System (ADS)

    Boeckx, Bram; Ramaekers, Riet; Maes, Guido

    2010-06-01

    The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol -1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol -1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with Δ EMP2 < 10 kJ mol -1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.

  14. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study

    NASA Astrophysics Data System (ADS)

    Zhiani, Rahele

    2017-07-01

    The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  15. The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV-Vis, NMR and vibrational spectral techniques combined with molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Bardak, Fehmi

    2018-07-01

    This study comprises the structural and spectroscopic evaluation of a quinoline derivative, 2-chloro-3-methylquinoline (2Cl3MQ), via UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman techniques experimentally, theoretically with DFT and TD-DFT quantum chemical calculations at B3LYP/6-311++G (d, p) level of theory, and investigation of the in silico pharmaceutical potent of 2Cl3MQ in comparison to 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines. The experimental measurements were recorded as follows; UV-vis spectra were obtained in the range of 200-400 nm in the water and ethanol solvents. 1H and 13C NMR spectra were recorded in CDCl3. Vibrational spectra were obtained in the region of 4000-400 cm-1 and 3500-10 cm-1 for FT-IR and FT-Raman spectra, respectively. Structural and spectroscopic features obtained through theoretical evaluations include: electrostatic features, atomic charges and molecular electrostatic potential surface, the frontier molecular orbital characteristics, the density of states and their overlapping nature, the electronic transition properties, thermodynamical and nonlinear optical characteristics, and predicted UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman spectra. Ligand-enzyme interactions of 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines with Malate Synthase from Mycobacterium Tuberculosis (MtbMS) were investigated via molecular docking. The role of position of methyl substitution on the inhibitor character of the ligands was discussed on the basis of noncovalent interaction profiles.

  16. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential

  17. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.

    PubMed

    Ishikawa, Atsushi; Sakaki, Shigeyoshi

    2011-05-12

    Epoxidation of olefin by [Ru(TMP)(CO)(O)](-) (TMP = tetramesitylporphine), which is a key step of the photocatalyzed epoxidation of olefin by [Ru(TMP)(CO)], is studied mainly with the density functional theory (DFT) method, where [Ru(Por)(CO)] is employed as a model complex (Por = unsubstituted porphyrin). The CASSCF method was also used to investigate the electronic structure of important species in the catalytic cycle. In all of the ruthenium porphyrin species involved in the catalytic cycle, the weight of the main configuration of the CASSCF wave function is larger than 85%, suggesting that the static correlation is not very large. Also, unrestricted-DFT-calculated natural orbitals are essentially the same as CASSCF-calculated ones, here. On the basis of these results, we employed the DFT method in this work. Present computational results show characteristic features of this reaction, as follows: (i) The epoxidation reaction occurs via carboradical-type transition state. Neither carbocation-type nor concerted oxene-insertion-type character is observed in the transition state. (ii) Electron and spin populations transfer from the olefin moiety to the porphyrin ring in the step of the C-O bond formation. (iii) Electron and spin populations of the olefin and porphyrin moieties considerably change around the transition state. (iv) The atomic and spin populations of Ru change little in the reaction, indicating that the Ru center keeps the +II oxidation state in the whole catalytic cycle. (v) The stability of the olefin adduct [Ru(Por)(CO)(O)(olefin)](-) considerably depends on the kind of olefin, such as ethylene, n-hexene, and styrene. In particular, styrene forms a stable olefin adduct. And, (vi) interestingly, the difference in the activation barrier among these olefins is small in the quantitative level (within 5 kcal/mol), indicating that this catalyst can be applied to various substrates. This is because the stabilities and electronic structures of both the

  18. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol.

    PubMed

    Shoba, D; Periandy, S; Karabacak, M; Ramalingam, S

    2011-12-01

    The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. A combined spectroscopic and theoretical study of propofol.(H2O)3

    NASA Astrophysics Data System (ADS)

    León, Iker; Cocinero, Emilio J.; Millán, Judith; Rijs, Anouk M.; Usabiaga, Imanol; Lesarri, Alberto; Castaño, Fernando; Fernández, José A.

    2012-08-01

    Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol.(H2O)3 contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.

  20. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less