Sample records for dgp braneworld gravity

  1. Anisotropic cosmologies in warped DGP braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe

    2009-10-15

    The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less

  2. Self-accelerating warped braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; Santiago, Jose

    2007-01-15

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze, and Porrati (DGP) demonstrated the existence of a 'self-accelerating' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension, respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  3. Self-accelerating Warped Braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  4. Bulk scalar field in brane-worlds with induced gravity inspired by the L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, M.; Sepangi, H.R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-01-15

    We obtain the effective field equations in a brane-world scenario within the framework of a DGP model where the action on the brane is an arbitrary function of the Ricci scalar, L(R), and the bulk action includes a scalar field in the matter Lagrangian. We obtain the Friedmann equations and acceleration conditions in the presence of the bulk scalar field for the R{sup n} term in four-dimensional gravity.

  5. On asymptotic behavior of anisotropic branes with induced gravity inspired by L(R) term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2010-12-01

    The DGP brane-world scenario provides the accelerated expansion of the universe at late-time by large-distance modification of general relativity without any need for dark energy. Using the method in reference [33], we investigate the asymptotic behavior of homogeneous and anisotropic cosmologies on a generalization of DGP scenario where the effective theory of gravity induced on the brane is given by a L(R) term. We show that for a constant induced curvature term on the brane all Bianchi models except type IX isotropize, like general relativity, if the effective energy density and E{sub ab} term satisfy some energy conditions. Finally, wemore » compare the result of the model with the result of anisotropic DGP branes and general relativity.« less

  6. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R., E-mail: knozari@umz.ac.ir, E-mail: t.azizi@umz.ac.ir, E-mail: rezakord@ipm.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  7. Cosmological perturbations in the DGP braneworld: Numeric solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.

    2008-04-15

    We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.

  8. Analysis of dark energy models in DGP braneworld

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul

    2015-12-01

    In this paper, we reconsider the accelerated expansion phenomenon in the DGP braneworld scenario which leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (ɛ= +1) which is not more attractive model. Thus, we assume the DGP braneworld scenario with (ɛ= -1) and also interacting Hubble and event horizons pilgrim dark energy models. We extract various cosmological parameters in this scenario and displayed our results with respect to redshift parameter. It is found that the ranges of Hubble parameter are coincided with observational results. The equation of state parameter lies within the suggested ranges of different observational schemes. The squared speed of sound shows stability for all present models in DGP braneworld scenario. The ω_{\\vartheta}-ω'_{\\vartheta} planes lie in the range (ω_{\\vartheta}=-1.13^{+0.24}_{-0.25},ω'_{\\vartheta}<1.32) which has been obtained through different observational schemes. It is remarked that our results of various cosmological parameters shows consistency with different observational data like Planck, WP, BAO, H0 and SNLS.

  9. Traversable braneworld wormholes supported by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-He

    2018-02-01

    In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze-Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2 σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

  10. New holographic dark energy model inspired by the DGP braneworld

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.

    2016-11-01

    The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).

  11. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  12. Braneworld gravity within non-conservative gravitational theory

    NASA Astrophysics Data System (ADS)

    Fabris, J. C.; Caramês, Thiago R. P.; da Silva, J. M. Hoff

    2018-05-01

    We investigate the braneworld gravity starting from the non-conservative gravitational field equations in a five-dimensional bulk. The approach is based on the Gauss-Codazzi formalism along with the study of the braneworld consistency conditions. The effective gravitational equations on the brane are obtained and the constraint leading to a brane energy-momentum conservation is analyzed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazkoz, Ruth

    We present here the general transformation that leaves unchanged the form of the field equations for perfect fluid cosmologies in the Dvali-Gabadadze-Porrati (DGP) brane-world model. Specifically, a prescription for relating exact solutions with different equations of state is provided, and the symmetries found can be used as algorithms for generating new cosmological models from previously known ones. We also present, implicitly, the first known exact DGP perfect fluid spacetime. A particular case of the general transformation is used to illustrate the crucial role played both by the number of scalar fields and the extra-dimensional effects in the occurrence of inflation.more » In particular, we see that assisted inflation does not proceed at all times for one of the two possible ways in which the brane can be embedded into the bulk.« less

  14. Brane-World Gravity.

    PubMed

    Maartens, Roy; Koyama, Kazuya

    2010-01-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  15. A de Sitter tachyonic braneworld revisited

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  16. Towards precision constraints on gravity with the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Lewandowski, Matthew; Vernizzi, Filippo; Winther, Hans A.

    2018-04-01

    We compare analytical computations with numerical simulations for dark-matter clustering, in general relativity and in the normal branch of DGP gravity (nDGP). Our analytical frameword is the Effective Field Theory of Large-Scale Structure (EFTofLSS), which we use to compute the one-loop dark-matter power spectrum, including the resummation of infrared bulk displacement effects. We compare this to a set of 20 COLA simulations at redshifts z = 0, z = 0.5, and z = 1, and fit the free parameter of the EFTofLSS, called the speed of sound, in both ΛCDM and nDGP at each redshift. At one-loop at z = 0, the reach of the EFTofLSS is kreach ≈ 0.14 Mpc‑1 for both ΛCDM and nDGP. Along the way, we compare two different infrared resummation schemes and two different treatments of the time dependence of the perturbative expansion, concluding that they agree to approximately 1% over the scales of interest. Finally, we use the ratio of the COLA power spectra to make a precision measurement of the difference between the speeds of sound in ΛCDM and nDGP, and verify that this is proportional to the modification of the linear coupling constant of the Poisson equation.

  17. Ghosts in the self-accelerating DGP branch with Gauss–Bonnet effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yen-Wei; Izumi, Keisuke; Bouhmadi-López, Mariam

    2015-06-01

    The Dvali–Gabadadze–Porrati brane-world model provides a possible approach to address the late-time cosmic acceleration. However, it has subsequently been pointed out that a ghost instability will arise on the self-accelerating branch. Here, we carefully investigate whether this ghost problem could be possibly cured by introducing the Gauss–Bonnet term in the five-dimensional bulk action, a natural generalization to the Dvali–Gabadadze–Porrati model. Our analysis is carried out for a background where a de Sitter brane is embedded in an anti–de Sitter bulk. Our result shows that the ghost excitations cannot be avoided even in this modified model.

  18. Emergence of spacetime dynamics in entropy corrected and braneworld models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheykhi, A.; Dehghani, M.H.; Hosseini, S.E., E-mail: asheykhi@shirazu.ac.ir, E-mail: mhd@shirazu.ac.ir, E-mail: elahehhosseini90@gmail.com

    2013-04-01

    A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation ΔV = Δt(N{sub sur}−N{sub bulk}). In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, N{sub sur}, using the general entropy corrected formula S = A/(4L{sub p}{sup 2})+s(A). Then, as two example, by applyingmore » the Padmanabhan's idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP braneworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan's proposal.« less

  19. Theoretical accuracy in cosmological growth estimation

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Hellwing, Wojciech A.; Zhao, Gong-Bo; Winther, Hans A.

    2017-07-01

    We elucidate the importance of the consistent treatment of gravity-model specific nonlinearities when estimating the growth of cosmological structures from redshift space distortions (RSD). Within the context of standard perturbation theory (SPT), we compare the predictions of two theoretical templates with redshift space data from COLA (comoving Lagrangian acceleration) simulations in the normal branch of DGP gravity (nDGP) and general relativity (GR). Using COLA for these comparisons is validated using a suite of full N-body simulations for the same theories. The two theoretical templates correspond to the standard general relativistic perturbation equations and those same equations modeled within nDGP. Gravitational clustering nonlinear effects are accounted for by modeling the power spectrum up to one-loop order and redshift space clustering anisotropy is modeled using the Taruya, Nishimichi and Saito (TNS) RSD model. Using this approach, we attempt to recover the simulation's fiducial logarithmic growth parameter f . By assigning the simulation data with errors representing an idealized survey with a volume of 10 Gpc3/h3 , we find the GR template is unable to recover fiducial f to within 1 σ at z =1 when we match the data up to kmax=0.195 h /Mpc . On the other hand, the DGP template recovers the fiducial value within 1 σ . Further, we conduct the same analysis for sets of mock data generated for generalized models of modified gravity using SPT, where again we analyze the GR template's ability to recover the fiducial value. We find that for models with enhanced gravitational nonlinearity, the theoretical bias of the GR template becomes significant for stage IV surveys. Thus, we show that for the future large data volume galaxy surveys, the self-consistent modeling of non-GR gravity scenarios will be crucial in constraining theory parameters.

  20. A de Sitter tachyon thick braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalarmore » field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.« less

  1. Constraints on braneworld gravity models from a kinematic limit on the age of the black hole XTE J1118+480.

    PubMed

    Psaltis, Dimitrios

    2007-05-04

    In braneworld gravity models with a finite anti-de Sitter space (AdS) curvature in the extra dimension, the AdS/conformal field theory correspondence leads to a prediction for the lifetime of astrophysical black holes that is significantly smaller than the Hubble time, for asymptotic curvatures that are consistent with current experiments. Using the recent measurements of the position, three-dimensional spatial velocity, and mass of the black hole XTE J1118+480, I calculate a lower limit on its kinematic age of > or =11 Myr (95% confidence). This translates into an upper limit for the asymptotic AdS curvature in the extra dimensions of <0.08 mm, which significantly improves the limit obtained by table top experiments of sub mm gravity.

  2. Neutron stars in the braneworld within the Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Prasetyo, I.; Husin, I.; Qauli, A. I.; Ramadhan, H. S.; Sulaksono, A.

    2018-01-01

    We propose the disappearance of "the hyperon puzzle" in neutron star (NS) by invoking two new-physics prescriptions: modified gravity theory and braneworld scenario. By assuming that NS lives on a 3-brane within a 5d empty AdS bulk, gravitationally governed by Eddington-inspired Born-Infeld (EiBI) theory, the field equations can be effectively cast into the usual Einstein's with "apparent" anisotropic energy-momentum tensor. Solving the corresponding brane-TOV equations numerically, we study its mass-radius relation. It is known that the appearance of finite brane tension λ reduces the compactness of the star. The compatibility of the braneworld results with observational constraints of NS mass and radius can be restored in our model by varying the EiBI's coupling constant, κ. We found that within the astrophysically-accepted range of parameters (0<κ<6×106m2 and λgg1 MeV4) the NS can have mass ~2.1 Msolar and radius ~10 km.

  3. Modification of Schrödinger-Newton equation due to braneworld models with minimal length

    NASA Astrophysics Data System (ADS)

    Bhat, Anha; Dey, Sanjib; Faizal, Mir; Hou, Chenguang; Zhao, Qin

    2017-07-01

    We study the correction of the energy spectrum of a gravitational quantum well due to the combined effect of the braneworld model with infinite extra dimensions and generalized uncertainty principle. The correction terms arise from a natural deformation of a semiclassical theory of quantum gravity governed by the Schrödinger-Newton equation based on a minimal length framework. The two fold correction in the energy yields new values of the spectrum, which are closer to the values obtained in the GRANIT experiment. This raises the possibility that the combined theory of the semiclassical quantum gravity and the generalized uncertainty principle may provide an intermediate theory between the semiclassical and the full theory of quantum gravity. We also prepare a schematic experimental set-up which may guide to the understanding of the phenomena in the laboratory.

  4. Out of the white hole: a holographic origin for the Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less

  5. Gravity localization in sine-Gordon braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, W.T., E-mail: wilamicruz@gmail.com; Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br; Sousa, L.J.S., E-mail: luisjose@fisica.ufc.br

    2016-01-15

    In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changedmore » allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.« less

  6. Bigravity from gradient expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Yasuho; Tanaka, Takahiro; Department of Physics, Kyoto University,606-8502, Kyoto

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takesmore » the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.« less

  7. Stability of a tachyon braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less

  8. Stability of a tachyon braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán

    2016-01-26

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less

  9. Stability of a tachyon braneworld

    NASA Astrophysics Data System (ADS)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.

  10. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  11. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  12. Thin limit of the 6D Cascading DGP model

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2018-05-01

    A thin limit description of the 6D Cascading DGP model is derived, starting from a configuration where both the codimension-1 and the codimension-2 branes are thick. Postulating that the thicknesses of the two branes obey a hierarchic relation, the thin limit is executed in two steps. First the thin limit of the codimension-1 brane is executed, obtaining a system where a "ribbon" codimension-2 brane is embedded inside a thin codimension-1 brane with induced gravity, and then the thin limit of the ribbon brane is considered. By proposing a geometric ansatz on the limit configuration, the junction conditions which are to hold at the thin codimension-2 brane are derived. The latters are fully non-perturbative and covariant and, together with the Israel junction conditions at the codimension-1 brane and the Einstein equations in the bulk, constitute the looked-for thin limit formulation of the 6D Cascading DGP model. It is commented on how wide is the class of thin source configurations which can be placed on the thin codimension-2 brane.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less

  14. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-03-01

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.

  15. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2001-03-15

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowskimore » space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.« less

  16. Quasars, clusters and cosmology

    NASA Astrophysics Data System (ADS)

    Dhanda, Neelam

    PART A: Acceleration of the Universe and Modified Gravity: We study the power of next-generation galaxy cluster surveys (such as eROSITA and WFXT) in constraining the cosmological parameters and especially the growth history of the Universe, using the information from galaxy cluster redshift and mass-function evolution and from cluster power spectrum. We use the Fisher Matrix formalism to evaluate the potential for the galaxy cluster surveys to make predictions about cosmological parameters like the gravitational growth index gamma. The primary purpose of this study has been to check whether we can rule out one or the other of the underlying gravity theories in light of the present uncertainty of mass-observable relations and their scatter evolution. We found that these surveys will provide better constraints on various cosmological parameters even after we admit a lack of complete knowledge about the galaxy cluster structure, and when we combine the information from the cluster number count redshift and mass evolution with that from the cluster power spectrum. Based on this, we studied the ability of different surveys to constrain the growth history of the Universe. It was found that whereas eROSITA surveys will need strong priors on cluster structure evolution to conclusively rule out one or the other of the two gravity models, General Relativity and DGP Braneworld Gravity; WFXT surveys do hold the special promise of differentiating growth and telling us whether it is GR or not, with its wide-field survey having the ability to say so even with 99% confidence. PART B: Chemical Evolution in Quasars: We studied chemical evolution in the broad emission line region (BELR) of nitrogen rich quasars drawn from the SDSS Quasar Catalogue IV. Using tools of emission-line spectroscopy, we made detailed abundance measurements of ˜ 40 quasars and estimated their metallicities using the line-intensity ratio method. It was found that quasars with strong nitrogen lines are indicators of high metallicities. Some of these quasars have reached metallicities as high as Z ˜ 20 Z⊙ . Our detailed analysis showed that except in three QSOs, most of the different line-intensity ratios implied the similar metallicities. This verifies that this abundance analysis technique does produce meaningful results. The exceptions are the line-intensity ratio NIV]/CIV, which gives systematically low metallicities and the line-intensity ratio NV/He II, which gives systematically high metallicities. We compared our findings with the predictions of the galactic chemical evolution models. From this study it was concluded that such high metallicities are reached either by requiring a top-heavy Initial Mass Function (IMF) for the quasar host galaxy as suggested by theoretical models, or by physically catastrophic events such as mergers that trigger star formation in already evolved systems which then leads to extreme metallicities in such quasars.

  17. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-09

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm.

  18. Constraining the Braneworld with Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.

    2011-01-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, L, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining L via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain L at the approximately 1 micron level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of L less than or equal to 5 microns.

  19. Brane universes with Gauss-Bonnet-induced-gravity

    NASA Astrophysics Data System (ADS)

    Brown, Richard A.

    2007-04-01

    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a “dark energy” field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density “Big-Bang” and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.

  20. Dynamic Gaming Platform (DGP)

    DTIC Science & Technology

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  1. Corrections to Newton’s law of gravitation - application to hybrid Bloch brane

    NASA Astrophysics Data System (ADS)

    Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.

    2018-02-01

    We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions

  2. Protein thermal stabilization by charged compatible solutes: Computational studies in rubredoxin from Desulfovibrio gigas.

    PubMed

    Micaelo, Nuno M; Victor, Bruno L; Soares, Cláudio M

    2008-08-01

    Molecular dynamics simulation studies of rubredoxin from Desulfovibrio gigas (RDG) were used to characterize the molecular mechanism of thermal stabilization by the compatible solute (CS) diglycerol-phospate (DGP). DGP is a negatively charged CS that accumulates under salt stress in Archaeoglobus fulgidus. Experimental results show that a 100 mM DGP solution exerts a strong protection effect in the half-life of RDG at 363 K (Lamosa et al., Appl Environ Microbiol 2000;66:1974-1979). RDG was simulated in four aqueous solutions at 300 and 363 K: pure aqueous media, 100 mM DGP, 100 mM NaCl, and 500 mM DGP. Our work shows that the 100 mM DGP solution is able to maintain the average protein structure when the temperature is increased, preventing the occurrence of large-scale deviation of a mobile loop involved in the first steps of RDG unfolding. The molecular mechanism of thermal denaturation protection by DGP seems to involve the direct interaction between the protein and the CS by hydrogen bond interactions near the mobile loop. Several clusters of DGP molecules are formed and preferentially localized at neutral electrostatic regions of the surface. The increase of DGP concentration to 500 mM did not yield better stabilization of the protein suggesting that the thermal protective role of this charged CS is achieved at low concentrations, as shown experimentally. (c) 2008 Wiley-Liss, Inc.

  3. Cosmological models in energy-momentum-squared gravity

    NASA Astrophysics Data System (ADS)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  4. Constraints on brane-world inflation from the CMB power spectrum: revisited

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Mayukh R.; Mathews, Grant J.

    2018-03-01

    We analyze the Randal Sundrum brane-world inflation scenario in the context of the latest CMB constraints from Planck. We summarize constraints on the most popular classes of models and explore some more realistic inflaton effective potentials. The constraint on standard inflationary parameters changes in the brane-world scenario. We confirm that in general the brane-world scenario increases the tensor-to-scalar ratio, thus making this paradigm less consistent with the Planck constraints. Indeed, when BICEP2/Keck constraints are included, all monomial potentials in the brane-world scenario become disfavored compared to the standard scenario. However, for natural inflation the brane-world scenario could fit the constraints better due to larger allowed values of e-foldings N before the end of inflation in the brane-world.

  5. Antibodies against deamidated gliadin peptides identify adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase.

    PubMed

    Dahle, C; Hagman, A; Ignatova, S; Ström, M

    2010-07-01

    This study was done to evaluate the diagnostic utility of antibodies against deamidated gliadin peptides compared to traditional markers for coeliac disease. To evaluate diagnostic utility of antibodies against deamidated gliadin peptide (DGP). Sera from 176 adults, referred for endoscopy without previous analysis of antibodies against tissue transglutaminase (tTG) or endomysium (EmA), were retrospectively analysed by ELISAs detecting IgA/IgG antibodies against DGP or a mixture of DGP and tTG, and compared with IgA-tTG and EmA. Seventy-nine individuals were diagnosed with coeliac disease. Receiver operating characteristic analyses verified the manufacturers' cut-off limits except for IgA/IgG-DGP/tTG. In sera without IgA deficiency, the sensitivity was higher for IgA/IgG-DGP (0.85-0.87) compared with IgA-tTg (0.76) and EmA (0.61). All tests showed high specificity (0.95-1.00). Eighteen coeliac disease-sera were negative regarding IgA-tTG, nine of which were positive for IgA/IgG-DGP. Sera from coeliac disease-patients >70 years were more often negative for IgA-tTG (50%) and IgA/IgG-DGP (36%) than younger patients (15% and 8% respectively) (P < 0.01). Three of the four IgA-deficient patients were positive in the IgA/IgG-DGP assay. In this study of patients unselected regarding IgA-tTg/EmA, thus unbiased in this respect, IgA/IgG-DGP identified adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase. Serology is often negative in elderly patients with coeliac disease; a small bowel biopsy should therefore be performed generously before coeliac disease is excluded.

  6. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  7. Conjoined constraints on modified gravity from the expansion history and cosmic growth

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Nesseris, Savvas

    2017-09-01

    In this paper we present conjoined constraints on several cosmological models from the expansion history H (z ) and cosmic growth f σ8. The models we study include the CPL w0wa parametrization, the holographic dark energy (HDE) model, the time-varying vacuum (ΛtCDM ) model, the Dvali, Gabadadze and Porrati (DGP) and Finsler-Randers (FRDE) models, a power-law f (T ) model, and finally the Hu-Sawicki f (R ) model. In all cases we perform a simultaneous fit to the SnIa, CMB, BAO, H (z ) and growth data, while also following the conjoined visualization of H (z ) and f σ8 as in Linder (2017). Furthermore, we introduce the figure of merit (FoM) in the H (z )-f σ8 parameter space as a way to constrain models that jointly fit both probes well. We use both the latest H (z ) and f σ8 data, but also LSST-like mocks with 1% measurements, and we find that the conjoined method of constraining the expansion history and cosmic growth simultaneously is able not only to place stringent constraints on these parameters, but also to provide an easy visual way to discriminate cosmological models. Finally, we confirm the existence of a tension between the growth-rate and Planck CMB data, and we find that the FoM in the conjoined parameter space of H (z )-f σ8(z ) can be used to discriminate between the Λ CDM model and certain classes of modified gravity models, namely the DGP and f (T ).

  8. Gravitational baryogenesis in DGP brane cosmology

    NASA Astrophysics Data System (ADS)

    Atazadeh, K.

    2018-06-01

    We consider the imbalance of matter and antimatter by using a gravitational baryogenesis mechanism in the background of Dvali-Gabadadze-Porrati (DGP) brane cosmology. By taking into account a flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric in the DGP brane model, we find that for a radiation dominated universe, w=1/3, the ratio of baryon number density to entropy from the gravitational baryogenesis is not zero, contrary to ordinary general relativity. Also, we study the ratio of baryon number density to entropy against the observational constraints in DGP cosmology.

  9. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    PubMed

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were reported in 61% of the patients: leakage of water after irrigation, abdominal cramps, and distended abdomen. Seven (16%) patients stopped the rectal irrigation. Colonic irrigation is an effective alternative for the treatment of persistent fecal incontinence after DGP and/or recurrent or onset constipation additional to unsuccessful or (partially) successful DGP.

  10. Astrophysical and Cosmological Consequences of the Dynamical Localization of Gravity

    NASA Astrophysics Data System (ADS)

    Germani, Cristiano

    2003-11-01

    In this thesis I review cosmological and astrophysical exact models for Randall-Sundrum-type braneworlds and their physical implications. I present new insights and show their analogies with quantum theories via the holographic idea. In astrophysics I study the two fundamental models of a spherically symmetric static star and spherically symmetric collapsing objects. I show how matching for the pressure of a static star encodes braneworld effects. In addition I study the problem of the vacuum exterior conjecturing a uniqueness theorem. Furthermore I show that a collapsing dust cloud in the braneworld has a non-static exterior, in contrast to the General Relativistic case. This non-static behaviour is linked to the presence of a "surplus potential energy" that must be released, producing a non-zero flux of energy. Via holography this can be connected with the Hawking process, giving an indirect measure of the brane tension. In cosmology I investigate the generalization of the Randall-Sundrum-type model obtained by introducing the Gauss-Bonnet combination into the action. I elucidate the junction conditions necessary to study the brane model and obtain the cosmological dynamics, showing that, even in the thin shell limit for the brane, the Gauss-Bonnet term implies a non-trivial internal structure for the matter and geometry distributions. Independently of the gravitational theory used, I show how to derive the modified Friedman equation and how it is related to the black hole solution of the theory. Via holography I also show how to interpret quantum mechanically the mass of this black hole from a four-dimensional perspective in the simplest Randall-Sundrum-type scenario.

  11. The unassigned distance geometry problem

    DOE PAGES

    Duxbury, P. M.; Granlund, L.; Gujarathi, S. R.; ...

    2015-11-19

    Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though itmore » is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.« less

  12. Educators Who Believe: Understanding the Enthusiasm of Teachers Who Use Digital Games in the Classroom

    ERIC Educational Resources Information Center

    Stieler-Hunt, Colleen; Jones, Christian M.

    2015-01-01

    This study used qualitative methods to explore why some educators embrace the use of digital game-play (DGP) in the classroom. The results indicated that these teachers had a very strong belief that DGP could be beneficial for learning which stemmed from experiencing their own form of subjective success with using DGP in the classroom, availing…

  13. Colonic irrigation for defecation disorders after dynamic graciloplasty

    PubMed Central

    Koch, Sacha M.; Uludağ, Özenç; El Naggar, Kadri; van Gemert, Wim G.

    2007-01-01

    Background and aims Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13–90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Materials and methods Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol® Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Results Forty-six patients were included in the study with a mean age of 59.3 ± 12.4 years (80% female). On average, the patients started the irrigation 21.39 ± 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 ± 0.40 times per day. The mean amount of water used for the irrigation was 2.27 ± 1.75 l with a mean duration of 39 ± 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were reported in 61% of the patients: leakage of water after irrigation, abdominal cramps, and distended abdomen. Seven (16%) patients stopped the rectal irrigation. Conclusion Colonic irrigation is an effective alternative for the treatment of persistent fecal incontinence after DGP and/or recurrent or onset constipation additional to unsuccessful or (partially) successful DGP. PMID:17896111

  14. Emergent cosmology revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Satadru; Sahni, Varun; Shtanov, Yuri

    We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result inmore » a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.« less

  15. Can we identify massless braneworld black holes by observations?

    NASA Astrophysics Data System (ADS)

    Kuniyasu, Masashi; Nanri, Keitaro; Sakai, Nobuyuki; Ohgami, Takayuki; Fukushige, Ryosuke; Komura, Subaru

    2018-05-01

    For an extension of the previous work on gravitational lensing by massless braneworld black holes, we investigate their microlensing phenomena and shadows and discuss how to distinguish them from standard Schwarzschild black holes and Ellis wormholes. Microlensing is known as the phenomenon in which luminosity amplification appears when a bright object passes behind a black hole or another massive object. We find that, for the braneworld black hole as well as for the Ellis wormhole, there appears luminosity reduction just before and after the amplification. This means that observation of such a reduction would indicate the lens object is either a braneworld black hole or a wormhole, though it is difficult to distinguish one from the other by microlensing solely. Therefore, we next analyze the optical images, or shadows of the braneworld black hole surrounded by optically thin dust, and compare them to those of the Ellis wormhole. Because the spacetime around the braneworld black hole possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime or in the wormhole spacetime. This indicates that the appearance of a bright ring does not solely confirm a braneworld black hole, a Schwarzschild, nor an Ellis wormhole. However, we find that only for the wormhole is the intensity inside the ring larger than that the outsider intensity. Therefore, with future high-resolution observations of microlensing and shadows together, we could identify the braneworld black holes if they exist.

  16. Localization of U(1) gauge vector field on flat branes with five-dimension (asymptotic) AdS5 spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-Hua; Xie, Qun-Ying

    2018-05-01

    In order to localize U(1) gauge vector field on Randall-Sundrum-like braneworld model with infinite extra dimension, we propose a new kind of non-minimal coupling between the U(1) gauge field and the gravity. We propose three kinds of coupling methods and they all support the localization of zero mode. In addition, one of them can support the localization of massive modes. Moreover, the massive tachyonic modes can be excluded. And our method can be used not only in the thin braneword models but also in the thick ones.

  17. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells.

    PubMed

    Cai, Bangrong; Seong, Kyung-Joo; Bae, Sun-Woong; Chun, Changju; Kim, Won-Jae; Jung, Ji-Yeon

    2018-06-08

    Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3β, 25R)‑spirost‑5‑en‑3‑oxyl (2‑((2((2‑aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells. In addition, DGP decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α). The inhibitory effects of DGP on these inflammatory mediators in LPS-stimulated microglial BV2 cells were regulated by NF-κB signaling through blocking p65 nuclear translocation and NF-κB p65/DNA binding activity. DGP also blocked the phosphorylation of c-Jun amino-terminal kinase (JNK), but not p38 kinase or extracellular signal-regulated kinases (ERK). The NF-κB inhibitor JSH-23 and JNK-specific inhibitor SP600125 significantly decreased NO production and IL-6 release in LPS-stimulated BV2 cells, respectively. The overall results demonstrate that DGP has anti-inflammatory effects on LPS-stimulated BV2 cells via inhibition of NF-κB and JNK activation, suggesting that DGP is a potential prophylactic agent in various neurodegenerative disorders. Copyright © 2018. Published by Elsevier B.V.

  18. Holographic self-tuning of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Kiritsis, Elias; Nitti, Francesco

    2017-09-01

    We propose a brane-world setup based on gauge/gravity duality in which the four-dimensional cosmological constant is set to zero by a dynamical self-adjustment mechanism. The bulk contains Einstein gravity and a scalar field. We study holographic RG flow solutions, with the standard model brane separating an infinite volume UV region and an IR region of finite volume. For generic values of the brane vacuum energy, regular solutions exist such that the four-dimensional brane is flat. Its position in the bulk is determined dynamically by the junction conditions. Analysis of linear fluctuations shows that a regime of 4-dimensional gravity is possible at large distances, due to the presence of an induced gravity term. The graviton acquires an effective mass, and a five-dimensional regime may exist at large and/or small scales. We show that, for a broad choice of potentials, flat-brane solutions are manifestly stable and free of ghosts. We compute the scalar contribution to the force between brane-localized sources and show that, in certain models, the vDVZ discontinuity is absent and the effective interaction at short distances is mediated by two transverse graviton helicities.

  19. Revealing modified gravity signals in matter and halo hierarchical clustering

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Koyama, Kazuya; Bose, Benjamin; Zhao, Gong-Bo

    2017-07-01

    We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement. We study higher-order correlation functions ξn(R ) up to n =9 and associated reduced cumulants Sn(R )≡ξn(R )/σ (R )2n -2. We find that the matter probability distribution functions are strongly affected by the fifth force on scales up to 50 h-1 Mpc , and the deviations from general relativity (GR) are maximized at z =0 . For reduced cumulants Sn, we find that at small scales R ≤6 h-1 Mpc the MG is characterized by lower values, with the deviation growing from 7% in the reduced skewness up to even 40% in S5. To study the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few percent appearing only at the smallest pair separations (r ≤5 h-1 Mpc ). In contrast, we find a strong MG signal in Sn(R )'s, which are enhanced compared to GR. The strong model exhibits a >3 σ level signal at various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a 3 σ imprint at small scales R ≤3 h-1 Mpc , while the stronger model deviates from a GR signature at nearly all scales with a significance of >5 σ . Since the signal is persistent in all halo samples and over a range of scales, we advocate that the reduced kurtosis estimated from galaxy catalogs can potentially constitute a strong MG-model discriminatory as well as GR self-consistency test.

  20. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16

  1. Book Review:

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2007-06-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not only for starting researchers in this area, but also any researcher interested in the details of computing more general brane propagators. However, the book must be used with some caution as a guide to Randall-Sundrum theory, as it has a rather unusual perspective on the subject, and does not set it in a broader context. For example, it is well known in brane cosmology that the most general bulk solution contains a black hole, which is not discussed, the book preferring to immediately focus on the case of a pure AdS bulk. There is also no real discussion of how Randall-Sundrum links into string theory or phenomenology. One other problem with the book is that it does not reference the literature appropriately, I woould have expected a more comprehensive and accurate set of references accompanying a book which appears to be aimed at starting researchers in a subject. The later stages of the book, in which the author deals in detail with the normalization of the graviton propagator, are rather involved and technical. A student would find this material rather heavy-going; however, the fine points of the discussion of Green's functions will be of use to those dealing with perturbations around more general branes. In summary, the book is a tightly focused discussion of gravity in maximally symmetric Randall-Sundrum braneworlds. It will be useful as a companion text to starting researchers in the area, and other researchers should also find the more technical discussions of some use. However, one should note that the perspective of the book is somewhat narrow.

  2. Gauge Field Localization on Deformed Branes

    NASA Astrophysics Data System (ADS)

    Tofighi, A.; Moazzen, M.; Farokhtabar, A.

    2016-02-01

    In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.

  3. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  4. Natural braneworld inflation in light of recent results from Planck and BICEP2

    NASA Astrophysics Data System (ADS)

    Neupane, Ishwaree P.

    2014-12-01

    In this paper we report on a major theoretical observation in cosmology. We present a concrete cosmological model for which inflation has a natural beginning and natural ending. Inflation is driven by a cosine-form potential, V (ϕ )=Λ4(1 -cos (ϕ /f )) , which begins at ϕ ≲π f and ends at ϕ =ϕend≲5 f /3 . The distance traversed by the inflaton field ϕ is sub-Planckian. The Gauss-Bonnet term R2 arising as leading curvature corrections in the action S =∫d5x √{-g5 }M3(-6 λ M2+R +α M-2R2) +∫d4x √{-g4 }(ϕ˙ 2/2 -V (ϕ )-σ +Lmatter) (where α and λ are constants and M is the five-dimensional Planck mass) plays a key role to terminate inflation. The model generates appropriate tensor-to-scalar ratio r and inflationary perturbations that are consistent with Planck and BICEP2 data. For example, for N*=50 - 60 and ns˜0.960 ±0.005 , the model predicts that M ˜5.64 ×1 016 GeV and r ˜(0.14 - 0.21 ) [N* is the number of e -folds of inflation and ns (nt) is the scalar (tensor) spectrum spectral index]. The ratio -nt/r is (13%-24%) less than its value in 4D Einstein gravity, -nt/r =1 /8 . The upper bound on the energy scale of inflation V1 /4=2.37 ×1 016 GeV (r <0.27 ) implies that (-λ α )≳75 ×1 0-5 and Λ <2.17 ×1 016 GeV , which thereby rule out the case α =0 (Randall-Sundrum model). The true nature of gravity is holographic as implied by the braneworld realization of string and M theory. The model correctly predicts a late-epoch cosmic acceleration with the dark energy equation of state wD E≈-1 .

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu

    We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the meanmore » in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.« less

  6. The integrated bispectrum in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.

  7. The integrated bispectrum in modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Dipak, E-mail: D.Munshi@sussex.ac.uk

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze and Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormenmore » (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.« less

  8. Cosmography of f(R)-brane cosmology

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Capozziello, Salvatore; Cardone, Vincenzo F.

    2010-11-01

    Cosmography is a useful tool to constrain cosmological models, in particular, dark energy models. In the case of modified theories of gravity, where the equations of motion are generally quite complicated, cosmography can contribute to select realistic models without imposing arbitrary choices a priori. Indeed, its reliability is based on the assumptions that the universe is homogeneous and isotropic on large scale and luminosity distance can be “tracked” by the derivative series of the scale factor a(t). We apply this approach to induced gravity brane-world models where an f(R) term is present in the brane effective action. The virtue of the model is to self-accelerate the normal and healthy Dvali-Gabadadze-Porrati branch once the f(R) term deviates from the Hilbert-Einstein action. We show that the model, coming from a fundamental theory, is consistent with the ΛCDM scenario at low redshift. We finally estimate the cosmographic parameters fitting the Union2 Type Ia Supernovae data set and the distance priors from baryon acoustic oscillations and then provide constraints on the present day values of f(R) and its second and third derivatives.

  9. Large scale structure formation of the normal branch in the DGP brane world model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yong-Seon

    2008-06-15

    In this paper, we study the large scale structure formation of the normal branch in the DGP model (Dvail, Gabadadze, and Porrati brane world model) by applying the scaling method developed by Sawicki, Song, and Hu for solving the coupled perturbed equations of motion of on-brane and off-brane. There is a detectable departure of perturbed gravitational potential from the cold dark matter model with vacuum energy even at the minimal deviation of the effective equation of state w{sub eff} below -1. The modified perturbed gravitational potential weakens the integrated Sachs-Wolfe effect which is strengthened in the self-accelerating branch DGP model.more » Additionally, we discuss the validity of the scaling solution in the de Sitter limit at late times.« less

  10. Galileon as a local modification of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolis, Alberto; Rattazzi, Riccardo; Trincherini, Enrico

    2009-03-15

    In the Dvali-Gabadadze-Porrati (DGP) model, the 'self-accelerating' solution is plagued by a ghost instability, which makes the solution untenable. This fact, as well as all interesting departures from general relativity (GR), are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar {pi}, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those thatmore » at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect--the decoupling of the scalar from matter in gravitationally bound systems--necessary to recover agreement with solar-system tests. Our generalization involves an internal Galilean invariance, under which {pi}'s gradient shifts by a constant. This symmetry constrains the structure of the {pi} Lagrangian so much so that in 4D there exist only five terms that can yield sizable nonlinearities without introducing ghosts. We show that for such theories in fact there are ''self-accelerating'' de Sitter solutions with no ghostlike instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like nonlinear perturbations that are also stable against small fluctuations. We investigate a possible infrared completion of these theories at scales of order of the Hubble horizon, and larger. There are however some features of our theories that may constitute a problem at the theoretical or phenomenological level: the presence of superluminal excitations; the extreme subluminality of other excitations, which makes the quasistatic approximation for certain solar-system observables unreliable due to Cherenkov emission; the very low strong-interaction scale for {pi}{pi} scatterings.« less

  11. Testing gravity using large-scale redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Pietrobon, Davide; Schmidt, Fabian; Samushia, Lado; Bartolo, Nicola; Doré, Olivier; Matarrese, Sabino; Percival, Will J.

    2013-11-01

    We use luminous red galaxies from the Sloan Digital Sky Survey (SDSS) II to test the cosmological structure growth in two alternatives to the standard Λ cold dark matter (ΛCDM)+general relativity (GR) cosmological model. We compare observed three-dimensional clustering in SDSS Data Release 7 (DR7) with theoretical predictions for the standard vanilla ΛCDM+GR model, unified dark matter (UDM) cosmologies and the normal branch Dvali-Gabadadze-Porrati (nDGP). In computing the expected correlations in UDM cosmologies, we derive a parametrized formula for the growth factor in these models. For our analysis we apply the methodology tested in Raccanelli et al. and use the measurements of Samushia et al. that account for survey geometry, non-linear and wide-angle effects and the distribution of pair orientation. We show that the estimate of the growth rate is potentially degenerate with wide-angle effects, meaning that extremely accurate measurements of the growth rate on large scales will need to take such effects into account. We use measurements of the zeroth and second-order moments of the correlation function from SDSS DR7 data and the Large Suite of Dark Matter Simulations (LasDamas), and perform a likelihood analysis to constrain the parameters of the models. Using information on the clustering up to rmax = 120 h-1 Mpc, and after marginalizing over the bias, we find, for UDM models, a speed of sound c∞ ≤ 6.1e-4, and, for the nDGP model, a cross-over scale rc ≥ 340 Mpc, at 95 per cent confidence level.

  12. Measuring Efficiency of Tunisian Schools in the Presence of Quasi-Fixed Inputs: A Bootstrap Data Envelopment Analysis Approach

    ERIC Educational Resources Information Center

    Essid, Hedi; Ouellette, Pierre; Vigeant, Stephane

    2010-01-01

    The objective of this paper is to measure the efficiency of high schools in Tunisia. We use a statistical data envelopment analysis (DEA)-bootstrap approach with quasi-fixed inputs to estimate the precision of our measure. To do so, we developed a statistical model serving as the foundation of the data generation process (DGP). The DGP is…

  13. Is a wild mammal kept and reared in captivity still a wild animal?

    PubMed

    Künzl, Christine; Kaiser, Sylvia; Meier, Edda; Sachser, Norbert

    2003-01-01

    This study compared domestic guinea pigs (Cavia aperea f. porcellus; DGP) and two different populations of the wild cavy (Cavia aperea), its ancestor, to examine whether rearing of wild mammals in captivity affects their behavior and physiological stress responses. One population of wild cavies consisted of wild-trapped animals and their first laboratory-reared offspring (WGP-1). The animals of the other population were reared in captivity for about 30 generations (WGP-30). The spontaneous behavior of each of six groups of WGP-1 and WGP-30 and nine groups of DGP, each consisting of one adult male and two adult females, was analyzed quantitatively. Blood samples of the males were taken to determine cortisol, epinephrine, and norepinephrine concentrations. In addition, the exploratory behavior of 60-day-old male WGP-1, WGP-30, and DGP was investigated in an exploration apparatus. The domesticated animals displayed significantly less aggression, but significantly more sociopositive and male courtship behavior than their wild ancestors. In addition, DGP were much less attentive to their physical environment. Surprisingly, no behavioral difference was found between WGP-1 and WGP-30. Basal cortisol concentrations did not differ between wild and domestic guinea pigs. Catecholamine concentrations, however, as well as the challenge values of cortisol, were distinctly reduced in the DGP. WGP-1 and WGP-30 did not differ with respect to their endocrine stress responses. In the exploration apparatus both forms of wild cavies were much more explorative than the domestic animals. These data suggest that the long-term breeding and rearing of wild guinea pigs in captivity do not result in significant changes in behavior and hormonal stress responses. It appears to take much longer periods of time and artificial selection by humans to bring about characters of domestication in wild animals.

  14. Parametrizing growth in dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Resco, Miguel Aparicio; Maroto, Antonio L.

    2018-02-01

    It is well known that an extremely accurate parametrization of the growth function of matter density perturbations in Λ CDM cosmology, with errors below 0.25%, is given by f (a )=Ωmγ(a ) with γ ≃0.55 . In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as μ (a ,k )=Geff/G and show that f (a )=β (a )Ωmγ(a ) provides fits to the numerical solutions with similar accuracy to that of Λ CDM . In the time-independent case with μ =μ (k ), simple analytic expressions for β (μ ) and γ (μ ) are presented. In the time-dependent (but scale-independent) case μ =μ (a ), we show that β (a ) has the same time dependence as μ (a ). As an example, explicit formulas are provided in the Dvali-Gabadadze-Porrati (DGP) model. In the general case, for theories with μ (a ,k ), we obtain a perturbative expansion for β (μ ) around the general relativity case μ =1 which, for f (R ) theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

  15. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  16. Cosmology on a cosmic ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedermann, Florian; Schneider, Robert, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de

    We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4Dmore » Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.« less

  17. On braneworld inverse power-law inflation

    NASA Astrophysics Data System (ADS)

    Es-Sobbahi, H.; Nach, M.

    2018-04-01

    In the framework of the braneworld Randall-Sundrum type II model, we investigate an inflationary scalar model in the high-energy regime. In this regime, the slow-roll parameters and the perturbation spectrum of the model are derived. The corresponding results are dealt with according to the known observational data. Then the solutions to the equations of motion on the brane are given.

  18. Spherically symmetric solutions and gravitational collapse in brane-worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe; Sepangi, Hamid R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-02-15

    We consider spherically symmetric solutions within the context of brane-world theory without mirror symmetry or any form of junction conditions. For a constant curvature bulk, we obtain the modified Tolman-Oppenheimer-Volkoff (TOV) interior solutions in two cases where one is matched to a schwarzschild-de Sitter exterior while the other is consistent with an exterior solution whose structure can be used to explain the galaxy rotation curves without postulating dark matter. We also find the upper bound to the mass of a static brane-world star and show that the influence of the bulk effects on the interior solutions is small. Finally, wemore » investigate the gravitational collapse on the brane and show that the exterior of a collapsing star can be static in this scenario.« less

  19. Exploring extra dimensions through inflationary tensor modes

    NASA Astrophysics Data System (ADS)

    Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas

    2018-03-01

    Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.

  20. Improved parametrization of the growth index for dark energy and DGP models

    NASA Astrophysics Data System (ADS)

    Jing, Jiliang; Chen, Songbai

    2010-03-01

    We propose two improved parameterized form for the growth index of the linear matter perturbations: (I) γ(z)=γ0+(γ∞-γ0)z/z+1 and (II) γ(z)=γ0+γ1 z/z+1 +(γ∞-γ1-γ0)(. With these forms of γ(z), we analyze the accuracy of the approximation the growth factor f by Ωmγ(z) for both the wCDM model and the DGP model. For the first improved parameterized form, we find that the approximation accuracy is enhanced at the high redshifts for both kinds of models, but it is not at the low redshifts. For the second improved parameterized form, it is found that Ωmγ(z) approximates the growth factor f very well for all redshifts. For chosen α, the relative error is below 0.003% for the ΛCDM model and 0.028% for the DGP model when Ωm=0.27. Thus, the second improved parameterized form of γ(z) should be useful for the high precision constraint on the growth index of different models with the observational data. Moreover, we also show that α depends on the equation of state w and the fractional energy density of matter Ωm0, which may help us learn more information about dark energy and DGP models.

  1. Vacuum thin shells in Einstein–Gauss–Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Ramirez, Marcos A.

    2018-04-01

    In this paper we construct new solutions of the Einstein–Gauss–Bonnet field equations in an isotropic Shiromizu–Maeda–Sasaki brane-world setting which represent a couple of Z 2-symmetric vacuum thin shells splitting from the central brane, and explore the main properties of the dynamics of the system. The matching of the separating vacuum shells with the brane-world is as smooth as possible and all matter fields are restricted to the brane. We prove the existence of these solutions, derive the criteria for their existence, analyse some fundamental aspects or their evolution and demonstrate the possibility of constructing cosmological examples that exhibit this feature at early times. We also comment on the possible implications for cosmology and the relation of this system with the thermodynamic instability of highly symmetric vacuum solutions of Lovelock theory.

  2. Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Parkinson, David; Hamana, Takashi; Nichol, Robert C.; Suto, Yasushi

    2007-07-01

    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear growth rate of density fluctuations by Linder’s γ, independently. Dark energy models generically predict γ≈0.55, while the Dvali-Gabadadze-Porrati (DGP) model γ≈0.68. To determine if future imaging surveys can constrain γ within 20% (or Δγ<0.1), we perform the Fisher matrix analysis for a weak-lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around texp≃several˜10min; a shallow and wide survey is preferred to constrain the γ parameter. While Δγ<0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS) and/or future cosmic microwave background (CMB) observations.

  3. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  4. Decision Gate Process for Assessment of a NASA Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  5. Decision Gate Process for Assessment of a Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  6. Big differences in primary care celiac disease serological markers request in Spain.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2017-02-15

    Celiac disease (CD) prevalence is increasing but the disorder remains undiagnosed. The study compares CD serology markers requested by General Practitioners (GPs) over time and geographical areas. The aim of the current research is to assess the inter-practice and temporal variability in the request of CD serology markers by GPs in Spain, and the differences between regions. A cross-sectional study was conducted enrolling Spanish clinical laboratories. Primary care CD serology markers request in 2010, 2012 and 2014 from 15 autonomous communities (AACC), with more participants was reported. Test-utilization rates were calculated (tissue transglutaminase IgA antibodies (tTG-IgA) and deaminated peptide gliadine IgA antibodies (DGP-IgA) per 1000 inhabitants), and also the ratio of both tests request (DGP-IgA /tTG-IgA). The request of tTG-IgA per 1000 inhabitants increased significantly along years (from 3.99 to 5.90 (P < 0.001)). The demand of DGP-IgA per 1000 inhabitants was maintained in 2010 and 2012 (0.68 and 0.6), and decreased in 2014 (0.35) (P = 0.927). DGP-IgA /tTG-IgA diminished over time (from 0.16 to 0.06 (P = 0.548)), and in the 2014 edition, there was a significant regional difference, ranging from 0.01 to 0.57 (P < 0.001). The variability in the request in CD serology markers emphasizes the need of inter-regional cooperation to develop strategies to optimize the use of laboratory tests.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergely, Laszlo A.

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can existmore » on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.« less

  8. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain

    In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.

  9. Multiresonance modes in sine–Gordon brane models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, W.T., E-mail: wilamicruz@gmail.com; Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br; Dantas, D.M., E-mail: davi@fisica.ufc.br

    2016-12-15

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge fieldmore » is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.« less

  10. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  11. Diagnostic Yield of Isolated Deamidated Gliadin Peptide Antibody Elevation for Celiac Disease.

    PubMed

    Hoerter, Nicholas A; Shannahan, Sarah E; Suarez, Jorge; Lewis, Suzanne K; Green, Peter H R; Leffler, Daniel A; Lebwohl, Benjamin

    2017-05-01

    Serologic testing for celiac disease includes tissue transglutaminase and endomysial antibodies. In addition to these tools, assays for deamidated gliadin peptide antibodies have been shown to have sensitivity and specificity that are comparable to tissue transglutaminase testing, and are increasingly being used for celiac disease testing. The goal of this study is to evaluate the utility of deamidated gliadin peptide (DGP) testing in the setting of a negative tissue transglutaminase (TTG) IgA test. We reviewed the records of all patients seen at two U.S. celiac disease referral centers and identified those who had an elevated DGP IgA and/or IgG in the setting of a negative TTG IgA. Of these patients, those who underwent duodenal biopsy while on a gluten-containing diet were included. Patients with prior biopsy-proven celiac disease or prior TTG IgA positivity were excluded. The results of the biopsy were used as the gold standard for celiac disease diagnosis, and patients with villous atrophy (Marsh class 3) on duodenal biopsy were considered to have celiac disease. Between the two institutions, 84 patients were identified with negative TTG IgA and positive DGP IgA or IgG who also had duodenal biopsies performed while maintaining a gluten-containing diet. Of these patients, 13 patients (15.5%; 95% CI 8.5-25.0%) were found to have celiac disease on duodenal biopsy. DGP antibody testing can identify cases of celiac disease in TTG-negative individuals, although the low positive predictive value suggests that the yield may be low.

  12. Configurational entropy as a tool to select a physical thick brane model

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Cruz, W. T.; Correa, R. A. C.; de Paula, W.; Moraes, P. H. R. S.

    2018-04-01

    We analize braneworld scenarios via a configurational entropy (CE) formalism. Braneworld scenarios have drawn attention mainly due to the fact that they can explain the hierarchy problem and unify the fundamental forces through a symmetry breaking procedure. Those scenarios localize matter in a (3 + 1) hypersurface, the brane, which is inserted in a higher dimensional space, the bulk. Novel analytical braneworld models, in which the warp factor depends on a free parameter n, were recently released in the literature. In this article we will provide a way to constrain this parameter through the relation between information and dynamics of a system described by the CE. We demonstrate that in some cases the CE is an important tool in order to provide the most probable physical system among all the possibilities. In addition, we show that the highest CE is correlated to a tachyonic sector of the configuration, where the solutions for the corresponding model are dynamically unstable.

  13. A compact codimension-two braneworld with precisely one brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerblom, Nikolas; Cornelissen, Gunther; Department of Mathematics, Utrecht University

    Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant curvature almost everywhere, except for a single conical singularity at the location of the brane. In contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We also present some plausibility arguments why the model should not suffer from serious stability issues.

  14. Gravity and large black holes in Randall-Sundrum II braneworlds.

    PubMed

    Figueras, Pau; Wiseman, Toby

    2011-08-19

    We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ℓ. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20ℓ. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution. © 2011 American Physical Society

  15. Effective monopoles within thick branes

    NASA Astrophysics Data System (ADS)

    Hoff da Silva, J. M.; da Rocha, Roldão

    2012-10-01

    The monopole mass is revealed to be considerably modified in the thick braneworld paradigm, and depends on the position of the monopole in the brane as well. Accordingly, the monopole radius continuously increases, leading to an unacceptable setting that can be circumvented when the brane thickness has an upper limit. Despite such peculiar behavior, the accrued quantum corrections —involving the classical monopole solution— are shown to be still under control. We analyze the monopole's peculiarities also taking into account the localization of the gauge fields. Furthermore, some additional analysis in the thick braneworld context and the similar behavior evinced by the topological string are investigated.

  16. Mapping the ghost free bigravity into braneworld setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Yasuho; Tanaka, Takahiro, E-mail: yasuho@yukawa.kyoto-u.ac.jp, E-mail: tanaka@yukawa.kyoto-u.ac.jp

    2014-06-01

    We discuss whether or not bigravity theory can be embedded into the braneworld setup. As a candidate, we consider Dvali-Gabadadze-Porrati two-brane model with the Goldberger-Wise radion stabilization. We will show that we can construct a ghost free model whose low energy spectrum is composed of a massless graviton and a massive graviton with a small mass. As is expected, the behavior of this effective theory is shown to be identical to the ghost free bigravity. Unfortunately, this correspondence breaks down at a relatively low energy due to the limitation of the adopted stabilization mechanism.

  17. Brane-world extra dimensions in light of GW170817

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Bolis, Nadia; Vagnozzi, Sunny

    2018-03-01

    The search for extra dimensions is a challenging endeavor to probe physics beyond the Standard Model. The joint detection of gravitational waves (GW) and electromagnetic (EM) signals from the merging of a binary system of compact objects like neutron stars can help constrain the geometry of extra dimensions beyond our 3 +1 spacetime ones. A theoretically well-motivated possibility is that our observable Universe is a 3 +1 -dimensional hypersurface, or brane, embedded in a higher 4 +1 -dimensional anti-de Sitter (AdS5 ) spacetime, in which gravity is the only force which propagates through the infinite bulk space, while other forces are confined to the brane. In these types of brane-world models, GW and EM signals between two points on the brane would, in general, travel different paths. This would result in a time lag between the detection of GW and EM signals emitted simultaneously from the same source. We consider the recent near-simultaneous detection of the GW event GW170817 from the LIGO/Virgo collaboration, and its EM counterpart, the short gamma-ray burst GRB170817A detected by the Fermi Gamma-ray Burst Monitor and the International Gamma-Ray Astrophysics Laboratory Anti-Coincidence Shield spectrometer. Assuming the standard Λ -cold dark matter scenario and performing a likelihood analysis which takes into account astrophysical uncertainties associated to the measured time lag, we set an upper limit of ℓ≲0.535 Mpc at 68% confidence level on the AdS5 radius of curvature ℓ. Although the bound is not competitive with current Solar System constraints, it is the first time that data from a multimessenger GW-EM measurement is used to constrain extra-dimensional models. Thus, our work provides a proof of principle for the possibility of using multimessenger astronomy for probing the geometry of our space-time.

  18. On the localisation of four-dimensional brane-world black holes: II. The general case

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  19. Inflationary generalized Chaplygin gas and dark energy in light of the Planck and BICEP2 experiments

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Kumar, Sumit; Sen, Anjan A.

    2014-10-01

    In this work, we study an inflationary scenario in the presence of generalized Chaplygin gas (GCG). We show that in Einstein gravity, GCG is not a suitable candidate for inflation; but in a five-dimensional brane-world scenario, it can work as a viable inflationary model. We calculate the relevant quantities such as ns, r, and As related to the primordial scalar and tensor fluctuations, and using their recent bounds from Planck and BICEP2, we constrain the model parameters as well as the five-dimensional Planck mass. But as a slow-roll inflationary model with a power-law type scalar primordial power spectrum, GCG as an inflationary model cannot resolve the tension between results from BICEP2 and Planck with a concordance ΛCDM Universe. We show that by going beyond the concordance ΛCDM model and incorporating more general dark energy behavior, we may ease this tension. We also obtain the constraints on the ns and r and the GCG model parameters using Planck+WP +BICEP2 data considering the CPL dark energy behavior.

  20. Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-03-01

    We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and radii of compact objects.

  1. Dewatering General Permit (DGP) for Massachusetts & New Hampshire

    EPA Pesticide Factsheets

    Documents, links & contacts for the Notice of Availability of the National Pollutant Discharge Elimination System (NPDES) General Permit for Dewatering Activity Discharges in Massachusetts (MAG070000) and New Hampshire (NHG070000).

  2. Scalar perturbations of Eddington-inspired Born-Infeld braneworld

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Liu, Yu-Xiao; Guo, Bin; Du, Xiao-Long

    2017-09-01

    We consider the scalar perturbations of Eddington-inspired Born-Infeld braneworld models in this paper. The dynamical equation for the physical propagating degree of freedom ξ (xμ,y ) is achieved by using the Arnowitt-Deser-Misner decomposition method: F1(y )∂y2ξ +F2(y )∂yξ +∂μ∂μ ξ =0 . We conclude that the solution is tachyonic-free and stable under scalar perturbations for F1(y )>0 but unstable for F1(y )<0 . The stability of a known analytic domain wall solution with the warp factor given by a (y )=sech3/4 p(k y ) is analyzed and it is shown that only the solution for 0

  3. Black Hole Formation in Randall-Sundrum II Braneworlds.

    PubMed

    Wang, Daoyan; Choptuik, Matthew W

    2016-07-01

    We present the first numerical study of the full dynamics of a braneworld scenario, working within the framework of the single brane model of Randall and Sundrum. In particular, we study the process of gravitational collapse driven by a massless scalar field which is confined to the brane. Imposing spherical symmetry on the brane, we show that the evolutions of sufficiently strong initial configurations of the scalar field result in black holes that have finite extension into the bulk. Furthermore, we find preliminary evidence that the black holes generated form a unique sequence, irrespective of the details of the initial data. The black hole solutions we obtain from dynamical evolutions are consistent with those previously computed from a static vacuum ansatz.

  4. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Lydia R.

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Satadru; Sahni, Varun; Viznyuk, Alexander

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which resultsmore » in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.« less

  6. Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo; Kanakoglou, Konstantinos; Nucamendi, Ulises; Quiros, Israel

    2014-01-01

    We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to analytically compute the corrections to Newton's law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken-Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar-tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld configuration.

  7. Brane-world black hole solutions via a confining potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, M.; Sepangi, H. R.; Razmi, H.

    2007-09-15

    Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explainmore » the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics)« less

  8. Microbial Transglutaminase Used in Bread Preparation at Standard Bakery Concentrations Does Not Increase Immunodetectable Amounts of Deamidated Gliadin.

    PubMed

    Heil, Andreas; Ohsam, Jürgen; van Genugten, Bernard; Diez, Oscar; Yokoyama, Keiichi; Kumazawa, Yoshiyuki; Pasternack, Ralf; Hils, Martin

    2017-08-16

    The effect of standard bakery concentrations of microbial transglutaminase (MTG) in wheat bread preparation on the immunoreactivity of sera of celiac disease (CD) patients was investigated. Immunoblotting using monoclonal antibodies specific to unmodified and/or deamidated gliadin showed no differences between control bread and MTG bread. Deamidation of gliadin could not be detected at standard MTG concentrations. Sera of CD patients were characterized using anti-gliadin and anti-deamidated gliadin peptide (DGP) enzyme-linked immunosorbent assay and grouped into DGP high- and low-titer pools. The recognition pattern obtained after using both CD sera pools for immunoblotting did not reveal differences between control and MTG-treated bread protein extracts. Our results indicate that MTG treatment of wheat bread prepared with typical MTG concentrations used in standard bakery processes does not lead to immunodetectable amounts of CD immunotoxic deamidated gliadins.

  9. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less

  10. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  11. The effects of spatial dynamics on a wormhole throat

    NASA Astrophysics Data System (ADS)

    Alias, Anuar; Wan Abdullah, Wan Ahmad Tajuddin

    2018-02-01

    Previous studies on dynamic wormholes were focused on the dynamics of the wormhole itself, be it either rotating or evolutionary in character and also in various frameworks from classical to braneworld cosmological models. In this work, we modeled a dynamic factor that represents the spatial dynamics in terms of spacetime expansion and contraction surrounding the wormhole itself. Using an RS2-based braneworld cosmological model, we modified the spacetime metric of Wong and subsequently employed the method of Bronnikov, where it is observed that a traversable wormhole is easier to exist in an expanding brane universe, however it is difficult to exist in a contracting brane universe due to stress-energy tensors requirement. This model of spatial dynamic factor affecting the wormhole throat can also be applied on the cyclic or the bounce universe model.

  12. Perturbatively deformed defects in Pöschl-Teller-driven scenarios for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; da Rocha, Roldão

    2016-07-01

    Pöschl-Teller-driven solutions for quantum mechanical fluctuations are triggered off by single scalar field theories obtained through a systematic perturbative procedure for generating deformed defects. The analytical properties concerning the quantum fluctuations in one-dimension, zero-mode states, first- and second-excited states, and energy density profiles are all obtained from deformed topological and non-topological structures supported by real scalar fields. Results are firstly derived from an integrated λϕ4 theory, with corresponding generalizations applied to starting λχ4 and sine-Gordon theories. By focusing our calculations on structures supported by the λϕ4 theory, the outcome of our study suggests an exact quantitative correspondence to Pöschl-Teller-driven systems. Embedded into the perturbative quantum mechanics framework, such a correspondence turns into a helpful tool for computing excited states and continuous mode solutions, as well as their associated energy spectrum, for quantum fluctuations of perturbatively deformed structures. Perturbative deformations create distinct physical scenarios in the context of exactly solvable quantum systems and may also work as an analytical support for describing novel braneworld universes embedded into a 5-dimensional gravity bulk.

  13. [Effect of Different Stimulating Strength of Electroacupuncture on Gastrointestinal Motility and RhoA/ROCK Signaling in Gastric Antral Smooth Muscle in Diabetic Gastroparesis Rats].

    PubMed

    Wu, Xue-Fen; Chen, Xiao-Li; Zheng, Xue-Na; Guo, Xin; Xie, Zhi-Qiang; Liu, Li; Wei, Xin-Ran; Yue, Zeng-Hui

    2018-03-25

    To observe the effect of different strength of electroacupuncture (EA) stimulation on gastrointestinal motility and Ras homolog gene family member (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) signaling in diabetic gastroparesis (DGP) rats, so as to reveal the underlying mechanisms of EA for improving DGP. Sixty SD rats were randomly and equally divided into blank control, DGP model, weak EA, medium EA, and strong EA groups ( n =12 rats in each). The DGP model was established by intraperitoneal injection of streptozotocin (STZ, 55 mmol/kg, 2%) and high-sugar and high-fat fodder feeding for 8 weeks. EA (0.12, 0.24, 0.36 mA, 20 Hz/100 Hz) was applied to "Zusanli" (ST 36), "Sanyinjiao" (SP 6) and "Liangmen" (ST 21) for 20 min, once daily for 15 successive days. Blood glucose levels were measured weekly with blood glucose meter and blood glucose test paper. Fecal phenol red excretion method was used to display gastric emptying and small intestinal propulsion function. The expression of RhoA protein in the gastric antral smooth muscle tissue was detected by immunohistochemistry and Western blot (WB), separately, and that of ROCK, myosin phosphatase target subunit 1 (MYPT 1) and phosphorylated (p)-MYPT 1 proteins in gastric antrum detected by WB. Compared with the blank control group, the gastric emptying rate and small intestine propulsion rate of the model group were significantly decreased ( P <0.05), and the blood glucose level was remarkably increased ( P <0.05). Moreover, the expression levels of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins in the gastric antrum were significantly down-regulated relevant to the control group ( P <0.05). After administration of EA, the decreased gastric emptying rate and intestinal propulsion rate, and the down-regulated expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins were significantly increased in the strong, medium and weak EA stimulation groups ( P <0.05). Comparison among the 3 EA groups showed that the strong stimulation was significantly superior to weak stimulation in up-regulating the expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins, and obviously superior to the medium stimulation in up-regulating RhoA and MYPT 1 protein levels ( P <0.05), while the medium stimulation was significantly stronger than the weak stimulation in up-regulating the expression of ROCK, MYPT 1 and p-MYPT 1 proteins ( P <0.05). There were no significant differences among the 3 EA groups in up-regulating the gastric emptying rate and small intestinal propulsion rate, and between the strong stimulation and medium stimulation in the expression levels of ROCK and p-MYPT 1 proteins ( P >0.05). Electroacupuncture stimulation of ST 36-SP 6-ST 21 at 0.12, 0.24 and 0.36 mA can promote the gastrointestinal motility in DGP rats, which may be associated with its effects in enhancing RhoA/ROCK signaling in the gastric antral smooth muscle at different degrees.

  14. Overview of biomarkers for diagnosis and monitoring of celiac disease.

    PubMed

    Brusca, Ignazio

    2015-01-01

    Among the adverse reactions caused by wheat, celiac disease (CD) is the longest studied and best-known pathology. The more recently defined non-celiac gluten sensitivity (NCGS) presents with symptoms which are often indistinguishable from CD. Diagnosis of CD is based on serologic, molecular, and bioptic testing. The IgA anti-transglutaminase (tTG) test is considered highly important, as it shows high sensitivity and specificity and its levels correlate to the degree of intestinal damage. Small bowel biopsy can be avoided in symptomatic patients with IgA anti-tTG levels above 10× the manufacturer's cut-off. Recently, tests of anti-deamidated peptides of gliadin (DGP) have replaced classic anti-native gliadin (AGA) tests. DGP assays have a considerably higher diagnostic accuracy than AGA assays, especially in the IgG class, and can replace anti-tTG tests in patients with selective IgA deficiency. The combination of IgG anti-DGP plus IgA anti-tTG assays show greater sensitivity than a single test, with very high specificity. EMA tests have great diagnostic accuracy but are not recommended by all the latest guidelines because they are observer dependent. Biopsy must still be considered the gold standard for CD diagnosis. HLA-DQ genotyping can be used to screen asymptomatic children and in cases of histology/serology disagreement. About half of NCGS patients are DQ2 positive and have IgG AGA. To diagnose NCGS, first CD and wheat allergy must be excluded; then the wheat dependence of symptoms must be verified by a gluten-free diet and subsequent gluten challenge. © 2015 Elsevier Inc. All rights reserved.

  15. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients.

    PubMed

    Comino, Isabel; Fernández-Bañares, Fernando; Esteve, María; Ortigosa, Luís; Castillejo, Gemma; Fambuena, Blanca; Ribes-Koninckx, Carmen; Sierra, Carlos; Rodríguez-Herrera, Alfonso; Salazar, José Carlos; Caunedo, Ángel; Marugán-Miguelsanz, J M; Garrote, José Antonio; Vivas, Santiago; Lo Iacono, Oreste; Nuñez, Alejandro; Vaquero, Luis; Vegas, Ana María; Crespo, Laura; Fernández-Salazar, Luis; Arranz, Eduardo; Jiménez-García, Victoria Alejandra; Antonio Montes-Cano, Marco; Espín, Beatriz; Galera, Ana; Valverde, Justo; Girón, Francisco José; Bolonio, Miguel; Millán, Antonio; Cerezo, Francesc Martínez; Guajardo, César; Alberto, José Ramón; Rosinach, Mercé; Segura, Verónica; León, Francisco; Marinich, Jorge; Muñoz-Suano, Alba; Romero-Gómez, Manuel; Cebolla, Ángel; Sousa, Carolina

    2016-10-01

    Treatment for celiac disease (CD) is a lifelong strict gluten-free diet (GFD). Patients should be followed-up with dietary interviews and serology as CD markers to ensure adherence to the diet. However, none of these methods offer an accurate measure of dietary compliance. Our aim was to evaluate the measurement of gluten immunogenic peptides (GIP) in stools as a marker of GFD adherence in CD patients and compare it with traditional methods of GFD monitoring. We performed a prospective, nonrandomized, multicenter study including 188 CD patients on GFD and 84 healthy controls. Subjects were given a dietary questionnaire and fecal GIP quantified by enzyme-linked immunosorbent assay (ELISA). Serological anti-tissue transglutaminase (anti-tTG) IgA and anti-deamidated gliadin peptide (anti-DGP) IgA antibodies were measured simultaneously. Of the 188 celiac patients, 56 (29.8%) had detectable GIP levels in stools. There was significant association between age and GIP in stools that revealed increasing dietary transgressions with advancing age (39.2% in subjects ≥13 years old) and with gender in certain age groups (60% in men ≥13 years old). No association was found between fecal GIP and dietary questionnaire or anti-tTG antibodies. However, association was detected between GIP and anti-DGP antibodies, although 46 of the 53 GIP stool-positive patients were negative for anti-DGP. Detection of gluten peptides in stools reveals limitations of traditional methods for monitoring GFD in celiac patients. The GIP ELISA enables direct and quantitative assessment of gluten exposure early after ingestion and could aid in the diagnosis and clinical management of nonresponsive CD and refractory CD. Trial registration number NCT02711397.

  16. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients

    PubMed Central

    Comino, Isabel; Fernández-Bañares, Fernando; Esteve, María; Ortigosa, Luís; Castillejo, Gemma; Fambuena, Blanca; Ribes-Koninckx, Carmen; Sierra, Carlos; Rodríguez-Herrera, Alfonso; Salazar, José Carlos; Caunedo, Ángel; Marugán-Miguelsanz, J M; Garrote, José Antonio; Vivas, Santiago; lo Iacono, Oreste; Nuñez, Alejandro; Vaquero, Luis; Vegas, Ana María; Crespo, Laura; Fernández-Salazar, Luis; Arranz, Eduardo; Jiménez-García, Victoria Alejandra; Antonio Montes-Cano, Marco; Espín, Beatriz; Galera, Ana; Valverde, Justo; Girón, Francisco José; Bolonio, Miguel; Millán, Antonio; Cerezo, Francesc Martínez; Guajardo, César; Alberto, José Ramón; Rosinach, Mercé; Segura, Verónica; León, Francisco; Marinich, Jorge; Muñoz-Suano, Alba; Romero-Gómez, Manuel; Cebolla, Ángel; Sousa, Carolina

    2016-01-01

    Objectives: Treatment for celiac disease (CD) is a lifelong strict gluten-free diet (GFD). Patients should be followed-up with dietary interviews and serology as CD markers to ensure adherence to the diet. However, none of these methods offer an accurate measure of dietary compliance. Our aim was to evaluate the measurement of gluten immunogenic peptides (GIP) in stools as a marker of GFD adherence in CD patients and compare it with traditional methods of GFD monitoring. Methods: We performed a prospective, nonrandomized, multicenter study including 188 CD patients on GFD and 84 healthy controls. Subjects were given a dietary questionnaire and fecal GIP quantified by enzyme-linked immunosorbent assay (ELISA). Serological anti-tissue transglutaminase (anti-tTG) IgA and anti-deamidated gliadin peptide (anti-DGP) IgA antibodies were measured simultaneously. Results: Of the 188 celiac patients, 56 (29.8%) had detectable GIP levels in stools. There was significant association between age and GIP in stools that revealed increasing dietary transgressions with advancing age (39.2% in subjects ≥13 years old) and with gender in certain age groups (60% in men ≥13 years old). No association was found between fecal GIP and dietary questionnaire or anti-tTG antibodies. However, association was detected between GIP and anti-DGP antibodies, although 46 of the 53 GIP stool-positive patients were negative for anti-DGP. Conclusions: Detection of gluten peptides in stools reveals limitations of traditional methods for monitoring GFD in celiac patients. The GIP ELISA enables direct and quantitative assessment of gluten exposure early after ingestion and could aid in the diagnosis and clinical management of nonresponsive CD and refractory CD. Trial registration number NCT02711397. PMID:27644734

  17. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão

    2017-05-01

    The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eötvös-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied.

  18. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  19. 78 FR 16756 - International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting AGENCY: Federal Aviation Administration... Aviation Organization's (ICAO) Dangerous Goods Panel's (DGP's) Spring Working Group to be held April 15-19...

  20. 77 FR 53250 - International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration International Civil Aviation Organization's (ICAO) Dangerous Goods Panel; Notice of Public Meeting AGENCY: Federal Aviation Administration... Aviation Organization's (ICAO) Dangerous Goods Panel's (DGP's) Fall Working Group to be held October 15-19...

  1. Gravitational waves from quasinormal modes of a class of Lorentzian wormholes

    NASA Astrophysics Data System (ADS)

    Aneesh, S.; Bose, Sukanta; Kar, Sayan

    2018-06-01

    Quasinormal modes of a two-parameter family of Lorentzian wormhole spacetimes, which arise as solutions in a specific scalar-tensor theory associated with braneworld gravity, are obtained using standard numerical methods. Being solutions in a scalar-tensor theory, these wormholes can exist with matter satisfying the weak energy condition. If one posits that the end-state of stellar-mass binary black hole mergers, of the type observed in GW150914, can be these wormholes, then we show how their properties can be measured from their distinct signatures in the gravitational waves emitted by them as they settle down in the postmerger phase from an initially perturbed state. We propose that their scalar quasinormal modes correspond to the so-called breathing modes, which normally arise in gravitational wave solutions in scalar-tensor theories. We show how the frequency and damping time of these modes depend on the wormhole parameters, including its mass. We derive the mode solutions and use them to determine how one can measure those parameters when these wormholes are the endstate of binary black hole mergers. Specifically, we find that if a breathing mode is observed in LIGO-like detectors with design sensitivity, and has a maximum amplitude equal to that of the tensor mode that was observed of GW150914, then for a range of values of the wormhole parameters, we will be able to discern it from a black hole. If in future observations we are able to confirm the existence of such wormholes, we would, at one go, have some indirect evidence of a modified theory of gravity as well as extra spatial dimensions.

  2. Celiac disease or non-celiac gluten sensitivity? An approach to clinical differential diagnosis.

    PubMed

    Kabbani, Toufic A; Vanga, Rohini R; Leffler, Daniel A; Villafuerte-Galvez, Javier; Pallav, Kumar; Hansen, Joshua; Mukherjee, Rupa; Dennis, Melinda; Kelly, Ciaran P

    2014-05-01

    Differentiating between celiac disease (CD) and non-celiac gluten sensitivity (NCGS) is important for appropriate management but is often challenging. We retrospectively reviewed records from 238 patients who presented for the evaluation of symptoms responsive to gluten restriction without prior diagnosis or exclusion of CD. Demographics, presenting symptoms, serologic, genetic, and histologic data, nutrient deficiencies, personal history of autoimmune diseases, and family history of CD were recorded. NCGS was defined as symptoms responsive to a gluten-free diet (GFD) in the setting of negative celiac serology and duodenal biopsies while on a gluten-containing diet or negative human leukocyte antigen (HLA) DQ2/DQ8 testing. Of the 238 study subjects, 101 had CD, 125 had NCGS, 9 had non-celiac enteropathy, and 3 had indeterminate diagnosis. CD subjects presented with symptoms of malabsorption 67.3% of the time compared with 24.8% of the NCGS subjects (P<0.0001). In addition, CD subjects were significantly more likely to have a family history of CD (P=0.004), personal history of autoimmune diseases (P=0.002), or nutrient deficiencies (P<0.0001). The positive likelihood ratio for diagnosis of CD of a >2× upper limit of normal IgA trans-glutaminase antibody (tTG) or IgA/IgG deaminated gliadan peptide antibody (DGP) with clinical response to GFD was 130 (confidence interval (CI): 18.5-918.3). The positive likelihood ratio of the combination of gluten-responsive symptoms and negative IgA tTG or IgA/IgG DGP on a regular diet for NCGS was 9.6 (CI: 5.5-16.9). When individuals with negative IgA tTG or IgA/IgG DGP also lacked symptoms of malabsorption (weight loss, diarrhea, and nutrient deficiencies) and CD risk factors (personal history of autoimmune diseases and family history of CD), the positive likelihood ratio for NCGS increased to 80.9. On the basis of our findings, we have developed a diagnostic algorithm to differentiate CD from NCGS. Subjects with negative celiac serologies (IgA tTG or IgA/IgG DGP) on a regular diet are unlikely to have CD. Those with negative serology who also lack clinical evidence of malabsorption and CD risk factors are highly likely to have NCGS and may not require further testing. Those with equivocal serology should undergo HLA typing to determine the need for biopsy.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aimsmore » we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or astrophysically inferred photon mass, are far beyond its upper bound, positively testing the viability of our tachyonic braneworld. Moreover, the 5D parameters that define these corrections possess the same order, providing naturalness to our model, however, a fine-tuning between them is needed in order to fit the corresponding upper bound on the photon mass.« less

  4. The Weight Management Dietetics Practice Group collecting outcomes mentoring program

    USDA-ARS?s Scientific Manuscript database

    The is a newsletter article for the Academy of Nutrition and Dietetics (AND), Weight Management Dietetics Practice Group (WM DPG). The article presents the ‘Collecting Outcomes Mentoring Program’ for 2017 that is managed by the Research Section of the WM DPG. Dietitians in the WM DGP are provided wi...

  5. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  6. Attitudes on euthanasia, physician-assisted suicide and terminal sedation--a survey of the members of the German Association for Palliative Medicine.

    PubMed

    Müller-Busch, H C; Oduncu, F S; Woskanjan, S; Klaschik, E

    2004-01-01

    Due to recent legislations on euthanasia and its current practice in the Netherlands and Belgium, issues of end-of-life medicine have become very vital in many European countries. In 2002, the Ethics Working Group of the German Association for Palliative Medicine (DGP) has conducted a survey among its physician members in order to evaluate their attitudes towards different end-of-life medical practices, such as euthanasia (EUT), physician-assisted suicide (PAS), and terminal sedation (TS). An anonymous questionnaire was sent to the 411 DGP physicians, consisting of 14 multiple choice questions on positions that might be adopted in different hypothetical scenarios on situations of "intolerable suffering" in end-of-life care. For the sake of clarification, several definitions and legal judgements of different terms used in the German debate on premature termination of life were included. For statistical analysis t-tests and Pearson-correlations were used. The response rate was 61% (n = 251). The proportions of the respondents who were opposed to legalizing different forms of premature termination of life were: 90% opposed to EUT, 75% to PAS, 94% to PAS for psychiatric patients. Terminal sedation was accepted by 94% of the members. The main decisional bases drawn on for the answers were personal ethical values, professional experience with palliative care, knowledge of alternative approaches, knowledge of ethical guidelines and of the national legal frame. In sharp contrast to similar surveys conducted in other countries, only a minority of 9.6% of the DGP physicians supported the legalization of EUT. The misuse of medical knowledge for inhumane killing in the Nazi period did not play a relevant role for the respondents' negative attitude towards EUT. Palliative care needs to be stronger established and promoted within the German health care system in order to improve the quality of end-of-life situations which subsequently is expected to lead to decreasing requests for EUT by terminally ill patients.

  7. Critical attitudes and beliefs towards guidelines amongst palliative care professionals - results from a national survey.

    PubMed

    Kalies, Helen; Schöttmer, Rieke; Simon, Steffen T; Voltz, Raymond; Crispin, Alexander; Bausewein, Claudia

    2017-03-21

    Little is known about palliative care professionals' attitudes towards guidelines. In 2015, the German Association for Palliative Medicine (DGP) published an evidence based guideline for palliative care in adults with incurable cancer. Before publication we conducted a national survey among members of the DGP to detect possible barriers and facilitators for its implementation. The aim of the present publication was to evaluate critical attitudes and beliefs which could hinder the effective implementation of the new guideline and to evaluate differences within professional groups and medical specialisations. This web-based online survey was addressed to all members of the DGP in summer 2014. Twenty-one questions concerning attitudes and beliefs towards guidelines were a priori developed to represent the following topics: scepticism regarding the quality of guidelines, doubts about the implementation of guidelines, restrictions in treatment options through guidelines, discrepancy between palliative care values and guidelines. Differences within professions and specialisations were tested using Kruskal-Wallis tests. All 4.786 members with known email address were invited, 1.181 followed the link, 1.138 began to answer the questionnaire and 1.031 completed the questionnaire. More than half of participating members were physicians and one third nurses. Scepticism regarding the quality of existing guidelines was high (range 12.8-73.2%). Doubts regarding practical aspects of guidelines were less prevalent but still high (range 21.8-57.6%). About one third (range 5.4-31.4%) think that guidelines restrict their treatment options. In addition, 38.8% believed that guidelines are a kind of cookbook and restrict the flexibility of individual patient care. The majority saw no or little discrepancy between palliative care values and guidelines (range 68.4-82.6%). There were relatively small but significant differences between professions and specialisations. The person-centred and individual approach of palliative care does not seem to contradict the acceptance of guidelines. Main barriers were related to scepticism regarding the quality of guidelines and the implementation of guidelines in general.

  8. 77 FR 31274 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... (ICAO) Dangerous Goods Panel (DGP) regarding certain lithium ion battery-powered mobility aids (e.g... devices on an aircraft and providing for the intentional removal of a lithium ion battery from a device... limit lithium ion batteries used to power portable electronic devices and medical devices to 160 watt...

  9. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  10. On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach

    NASA Astrophysics Data System (ADS)

    Dean, Edward J.; Glowinski, Roland

    During his outstanding career, Olivier Pironneau has addressed the solution of a large variety of problems from the Natural Sciences, Engineering and Finance to name a few, an evidence of his activity being the many articles and books he has written. It is the opinion of these authors, and former collaborators of O. Pironneau (cf. [DGP91]), that this chapter is well-suited to a volume honoring him. Indeed, the two pillars of the solution methodology that we are going to describe are: (1) a nonlinear least squares formulation in an appropriate Hilbert space, and (2) a mixed finite element approximation, reminiscent of the one used in [DGP91] and [GP79] for solving the Stokes and Navier-Stokes equations in their stream function-vorticity formulation; the contributions of O. Pironneau on the two above topics are well-known world wide. Last but not least, we will show that the solution method discussed here can be viewed as a solution method for a non-standard variant of the incompressible Navier-Stokes equations, an area where O. Pironneau has many outstanding and celebrated contributions (cf. [Pir89], for example).

  11. Constraining the cosmology of the phantom brane using distance measures

    NASA Astrophysics Data System (ADS)

    Alam, Ujjaini; Bag, Satadru; Sahni, Varun

    2017-01-01

    The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.

  12. Prevalence of Celiac Disease Autoimmunity Among Adolescents and Young Adults in China.

    PubMed

    Yuan, Juanli; Zhou, Chunyan; Gao, Jinyan; Li, Jingjing; Yu, Fenglian; Lu, Jun; Li, Xin; Wang, Xiaozhong; Tong, Ping; Wu, Zhihua; Yang, Anshu; Yao, Yonghong; Nadif, Sarah; Shu, Heng; Jiang, Xu; Wu, Yujie; Gilissen, Luud; Chen, Hongbing

    2017-10-01

    In China, epidemiologic information on celiac disease autoimmunity is scarce and fragmented. We investigated the prevalence of celiac disease autoimmunity in the general Chinese population. In a cross-sectional prospective study, 19,778 undiagnosed Chinese adolescents and young adults (age, 16-25 y) were recruited from consecutive new students who underwent routine physical examinations at 2 universities in Jiangxi, China, from September 2010 through October 2013; the students were from 27 geographic regions in China. All subjects were tested for serum IgG, IgG against deamidated gliadin peptides (IgG anti-DGP), and IgA anti-tissue transglutaminase antibodies (IgA anti-tTG). We also analyzed HLA genotypes in subgroups of participants with different results from tests for serum markers of celiac disease. A total of 434 students (2.19%) tested positive for serum markers for celiac disease (95% confidence interval [CI], 1.99%-2.41%), 0.36% of the students tested positive for anti-tTG IgA (95% CI, 0.28%-0.46%), and 1.88% tested positive for anti-DGP IgG (95% CI, 1.70%-2.09%). The prevalence of celiac disease autoimmunity (positive results in assays for anti-tTG IgA and anti-DGP-IgG) was 0.06% (95% CI, 0.03%-0.10%). Celiac disease autoimmunity was associated with the consumption of wheat and female sex. The prevalence in the Shandong province in north China, where wheat is a staple in the diet, was 0.76% (95% CI, 0.21%-1.95%). The frequencies of the HLA-DQ2/-DQ8 genotypes associated with celiac disease were higher in subjects with celiac disease autoimmunity, based on detection of both serum markers, than in subjects with positive results from a single test (P < .01). All subjects with positive results from both assays carried the HLA-DQ2 genotype. Approximately 2% of adolescents or young adults in China had positive results from assays for serum markers for celiac disease. The prevalence of celiac disease autoimmunity in the Shandong province in north China, where wheat is a staple in the diet, was 0.76%. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Testing and selection of cosmological models with (1+z){sup 6} corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz

    2008-02-15

    In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less

  14. Exploring extra dimensions with scalar fields

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  15. TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhengxiang; Yu Hongwei; Wu Puxun, E-mail: hwyu@hunnu.edu.cn

    2012-01-10

    We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we alsomore » study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.« less

  16. D-brane solutions under market panic

    NASA Astrophysics Data System (ADS)

    Pincak, Richard

    The relativistic quantum mechanic approach is used to develop stock market dynamics. The relativistic is conceptional here as the meaning of big external volatility or volatility shock on a financial market. We used a differential geometry approach with the parallel transport of prices to obtain a direct shift of the stock price movement. The prices are represented here as electrons with different spin orientation. Up and down orientations of the spin particle are likened here to an increase or a decrease of stock prices. The parallel transport of stock prices is enriched by Riemann curvature, which describes some arbitrage opportunities in the market. To solve the stock-price dynamics, we used the Dirac equation for bispinors on the spherical brane-world. We found out that when a spherical brane is abbreviated to the disk on the equator, we converge to the ideal behavior of financial market where Black-Scholes as well as semi-classical equations are sufficient. Full spherical brane-world scenarios can describe non-equilibrium market behavior where all arbitrage opportunities as well as transaction costs are taken into account. Real application of the model to the option pricing was done. The model developed in this paper brings quantitative different results of option pricing dynamics in the case of nonzero Riemann curvature.

  17. Beyond Einstein gravity

    NASA Astrophysics Data System (ADS)

    Grisa, Luca A.

    2008-07-01

    In this thesis, I studied three different models, that depart from Einstein's General Relativity at either long or short distances. The first third of the thesis will be devoted to bulk modifications of the braneworld model, known as Randall-Sundrum. First, I will show how the effective graviton spectrum on the brane world-volume contains a massive resonance state, when the brane is embedded in an asymmetric warped geometry. Alongside it, a zero-mode, which can be identified with the our-dimensional graviton of GR, is also present. Then I will discuss the effects that the presence of a Domain Wall localized on the brane has on the RS geometry. The DW both generates a deficit angle in the bulk and inflates with rate slightly larger than the known result in four dimensions. I will show how this departure from standard GR arises in the dual CFT within the framework of the AdS/CFT correnspondence. The conformal fields gravitationally coupled to the DW radiatively corrects the DW tension, and hence its Hubble rate. In the second part, I will discuss intersecting D-brane models, that describe at low energies a two dimensional chiral fermion theory localized at the intersection. The fermions are coupled to gauge fields in the bulk and chiral symmetry is dynamically broken. No Nambu-Goldstone boson, associated with spontaneously broken symmetries, appears in two dimensional field theories. I will show how the disappearance of the Nambu-Goldstone boson is obtained from the non-trivial dynamics of the gauge field in these models. The third and final part is about a class of models with a small Lorentz-violating deformation. The motivation to study these models lies in the attempt to theoretically justify the presence of the incredibly tiny cosmological constant, that recent observations have helped to identify. The idea is to introduce new interactions that would weaken the attractive gravitational force at large distance, but without modifying gravity at shorter range where the experiments proved GR to be correct. These requests tightly constraint the possible form of Lorentz-violating deformations. In general, it can be shown that a generic deformation generates a bounce in the cosmological evolution at late times.

  18. Remarks on the foundations of geometry and immersion theory

    NASA Astrophysics Data System (ADS)

    Odon, P. I.; Capistrano, A. J. S.

    2010-04-01

    In this paper, we deal with the evolution of physics and maths, and how one is intrinsically connected to the other. Euclid and his book Elements, and the importance of the fifth postulate for geometry led to the discovery of non-Euclidean geometries. We point out how these geometries play an essential role in immersion theory and Nash's theorem, and its importance for physics when applied to the brane-world theory.

  19. Tachyon logamediate inflation on the brane

    NASA Astrophysics Data System (ADS)

    Kamali, Vahid; Nik, Elahe Navaee

    2017-07-01

    According to a Barrow solution for the scale factor of the universe, the main properties of the tachyon inflation model in the framework of the RSII braneworld are studied. Within this framework the basic slow-roll parameters are calculated analytically. We compare this inflationary scenario to the latest observational data. The predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. The current predictions are consistent with those of viable inflationary models.

  20. Trapping of Neutrinos in Extremely Compact Stars and the Influence of Brane Tension on This Process

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdenäěk; Hladík, Jan; Urbanec, Martin

    We present estimates on the efficiency of neutrino trapping in brany extremely compact stars, using the simplest model with uniform distribution of energy density, assuming massless neutrinos and uniform distribution of neutrino emissivity. Computation have been done for two different uniform-density stellar solution in the Randall-Sundrum II type braneworld, namely with the Reissner-Nordström-type of geometry and the second one, derived by Germani and Maartens.1

  1. Constraining the phantom braneworld model from cosmic structure sizes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Kousvos, Stefanos R.

    2017-11-01

    We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.

  2. Probing dark energy with braneworld cosmology in the light of recent cosmological data

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Magaña, Juan; Hernández-Almada, A.; Motta, V.

    We investigate a brane model based on Randall-Sundrum scenarios with a generic dark energy component. The latter drives the accelerated expansion at late-times of the universe. In this scheme, extra terms are added into Einstein Field equations that are propagated to the Friedmann equations. To constrain the dark energy equation-of-state (EoS) and the brane tension we use observational data with different energy levels (Supernovae Type Ia, H(z), baryon acoustic oscillations, and cosmic microwave background radiation distance, and a joint analysis) in a background cosmology. Beside EoS being consistent with a cosmological constant at the 3σ confidence level for each dataset, the baryon acoustic oscillations probe favors an EoS consistent with a quintessence dark energy. Although we found different lower limit bounds on the brane tension for each dataset, being the most restricted for CMB, there is not enough evidence of modifications in the cosmological evolution of the universe by the existence of an extra dimension within observational uncertainties. Nevertheless, these new bounds are complementary to those obtained by other probes like table-top experiments, Big Bang Nucleosynthesis, and stellar dynamics. Our results show that a further test of the braneworld model with appropriate correction terms or a profound analysis with perturbations, may be needed to improve the constraints provided by the current data.

  3. Dark SU (N ) glueball stars on fluid branes

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão

    2017-06-01

    The glueball dark matter, in the pure SU (N ) Yang-Mills theory, engenders dark SU (N ) stars that comprise self-gravitating compact configurations of scalar glueball fields. Corrections to the highest frequency of gravitational wave radiation emitted by dark SU (N ) star mergers on a fluid brane with variable tension, implemented by the minimal geometric deformation, are derived, and their consequences are analyzed. Hence, dark SU (N ) star mergers on a fluid braneworld are shown to be better detectable by the LIGO and the eLISA experiments.

  4. A State Event Detection Algorithm for Numerically Simulating Hybrid Systems with Model Singularities

    DTIC Science & Technology

    2007-01-01

    the case of non- constant step sizes. Therefore the event dynamics after the predictor and corrector phases are, respectively, gpk +1 = g( xk + hk+1{ m...the Extrapolation Polynomial Using a Taylor series expansion of the predicted event function eq.(6) gpk +1 = gk + hk+1 dgp dt ∣∣∣∣ (x,t)=(xk,tk) + h2k...1 2! d2gp dt2 ∣∣∣∣ (x,t)=(xk,tk) + . . . , (8) we can determine the value of gpk +1 as a function of the, yet undetermined, step size hk+1. Recalling

  5. A Possible Solution to the Smallness Problem of Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /SLAC; Gu, Je-An

    2005-07-08

    The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.

  6. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  7. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  8. [Attitudes and experiences regarding physician assisted suicide : A survey among members of the German Association for Palliative Medicine].

    PubMed

    Jansky, Maximiliane; Jaspers, Birgit; Radbruch, Lukas; Nauck, Friedemann

    2017-01-01

    The need to regulate physician-assisted suicide (PAS) and organizations offering assisted suicide has been controversially debated in Germany. Before the German parliament voted on various drafts in November 2015, the German Association for Palliative Medicine surveyed its members on their attitudes and experiences regarding PAS. Items for the survey were derived from the literature and consented in a focus group. 2005-2015 - PubMed: PAS [Title/Abstract] UND survey (all countries), grey literature. We invited 5152 members of the DGP to participate in the online/paper survey. Descriptive quantitative and content analytic qualitative analysis of data using SPSS and MaxQDA. We obtained 1811 valid data sets (response rate 36.9%). 33.7% of the participants were male, 43.6% were female, and 0.4% identifed as other. Physicians accounted for 48.5% of the respondents, 17.8% nurses, other professions 14.3%, and about 20% of the data was missing socio-demographic information. More than 90% agreed that "wishes for PAS may be ambivalent" and "are rather a wish to end an unbearable situation". Of the 833 participating physicians, 56% refused participating in PAS and 74.2% had been asked to perform PAS. PAS was actually performed by 3%. Of all participating members, 56% approved of a legal ban of organizations offering assisted suicide. More than 60% of all professions agreed that PAS is not a part of palliative care. The respondents show a broad spectrum of attitudes, only partly supporting statements of relevant bodies, such as DGP. Because many are confronted with the issue, PAS is relevant to professionals in palliative care.

  9. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts.

    PubMed

    Lakshmi, Vijaya M; Schut, Herman A J; Zenser, Terry V

    2005-11-01

    Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.

  10. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  11. Cosmological tachyon condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D.

    2009-07-15

    We consider the prospects for dark matter/energy unification in k-essence type cosmologies. General mappings are established between the k-essence scalar field, the hydrodynamic and braneworld descriptions. We develop an extension of the general relativistic dust model that incorporates the effects of both pressure and the associated acoustic horizon. Applying this to a tachyon model, we show that this inhomogeneous 'variable Chaplygin gas' does evolve into a mixed system containing cold dark matter like gravitational condensate in significant quantities. Our methods can be applied to any dark energy model, as well as to mixtures of dark energy and traditional dark matter.

  12. Spinors fields in co-dimension one braneworlds

    NASA Astrophysics Data System (ADS)

    Mendes, W. M.; Alencar, G.; Landim, R. R.

    2018-02-01

    In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.

  13. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less

  14. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.

  15. Supersymmetry Breaking Casimir Warp Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-30

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead ofmore » general relativity.« less

  16. Fermionic vacuum polarization in a higher-dimensional global monopole spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E. R.

    2007-12-15

    In this paper we analyze the vacuum polarization effects associated with a massless fermionic field in a higher-dimensional global monopole spacetime in the 'braneworld' scenario. In this context we admit that our Universe, the bulk, is represented by a flat (n-1)-dimensional brane having a global monopole in an extra transverse three-dimensional submanifold. We explicitly calculate the renormalized vacuum average of the energy-momentum tensor, {sub Ren}, admitting the global monopole as being a pointlike object. We observe that this quantity depends crucially on the value of n, and provide explicit expressions to it for specific values attributed to n.

  17. Particle creation and reheating in a braneworld inflationary scenario

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-10-01

    We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.

  18. Equivalence principle implications of modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; Nicolis, Alberto; Stubbs, Christopher W.

    2009-11-15

    Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge formore » large objects but not for small ones (large/small is defined by the depth of the gravitational potential and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the Dvali-Gabadadze-Porrati braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where the mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in voids.« less

  19. Assessment of coeliac disease prevalence in patients with Down syndrome in Poland - a multi-centre study.

    PubMed

    Szaflarska-Popławska, Anna; Soroczyńska-Wrzyszcz, Anetta; Barg, Ewa; Józefczuk, Jan; Korczowski, Bartosz; Grzybowska-Chlebowczyk, Urszula; Więcek, Sabina; Cukrowska, Bożena

    2016-01-01

    The results of studies assessing whether patients with Down syndrome have increased risk of coeliac disease are contradictory. The prevalence of coeliac disease in patients with Down syndrome is estimated at a wide range between 1% to as much as 18.6%. To assess coeliac disease prevalence in patients with Down syndrome in Poland. The study enrolled 301 patients with Down syndrome from six centres in Poland (Wroclaw, Sandomierz, Rzeszow, Grudziadz, Katowice, and Bydgoszcz). We measured the concentration of anti-tissue transglutaminase IgA antibodies and anti-deamidated gliadin peptide IgG antibodies in all patients. Patients with abnormal positive (> 10 U/ml) or inconclusive (7-10 U/ml) result of the serological test were offered endoscopic biopsy of the small intestine in the main centre. In 31 (10.3%) patients increased concentrations of the investigated antibodies were found, including 19 (6.3%) patients with increased tTg-IgA concentration, 27 (8.97%) patients with increased concentration of DGP-IgG, and 15 (4.98%) patients with increased concentration of both types of antibodies. Endoscopic biopsy of the small intestine was planned for all 31 patients with abnormal results of at least one antibody test and for 2 patients with inconclusive results. One of them suffered from previously diagnosed and histologically confirmed coeliac disease. Biopsy was not conducted in 9 patients due to contraindications, lack of their consent, or introduction of a gluten-free diet by the parents before the examination. In a group of 23 patients who underwent endoscopic biopsy of the small intestine, in 15 patients the histopathological picture of the small intestinal mucosa was typical for coeliac disease, 2 patients were diagnosed with lesions of grade 1 according to the classification by Marsh-Oberhuber, 1 patient was diagnosed with focal shortening of villi and hypertrophy of the crypts with no intraepithelial lymphocytosis (remains under gastrological observation), 2 patients were diagnosed with mucosal inflammation of the duodenum, and 3 patients were found to have a normal histopathological picture of the small intestine. Analysis of the data included in the questionnaires of all patients showed no statistically significant differences in the body height, body mass index, prevalence of abdominal pain, diarrhoea, constipations, recurrent stomatitis, enamel hypoplasia, thyroid diseases, or hypertransaminasaemia between the groups of patients with normal and abnormal serological test results. Significantly higher prevalence of abdominal flatulence (p < 0.05) and epilepsy (p < 0.05) was found in the group of patients whose serological test results were negative. Patients with Down syndrome are a high-risk group for coeliac disease in the Polish population, with an estimated prevalence of at least 5.4%. Serological tools based on tTG-IgA and DGP-IgG tests are useful for the diagnosis of coeliac disease in Down syndrome patients. tTG-IgA test may be superior to DGP-IgG test in patients with normal total IgA level. Tests for coeliac disease should be carried out in all Polish patients with Down syndrome, regardless of the clinical picture.

  20. [The German Program for Disease Management Guidelines: COPD Guideline 2006. Short review].

    PubMed

    Ollenschläger, Günter; Kopp, Ina; Lelgemann, Monika

    2007-01-15

    In Germany, the first national consensus on evidence-based recommendations for COPD prevention and disease management was reached in spring 2006. After a development period of 9 months, the National Disease Management Guideline COPD was finalized by nominal group process under the authorship of the scientific societies for pneumology (DGP and Atemwegsliga), general internal medicine (DGIM), family medicine (DEGAM), and the Drug Commission of the German Medical Association (AKDAE). The recommendations' main sources are the NICE COPD Guideline 2004, the GOLD Recommendations as well as existing German guidelines and reviews of recent scientific evidence. The article gives an overview on authors, sources, and key recommendations of the German National Disease Management Guideline COPD 2006 (www.copd.versorgungsleitlinien.de).

  1. Neosphincter surgery for fecal incontinence: a critical and unbiased review of the relevant literature.

    PubMed

    Belyaev, Orlin; Müller, Christophe; Uhl, Waldemar

    2006-01-01

    Up until about 15 years ago the only realistic option for end-stage fecal incontinence was the creation of a permanent stoma. There have since been several developments. Dynamic graciloplasty (DGP) and artificial bowel sphincter (ABS) are well-established surgical techniques, which offer the patient a chance for continence restoration and improved quality of life; however, they are unfortunately associated with high morbidity and low success rates. Several trials have been done in an attempt to clarify the advantages and disadvantages of these methods and define their place in the second-line treatment of severe, refractory fecal incontinence. This review presents a critical and unbiased overview of the current status of neosphincter surgery according to the available data in the world literature.

  2. Tachyon with an inverse power-law potential in a braneworld cosmology

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  3. A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloso, Alicia Bueno; García-Bellido, Juan; Sapone, Domenico, E-mail: alicia.bueno@uam.es, E-mail: juan.garciabellido@uam.es, E-mail: domenico.sapone@uam.es

    2011-10-01

    We provide exact solutions to the cosmological matter perturbation equation in a homogeneous FLRW universe with a vacuum energy that can be parametrized by a constant equation of state parameter w and a very accurate approximation for the Ansatz w(a) = w{sub 0}+w{sub a}(1−a). We compute the growth index γ = log f(a)/log Ω{sub m}(a), and its redshift dependence, using the exact and approximate solutions in terms of Legendre polynomials and show that it can be parametrized as γ(a) = γ{sub 0}+γ{sub a}(1−a) in most cases. We then compare four different types of dark energy (DE) models: wΛCDM, DGP, f(R)more » and a LTB-large-void model, which have very different behaviors at z∼>1. This allows us to study the possibility to differentiate between different DE alternatives using wide and deep surveys like Euclid, which will measure both photometric and spectroscopic redshifts for several hundreds of millions of galaxies up to redshift z ≅ 2. We do a Fisher matrix analysis for the prospects of differentiating among the different DE models in terms of the growth index, taken as a given function of redshift or with a principal component analysis, with a value for each redshift bin for a Euclid-like survey. We use as observables the complete and marginalized power spectrum of galaxies P(k) and the Weak Lensing (WL) power spectrum. We find that, using P(k), one can reach (2%, 5%) errors in (w{sub 0},w{sub a}), and (4%, 12%) errors in (γ{sub 0},γ{sub a}), while using WL we get errors at least twice as large. These estimates allow us to differentiate easily between DGP, f(R) models and ΛCDM, while it would be more difficult to distinguish the latter from a variable equation of state parameter or LTB models using only the growth index.« less

  4. Large Randall-Sundrum II black holes

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; Yaghoobpour-Tari, Shima

    2013-03-01

    Using a novel numerical spectral method, we have constructed an AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall-Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1 / (- ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7 / (- Λ).

  5. Holographic dark energy in braneworld models with moving branes and the w = -1 crossing

    NASA Astrophysics Data System (ADS)

    Saridakis, E. N.

    2008-04-01

    We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛ was larger than -1 in the past while its present value is wΛ0≈-1.05, and the phantom bound wΛ = -1 was crossed at zp≈0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.

  6. BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2011-02-01

    The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of models are treated in great detail, as expected from a volume covering an estimated four thousand papers. This much needed volume fills a gap in the literature and is a must-have in the library of young and seasoned researchers alike.

  7. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler-Moroder, David; Lee, Eleanor S.; Ward, Gregory J.

    2016-08-29

    The Five-Phase Method (5-pm) for simulating complex fenestration systems with Radiance is validated against field measurements. The capability of the method to predict workplane illuminances, vertical sensor illuminances, and glare indices derived from captured and rendered high dynamic range (HDR) images is investigated. To be able to accurately represent the direct sun part of the daylight not only in sensor point simulations, but also in renderings of interior scenes, the 5-pm calculation procedure was extended. The validation shows that the 5-pm is superior to the Three-Phase Method for predicting horizontal and vertical illuminance sensor values as well as glare indicesmore » derived from rendered images. Even with input data from global and diffuse horizontal irradiance measurements only, daylight glare probability (DGP) values can be predicted within 10% error of measured values for most situations.« less

  8. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  9. A novel serogenetic approach determines the community prevalence of celiac disease and informs improved diagnostic pathways.

    PubMed

    Anderson, Robert P; Henry, Margaret J; Taylor, Roberta; Duncan, Emma L; Danoy, Patrick; Costa, Marylia J; Addison, Kathryn; Tye-Din, Jason A; Kotowicz, Mark A; Knight, Ross E; Pollock, Wendy; Nicholson, Geoffrey C; Toh, Ban-Hock; Brown, Matthew A; Pasco, Julie A

    2013-08-28

    Changing perspectives on the natural history of celiac disease (CD), new serology and genetic tests, and amended histological criteria for diagnosis cast doubt on past prevalence estimates for CD. We set out to establish a more accurate prevalence estimate for CD using a novel serogenetic approach. The human leukocyte antigen (HLA)-DQ genotype was determined in 356 patients with 'biopsy-confirmed' CD, and in two age-stratified, randomly selected community cohorts of 1,390 women and 1,158 men. Sera were screened for CD-specific serology. Only five 'biopsy-confirmed' patients with CD did not possess the susceptibility alleles HLA-DQ2.5, DQ8, or DQ2.2, and four of these were misdiagnoses. HLA-DQ2.5, DQ8, or DQ2.2 was present in 56% of all women and men in the community cohorts. Transglutaminase (TG)-2 IgA and composite TG2/deamidated gliadin peptide (DGP) IgA/IgG were abnormal in 4.6% and 5.6%, respectively, of the community women and 6.9% and 6.9%, respectively, of the community men, but in the screen-positive group, only 71% and 75%, respectively, of women and 65% and 63%, respectively, of men possessed HLA-DQ2.5, DQ8, or DQ2.2. Medical review was possible for 41% of seropositive women and 50% of seropositive men, and led to biopsy-confirmed CD in 10 women (0.7%) and 6 men (0.5%), but based on relative risk for HLA-DQ2.5, DQ8, or DQ2.2 in all TG2 IgA or TG2/DGP IgA/IgG screen-positive subjects, CD affected 1.3% or 1.9%, respectively, of females and 1.3% or 1.2%, respectively, of men. Serogenetic data from these community cohorts indicated that testing screen positives for HLA-DQ, or carrying out HLA-DQ and further serology, could have reduced unnecessary gastroscopies due to false-positive serology by at least 40% and by over 70%, respectively. Screening with TG2 IgA serology and requiring biopsy confirmation caused the community prevalence of CD to be substantially underestimated. Testing for HLA-DQ genes and confirmatory serology could reduce the numbers of unnecessary gastroscopies.

  10. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  11. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less

  12. High-energy effective theory for matter on close Randall-Sundrum branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Webster, Samuel

    2005-09-15

    Extending the analysis of C. de Rham and S. Webster [Phys. Rev. D 71, 124025 (2005)], we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behavior. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonianmore » constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small-distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.« less

  13. Brane-world motion in compact dimensions

    NASA Astrophysics Data System (ADS)

    Greene, Brian; Levin, Janna; Parikh, Maulik

    2011-08-01

    The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz

  14. A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2012-11-01

    A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems onmore » arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.« less

  15. The problem of natural funnel asymmetries: a simulation analysis of meta-analysis in macroeconomics.

    PubMed

    Callot, Laurent; Paldam, Martin

    2011-06-01

    Effect sizes in macroeconomic are estimated by regressions on data published by statistical agencies. Funnel plots are a representation of the distribution of the resulting regression coefficients. They are normally much wider than predicted by the t-ratio of the coefficients and often asymmetric. The standard method of meta-analysts in economics assumes that the asymmetries are because of publication bias causing censoring and adjusts the average accordingly. The paper shows that some funnel asymmetries may be 'natural' so that they occur without censoring. We investigate such asymmetries by simulating funnels by pairs of data generating processes (DGPs) and estimating models (EMs), in which the EM has the problem that it disregards a property of the DGP. The problems are data dependency, structural breaks, non-normal residuals, non-linearity, and omitted variables. We show that some of these problems generate funnel asymmetries. When they do, the standard method often fails. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Technically natural vacuum energy at the tip of a supersymmetric teardrop

    NASA Astrophysics Data System (ADS)

    Williams, Matthew

    2014-04-01

    A minimal supersymmetric braneworld model is presented which has (i) zero classical four-dimensional vacuum curvature, despite the large naive vacuum energy due to contributions from Standard Model particles and (ii) one-(bulk)-loop quantum corrections to the vacuum energy with a size set by the radius of the extra-dimensional spheroid. These corrections are technically natural because a Bogomol'nyi-Prasad-Sommerfield-like relation between the brane tension and R charge—which would have preserved (half of) the bulk supersymmetry—is violated by the requirement that the stabilizing R-symmetry gauge flux be quantized. The extra-dimensional geometry is similar to previous rugby-ball geometries, but is simpler in that there is only one brane and so fewer free parameters. Although the sign of the renormalized vacuum energy ends up being the unphysical one for this model (in the limit considered here, where the massive bulk loop is the leading contribution), it serves as an illustrative example of the relevant physics.

  17. Vacuum polarization effects on flat branes due to a global monopole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E.R.

    2006-05-15

    In this paper we analyze the vacuum polarization effects associated with a massless scalar field in the higher-dimensional spacetime. Specifically we calculate the renormalized vacuum expectation value of the square of the field, <{phi}{sup 2}(x)>{sub Ren}, induced by a global monopole in the 'braneworld' scenario. In this context the global monopole lives in a n=3-dimensional submanifold of the higher-dimensional (bulk) spacetime, and our universe is represented by a transverse flat (p-1)-dimensional brane. In order to develop this analysis we calculate the general Green function admitting that the scalar field propagates in the bulk. Also a general curvature coupling parameter betweenmore » the field and the geometry is assumed. We explicitly show that the vacuum polarization effects depend crucially on the values attributed to p. We also investigate the general structure of the renormalized vacuum expectation value of the energy-momentum tensor, {sub Ren}, for p=3.« less

  18. Brane with variable tension as a possible solution to the problem of the late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Hernandez-Almada, A.; Magaña, Juan; Amante, Mario H.; Motta, V.; Martínez-Robles, C.

    2018-05-01

    Braneworld models have been proposed as a possible solution to the problem of the accelerated expansion of the Universe. The idea is to dispense the dark energy (DE) and drive the late-time cosmic acceleration with a five-dimensional geometry. We investigate a brane model with variable brane tension as a function of redshift called chrono-brane. We propose the polynomial λ =(1 +z )n function inspired in tracker-scalar-field potentials. To constrain the n exponent we use the latest observational Hubble data from cosmic chronometers, Type Ia Supernovae from the full joint-light-analysis sample, baryon acoustic oscillations and the posterior distance from the cosmic microwave background of Planck 2015 measurements. A joint analysis of these data estimates n ≃6.19 ±0.12 which generates a DE-like (cosmological-constantlike at late times) term, in the Friedmann equation arising from the extra dimensions. This model is consistent with these data and can drive the Universe to an accelerated phase at late times.

  19. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying

    2011-06-01

    Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.

  20. Gravity and gravity gradient changes caused by a point dislocation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Liang; Li, Hui; Li, Rui-Hao

    1995-02-01

    In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.

  1. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  2. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    PubMed

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  3. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-01-01

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS’s solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method. PMID:29757983

  4. Evaluation of global satellite gravity models using terrestrial gravity observations over the Kingdom of Saudi Arabia A. Alothman and B. Elsaka

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Elsaka, Basem

    The gravity field models from the GRACE and GOCE missions have increased the knowledge of the earth’s global gravity field. The latter GOCE mission has provided accuracies of about 1-2 cm and 1milli-Gal level in the global geoid and gravity anomaly, respectively. However, determining all wavelength ranges of the gravity field spectrum cannot be only achieved from satellite gravimetry but from the allowed terrestrial gravity data. In this contribution, we use a gravity network of 42 first-order absolute gravity stations, observed by LaCosta Romberg gravimeter during the period 1967-1969 by Ministry of Petroleum and Mineral Resources, to validate the GOCE gravity models in order to gain more detailed regional gravity information. The network stations are randomly distributed all over the country with a spacing of about 200 km apart. The results show that the geoid height and gravity anomaly determined from terrestrial gravity data agree with the GOCE based models and give additional information to the satellite gravity solutions.

  5. Gravity as a Strong Prior: Implications for Perception and Action.

    PubMed

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called "strong prior". As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.

  6. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  7. Preprocessing of gravity gradients at the GOCE high-level processing facility

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin

    2009-07-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  8. Evaluation of ames Multistix-SG for urine specific gravity versus refractometer specific gravity.

    PubMed

    Adams, L J

    1983-12-01

    A comparison of urine specific gravity by a commercially available multiple reagent strip (Multistix-SG; Ames Division, Miles Laboratory) versus refractometer specific gravity (TS Meter; American Optical Corporation) was performed on 214 routine urine specimens. Agreement to +/- 0.005 was found in 72% of the specimens (r = 0.80). Urine specific gravity by the Multistix-SG showed a significant positive bias at urine pHs less than or equal to 6.0 and a negative bias at urine pHs greater than 7.0 in comparison to refractometer specific gravity. At concentrated (specific gravity greater than or equal to 1.020) specific gravities, up to 25% of urine specimens were misclassified as not concentrated by Multistix-SG specific gravity in comparison to refractometer specific gravity. The additional cost of the specific gravity reagent to a multiple reagent test strip in addition to the poor performance relative to refractometer specific gravity leads to the conclusion that including this specific gravity methodology on a multiple reagent strip is neither cost effective nor clinically useful.

  9. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  10. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  11. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  12. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  13. Gravity as a Strong Prior: Implications for Perception and Action

    PubMed Central

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities. PMID:28503140

  14. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  15. Gravity gradient preprocessing at the GOCE HPF

    NASA Astrophysics Data System (ADS)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  16. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  17. Gravity data from the Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.

    2015-01-01

    This report (1) summarizes changes to the Sierra Vista Subwatershed regional time-lapse gravity network with respect to station locations and (2) presents 2014 and 2015 gravity measurements and gravity values at each station. A prior gravity network, established between 2000 and 2005, was revised in 2014 to cover a larger number of stations over a smaller geographic area in order to decrease measurement and interpolation uncertainty. The network currently consists of 59 gravity stations, including 14 absolute-gravity stations. Following above-average rainfall during summer 2014, gravity increased at all but one of the absolute-gravity stations that were observed in both June 2014 and January 2015. This increase in gravity indicates increased groundwater storage in the aquifer and (or) unsaturated zone as a result of rainfall and infiltration.

  18. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  19. Differential results integrated with continuous and discrete gravity measurements between nearby stations

    NASA Astrophysics Data System (ADS)

    Xu, Weimin; Chen, Shi; Lu, Hongyan

    2016-04-01

    Integrated gravity is an efficient way in studying spatial and temporal characteristics of the dynamics and tectonics. Differential measurements based on the continuous and discrete gravity observations shows highly competitive in terms of both efficiency and precision with single result. The differential continuous gravity variation between the nearby stations, which is based on the observation of Scintrex g-Phone relative gravimeters in every single station. It is combined with the repeated mobile relative measurements or absolute results to study the regional integrated gravity changes. Firstly we preprocess the continuous records by Tsoft software, and calculate the theoretical earth tides and ocean tides by "MT80TW" program through high precision tidal parameters from "WPARICET". The atmospheric loading effects and complex drift are strictly considered in the procedure. Through above steps we get the continuous gravity in every station and we can calculate the continuous gravity variation between nearby stations, which is called the differential continuous gravity changes. Then the differential results between related stations is calculated based on the repeated gravity measurements, which are carried out once or twice every year surrounding the gravity stations. Hence we get the discrete gravity results between the nearby stations. Finally, the continuous and discrete gravity results are combined in the same related stations, including the absolute gravity results if necessary, to get the regional integrated gravity changes. This differential gravity results is more accurate and effective in dynamical monitoring, regional hydrologic effects studying, tectonic activity and other geodynamical researches. The time-frequency characteristics of continuous gravity results are discussed to insure the accuracy and efficiency in the procedure.

  20. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan

    2012-10-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.

  1. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  2. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  3. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revetta, F.A.; O'Brian, B.

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less

  4. Celiac Disease: Diagnostic Standards and Dilemmas

    PubMed Central

    Kaswala, Dharmesh H.; Veeraraghavan, Gopal; Kelly, Ciaran P.; Leffler, Daniel A.

    2015-01-01

    Celiac Disease (CD) affects at least 1% of the population and evidence suggests that prevalence is increasing. The diagnosis of CD depends on providers being alert to both typical and atypical presentations and those situations in which patients are at high risk for the disease. Because of variable presentation, physicians need to have a low threshold for celiac testing. Robust knowledge of the pathogenesis of this autoimmune disease has served as a catalyst for the development of novel diagnostic tools. Highly sensitive and specific serological assays including Endomysial Antibody (EMA), tissue transglutaminase (tTG), and Deamidated Gliadin Peptide (DGP) have greatly simplified testing for CD and serve as the foundation for celiac diagnosis. In addition, genetic testing for HLA DQ2 and DQ8 has become more widely available and there has been refinement of the gluten challenge for use in diagnostic algorithms. While diagnosis is usually straightforward, in special conditions including IgA deficiency, very young children, discrepant histology and serology, and adoption of a gluten free diet prior to testing, CD can be difficult to diagnose. In this review, we provide an overview of the history and current state of celiac disease diagnosis and provide guidance for evaluation of CD in difficult diagnostic circumstances. PMID:28943611

  5. The association between semaphorin 3A levels and gluten-free diet in patients with celiac disease.

    PubMed

    Kessel, Aharon; Lin, Chen; Vadasz, Zahava; Peri, Regina; Eiza, Nasren; Berkowitz, Drora

    2017-11-01

    Celiac disease (CD) is an inflammatory disease affecting the small intestine. We aim to assess serum level and expression of semaphorin 3A (Sema3A) on T regulatory (Treg) cells in CD patients. Twenty-six newly diagnosed celiac patients, 13 celiac patients on a gluten-free diet and 16 healthy controls included in the study. Sema3A protein level in the serum of celiac patients was significantly higher compared to healthy group (7.17±1.8ng/ml vs. 5.67±1.5ng/ml, p=0.012). Sema3A expression on Treg cells was statistically lower in celiac patients compared to healthy subjects (p=0.009) and significantly lower in celiac patients compared to celiac patients on gluten free diet (p=0.04). Negative correlation was found between Sema3A on Teg cells and the level of IgA anti-tTG antibodies (r=-0.346, p<0.01) and anti-DGP (r=-0.448, p<0.01). This study suggests involvement of the Sema3A in the pathogenesis of CD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. GRAV-D Part II : Examining Airborne Gravity Processing Assumptions With an Aim Towards Producing a Better Gravimetric Geoid

    NASA Astrophysics Data System (ADS)

    Theresa, D. M.; Vicki, C.; Dan, R.; Dru, S.

    2008-12-01

    The primary objective of the GRAV-D (Gravity for the Redefinition of the American Vertical Datum) project is to redefine the American vertical datum by using an improved gravimetric geoid. This will be partially accomplished through an extensive airborne gravity measurement campaign, focusing first on the land/water interface (and later on interior areas) of the US and its holdings. This airborne campaign is designed specifically to capture intermediate wavelength gravity information by flying at high altitudes (35,000 ft, ~10 km) with a 10 km line spacing. The intermediate wavelengths captured by airborne gravity data are complementary to ground and satellite gravity data. Combining the GRAV-D airborne gravity data with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity field will allow existing terrestrial data sets to be corrected for bias and trend problems. Ultimately, all three types of data can then be merged into a single accurate representation of the gravity field. Typically, the airborne gravity data reduction process is used to produce free-air anomalies for geological/geophysical applications that require more limited accuracy and precision than do geodetic applications. Thus we re-examine long-standing data reduction simplifications and assumptions with an aim toward improving both the accuracy and precision of airborne gravity data before their inclusion into a gravimetric geoid. The data reduction process is tested on a 400 km x 500 km airborne gravity survey in southern Alaska (in the vicinity of Anchorage) collected in the summer of 2008 as part of the GRAV-D project. Potential improvements in processing come from examining the impacts of various GPS processing schemes on free-air gravity results and re-considering all assumptions in standard airborne gravity processing methods, especially those that might introduce bias into absolute gravity levels.

  7. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation.

    PubMed

    Wang, Hubiao; Wu, Lin; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-08-10

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°-145° E, 0°-40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China's Western Pacific area is ~1.0-4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy.

  8. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-01-01

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158

  9. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    NASA Astrophysics Data System (ADS)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  10. Dynamical spacetimes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Zhang, Yi; Li, Xin-Zhou

    2017-08-01

    The conformal gravity remarkably boosts our prehension of gravity theories. We find a series of dynamical solutions in the W2-conformal gravity, including generalized Schwarzschild-Friedmann-Robertson-Walker (GSFRW), charged generalized Schwarzschild-Friedmann-Robertson-Walker (CGSFRW), especially rotating Friedmann-Robertson-Walker (RFRW), charged rotating Friedmann-Robertson-Walker (CRFRW), and a dynamical cylindrically symmetric solutions. The RFRW, CRFRW and the dynamical cylindrically symmetric solutions are never found in the Einstein gravity and modified gravities. The GSFRW and CGSFRW solutions take different forms from the corresponding solutions in the Einstein gravity.

  11. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  12. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.

  13. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.

  14. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  15. Next Generation Robots for STEM Education andResearch at Huston Tillotson University

    DTIC Science & Technology

    2017-11-10

    dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one

  16. Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications

    NASA Astrophysics Data System (ADS)

    Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico

    2018-03-01

    Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.

  17. Butterfly effect in 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  18. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  19. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  20. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  1. Combining GOCE and in-situ gravity data for precise gravity field determination and geophysical applications around the Japanese Antarctic station, Syowa, in Antarctica

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Nogi, Y.; Matsuzaki, K.

    2012-12-01

    Syowa is the Japanese Antarctic wintering station in Lützow-Holm Bay, East Antarctica. The area around the station is considered to be a key for investigating the formation of Gondwana, because reconstruction models suggest a junction of the continents locates in the area. It is also important from a glaciological point of view, because there locates the Shirase Glacier, one of the major glaciers in Antarctica, near the station. Therefore the Japanese Antarctic Research Expedition (JARE) has been conducting in-situ gravity measurements in the area for a long period. The data sets accumulated are land gravity data since 1967, surface ship data since 1985, and airborne gravity data in 2006. However these in-situ gravity data usually suffered from the effects of instrumental drifts and lack of reference points, their accuracies are decreasing toward the longer wavelength more than several tens km. In particular in Antarctica where very few gravity reference points are available, the long wavelength accuracy and/or consistency among the data sets are quite limited. GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite launched in March 2009 by ESA (European Space Agency) aims at improving static gravity fields, in particular at short wavelengths. In addition to its low-altitude orbit (250km), the sensitive gravity gradiometer installed is expected to reveal 1 mgal gravity anomalies at the spatial resolution of 100km (half wavelength). Actually recently released GOCE EGMs (Earth Gravity Models) have improved the accuracy of the static gravity filed tremendously. These EGMs are expected to serve as the long wavelength references for the in-situ gravity data. Thus, firstly, we aims at determining an improved gravity fields around Syowa by combining the JARE gravity data and the recent EGMs. And then, using the gravity anomalies, we determine the subsurface density structures. We also evaluated the impacts of the EGMs for estimating the density structures.

  2. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  3. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  4. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  5. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  6. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  7. High-frequency analysis of Earth gravity field models based on terrestrial gravity and GPS/levelling data: a case study in Greece

    NASA Astrophysics Data System (ADS)

    Papanikolaou, T. D.; Papadopoulos, N.

    2015-06-01

    The present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.

  8. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.

  9. Mean Gravity Anomaly Prediction Techniques with a Comparative Analysis of the Accuracy and Economy of Selected Methods.

    DTIC Science & Technology

    1982-03-01

    gravity anomaly values computed from measured gravity at discrete points (x,y) within the 10 x 10 area. If the Ag are Bouguer gravity anomalies, the Ag is...a 10 x 10 mean Bouguer anomaly. If the Ag are free-air gravity anomalies, the Ag is a 10 x 10 mean free-air gravity anomaly. Either anomaly form can...it requires less subjective judgment. Predictions in continental areas always are made using Bouguer gravity anomalies because this anomaly form is

  10. The report of the Gravity Field Workshop

    NASA Astrophysics Data System (ADS)

    Smith, D. E.

    1982-04-01

    A Gravity Field Workshop was convened to review the actions which could be taken prior to a GRAVSAT mission to improve the Earth's gravity field model. This review focused on the potential improvements in the Earth's gravity field which could be obtained using the current satellite and surface gravity data base. In particular, actions to improve the quality of the gravity field determination through refined measurement corrections, selected data augmentation and a more accurate reprocessing of the data were considered. In addition, recommendations were formulated which define actions which NASA should take to develop the necessary theoretical and computation techniques for gravity model determination and to use these approaches to improve the accuracy of the Earth's gravity model.

  11. Contributions of satellite-determined gravity results in geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1974-01-01

    Different forms of the theoretical gravity formula are summarized and methods of standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data are discussed in the context of three most commonly used reference figures, e.g., International Reference Ellipsoid, Reference Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are important in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system. For ready reference, tables for such reductions are computed. Nature of the satellite gravity anomalies is examined to aid the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the earth and the structure of the earth's crust and mantle. Computation of the Potsdam correction from satellite-determined geopotential is reviewed. The contribution of the satellite gravity results in decomposing the total observed gravity anomaly into components of geophysical interest is discussed. Recent work on the possible temporal variations in the geogravity field is briefly reviewed.

  12. Geologic interpretation of gravity data from the Date Creek basin and adjacent areas, west-central Arizona

    USGS Publications Warehouse

    Otton, James K.; Wynn, Jeffrey C.

    1978-01-01

    A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.

  13. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  14. Principal facts for 408 gravity stations in the vicinity of the Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2003-01-01

    Gravity data were collected between 1999 and 2002 along transects in the Talkeetna Mountains of south-central Alaska as part of a geological and geophysical study of the framework geology of the region. The study area lies between 61° 30’ and 63° 45’ N. latitude and 145° and 151° W. longitude. This data set includes 408 gravity stations. These data, combined with the pre-existing 3,286 stations, brings the total data in this area to 3,694 gravity stations. Principal facts for the 408 new gravity stations and the 15 gravity base stations used for control are listed in this report. During the summer of 1999, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 55 gravity stations were made. One gravity base station was used for control for this survey. This base station, STEP, is located at the Stephan Lake Lodge on Stephan Lake. The observed gravity of this station was calculated based on an indirect tie to base station ANCL in Anchorage. The temporary base used to tie between STEP and ANCL was REGL in Anchorage. During the summer of 2000, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 56 gravity stations were made. One gravity base station was used for control for this survey. This base station, GRHS, is located at the Gracious House Lodge on the Denali Highway. The observed gravity of this station was calculated based on multiple ties to base stations D87, and D57 along the Denali Highway. During the summer of 2001, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 90 gravity stations were made. One gravity base station was used for control for this survey. This base station, HLML, is located at the High Lake Lodge. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, WASA in Wasilla, and TLKM in Talkeetna. Also during the summer of 2001, a gravity survey was conducted in the vicinity of Tangle Lakes. Measurements at 86 gravity stations were made. The Tangle Lakes area is located about 25 km west of Paxson and north of the Denali Highway. One gravity base station was used for control for this survey. This base station, TLIN, is located at the Tangle Lakes Inn. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, BD27 in Gulkana, B-07 on the Richardson Highway, and base stations D42, and D57 along the Denali Highway. During the summer of 2002, measurements at an additional 107 gravity stations were made in the vicinity of Tangle Lakes. Base station TLIN at the Tangle Lakes Inn was again used for control. Additional ties to base stations ANCU and B-07 were made.

  15. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  16. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  17. Contribution of the GOCE gradiometer components to regional gravity solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Majid; Bouman, Johannes

    2017-05-01

    The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.

  18. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  19. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  20. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  1. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  2. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  3. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  4. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  5. 27 CFR 30.25 - Use of precision specific gravity hydrometers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... gravity hydrometers. 30.25 Section 30.25 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... precision specific gravity hydrometers. The provisions of § 30.23 respecting the care, handling, and use of... specific gravity hydrometers. Specific gravity hydrometers shall be read to the nearest subdivision...

  6. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  7. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  8. 14 CFR 29.27 - Center of gravity limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  9. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  10. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  11. The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; hide

    2013-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.

  12. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  13. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  14. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. © 2014. Published by The Company of Biologists Ltd.

  15. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  16. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  17. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  18. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  19. Gravity Change at the Summit of Kīlauea Volcano, Hawaíi, during 2012-2014

    NASA Astrophysics Data System (ADS)

    Moore, S.; Poland, M. P.; Young, N. K.; Bagnardi, M.; Carbone, D.

    2014-12-01

    Monitoring of gravity change at a volcano is a valuable means of assessing mass change at depth and a good complement to other surveillance methods, like deformation and seismicity. At Kīlauea Volcano, Hawaíi, repeated gravity surveys of the summit region have been conducted since 1975, with hundreds of microgals of gravity increase measured at the center of the caldera but without the magnitude of surface uplift through 2008 that would be expected from the gravity increase. This gravity increase was attributed to magma accumulation in void space. Between 2009 and 2012, gravity increase and uplift were coincident, but the uplift was less than expected for the given gravity signal (assuming a basaltic magma density of 2500 kg/m3). The source of both deformation and gravity change was at 1.5 km depth beneath the east margin of Halemáumáu Crater, within Kīlauea Caldera, corresponding to the location of a known shallow magma reservoir. Densification of magma in this reservoir due to degassing through the open summit eruptive vent, active since 2008, is the preferred explanation of the observed gravity change and surface displacements. We conducted gravity surveys in 2013 and 2014 and found that both gravity change and surface displacements were negligible with respect to 2012. We interpret this lack of recent gravity change as an indication that the 1.5-km-depth magma reservoir has reached a steady-state density, where gas loss from the summit vent is compensated for by gas influx from below. Continued gravity surveys should identify any changes in this equilibrium that may presage changes in summit eruptive activity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbaugh, William D.; Cook, Kenneth L.

    During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort - Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid)more » in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively. Residual gravity gradients of 0.5 to 8.0 mgal/km across north-trending gravity contours observed through the Cove Fort area, the Sulphurdale area, and the areas east of the East Mineral Mountains, along the west flanks of the Tushar Mountains, and on both the east and west flanks of the north Mineral Mountains, were attributed to north-trending Basin and Range high-angle faults. Gravity highs exist over the community of Black Rock area, the north Mineral Mountains, the Paleozoic outcrops in the east Cove Creek-Dog Valley-White Sage Flats areas, the sedimentary thrust zone of the southern Payant Range, and the East Mineral Mountains. The gravity lows over north Milford Valley, southern Black Rock Desert, Cunningham Wash, and northern Beaver Valley are separated from the above gravity highs by steep gravity gradients attributed to a combination of crustal warping and faulting. A gravity low with a closure of 2 mgal corresponds with Sulphur Cove, a circular topographic features containing sulphur deposits.« less

  1. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  2. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  3. A network of superconducting gravimeters detects submicrogal coseismic gravity changes.

    PubMed

    Imanishi, Yuichi; Sato, Tadahiro; Higashi, Toshihiro; Sun, Wenke; Okubo, Shuhei

    2004-10-15

    With high-resolution continuous gravity recordings from a regional network of superconducting gravimeters, we have detected permanent changes in gravity acceleration associated with a recent large earthquake. Detected changes in gravity acceleration are smaller than 10(-8) meters seconds(-2) (1 micro-Galileo, about 10(-9) times the surface gravity acceleration) and agree with theoretical values calculated from a dislocation model. Superconducting gravimetry can contribute to the studies of secular gravity changes associated with tectonic processes.

  4. Simulation study on combination of GRACE monthly gravity field solutions

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2016-04-01

    The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.

  5. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    ERIC Educational Resources Information Center

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  6. 7 CFR 51.3417 - Optional test for specific gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Optional test for specific gravity. 51.3417 Section 51... specific gravity. Tests to determine specific gravity shall be made in accordance with the procedures set.... The specific gravity for any lot of potatoes shall be the average of at least 3 corrected readings on...

  7. 14 CFR 27.27 - Center of gravity limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  8. 14 CFR 27.27 - Center of gravity limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  9. 14 CFR 25.523 - Design weights and center of gravity positions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Design weights and center of gravity... Design weights and center of gravity positions. (a) Design weights. The water load requirements must be...) must be used. (b) Center of gravity positions. The critical centers of gravity within the limits for...

  10. 14 CFR 27.27 - Center of gravity limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  11. 14 CFR 27.27 - Center of gravity limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  12. 14 CFR 25.523 - Design weights and center of gravity positions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Design weights and center of gravity... Design weights and center of gravity positions. (a) Design weights. The water load requirements must be...) must be used. (b) Center of gravity positions. The critical centers of gravity within the limits for...

  13. 14 CFR 25.523 - Design weights and center of gravity positions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Design weights and center of gravity... Design weights and center of gravity positions. (a) Design weights. The water load requirements must be...) must be used. (b) Center of gravity positions. The critical centers of gravity within the limits for...

  14. 7 CFR 51.3417 - Optional test for specific gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Optional test for specific gravity. 51.3417 Section 51... § 51.3417 Optional test for specific gravity. Tests to determine specific gravity shall be made in... lot with respect to size and quality. The specific gravity for any lot of potatoes shall be the...

  15. 7 CFR 51.3417 - Optional test for specific gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Optional test for specific gravity. 51.3417 Section 51... specific gravity. Tests to determine specific gravity shall be made in accordance with the procedures set.... The specific gravity for any lot of potatoes shall be the average of at least 3 corrected readings on...

  16. 7 CFR 51.3417 - Optional test for specific gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Optional test for specific gravity. 51.3417 Section 51... § 51.3417 Optional test for specific gravity. Tests to determine specific gravity shall be made in... lot with respect to size and quality. The specific gravity for any lot of potatoes shall be the...

  17. 14 CFR 27.27 - Center of gravity limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  18. 14 CFR 25.523 - Design weights and center of gravity positions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Design weights and center of gravity... Design weights and center of gravity positions. (a) Design weights. The water load requirements must be...) must be used. (b) Center of gravity positions. The critical centers of gravity within the limits for...

  19. 14 CFR 25.523 - Design weights and center of gravity positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Design weights and center of gravity... Design weights and center of gravity positions. (a) Design weights. The water load requirements must be...) must be used. (b) Center of gravity positions. The critical centers of gravity within the limits for...

  20. Geodynamics and temporal variations in the gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Wagner, C. A.

    1989-01-01

    Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.

  1. Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu

    2007-01-01

    The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.

  2. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring should be strengthened.

  3. Principal facts of gravity stations with gravity and magnetic profiles from the Southwest Nevada Test Site, Nye County, Nevada, as of January, 1982

    USGS Publications Warehouse

    Jansma, P.E.; Snyder, D.B.; Ponce, David A.

    1983-01-01

    Three gravity profiles and principal facts of 2,604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3. Accuracy codes, where available, further document the data.

  4. Gravity domains and assembly of the North American continent by collisional tectonics

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    A gravity trend map of North America, based on a horizontal Bouguer gravity gradient map produced from gravity data for Canada and the conterminous United States, is presented and used to define a continental mosaic of gravity trend domains akin to structural domains. Contrasting trend characteristics at gravity domain boundaries support the concept of outward growth of the continent primarily by accretionary tectonics. Gravity patterns, however, indicate a different style of tectonics dominated in the development of now-buried Proterozoic orogenic belts in the south-central United States, supporting a view that these belts formed along the leading edge of a southward-migrating Proterozoic continental margin.

  5. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  6. Integrating a Gravity Simulation and Groundwater Modeling on the Calibration of Specific Yield for Choshui Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Chang, Liang Cheng; Tsai, Jui pin; Chen, Yu Wen; Way Hwang, Chein; Chung Cheng, Ching; Chiang, Chung Jung

    2014-05-01

    For sustainable management, accurate estimation of recharge can provide critical information. The accuracy of estimation is highly related to uncertainty of specific yield (Sy). Because Sy value is traditionally obtained by a multi-well pumping test, the available Sy values are usually limited due to high installation cost. Therefore, this information insufficiency of Sy may cause high uncertainty for recharge estimation. Because gravity is a function of a material mass and the inverse square of the distance, gravity measurement can assist to obtain the mass variation of a shallow groundwater system. Thus, the groundwater level observation data and gravity measurements are used for the calibration of Sy for a groundwater model. The calibration procedure includes four steps. First, gravity variations of three groundwater-monitoring wells, Si-jhou, Tu-ku and Ke-cuo, are observed in May, August and November 2012. To obtain the gravity caused by groundwater variation, this study filters the noises from other sources, such as ocean tide and land subsidence, in the collected data The refined data, which are data without noises, are named gravity residual. Second, this study develops a groundwater model using MODFLOW 2005 to simulate the water mass variation of the groundwater system. Third, we use Newton gravity integral to simulate the gravity variation caused by the simulated water mass variation during each of the observation periods. Fourth, comparing the ratio of the gravity variation between the two data sets, which are observed gravity residuals and simulated gravities. The values of Sy is continuously modified until the gravity variation ratios of the two data sets are the same. The Sy value of Si-jhou is 0.216, which is obtained by the multi-well pumping test. This Sy value is assigned to the simulation model. The simulation results show that the simulated gravity can well fit the observed gravity residual without parameter calibration. This result indicates that the proposed approach is correct and reasonable. In Tu-ku and Ke-cuo, the ratios of the gravity variation between observed gravity residuals and simulated gravities are approximate 1.8 and 50, respectively. The Sy values of these two stations are modified 1.8 and 50 times the original values. These modified Sy values are assigned to the groundwater morel. After the parameter re-assignment, the simulated gravities meet the gravity residuals in these two stations. In conclusion, the study results show that the proposed approach has the potential to identify Sy without installing wells. Therefore, the proposed approach can be used to increase the spatial density of Sy and can conduct the recharge estimation with low uncertainty.

  7. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  8. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    NASA Astrophysics Data System (ADS)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  9. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    PubMed Central

    Zeredo, Jorge L.; Toda, Kazuo; Kumei, Yasuhiro

    2014-01-01

    The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA), a key area that controls cerebral blood flow (CBF), in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth) and 0 g (complete weightlessness in space). Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g) might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter. PMID:25370031

  10. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.

  11. Gravity investigation of the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    The Manson crater, of probable Cretaceous/Tertiary age, is located in northwestern Iowa (center at 42 deg. 34.44 min N; 94 deg. 33.60 min W). A seismic reflection profile along an east west line across the crater and drill hole data indicate a crater about 35 km in diameter having the classic form for an impact crater, an uplifted central peak composed of uplifted Proterozoic crystalline bedrock, surrounded by a 'moat' filled with impact produced breccia and a ring graben zone composed of tilted fault blocks of the Proterozoic and Paleozoic country rocks. The structure has been significantly eroded. This geologic structure would be expected to produce a significant gravity signature and study of that signature would shed additional light on the details of the crater structure. A gravity study was undertaken to better resolve the crustal structure. The regional Bouguer gravity field is characterized by a southeastward decreasing field. To first order, the Bouguer gravity field can be understood in the context of the geology of the Precambrian basement. The high gravity at the southeast corner is associated with the mid-continent gravity high; the adjacent low to the northwest results from a basin containing low-density clastic sediments shed from the basement high. Modeling of a simple basin and adjacent high predicts much of the observed Bouguer gravity signature. A gravity signature due to structure associated with the Manson impact is not apparent in the Bouguer data. To resolve the gravity signature of the impact, a series of polynomial surfaces were fit to the Bouguer gravity field to isolate the small wavelength residual anomalies. The residual gravity obtained after subtracting a 5th- or 6th-order polynomial seems to remove most of the regional effects and isolate local anomalies. The pattern resolved in the residual gravity is one of a gravity high surrounded by gravity lows and in turn surrounded by isolated gravity highs. The central portion of the crater is characterized by two positive anomalies having amplitudes of about plus 4 mGal separated by a gentle saddle located approximately at the crater center.

  12. Gravity model for the North Atlantic ocean mantle: results, uncertainties and links to regional geodynamics

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.; Artemieva, I. M.; Thybo, H.

    2015-12-01

    We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.

  13. A gravity model for the Sudbury Structure along the Lithoprobe seismic line

    NASA Astrophysics Data System (ADS)

    McGrath, P. H.; Broome, H. J.

    1994-05-01

    Previous gravity models of the Sudbury Structure (1850 Ma) were constrained by surface geology, and by density measurements of surface and borehole rock samples. Recent high-resolution seismic reflection data provide additional constraints for modeling new gravity observations made along the Sudbury Lithoprobe transect. Results indicate, (1) density distributions constrained by the seismic data yield calculated gravity values matching the Bouguer gravity data, (2) the main sources of gravitational disturbance are external to the Sudbury Structure, (3) the positive gravity anomaly trend south of the Sudbury Structure is associated with mafic rocks of Proterozoic age, and (4) the large, ramplike, gravity anomaly paralleling the northwest margin of the Sudbury Structure is an expression of a northward dipping boundary within the Archean basement. The presence of a hidden mafic layer beneath the Sudbury Structure is not required to model the Bouguer gravity data. An enigma is an 8 mGal, positive, gravity anomaly over the south central Sudbury Structure.

  14. Discretization of 3d gravity in different polarizations

    NASA Astrophysics Data System (ADS)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  15. On holographic Rényi entropy in some modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Roy, Pratim; Sarkar, Tapobrata

    2018-04-01

    We perform a detailed analysis of holographic entanglement Rényi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the Rényi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the validity of our perturbative analysis, whenever applicable.

  16. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  17. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  18. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  19. Structure formation in f(T) gravity and a solution for H0 tension

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2018-05-01

    We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenböck spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

  20. Pressurization of cryogens - A review of current technology and its applicability to low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Van Dresar, N. T.

    1992-01-01

    A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.

  1. Pressurization of cryogens: A review of current technology and its applicability to low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.

    1992-01-01

    A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.

  2. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.

  3. GRAVITY DATA OBTAINED DURING CHAIN CRUISE NO. 70.

    DTIC Science & Technology

    Profiles, tabulations, and charts are presented of principal gravity facts, free-air gravity anomalies, and simple Bouguer gravity anomalies obtained in the western North Atlantic Ocean during R/V CHAIN cruise 70. (Author)

  4. Gravity measurement, processing and evaluation: Test cases de Peel and South Limburg

    NASA Astrophysics Data System (ADS)

    Nohlmans, Ron

    1990-05-01

    A general overview of the process of the measurement and the adjustment of a gravity network and the computation of some output parameters of gravimetry, gravity values, gravity anomalies and mean block anomalies, is given. An overview of developments in gravimetry, globally and in the Netherlands, until now is given. The basic theory of relative gravity measurements is studied and a description of the most commonly used instrument, the LaCoste and Romberg gravimeter is given. The surveys done in the scope of this study are descibed. A more detailed impression of the adjustment procedure and the results of the adjustment are given. A closer look is taken at the more geophysical side of gravimetry: gravity reduction, the computation of anomalies and the correlation with elevation. The interpolation of gravity and the covariance of gravity anomalies are addressed.

  5. How Much Gravity Is Needed to Establish the Perceptual Upright?

    PubMed Central

    Harris, Laurence R.; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481

  6. Quantum gravity from noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Yang, Hyun Seok

    2014-12-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.

  7. How much gravity is needed to establish the perceptual upright?

    PubMed

    Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.

  8. Establishment of National Gravity Base Network of Iran

    NASA Astrophysics Data System (ADS)

    Hatam Chavari, Y.; Bayer, R.; Hinderer, J.; Ghazavi, K.; Sedighi, M.; Luck, B.; Djamour, Y.; Le Moign, N.; Saadat, R.; Cheraghi, H.

    2009-04-01

    A gravity base network is supposed to be a set of benchmarks uniformly distributed across the country and the absolute gravity values at the benchmarks are known to the best accessible accuracy. The gravity at the benchmark stations are either measured directly with absolute devices or transferred by gravity difference measurements by gravimeters from known stations. To decrease the accumulation of random measuring errors arising from these transfers, the number of base stations distributed across the country should be as small as possible. This is feasible if the stations are selected near to the national airports long distances apart but faster accessible and measurable by a gravimeter carried in an airplane between the stations. To realize the importance of such a network, various applications of a gravity base network are firstly reviewed. A gravity base network is the required reference frame for establishing 1st , 2nd and 3rd order gravity networks. Such a gravity network is used for the following purposes: a. Mapping of the structure of upper crust in geology maps. The required accuracy for the measured gravity values is about 0.2 to 0.4 mGal. b. Oil and mineral explorations. The required accuracy for the measured gravity values is about 5 µGal. c. Geotechnical studies in mining areas for exploring the underground cavities as well as archeological studies. The required accuracy is about 5 µGal and better. d. Subsurface water resource explorations and mapping crustal layers which absorb it. An accuracy of the same level of previous applications is required here too. e. Studying the tectonics of the Earth's crust. Repeated precise gravity measurements at the gravity network stations can assist us in identifying systematic height changes. The accuracy of the order of 5 µGal and more is required. f. Studying volcanoes and their evolution. Repeated precise gravity measurements at the gravity network stations can provide valuable information on the gradual upward movement of lava. g. Producing precise mean gravity anomaly for precise geoid determination. Replacing precise spirit leveling by the GPS leveling using precise geoid model is one of the forth coming application of the precise geoid. A gravity base network of 28 stations established over Iran. The stations were built mainly at bedrocks. All stations were measured by an FG5 absolute gravimeter, at least 12 hours at each station, to obtain an accuracy of a few micro gals. Several stations were repeated several times during recent years to estimate the gravity changes.

  9. Venus spherical harmonic gravity model to degree and order 60

    NASA Technical Reports Server (NTRS)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  10. The gravity field and crustal structure of the northwestern Arabian Platform in Jordan

    NASA Astrophysics Data System (ADS)

    Batayneh, A. T.; Al-Zoubi, A. S.

    2001-01-01

    The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.

  11. Active Response Gravity Offload and Method

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  12. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  13. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  14. New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Hsu, Shu-Kun; Tsai, Ching-Hui; Huang, Yin-Sheng; Wang, Hsueh-Fen; Chiu, Shye-Donq; Ma, Yu-Fang; Liang, Chin-Wei

    2018-04-01

    In this study, we compiled recently collected (from 2005 to 2015) and previously reported (published and open access) gravity data, including land, shipborne and satellite-derived data, for Taiwan and its surrounding regions. Based on the cross-over error analysis, all data were adjusted; and, new Free-air gravity anomalies were obtained, shedding light on the tectonics of the region. To obtain the Bouguer gravity anomalies, the densities of land terrain and marine sediments were assumed to be 2.53 and 1.80 g/cm3, respectively. The updated gravity dataset was gridded with a spacing of one arc-minute. Several previously unnoticed gravity features are revealed by the new maps and can be used in a broad range of applications: (1) An isolated gravity high is located between the Shoushan and the Kaoping Canyon off southwest Taiwan. (2) Along the Luzon Arc, both Free-air and Bouguer gravity anomaly maps reveal a significant gravity discontinuity feature at the latitude of 21°20‧N. (3) In the southwestern Okinawa Trough, the NE-SW trending cross-back-arc volcanic trail (CBVT) marks the low-high gravity anomaly (both Free-air and Bouguer) boundary.

  15. Directional gravity sensing in gravitropism.

    PubMed

    Morita, Miyo Terao

    2010-01-01

    Plants can reorient their growth direction by sensing organ tilt relative to the direction of gravity. With respect to gravity sensing in gravitropism, the classic starch statolith hypothesis, i.e., that starch-accumulating amyloplast movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Several lines of experimental evidence have demonstrated that starch is important but not essential for gravity sensing and have suggested that it is reasonable to regard plastids (containers of starch) as statoliths. Although the word statolith means sedimented stone, actual amyloplasts are not static but instead possess dynamic movement. Recent studies combining genetic and cell biological approaches, using Arabidopsis thaliana, have demonstrated that amyloplast movement is an intricate process involving vacuolar membrane structures and the actin cytoskeleton. This review covers current knowledge regarding gravity sensing, particularly gravity susception, and the factors modulating the function of amyloplasts for sensing the directional change of gravity. Specific emphasis is made on the remarkable differences in the cytological properties, developmental origins, tissue locations, and response of statocytes between root and shoot systems. Such an approach reveals a common theme in directional gravity-sensing mechanisms in these two disparate organs.

  16. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  17. Principal Facts for Gravity Data Collected in Wisconsin: A Web Site and CD-ROM for Distribution of Data

    USGS Publications Warehouse

    Snyder, Stephen L.; Geister, Daniel W.; Daniels, David L.; Ervin, C. Patrick

    2004-01-01

    Principal facts for 40,488 gravity stations covering the entire state of Wisconsin are presented here in digital form. This is a compilation of previously published data collected between 1948 and 1992 from numerous sources, along with over 10,000 new gravity stations collected by the USGS since 1999. Also included are 550 gravity stations from previously unpublished sources. Observed gravity and complete-Bouguer gravity anomaly data for this statewide compilation are included here. Altogether, 14 individual surveys are presented here.

  18. Determination of mean gravity anomalies in the Taiwan Island

    NASA Technical Reports Server (NTRS)

    Chang, Ruey-Gang

    1989-01-01

    The fitting and proper regression coefficients were made of one hundred seventeen 10 x 10' blocks with observed gravity data and corresponding elevation in the Taiwan Island. To compare five different predicted models, and the proper one for the mean gravity anomalies were determined. The predicted gravity anomalies of the non-observed gravity blocks were decided when the coefficients obtained through the model with the weighted mean method. It was suggested that the mean gravity anomalies of 10 x 10' blocks should be made when comprehensive the observed and predicted data.

  19. Non-Newtonian gravity or gravity anomalies?

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.; Chao, B. Fong; Schatten, Kenneth H.; Sager, William W.

    1988-01-01

    Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for.

  20. The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.

    2009-01-01

    NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.

  1. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  2. Development of a sensitive superconducting gravity gradiometer for geological and navigational applications

    NASA Technical Reports Server (NTRS)

    Paik, H. J.; Richard, J. P.

    1986-01-01

    A sensitive and stable gravity gradiometer would provide high resolution gravity measurements from space. The instrument could also provide precision tests of fundamental laws of physics and be applied to inertial guidance systems of the future. This report describes research on the superconducting gravity gradiometer program at the University of Maryland from July 1980 to July 1985. The report describes the theoretical and experimental work on a prototype superconducting gravity gradiometer. The design of an advanced three-axis superconducting gravity gradiometer is also discussed.

  3. Exploring the Moon and Mars Using an Orbiting Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Strayer, Donald M.

    2004-01-01

    Gravity measurement is fundamental to understanding the interior structure, dynamics, and evolution of planets. High-resolution gravity maps will also help locating natural resources, including subsurface water, and underground cavities for astronaut habitation on the Moon and Mars. Detecting the second spatial derivative of the potential, a gravity gradiometer mission tends to give the highest spatial resolution and has the advantage of requiring only a single satellite. We discuss gravity missions to the Moon and Mars using an orbiting Superconducting Gravity Gradiometer and discuss the instrument and spacecraft control requirements.

  4. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  5. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  6. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    PubMed

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  7. Gravity signatures of terrane accretion

    NASA Astrophysics Data System (ADS)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  8. Gravity at sea--A memoir of a marine geophysicist.

    PubMed

    Tomoda, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts.

  9. Gravity at sea —A memoir of a marine geophysicist—

    PubMed Central

    TOMODA, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts. PMID:20948173

  10. GRAIL Spots Gravity Anomaly

    NASA Image and Video Library

    2012-12-05

    A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.

  11. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  12. High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978

    NASA Technical Reports Server (NTRS)

    Schenck, B. E.; Laurila, S. H.

    1978-01-01

    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.

  13. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.

  14. An Innovative 6-DOF Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero-Gravity Environment

    DTIC Science & Technology

    2013-10-21

    Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4  3.3  Principle of Gravity Offloading

  15. Effect of colostrum on gravity separation of milk somatic cells in skim milk.

    PubMed

    Geer, S R; Barbano, D M

    2014-02-01

    Our objective was to determine if immunoglobulins play a role in the gravity separation (rising to the top) of somatic cells (SC) in skim milk. Other researchers have shown that gravity separation of milk fat globules is enhanced by IgM. Our recent research found that bacteria and SC gravity separate in both raw whole and skim milk and that heating milk to >76.9 °C for 25s stopped gravity separation of milk fat, SC, and bacteria. Bovine colostrum is a good natural source of immunoglobulins. An experiment was designed where skim milk was heated at high temperatures (76 °C for 7 min) to stop the gravity separation of SC and then colostrum was added back to try to restore the gravity separation of SC in increments to achieve 0, 0.4, 0.8, 2.0, and 4.0 g/L of added immunoglobulins. The milk was allowed to gravity separate for 22 h at 4 °C. The heat treatment of skim milk was sufficient to stop the gravity separation of SC. The treatment of 4.0 g/L of added immunoglobulins was successful in restoring the gravity separation of SC as compared with raw skim milk. Preliminary spore data on the third replicate suggested that bacterial spores gravity separate the same way as the SC in heated skim milk and heated skim milk with 4.0 g/L of added immunoglobulins. Strong evidence exists that immunoglobulins are at least one of the factors necessary for the gravity separation of SC and bacterial spores. It is uncertain at this time whether SC are a necessary component for gravity separation of fat, bacteria, and spores to occur. Further research is needed to determine separately the role of immunoglobulins and SC in gravity separation of bacteria and spores. Understanding the mechanism of gravity separation may allow the development of a continuous flow technology to remove SC, bacteria, and spores from milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  17. Modeling human perception of orientation in altered gravity

    PubMed Central

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  18. A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-01-01

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method. PMID:27916856

  19. High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination

    NASA Astrophysics Data System (ADS)

    Shih, Hsuan-Chang; Hwang, Cheinway; Barriot, Jean-Pierre; Mouyen, Maxime; Corréia, Pascal; Lequeux, Didier; Sichoix, Lydie

    2015-08-01

    For the first time, we carry out an airborne gravity survey and we collect new land gravity data over the islands of Tahiti and Moorea in French Polynesia located in the South Pacific Ocean. The new land gravity data are registered with GPS-derived coordinates, network-adjusted and outlier-edited, resulting in a mean standard error of 17 μGal. A crossover analysis of the airborne gravity data indicates a mean gravity accuracy of 1.7 mGal. New marine gravity around the two islands is derived from Geosat/GM, ERS-1/GM, Jason-1/GM, and Cryosat-2 altimeter data. A new 1-s digital topography model is constructed and is used to compute the topographic gravitational effects. To use EGM08 over Tahiti and Moorea, the optimal degree of spherical harmonic expansion is 1500. The fusion of the gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The new high-resolution gravity and geoid grids are constructed on a 9-s grid. Assessments of the grids by measurements of ground gravity and geometric geoidal height result in RMS differences of 0.9 mGal and 0.4 cm, respectively. The geoid model allows 1-cm orthometric height determination by GPS and Lidar and yields a consistent height datum for Tahiti and Moorea. The new Bouguer anomalies show gravity highs and lows in the centers and land-sea zones of the two islands, allowing further studies of the density structure and volcanism in the region.

  20. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  1. Logamediate Inflation in f(T) Teleparallel Gravity

    NASA Astrophysics Data System (ADS)

    Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2017-02-01

    We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.

  2. Some aspects of reconstruction using a scalar field in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya; Said, Jackson Levi; Farrugia, Gabriel

    2017-12-01

    General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f( R) theory teleparallel gravity can also be generalized to f( T), with the resulting field equations being inherently distinct from f( R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f( T) gravity context for several forms of the scalar field potential. A number of new f( T) solutions are found for these potentials. Their respective state parameters are also being examined.

  3. Low-gravity fluid flows

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1982-01-01

    The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.

  4. Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.

  5. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert

    2011-11-01

    In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity rates are most sensitive in the centre of the former ice sheet. As a result, tangential gravity rates offer constraints on a two-layer mantle viscosity profile that are different from radial gravity rates, which can be exploited in future GIA studies.

  6. Using gravity as a proxy for stress accumulation in complex fault systems

    NASA Astrophysics Data System (ADS)

    Hayes, Tyler Joseph

    The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction

  7. Specific Yields Estimated from Gravity Change during Pumping Test

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Hwang, C.; Chang, L. C.

    2017-12-01

    Specific yield (Sy) is the most important parameter to describe available groundwater capacity in an unconfined aquifer. When estimating Sy by a field pumping test, aquifer heterogeneity and well performers will cause a large uncertainty. In this study, we use a gravity-based method to estimate Sy. At the time of pumping test, amounts of mass (groundwater) are forced to be taken out. If drawdown corn is big and close enough to high precision gravimeter, the gravity change can be detected. The gravity-based method use gravity observations that are independent from traditional flow computation. Only the drawdown corn should be modeled with observed head and hydrogeology data. The gravity method can be used in most groundwater field tests, such as locally pumping/injection tests initiated by active man-made or annual variations due to natural sources. We apply our gravity method at few sites in Taiwan situated over different unconfined aquifer. Here pumping tests for Sy determinations were also carried out. We will discuss why the gravity method produces different results from traditional pumping test, field designs and limitations of the gravity method.

  8. Foundations of Space and Time

    NASA Astrophysics Data System (ADS)

    Murugan, Jeff; Weltman, Amanda; Ellis, George F. R.

    2012-07-01

    1. The problem with quantum gravity Jeff Murugan, Amanda Weltman and George F. R. Eliis; 2. A dialogue on the nature of gravity Thanu Padmanabhan; 3. Effective theories and modifications of gravity Cliff Burgess; 4. The small scale structure of spacetime Steve Carlip; 5. Ultraviolet divergences in supersymmetric theories Kellog Stelle; 6. Cosmological quantum billiards Axel Kleinschmidt and Hermann Nicolai; 7. Progress in RNS string theory and pure spinors Dimitri Polyakov; 8. Recent trends in superstring phenomenology Massimo Bianchi; 9. Emergent spacetime Robert de Mello Koch and Jeff Murugan; 10. Loop quantum gravity Hanno Sahlmann; 11. Loop quantum gravity and cosmology Martin Bojowald; 12. The microscopic dynamics of quantum space as a group field theory Daniele Oriti; 13. Causal dynamical triangulations and the quest for quantum gravity Jan Ambjørn, J. Jurkiewicz and Renate Loll; 14. Proper time is stochastic time in 2D quantum gravity Jan Ambjorn, Renate Loll, Y. Watabiki, W. Westra and S. Zohren; 15. Logic is to the quantum as geometry is to gravity Rafael Sorkin; 16. Causal sets: discreteness without symmetry breaking Joe Henson; 17. The Big Bang, quantum gravity, and black-hole information loss Roger Penrose; Index.

  9. The Superheavy Elements and Anti-Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasovski, Petar K.

    2004-02-04

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate thesemore » capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.« less

  10. Visual analysis of flow boiling at different gravity levels in 4.0 mm tube

    NASA Astrophysics Data System (ADS)

    Valencia-Castillo, C. M.; Celata, G. P.; Saraceno, L.; Zummo, G.

    2014-11-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed during the parabolic flight campaign of October-November 2013. The paper will show the analysis of differences between the heat transfer coefficients and vapour bubble parameters at normal and at zero gravity. The results of 4.0 mm tube are presented and discussed. With respect to terrestrial gravity, heat transfer is systematically lower at microgravity in the range of the experimental conditions. Heat transfer differences for the two gravity conditions are related to the different bubble size in each of them. The size of a bubble in flow boiling is affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heated wall. Vapour bubble parameters (bubble diameter, bubble length, width, and nose velocity) have been measured.

  11. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  12. Preferred negative geotactic orientation in mobile cells: Tetrahymena results.

    PubMed Central

    Noever, D A; Cronise, R; Matsos, H C

    1994-01-01

    For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146

  13. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.

    PubMed

    Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco

    2011-09-20

    Dealing with upside-down objects is difficult and takes time. Among the cues that are critical for defining object orientation, the visible influence of gravity on the object's motion has received limited attention. Here, we manipulated the alignment of visible gravity and structural visual cues between each other and relative to the orientation of the observer and physical gravity. Participants pressed a button triggering a hitter to intercept a target accelerated by a virtual gravity. A factorial design assessed the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). We found that interception was significantly more successful when scene direction was concordant with target gravity direction, irrespective of whether both were upright or inverted. This was so independent of the hitter type and when performance feedback to the participants was either available (Experiment 1) or unavailable (Experiment 2). These results show that the combined influence of visible gravity and structural visual cues can outweigh both physical gravity and viewer-centered cues, leading to rely instead on the congruence of the apparent physical forces acting on people and objects in the scene.

  14. The Superheavy Elements and Anti-Gravity

    NASA Astrophysics Data System (ADS)

    Anastasovski, Petar K.

    2004-02-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.

  15. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  16. Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond; Matsos, Helen C.

    1994-01-01

    For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved altemating periods of low (0.01 g) and high (1.8 g, g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectores as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (it it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research.

  17. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  18. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

  19. Lovelock gravities from Born-Infeld gravity theory

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  20. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  1. Zero-gravity open-type urine receptacle

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1972-01-01

    The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.

  2. Renormalization of Einstein gravity through a derivative-dependent field redefinition

    NASA Astrophysics Data System (ADS)

    Slovick, Brian

    2018-01-01

    This work explores an alternative solution to the problem of renormalizability in Einstein gravity. In the proposed approach, Einstein gravity is transformed into the renormalizable theory of four-derivative gravity by applying a local field redefinition containing an infinite number of higher derivatives. It is also shown that the current-current amplitude is invariant with the field redefinition, and thus the unitarity of Einstein gravity is preserved.

  3. Behind the Mosaic: Insurgent Centers of Gravity and Counterinsurgency

    DTIC Science & Technology

    2011-12-01

    centers of gravity vary by time, space , and purpose. While Clausewitz’s key statement on a center of gravity defines a single center of gravity, he...explicitly or implicitly, that multiple centers of gravity can vary with time, space , and purpose. Shimon Naveh Retired Israeli Reserve Brigadier...century military forces, which in turn expanded operations in time and space . The integration of operations distributed in time and space distributed

  4. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  5. Fake conformal symmetry in unimodular gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  6. Fluid/gravity correspondence for massive gravity

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Huang, Yong-Chang

    2016-11-01

    In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.

  7. The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1995-01-01

    This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.

  8. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  9. Gravity Data for West-Central Colorado

    DOE Data Explorer

    Richard Zehner

    2012-04-06

    Modeled Bouger-Corrected Gravity data was extracted from the Pan American Center for Earth and Environmental Studies Gravity Database of the U.S. at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was opened in an Excel spreadsheet. This spreadsheet data was then converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and gravity (in milligals). This data was then converted to grid and then contoured using ESRI Spatial Analyst. Data from From University of Texas: Pan American Center for Earth and Environmental Studies

  10. Influence of Internal Waves on Transport by a Gravity Current

    NASA Astrophysics Data System (ADS)

    Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart

    2017-11-01

    Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.

  11. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.

    PubMed

    Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E

    2015-06-01

    Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.

  12. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  13. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  14. Factors associated with colostral specific gravity in dairy cows.

    PubMed

    Morin, D E; Constable, P D; Maunsell, F P; McCoy, G C

    2001-04-01

    The objectives of this study were to identify factors associated with colostral specific gravity in dairy cows, as measured by a commercially available hydrometer (Colostrometer). Colostral specific gravity was measured in 1085 first-milking colostrum samples from 608 dairy cows of four breeds on a single farm during a 5-yr period. Effects of breed, lactation number, and month and year of calving on colostral specific gravity were determined, as were correlations between colostral specific gravity, nonlactating period length, and 305-d yields of milk, protein, and fat. For 75 multiparous Holstein cows, relationships between colostral specific gravity, colostral IgG1, protein, and fat concentrations, and season of calving were determined. Colostral specific gravity values were lower for Brown Swiss and Ayrshire cows than for Jersey and Holstein cows, and lower for cows entering first or second lactation than third or later lactations. Month of calving markedly affected colostral specific gravity values, with highest values occurring in autumn and lowest values in summer. In multiparous Holstein cows, colostral specific gravity was more strongly correlated with colostral protein concentration (r = 0.76) than IgG1 concentration (r = 0.53), and colostral protein concentration varied seasonally (higher in autumn than summer). Our results demonstrate that colostral specific gravity more closely reflects colostral protein concentration than IgG1 concentration and is markedly influenced by month of calving. These results highlight potential limitations of using colostral specific gravity as an indicator of IgG1 concentration.

  15. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  16. Differentiation of naphthalene and paradichlorobenzene mothballs based on their difference in specific gravity.

    PubMed

    Fukuda, T; Koyama, K; Yamashita, M; Koichi, N; Takeda, M

    1991-08-01

    The present study was conducted to measure the specific gravities of paradichlorobenzene and naphthalene mothballs and compare them with the specific gravity of a saturated aqueous solution of sodium chloride (1.197). The specific gravities of 450 paradichlorobenzene mothballs from 5 manufactures and 150 naphthalene mothballs from 2 manufactures were measured with a specific gravity meter. The mean specific gravities of paradichlorobenzene mothballs were between 1.429 and 1.437 (p = 0.99). On the other hand, the mean specific gravities of naphthalene mothballs were between 1.094 and 1.100 (p = 0.99). Based on the fact that paradichlorobenzene mothballs sink in a saturated solution of salt whereas naphthalene mothballs float on it, these 2 kinds of mothballs ought to be rapidly and accurately distinguished in clinical settings.

  17. Matter scattering in quadratic gravity and unitarity

    NASA Astrophysics Data System (ADS)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  18. How to detect when cells in space perceive gravity

    NASA Technical Reports Server (NTRS)

    Bjoerkman, Thomas

    1989-01-01

    It is useful to be able to measure when and whether cells detect gravity during spaceflights. For studying gravitational physiology, gravity perception is the response the experimentalist needs to measure. Also, for growing plants in space, plant cells may have a non-directional requirement for gravity as a development cue. The main goals of spaceflight experiments in which gravity perception would be measured are to determine the properties of the gravity receptor and how it is activated, and to determine fundamental characteristics of the signal generated. The main practical difficulty with measuring gravity sensing in space is that gravity sensing cannot be measured with certainty on earth. Almost all experiments measure gravitropic curvature. Reciprocity and intermittent stimulation are measurements which were made to some degree on earth using clinostatting, but which would provide clearer results if done with microgravity rather than clinostatting. These would be important uses of the space laboratory for determining the nature of gravity sensing in plants. Those techniques which do not use gravitropic curvature to measure gravity sensing are electrophysiological. The vibrating probe would be somewhat easier to adapt to space conditions than the intracellular microelectrode because it can be positioned with less precision. Ideally, a non-invasive technique would be best suited if an appropriate measure could be developed. Thus, the effect of microgravity on cultured cells is more likely to be by large-scale physical events than gravity sensing in the culture cells. It is not expected that it will be necessary to determine whether individual cultured cells perceive gravity unless cells grow abnormally even after the obvious microgravity effects on the culture as a whole can be ruled out as the cause.

  19. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  20. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    NASA Astrophysics Data System (ADS)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  1. Seamless geoids across coastal zones - a comparison of satellite-derived gravity to airborne gravity across the seven continents

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Barnes, D.; Ingalls, S. E.; Minter, C. F.; Presicci, M. R.

    2017-12-01

    An accurate coastal geoid model is important for determination of near-shore ocean dynamic topography and currents, as well as for land GPS surveys and global geopotential models. Since many coastal regions across the globe are regions of intense development and coastal protection projects, precise geoid models at cm-level accuracy are essential. The only way to secure cm-geoid accuracies across coastal regions is to acquire more marine gravity data; here airborne gravity is the obvious method of choice due to the uniform accuracy, and the ability to provide a seamless geoid accuracy across the coastline. Current practice for gravity and geoid models, such as EGM2008 and many national projects, is to complement land gravity data with satellite radar altimetry at sea, a procedure which can give large errors in regions close to the coast. To quantify the coastal errors in satellite gravity, we compare results of a large set of recent airborne gravity surveys, acquired across a range of coastal zones globally from polar to equatorial regions, and quantify the errors as a function of distance from the coast line for a number of different global altimetry gravity solutions. We find that accuracy in satellite altimetry solutions depend very much on the availability of gravity data along the coast-near land regions in the underlying reference fields (e.g., EGM2008), with satellite gravity accuracy in the near-shore zone ranging from anywhere between 5 to 20 mGal r.m.s., with occasional large outliers; we also show how these errors may typically propagate into coastal geoid errors of 5-10 cm r.m.s. or more. This highlight the need for airborne (land) gravity surveys to be extended at least 20-30 km offshore, especially for regions of insufficient marine gravity coverage; we give examples of a few such recent surveys and associated marine geoid impacts.

  2. Changes in gravitational parameters inferred from time variable GRACE data-A case study for October 2005 Kashmir earthquake

    NASA Astrophysics Data System (ADS)

    Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam

    2016-09-01

    The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.

  3. Internal model of gravity influences configural body processing.

    PubMed

    Barra, Julien; Senot, Patrice; Auclair, Laurent

    2017-01-01

    Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Generalized geometry and non-symmetric metric gravity

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Khoo, Fech Scen; Schupp, Peter; Vysoký, Jan

    2016-04-01

    Generalized geometry provides the framework for a systematic approach to non-symmetric metric gravity theory and naturally leads to an Einstein-Kalb-Ramond gravity theory with totally anti-symmetric contortion. The approach is related to the study of the low-energy effective closed string gravity actions.

  5. NASA Space Biology Program: 9th Annual Symposium

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1985-01-01

    Topics covered include plant and animal gravity receptors and transduction; the role of gravity in growth and development of plants and animals; biological support structures and the role of calcium; mechanisms and responses of gravity sensitive systems; and mechanisms of plant responses to gravity.

  6. Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2010-01-01

    The presentation slides include: Moving Past Apollo, Testing in Analog Environments, NEEMO/NBL CG (center of gravity) Studies, Center of Gravity Test Design and Methods, CG Suited Locations and Results, CG Individual Considerations, CG Shirt-Sleeve Locations and Results.

  7. 27 CFR 30.24 - Specific gravity hydrometers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Specific gravity... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS GAUGING MANUAL Gauging Instruments § 30.24 Specific gravity hydrometers. (a) The specific gravity hydrometers furnished by proprietors to appropriate TTB officers shall...

  8. 27 CFR 30.24 - Specific gravity hydrometers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Specific gravity... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS GAUGING MANUAL Gauging Instruments § 30.24 Specific gravity hydrometers. (a) The specific gravity hydrometers furnished by proprietors to appropriate TTB officers shall...

  9. 27 CFR 30.24 - Specific gravity hydrometers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Specific gravity... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL GAUGING MANUAL Gauging Instruments § 30.24 Specific gravity hydrometers. (a) The specific gravity hydrometers furnished by proprietors to appropriate TTB officers shall...

  10. 27 CFR 30.24 - Specific gravity hydrometers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Specific gravity... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL GAUGING MANUAL Gauging Instruments § 30.24 Specific gravity hydrometers. (a) The specific gravity hydrometers furnished by proprietors to appropriate TTB officers shall...

  11. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  12. Dense Gravity Currents with Breaking Internal Waves

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.

  13. Gravity Data from Newark Valley, White Pine County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2007-01-01

    The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.

  14. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  15. Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Grafarend, E. W.

    2001-09-01

    The Somigliana-Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana-Pizzetti gravity o({,u) as a function of Jacobi spheroidal latitude { and height u to the order ™(10m10 Gal), and o(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ™(10m10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana-Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (u,{,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet.

  16. Low-gravity fluid dynamics and transport phenomena. Progress in Astronautics and Aeronautics. Vol. 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, J.N.; Sani, R.L.

    1990-01-01

    Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less

  17. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    PubMed Central

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  18. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; hide

    2016-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, air-borne and ship-borne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million sq km, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  19. The therapeutic benefits of gravity in space and on earth.

    PubMed

    Kourtidou-Papadeli, C; Papadelis, C L; Vernikos, J; Bamidis, P D; Hitoglou-Antoniadou, M; Perantoni, E; Vlachogiannis, E

    2008-08-01

    The traditional scientific approach of investigating the role of a variable on a living organism is to remove it or the ability of the organism to sense it. Gravity is no exception. Access to space has made it possible for us to begin the exploration of how gravity has influenced our evolution, our genetic make-up and our physiology. Identifying the thresholds at which each body system perceives, how much, how often, how long the gravity stimulus is needed and in which direction should it be presented for maximum effectiveness, is fundamental knowledge required for using artificial gravity as a therapeutic or maintenance countermeasure treatment in exploration missions. Here on earth, although surrounded by gravity we are negligent in using gravity as it was intended, to maintain the level of health that is appropriate to living in 1G. These, changes in lifestyle or pathologies caused by various types of injury can benefit as well from artificial gravity in much the same way as we are now considering for astronauts in space.

  20. Early-time cosmology with stiff era from modified gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-11-01

    In this work, we shall incorporate a stiff era in the Universe's evolution in the context of F (R ) gravity. After deriving the vacuum F (R ) gravity, which may realize a stiff evolution, we combine the stiff F (R ) gravity with an R2 model, and we construct a qualitative model for the inflationary and stiff era, with the latter commencing after the end of the inflationary era. We assume that the baryogenesis occurs during the stiff era, and we calculate the baryon to entropy ratio, which effectively constraints the functional form of the stiff F (R ) gravity. Further constraints on the stiff F (R ) gravity may come from the primordial gravitational waves, and particularly their scalar mode, which is characteristic of the F (R ) gravity theory. The stiff era presence does not contradict the standard cosmology era, namely, inflation, and the radiation-matter domination eras. Furthermore, we investigate which F (R ) gravity may realize a dust and stiff matter dominated Einstein-Hilbert evolution.

  1. Fusion welding experiments under low-gravity conditions using aircraft

    NASA Astrophysics Data System (ADS)

    Masubuchi, Koichi; Nayama, Michisuke

    A series of gas tungsten arc welding experiments under low-gravity conditions created using parabolic flight of aircraft were performed. The materials used were aluminum and 2219 aluminum alloy. Welding was conducted in a small chamber filled with 100 percent argon gas, and the power source was a set of storage batteries. While welding was conducted, CCD image of welding phenomena, welding current, voltage, and the gravity level of the welding table were recorded continuously. It was found that sound welds can be obtained under low-gravity conditions. The bead appearance of the weld bead made under low-gravity conditions was very smooth and flat with no ripple lines which normally exist in welds made on the earth. The observed shape of the arc plasma under low-gravity conditions was larger than that made under normal gravity condition, but the difference was not so significant. Welds made under low-gravity conditions tend to contain more porosity compared with welds made under the earth conditions.

  2. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  3. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  4. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  5. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    PubMed

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  6. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles.

    PubMed

    Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming

    2012-03-01

    Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.

  7. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  8. Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates

    PubMed Central

    Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo

    2014-01-01

    Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610

  9. Multisensory integration and internal models for sensing gravity effects in primates.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2014-01-01

    Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.

  10. How physician electronic health record screen sharing affects patient and doctor non-verbal communication in primary care.

    PubMed

    Asan, Onur; Young, Henry N; Chewning, Betty; Montague, Enid

    2015-03-01

    Use of electronic health records (EHRs) in primary-care exam rooms changes the dynamics of patient-physician interaction. This study examines and compares doctor-patient non-verbal communication (eye-gaze patterns) during primary care encounters for three different screen/information sharing groups: (1) active information sharing, (2) passive information sharing, and (3) technology withdrawal. Researchers video recorded 100 primary-care visits and coded the direction and duration of doctor and patient gaze. Descriptive statistics compared the length of gaze patterns as a percentage of visit length. Lag sequential analysis determined whether physician eye-gaze influenced patient eye gaze, and vice versa, and examined variations across groups. Significant differences were found in duration of gaze across groups. Lag sequential analysis found significant associations between several gaze patterns. Some, such as DGP-PGD ("doctor gaze patient" followed by "patient gaze doctor") were significant for all groups. Others, such DGT-PGU ("doctor gaze technology" followed by "patient gaze unknown") were unique to one group. Some technology use styles (active information sharing) seem to create more patient engagement, while others (passive information sharing) lead to patient disengagement. Doctors can engage patients in communication by using EHRs in the visits. EHR training and design should facilitate this. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. ALK-Testing in non-small cell lung cancer (NSCLC): Immunohistochemistry (IHC) and/or fluorescence in-situ Hybridisation (FISH)?: Statement of the Germany Society for Pathology (DGP) and the Working Group Thoracic Oncology (AIO) of the German Cancer Society e.V. (Stellungnahme der Deutschen Gesellschaft für Pathologie und der AG Thorakale Onkologie der Arbeitsgemeinschaft Onkologie/Deutsche Krebsgesellschaft e.V.).

    PubMed

    von Laffert, M; Schirmacher, P; Warth, A; Weichert, W; Büttner, R; Huber, R M; Wolf, J; Griesinger, F; Dietel, M; Grohé, Ch

    2017-01-01

    The EML4-ALK pathway plays an important role in a significant subset of non-small cell lung cancer patients. Treatment options such as ALK tyrosine kinase inhibitors lead to improved progression free survival and overall survival. These therapeutic options are chosen on the basis of the identification of the underlying genetic signature of the EML-ALK translocation. Efficient and easily accessible testing tools are required to identify eligible patients in a timely fashion. While FISH techniques are commonly used to detect this translocation, the broad implementation of this type of ALK testing into routine diagnostics is not optimal due to technical, structural and financial reasons. Immunohistochemical techniques to screen for EML4-ALK translocations may therefore play an important role in the near future. This consensus paper provides recommendations for the test algorithm and quality of the respective test approaches, which are discussed in the light of the current literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Venus gravity - Analysis of Beta Regio

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  13. Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David

    2012-01-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  14. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  15. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  16. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. First independent lunar gravity field solution in the framework of project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Krauss, Sandro; Klinger, Beate; Mayer-Gürr, Torsten

    2017-04-01

    The twin satellite mission Gravity Recovery and Interior Laboratory (GRAIL) aims to recovering the lunar gravity field by means of intersatellite Ka-band ranging (KBR) observations. In order to exploit the potential of KBR data, absolute position information of the two probes is required. Hitherto, the Graz lunar gravity field models (GrazLGM) relies on the official orbit products provided by NASA. In this contribution, we present for the first time a completely independent Graz lunar gravity field model to spherical harmonic degree and order 420. The reduced dynamic orbits of the two probes are determined using variational equations following a batch least squares differential adjustment process. These orbits are based on S-band radiometric tracking data collected by the Deep Space Network and are used for the independent GRAIL gravity field recovery. To reveal a highly accurate lunar gravity field, an integral equation approach using short orbital arcs is adopted to process the KBR data. A comparison to state-of-the-art lunar gravity models computed at NASA-GSFC, NASA-JPL and AIUB demonstrate the progress of Graz lunar gravity field models derived within the project GRAZIL.

  19. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  20. Reconstruction from scalar-tensor theory and the inhomogeneous equation of state in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Said, Jackson Levi

    2017-12-01

    General relativity (GR) characterizes gravity as a geometric properly exhibited as curvature on spacetime. Teleparallelism describes gravity through torsional properties, and can reproduce GR at the level of equations. Similar to f( R) gravity, on taking a generalization, f( T) gravity can produce various modifications its gravitational mechanism. The resulting field equations are inherently distinct to f( R) gravity in that they are second order. In the present work, f( T) gravity is examined in the cosmological context with a number of solutions reconstructed by means of an auxiliary scalar field. To do this, various forms of the Hubble parameter are considered with an f( T) Lagrangian emerging for each instance. In addition, the inhomogeneous equation of state (EoS) is investigated with a particular Hubble parameter model used to show how this can be used to reconstruct the f( T) Lagrangian. Observationally, the auxiliary scalar field and the exotic terms in the FRW field equations give the same results, meaning that the variation in the Hubble parameter may be interpreted as the need to reformulate gravity in some way, as in f( T) gravity.

  1. Some classes of gravitational shock waves from higher order theories of gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-02-01

    We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.

  2. Centrifuge in Free Fall: Combustion at Partial Gravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  3. The preferred walk to run transition speed in actual lunar gravity.

    PubMed

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.

  4. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less

  5. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  6. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2010-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.

  7. Global Gravity Field Determination by Combination of terrestrial and Satellite Gravity Data

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Pail, R.; Gruber, T.

    2011-12-01

    A multitude of impressive results document the success of the satellite gravity field mission GOCE with a wide field of applications in geodesy, geophysics and oceanography. The high performance of GOCE gravity field models can be further improved by combination with GRACE data, which is contributing the long wavelength signal content of the gravity field with very high accuracy. An example for such a consistent combination of satellite gravity data are the satellite-only models GOCO01S and GOCO02S. However, only the further combination with terrestrial and altimetric gravity data enables to expand gravity field models up to very high spherical harmonic degrees and thus to achieve a spatial resolution down to 20-30 km. First numerical studies for high-resolution global gravity field models combining GOCE, GRACE and terrestrial/altimetric data on basis of the DTU10 model have already been presented. Computations up to degree/order 600 based on full normal equations systems to preserve the full variance-covariance information, which results mainly from different weights of individual terrestrial/altimetric data sets, have been successfully performed. We could show that such large normal equations systems (degree/order 600 corresponds to a memory demand of almost 1TByte), representing an immense computational challenge as computation time and memory requirements put high demand on computational resources, can be handled. The DTU10 model includes gravity anomalies computed from the global model EGM08 in continental areas. Therefore, the main focus of this presentation lies on the computation of high-resolution combined gravity field models based on real terrestrial gravity anomaly data sets. This is a challenge due to the inconsistency of these data sets, including also systematic error components, but a further step to a real independent gravity field model. This contribution will present our recent developments and progress by using independent data sets at certain land areas, which are combined with DTU10 in the ocean areas, as well as satellite gravity data. Investigations have been made concerning the preparation and optimum weighting of the different data sources. The results, which should be a major step towards a GOCO-C model, will be validated using external gravity field data and by applying different validation methods.

  8. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high groundwater storage. The accommodation for spatially varying gravity change would be most important for long-duration campaigns, campaigns with very rapid changes in gravity and (or) campaigns where especially precise observed relative-gravity differences are used in the network adjustment.

  9. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.

  10. Beyond dRGT as mimetic massive gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2018-04-01

    An interesting proposal has recently been made to extend massive gravity models beyond dRGT by a disformal transformation of the metric. In this Letter we want to note that it can be viewed as a mimetic extension of dRGT gravity which enormously simplifies the Hamiltonian analysis. In particular, pure gravity sector is equivalent to the usual dRGT gravity coupled to a constrained scalar field. And we also give some comments about possible matter couplings.

  11. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.

    2003-01-01

    The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  12. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  13. Gravity Functions of Circumnutation by Hypocotyls of Helianthus annuus in Simulated Hypogravity 12

    PubMed Central

    Chapman, David K.; Venditti, Allen L.; Brown, Allan H.

    1980-01-01

    For more than a decade research on the botanical mechanism responsible for circumnutation has centered on whether or not these nearly ubiquitous oscillations can be attributed to a hunting process whereby the plant organ continuously responds to the gravity force and, by overshooting each stimulus, initiates a sustained oscillation or, driven by a not yet defined autogenic mechanism, performs oscillatory activities that require no external reinforcement to maintain the observed rhythms of differential growth. We explore here the effects of altered gravity force on parameters of circumnutation. Following our earlier publication on circumnutation in hypergravity we report here an exploration of circumnutation in hypogravity. Parameters of circumnutation are recorded as functions of the axially imposed gravity force. The same method was used (two-axes clinostat rotation) to produce sustained gravity forces referred to as hypergravity (1 < g), hypogravity (0 [unk] g < 1), and negative gravity (−1 < g < 0). In these three regions of the g-parameter nutational frequency and nutational amplitude were influenced in different ways. The results of our tests describe the gravity dependence of circumnutation over the full range of real or simulated gravity levels that are available in an earth laboratory. Our results demonstrated that nutational parameters are indeed gravity-dependent but are not inconsistent with the postulate that circumnutation can proceed in the absence of a significant gravity force. PMID:16661229

  14. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  15. A Review and Comparison of Mouse and Rat Responses to Micro Gravity, Hyper Gravity and Simulated Models of Partial Gravity; Species Differences, Gaps in the Available Data, and Consideration of the Advantages and Caveats of Each Model for Spaceflight

    NASA Technical Reports Server (NTRS)

    Donovan, F. M.; Gresser, A. L.; Sato, Kevin Y.; Taylor, Elizabeth M.

    2018-01-01

    Laboratory strains of mice and rat are widely used to study mammalian responses to stimulus, and both have been studied under a variety of gravity conditions, including space flight. We compared results obtained from exposure to spaceflight and microgravity, hyper gravity via centrifugation, earth gravity, and models of simulated partial gravity (hind-limb unloading and partial weight bearing treatments). We examined the reported changes in survival, body mass, circadian rhythm (body temperature and activity levels), behavior, bone, muscle, immune, cardio-vasculature, vestibular, reproduction and neonate survival, microbiome, and the visual system. Not all categories have published data for both species, some have limited data, and there are variations in experiment design that allow for only relative comparisons to be considered. The data reveal species differences in both the level of gravity required to obtain a response, degree of response, and in temporal expression of responses. Examination of the data across the gravity levels allows consideration of the hypothesis that gravitational responses follow a continuum, and organ specific differences are noted. In summary, we present advantages and caveats of each model system as pertains to gravitational biology research and identify gaps in our knowledge of how these mammals respond to gravity.

  16. Gravity field and shape of Ceres from Dawn

    NASA Astrophysics Data System (ADS)

    Park, Ryan; Konopliv, Alexander; Vaughan, Andrew; Bills, Bruce; Castillo-Rogez, Julie; Ermakov, Anton; Fu, Roger; Raymond, Carol; Russell, Chris; Zuber, Maria

    2017-04-01

    The Dawn gravity science investigation utilizes the DSN radio tracking of the spacecraft and on-board framing camera images to determine the gravity field and global shape of Ceres. The gravity science data collected during Approach, Survey, High-Altitude Mapping Orbit, and Low-Altitude Mapping Orbit phases were processed. The final gravity science solution yielded a degree and order 18 gravity field, called CERES18C, which is globally accurate to degree and order 14. Also, the final Ceres shape using the stereo-photoclinometry method is available with the height uncertainty better than 30 meters. The degree-2 gravity harmonics show that the rotation of Ceres is very nearly about a principal axis. Combining the gravity field and topography gives the bulk density of 2162.6±2.0 kg/m3. The estimated spin pole vector yields RA=(291.42744±0.00022)° and Dec=(66.76065±0.00022)° with the prime meridian and rotation rate of (170.374±0.012)° and (952.1532638±0.0000019)°/day, respectively. The low Bouguer gravity at high topographic areas, and vice versa, indicates that the topography of Ceres is compensated, which can be explained by a low-viscosity layer at depth. Further studies on Ceres interior show that low gravity-topography admittances are consistent with Airy isostasy and finite-element modeling require a decrease of viscosity with depth.

  17. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  18. Exact solutions of massive gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Chakhad, Mohamed

    In recent years, there has been an upsurge in interest in three-dimensional theories of gravity. In particular, two theories of massive gravity in three dimensions hold strong promise in the search for fully consistent theories of quantum gravity, an understanding of which will shed light on the problems of quantum gravity in four dimensions. One of these theories is the "old" third-order theory of topologically massive gravity (TMG) and the other one is a "new" fourth-order theory of massive gravity (NMG). Despite this increase in research activity, the problem of finding and classifying solutions of TMG and NMG remains a wide open area of research. In this thesis, we provide explicit new solutions of massive gravity in three dimensions and suggest future directions of research. These solutions belong to the Kundt class of spacetimes. A systematic analysis of the Kundt solutions with constant scalar polynomial curvature invariants provides a glimpse of the structure of the spaces of solutions of the two theories of massive gravity. We also find explicit solutions of topologically massive gravity whose scalar polynomial curvature invariants are not all constant, and these are the first such solutions. A number of properties of Kundt solutions of TMG and NMG, such as an identification of solutions which lie at the intersection of the full nonlinear and linearized theories, are also derived.

  19. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  20. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  1. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-12-31

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less

  2. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  3. Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity

    NASA Astrophysics Data System (ADS)

    Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo

    2018-06-01

    In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).

  4. Temporal gravity variations associated with the November 1975 deflation of Kilauea Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jachens, R.; Eaton, G.; Lipman, P.

    1976-12-01

    Repeated high-precision gravity measurements made near the summit of Kilauea Volcano, Hawaii have revealed temporal variations in gravity associated with the deflation of the volcano that followed the earthquake and eruption of November 29, 1975. Gravity differences with respect to a base station located on the south flank of Mauna Loa were measured at 18 sites within 5 km of Kilauea Crater. The original survey, conducted between November 10 and November 23, 1975, was repeated during the two weeks following the earthquake. Standard errors of the gravity differences measured during both surveys average about 5 ..mu..gal. These two surveys indicatemore » that gravity at sites near the summit of Kilauea increased with respect to gravity at sites located away from the summit. The pattern of gravity increase is roughly radially symmetrical about the geodetically determined locus of this deflation event, located approximately 1 km southeast of Kilauea Crater, and has a half-width of 2.2 km. The gravity changes correlate closely with elevation changes that occurred between level surveys conducted on September 22, 1975 and January 8, 1976. The relation between gravity change and elevation change (-1.70 +- 0.07 (s.e.) ..mu..gal/cm)) determined from these data shows that the local mass distribution beneath the summit of Kilauea changed during the time between the surveys. Mass balance calculations indicate that the volume of subsidence is too small to account for the gravity changes, presumably because some magma moved away from the summit area without complete collapse of the resulting voids.« less

  5. Probing hybrid modified gravity by stellar motion around Galactic Center

    NASA Astrophysics Data System (ADS)

    Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.

    2016-06-01

    We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.

  6. Hybrid gravity survey to search for submarine ore deposit

    NASA Astrophysics Data System (ADS)

    Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.

    2011-12-01

    Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.

  7. Reducing gravity takes the bounce out of running.

    PubMed

    Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A

    2018-02-13

    In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.

  8. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    NASA Astrophysics Data System (ADS)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  9. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  10. 14 CFR 25.27 - Center of gravity limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  11. 14 CFR 25.27 - Center of gravity limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  12. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  13. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  14. 14 CFR 25.27 - Center of gravity limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  15. 14 CFR 29.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Empty weight and corresponding center of gravity. 29.29 Section 29.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...

  16. 14 CFR 23.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of gravity...

  17. 14 CFR 23.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of gravity...

  18. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  19. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  20. 14 CFR 23.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of gravity...

  1. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  2. 14 CFR 27.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Empty weight and corresponding center of gravity. 27.29 Section 27.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  3. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  4. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  5. 14 CFR 27.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Empty weight and corresponding center of gravity. 27.29 Section 27.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  6. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  7. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  8. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  9. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  10. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  11. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...

  12. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  13. 14 CFR 23.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast; (2...

  14. 14 CFR 27.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Empty weight and corresponding center of gravity. 27.29 Section 27.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  15. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  16. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  17. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  18. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  19. 14 CFR 25.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Empty weight and corresponding center of gravity. 25.29 Section 25.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  20. 14 CFR 25.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Empty weight and corresponding center of gravity. 25.29 Section 25.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  1. 14 CFR 29.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Empty weight and corresponding center of gravity. 29.29 Section 29.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...

  2. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  3. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  4. 14 CFR 23.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of gravity...

  5. 14 CFR 23.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast; (2...

  6. 14 CFR 25.27 - Center of gravity limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  7. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  8. 14 CFR 29.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Empty weight and corresponding center of gravity. 29.29 Section 29.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...

  9. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  10. 27 CFR 21.161 - Weights and specific gravities of specially denatured alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gravities of specially denatured alcohol. 21.161 Section 21.161 Alcohol, Tobacco Products and Firearms... ALCOHOL AND RUM Weights and Specific Gravities of Specially Denatured Alcohol § 21.161 Weights and specific gravities of specially denatured alcohol. The weight of one gallon of each formula of specially...

  11. 14 CFR 23.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of gravity...

  12. 14 CFR 25.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Empty weight and corresponding center of gravity. 25.29 Section 25.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  13. 14 CFR 27.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Empty weight and corresponding center of gravity. 27.29 Section 27.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be...

  14. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  15. 14 CFR 29.29 - Empty weight and corresponding center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Empty weight and corresponding center of gravity. 29.29 Section 29.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...

  16. 14 CFR 25.27 - Center of gravity limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  17. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  18. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  19. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...

  20. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

Top