Sample records for dhfr expression detection

  1. [The expression of interferon-lambda1 in CHO cell].

    PubMed

    Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu

    2013-06-01

    To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.

  2. [Application of dhfr gene negative Chinese hamster ovary cell line to express hepatitis B virus surface antigen].

    PubMed

    Yi, Y; Zhang, M; Liu, C

    2001-06-01

    To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.

  3. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  5. Overexpression of dihydrofolate reductase is a factor of poor survival in acute lymphoblastic leukemia.

    PubMed

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Illades-Aguiar, Berenice; Rivera-Ramírez, Ana Bertha; Saavedra-Herrera, Mónica Virginia; Leyva-Vázquez, Marco Antonio

    2018-06-01

    Dihydrofolate reductase (DHFR) has an important function in DNA synthesis and is a target of methotrexate, which is a crucial treatment option for acute lymphoblastic leukemia (ALL). However, the number of studies conducted to date on DHFR expression in childhood ALL is limited. The aim of the present study was to determine whether the expression of DHFR is associated with survival in childhood ALL. The expression of DHFR in 96 children with ALL and 100 control individuals was determined using reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that the expression of DHFR mRNA in children with ALL was significantly increased (P<0.001), compared with that in the control group. In addition, increased levels of DHFR mRNA were observed in patients with B-cell lineage, compared with patients with T-cell lineage ALL (P<0.05). The Kaplan-Meier estimator analysis revealed that children with ALL who exhibited increased levels of DHFR mRNA had a decreased overall survival time (P<0.05). It was observed that certain patient prognostic features (including age, sex, white blood cell count and high DHFR expression), are associated with poor survival (log-rank test, P<0.05). Therefore, the results of the present study indicated that DHFR upregulation is a factor for poor survival in ALL.

  6. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  7. Efficient protection from methotrexate toxicity and selection of transduced human hematopoietic cells following gene transfer of dihydrofolate reductase mutants.

    PubMed

    Meisel, Roland; Bardenheuer, Walter; Strehblow, Claudia; Sorg, Ursula Regina; Elmaagacli, Ahmet; Seeber, Siegfried; Flasshove, Michael; Moritz, Thomas

    2003-12-01

    While retrovirally mediated gene transfer of dihydrofolate reductase mutants (mutDHFR) has convincingly been demonstrated to confer methotrexate (MTX) resistance to murine hematopoietic cells, clinical application of this technology will require high efficacy in human cells. Therefore, we investigated retroviral constructs expressing various point mutants of human DHFR for their ability to confer MTX resistance to human clonogenic progenitor cells (CFU-C) and to allow for in vitro selection of transduced CFU-C. Primary human hematopoietic cells were retrovirally transduced using MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31), DHFR(Phe22/Ser31), or DHFR(Tyr22/Gly31). MTX resistance of unselected and in vitro-selected CFU-C was determined using MTX-supplemented methylcellulose cultures and gene transfer efficiency was assesed by single-colony PCR analysis. While less than 1% mock-transduced CFU-C survived the presence of > or =5 x 10(-8) M MTX, MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31) significantly protected CFU-C from MTX at doses ranging from 2.5 to 30 x 10(-8) M. Vectors expressing DHFR(Phe22/Ser31) or DHFR(Tyr22/Gly31) were even more protective and MTX-resistant CFU-C were observed up to 1 x 10(-5) M MTX. Three-day suspension cultures in the presence of 10-20 x 10(-8) M MTX resulted in significant selection of mutDHFR-transduced CFU-C. The percentage of CFU-C resistant to 10 x 10(-8) M MTX increased fourfold to 20-fold and provirus-containing CFU-C increased from 27% to 79-100%. Gene transfer of DHFR using suitable retroviral backbones and DHFR mutants significantly increases MTX resistance of human CFU-C and allows efficient in vitro selection of transduced cells using a short-term selection procedure.

  8. TS, DHFR and GARFT expression in non-squamous cell carcinoma of NSCLC and malignant pleural mesothelioma patients treated with pemetrexed.

    PubMed

    Uramoto, Hidetaka; Onitsuka, Takamitsu; Shimokawa, Hidehiko; Hanagiri, Takeshi

    2010-10-01

    Recently, pemetrexed (PEM), a new generation antifolate, has been used for the treatment of patients with advanced non-squamous cell carcinoma (SQ) of non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). However, no useful markers for selecting appropriate candidates exist at present. Tumor specimens were collected from 5 lung non-SQ and 8 MPM patients who underwent surgery and received PEM. Real-time PCR and immunohistochemical (IHC) staining of the primary tumor were used to analyze the mRNA and protein expressions of thymidylate synthase (TS)/dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT), and to compare the expression status and clinical outcomes. TS, DHFR, and GARFT mRNA levels had a median value of 2.39, 1.70, and 1.40 in non-SQ samples of NSCLC patients. The TS and DHFR protein levels had a mean total score of 2 and 4 in non-SQ of NSCLC patients. TS, DHFR, and GARFT mRNA levels had a median value of 5.55, 3.73, and 3.52 in MPM patients. TS and DHFR protein levels had a mean total expression score of 1 and 3 in MPM patients. No significant correlation was identified between the expression levels of TS/DPD/GARFT mRNA and clinical response for the non-SQ of NSCLC and MPM patients treated with PEM. TS, DHFR, and GARFT mRNA and protein expression may not be useful markers for predicting clinical response in Japanese patients with non-SQ of NSCLC and MPM. Further investigations are necessary in order to develop biomarkers to determine the clinical benefits of PEM treatment.

  9. [Construction and expression of the eukaryotic expression vector carrying HSV-1 gC glycoprotein gene].

    PubMed

    Dang, Yin-li; Yan, Yan; Zhang, Xiao-xiao; Li, Pu-yuan; Yu, Lan; Zhang, Lei; Zhang, Fang-lin; Xu, Zhi-kai; Wu, Xing-an

    2011-05-01

    To stably express herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) in Chinese hamster ovary cells (CHO-K1). The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed and transfected into CHO-K1 cells by Lipofectamine 2000. The transfected cells were selected by G418 and methotrexate (MTX). The expression of HSV-1 gC was analyzed by Slot blot. HSV-1 gC proteins were purified with His-Ni Sepharose and then detected by Western blot. The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed successfully. CHO-K1 cells stably expressing HSV-1 gC proteins were established and confirmed by Western blot. The HSV-1 gC proteins have been expressed successfully and have good bioactivity. The results make it possible for further study and clinical use of HSV-1 gC.

  10. Supplementation of serum free media with HT is not sufficient to restore growth properties of DHFR-/- cells in fed-batch processes - Implications for designing novel CHO-based expression platforms.

    PubMed

    Florin, Lore; Lipske, Carolin; Becker, Eric; Kaufmann, Hitto

    2011-04-10

    DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them. Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent. The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

    PubMed Central

    Cario, Holger; Smith, Desirée E.C.; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-01-01

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. PMID:21310277

  12. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease.

    PubMed

    Cario, Holger; Smith, Desirée E C; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-02-11

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. TS expression predicts postoperative recurrence in adenocarcinoma of the lung.

    PubMed

    Shimokawa, Hidehiko; Uramoto, Hidetaka; Onitsuka, Takamitsu; Iwata, Teruo; Nakagawa, Makoto; Ono, Kenji; Hanagiri, Takeshi

    2011-06-01

    Not all patients with lung cancer require postoperative adjuvant chemotherapy after a complete resection. However, no useful markers for either selecting appropriate candidates or for predicting clinical recurrence exist. Tumor specimens were collected from 183 consecutive patients who underwent a complete resection for lung adenocarcinoma from 2003 to 2007 in our department. We analyzed the thymidylate synthase (TS) and dihydrofolate reductase (DHFR) expressions in the primary lung adenocarcinoma by immunohistochemisty. The strong expression of TS and DHFR was identified in 39 (21.3%) and 120 (65.6%) patients, respectively. The strong TS expression was identified in 11 (39.3%) of 28 patients and 28 (18.1%) of 155 patients in patients with and without recurrence, respectively (p=0.012). The strong DHFR expression was also identified in 23 (82.1%) and 97 (62.6%) of the patients with and without recurrence, respectively (p=0.045). Logistic regression models indicated the strong TS expression to be an independent factor for tumor recurrence. The strong TS and DHFR expression was associated with a poorer disease-free survival (DFS) according to the survival analysis. A multivariate analysis demonstrated the strong TS expression to be independently associated with an increased risk for poor DFS. The strong TS expression may be a useful marker for predicting postoperative recurrence in patients with lung adenocarcinoma following surgery. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcusmore » aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.« less

  15. Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line.

    PubMed

    Lee, Suk Kyoo; Lee, Gyun Min

    2003-06-30

    Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.

  16. In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase

    PubMed Central

    Gori, Jennifer L.; Tian, Xinghui; Swanson, Debra; Gunther, Roland; Shultz, Leonard D.; McIvor, R. Scott; Kaufman, Dan S.

    2009-01-01

    SUMMARY Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene therapy. PMID:19829316

  17. Fragment-based design of symmetrical bis-benzimidazoles as selective inhibitors of the trimethoprim-resistant, type II R67 dihydrofolate reductase.

    PubMed

    Bastien, Dominic; Ebert, Maximilian C C J C; Forge, Delphine; Toulouse, Jacynthe; Kadnikova, Natalia; Perron, Florent; Mayence, Annie; Huang, Tien L; Vanden Eynde, Jean Jacques; Pelletier, Joelle N

    2012-04-12

    The continuously increasing use of trimethoprim as a common antibiotic for medical use and for prophylactic application in terrestrial and aquatic animal farming has increased its prevalence in the environment. This has been accompanied by increased drug resistance, generally in the form of alterations in the drug target, dihydrofolate reductase (DHFR). The most highly resistant variants of DHFR are known as type II DHFR, among which R67 DHFR is the most broadly studied variant. We report the first attempt at designing specific inhibitors to this emerging drug target by fragment-based design. The detection of inhibition in R67 DHFR was accompanied by parallel monitoring of the human DHFR, as an assessment of compound selectivity. By those means, small aromatic molecules of 150-250 g/mol (fragments) inhibiting R67 DHFR selectively in the low millimolar range were identified. More complex, symmetrical bis-benzimidazoles and a bis-carboxyphenyl were then assayed as fragment-based leads, which procured selective inhibition of the target in the low micromolar range (K(i) = 2-4 μM). The putative mode of inhibition is discussed according to molecular modeling supported by in vitro tests. © 2012 American Chemical Society

  18. DHFR and MDR1 upregulation is associated with chemoresistance in osteosarcoma stem-like cells

    PubMed Central

    Lee, Yu-Hsien; Yang, Hui-Wen; Yang, Li-Chiu; Lu, Ming-Yi; Tsai, Lo-Lin; Yang, Shun-Fa; Huang, Yu-Feng; Chou, Ming-Yung; Yu, Cheng-Chia; Hu, Fang-Wei

    2017-01-01

    Tumor-initiating cells (TICs) are defined as a specialized subset of cells with tumor-initiating capacity that can initiate tumor growth, tumor relapse and metastasis. In the present study, osteosarcoma TICs (OS-TICs) were isolated and enriched from the osteosarcoma U2OS and MG-63 cell lines using sphere formation assays and serum-depleted media. These enriched OS-TICs showed the expression of several typical cancer stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, cluster of differentiation (CD)117, Nestin and CD133, and the expression of ATP binding cassette subfamily G member 2, multidrug resistance protein 1 (MDR1) and dihydrofolate reductase (DHFR). Notably, in vitro and in vivo tumorigenic properties were enhanced in these OS-TICs. Additionally, methotrexate and doxorubicin are the most widely used anticancer agents against osteosarcoma, and the observed enhanced chemoresistance of OS-TICs to these two agents could be associated with the upregulation of DHFR and MDR1. These findings suggest that the upregulation of DHFR and MDR1 is associated with the development of chemoresistance of OS-TICs. PMID:28693150

  19. Genetic characterization of the dihydrofolate reductase gene of Pneumocystis jirovecii isolates from Portugal.

    PubMed

    Costa, Marina C; Esteves, Francisco; Antunes, Francisco; Matos, Olga

    2006-12-01

    The aim of the present study was to evaluate the genetic variation of Pneumocystis jirovecii dihydrofolate reductase (DHFR) gene in an immunocompromised Portuguese population and to investigate the possible association between DHFR genotypes and P. jirovecii pneumonia (PcP) prophylaxis with co-trimoxazole. One hundred and thirty-eight P. jirovecii isolates were submitted to DHFR genetic characterization by PCR and sequencing. In the studied population, 72.7% of the patients presented sequences identical to the wild-type sequence of the P. jirovecii DHFR gene and 27.3% presented point substitutions. A total of nine substitution sites were identified; four synonymous substitutions at nucleotide positions 201, 272, 312 and 381 were detected in 31 patients. Five non-synonymous substitutions were observed, leading to the DHFR mutations Leu-13-->Ser, Asn-23-->Ser, Ser-31-->Phe, Met-52-->Leu and Ala-67-->Val. With the exception of the polymorphism at position 312 and the mutation at codon 52, all polymorphisms were reported in this study for the first time. Our results suggest that DHFR gene polymorphisms are frequent in the Portuguese immunocompromised population but do not seem to be associated with PcP prophylaxis failure (P = 0.748 and P = 0.730).

  20. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness

    PubMed Central

    Bershtein, Shimon; Mu, Wanmeng; Serohijos, Adrian W. R.; Zhou, Jingwen; Shakhnovich, Eugene I.

    2012-01-01

    Summary What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli’s gene encoding dihydrofolate reductase (DHFR), and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: Over-expression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding and degradation orchestrated by PQC through the interaction with folding intermediates. PMID:23219534

  1. Expression, purification and enzymatic characterization of Brugia malayi dihydrofolate reductase.

    PubMed

    Perez-Abraham, Romy; Sanchez, Karla Garabiles; Alfonso, Melany; Gubler, Ueli; Siekierka, John J; Goodey, Nina M

    2016-12-01

    Brugia malayi (B. malayi) is one of the three causative agents of lymphatic filariasis, a neglected parasitic disease. Current literature suggests that dihydrofolate reductase is a potential drug target for the elimination of B. malayi. Here we report the recombinant expression and purification of a ∼20 kDa B. malayi dihydrofolate reductase (BmDHFR). A His6-tagged construct was expressed in E. coli and purified by affinity chromatography to yield active and homogeneous enzyme for steady-state kinetic characterization and inhibition studies. The catalytic activity kcat was found to be 1.4 ± 0.1 s(-1), the Michaelis Menten constant KM for dihydrofolate 14.7 ± 3.6 μM, and the equilibrium dissociation constant KD for NADPH 25 ± 24 nM. For BmDHFR, IC50 values for a six DHFR inhibitors were determined to be 3.1 ± 0.2 nM for methotrexate, 32 ± 22 μM for trimethoprim, 109 ± 34 μM for pyrimethamine, 154 ± 46 μM for 2,4-diaminoquinazoline, 771 ± 44 μM for cycloguanil, and >20,000 μM for 2,4-diaminopyrimidine. Our findings suggest that antifolate compounds can serve as inhibitors of BmDHFR. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.

  3. Biochemical characterization of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase from Leishmania (Viannia) and its evaluation as a drug target.

    PubMed

    Osorio, Edison; Aguilera, Carolina; Naranjo, Nelson; Marín, Marcel; Muskus, Carlos

    2013-01-01

    Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. Although this bifunctional enzyme is also a potential drug target for treatment of leishmaniasis, there have been no reports on its efficacy against Leishmania (Viannia) species. The gene encoding the bifunctional DHFR and thymidylate synthase (TS) of Le. (V.) braziliensis was isolated and expressed in E. coli. The enzyme was purified and characterized. The inhibitory effects of antifolates and four aporphine alkaloids on its activity were evaluated. The full-length gene consists of a 1560-bp open reading frame encoding a 58 kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. The recombinant DHFR-TS enzyme revealed Km and Vmax values of 55.35 ± 4.02 µ M (mean ± SE) and 0.02 ± 5.34 x 10 -4 µ M/min respectively for dihydrofolic acid (H₂F). The Le. braziliensis rDHFR-TS have Ki values for antimicrobial antifolates in the µM range. Methotrexate (MTX) was a more-potent inhibitor of enzymatic activity (Ki = 22.0 µM) than trimethoprim (Ki = 33 µM) and pyrimethamine (Ki = 68 µM). These Ki values are significantly lower than those obtained for the aporphine alkaloids. The results of the study show the inhibitory effect of antifolate drugs on enzymatic activity, indicating that Le. braziliensis rDHFR-TS could be a model to studying antifolate compounds as potential antiprotozoal drugs.

  4. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    PubMed

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  5. Development of LSPR and SPR sensor for the detection of an anti-cancer drug for chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhao, Sandy Shuo; Bolduc, Olivier R.; Colin, Damien Y.; Pelletier, Joelle N.; Masson, Jean-François

    2012-03-01

    The anti-cancer drug, methotrexate (MTX) as a strong inhibitor of human dihydrofolate reductase (hDHFR) has been studied in localized surface plasmon resonance (LSPR) and surface plasmon resonance (SPR) competitive binding assays with folic acid stabilized gold nanoparticles (FA AuNP). The latter with a diameter of 15 nm were prepared in a simple step with sequential characterization using UV-Vis, FTIR, and Raman. A LSPR competitive binding assay between different concentrations of MTX and FA AuNP for hDHFR in solution was designed to quantify MTX by using UV-Vis spectroscopy. Sensitivity of the assay was optimized with respect to both concentrations of the enzyme and FA. The detection and quantification of spiked MTX was demonstrated in phosphate buffer saline and in fetal bovine serum accompanied by solid-phase extraction treatment of the serum. In addition, this assay could also provide as a screening tool for potential inhibitors of hDHFR. In another perspective, MTX was measured in a competitive binding assay with FA AuNP for histidine-tagged hDHFR immobilized on a SPR sensitive surface. In this case, FA AuNP offer a secondary amplification of the analytical response which is indirectly proportional to the concentration of MTX. This alternative approach could contribute to the realization of direct detection of MTX in complex biological fluids. A comparison of characteristics and analytical parameters such as sensitivity, dynamic range and limit of detection between the LSPR and SPR sensing platforms will also be presented. Both assays offer potential in tackling real biological samples for the purpose of monitoring and validating anti-cancer drug levels in human serum during chemotherapy.

  6. Genomic amplification of the human DHFR/MSH3 locus remodels mismatch recognition and repair activities.

    PubMed

    Drummond, J T

    1999-01-01

    Mismatch recognition in human cells is mediated by two heterodimers, MutS alpha and MutS beta. MutS alpha appears to shoulder primary responsibility for mismatch correction during replication, based on its relative abundance and ability to recognize a broad spectrum of base-base and base-insertion mismatches. Because MutS alpha and MutS beta share a common component, MSH2, conditions that influence the expression or degradation of MSH3 or MSH6 can redistribute the profile of mismatch recognition and repair. MSH3 is linked by a shared promoter with DHFR, connecting two pathways with key roles in DNA metabolism. In a classic example of gene amplification, the DHFR (and MSH3) locus can become amplified to several hundred copies in the presence of methotrexate. Under these conditions, MutS beta forms at the expense of MutS alpha, and the mutation rate in these tumor cells rises more than 100-fold. The implications for cancer chemotherapy include a potential increase in mutability when tumors are treated with methotrexate, which could increase the frequency of subsequent mutations that influence the tumor's drug sensitivity or aggressiveness. Because processing certain types of DNA damage by the mismatch repair pathway has also been implicated in tumor sensitivity to agents such as cisplatin, changes in expression at the DHFR/MSH3 locus may have further relevance to the outcome of multi-drug treatment regimens.

  7. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A.

    PubMed

    Vadloori, Bharadwaja; Sharath, A K; Prabhu, N Prakash; Maurya, Radheshyam

    2018-04-16

    Present in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite's DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites. A 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug.

  8. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase.

    PubMed

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina; Görlach, Agnes

    2015-11-10

    Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. FA might serve as a novel therapeutic option combating PH.

  9. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish

    2010-11-22

    The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50 000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and thereforemore » for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of antifolate-based therapeutic agents for the treatment of T. cruzi infection.« less

  10. Crystallographic Analysis Reveals a Novel Second Binding Site for Trimethoprim in Active Site Double Mutants of Human Dihydrofolate Reductase†,‡

    PubMed Central

    Cody, Vivian; Pace, Jim; Piraino, Jennifer; Queener, Sherry F.

    2011-01-01

    In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h)DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (Ki 49 nM) compared to hDHFR (Ki 4093 nM). Two mutants that contain one substitution from pj- and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show Ki values of 593 and 617 nM, respectively; these Ki values are well above both the Ki for pjDHFR and are similar to pcDHFR (Q35K/N64F) and Q35S/N64F) (305 nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes. PMID:21684339

  11. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    PubMed

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  12. Molecular Epidemiology of Malaria in Cameroon. XXX. Sequence Analysis of Plasmodium falciparum ATPase 6, Dihydrofolate Reductase, and Dihydropteroate Synthase Resistance Markers in Clinical Isolates from Children Treated with an Artesunate-Sulfadoxine-Pyrimethamine Combination

    PubMed Central

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-01-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance. PMID:21734119

  13. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  14. Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling.

    PubMed

    Metzger, Vincent T; Eun, Changsun; Kekenes-Huskey, Peter M; Huber, Gary; McCammon, J Andrew

    2014-11-18

    We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (?15-25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.

  15. High prevalence of sulphadoxine-pyrimethamine resistance-associated mutations in Plasmodium falciparum field isolates from pregnant women in Brazzaville, Republic of Congo.

    PubMed

    Koukouikila-Koussounda, Felix; Bakoua, Damien; Fesser, Anna; Nkombo, Michael; Vouvoungui, Christevy; Ntoumi, Francine

    2015-07-01

    Intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) has not been evaluated in the Republic of Congo since its implementation in 2006 and there is no published data on molecular markers of SP resistance among Plasmodium falciparum isolates from pregnant women. This first study in this country aimed to describe the prevalence of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) point mutations and haplotypes in P. falciparum isolates collected from pregnant women with asymptomatic infection. From March 2012 to December 2013, pregnant women attending Madibou health centre (in Southern Brazzaville) for antenatal visits were enrolled in this study after obtaining their written informed consent. Blood samples were collected and P. falciparum infections were characterized using PCR. A total of 363 pregnant women were enrolled. P. falciparum infection was detected in 67 (18.4%) samples as their PCR amplification of dhfr and dhps genes yielded bands and all the PCR products were successfully digested. Out of these 67 isolates, 59 (88%), 57 (85%) and 53 (79.1%) carried 51I, 59R and 108N dhfr mutant alleles, respectively. The prevalence of dhps 436A, 437G and 540E mutations were 67.1% (45/67), 98.5% (66/67) and 55.2% (37/67), respectively. More than one-half of the isolates carried quintuple mutations, with highly resistant haplotype dhfr51I/59R/108N + dhps437G/540E detected in 33% (22/67) whereas 25% (17/67) were found to carry sextuple mutations. We observed significantly higher frequencies of triple dhps mutations 436A/437G/540E and quintuple mutations dhfr51I/59R/108N+dhps437G/540E in isolates from women who received IPTp-SP than those who did not. Overall, this study shows high prevalence rates of SP-associated resistance mutations in P. falciparum isolates collected from pregnant women. The presence of the dhps mutant allele 540E and the high prevalence of isolates carrying quintuple dhfr/dhps mutations are here reported for the first time in the Republic of Congo. The increasing prevalence of multiple mutant alleles observed in this study is alarming and may present a challenge for the future interventions including IPTp-SP in the country. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies

    PubMed Central

    Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2016-01-01

    Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185

  17. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell.

    PubMed

    Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y

    2013-01-01

    Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.

  18. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase

    PubMed Central

    Hawkins, Vivian N; Auliff, Alyson; Prajapati, Surendra Kumar; Rungsihirunrat, Kanchana; Hapuarachchi, Hapuarachchige C; Maestre, Amanda; O'Neil, Michael T; Cheng, Qin; Joshi, Hema; Na-Bangchang, Kesara; Sibley, Carol Hopkins

    2008-01-01

    Background In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr) have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. Methods The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Results Synonymous and non-synonymous single nucleotide polymorphisms (SNPs) within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel). SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N) dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T) and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T) mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. Conclusion It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts sharply with the selective sweep of rare antifolate resistant alleles observed in the P. falciparum populations in Asia and Africa. The finding of multiple origins of resistance-conferring mutations has important implications for drug policy. PMID:18442404

  19. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase.

    PubMed

    Hawkins, Vivian N; Auliff, Alyson; Prajapati, Surendra Kumar; Rungsihirunrat, Kanchana; Hapuarachchi, Hapuarachchige C; Maestre, Amanda; O'Neil, Michael T; Cheng, Qin; Joshi, Hema; Na-Bangchang, Kesara; Sibley, Carol Hopkins

    2008-04-28

    In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr) have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Synonymous and non-synonymous single nucleotide polymorphisms (SNPs) within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel). SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N) dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T) and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T) mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts sharply with the selective sweep of rare antifolate resistant alleles observed in the P. falciparum populations in Asia and Africa. The finding of multiple origins of resistance-conferring mutations has important implications for drug policy.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University of Buffalo, Buffalo, NY 14260; Pace, Jim

    The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b,more » f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.« less

  1. The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase

    PubMed Central

    2011-01-01

    Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR. PMID:22060818

  2. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  3. Thermal Adaptation of Dihydrofolate Reductase from the Moderate Thermophile Geobacillus stearothermophilus

    PubMed Central

    2014-01-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ∼30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  4. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase.

    PubMed

    Gibson, Marc W; Dewar, Simon; Ong, Han B; Sienkiewicz, Natasha; Fairlamb, Alan H

    2016-05-01

    Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.

  5. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain.

    PubMed

    Haug, Gerd; Wilde, Christian; Leemhuis, Jost; Meyer, Dieter K; Aktories, Klaus; Barth, Holger

    2003-12-30

    The Clostridium botulinum C2 toxin is the prototype of the family of binary actin-ADP-ribosylating toxins. C2 toxin is composed of two separated nonlinked proteins. The enzyme component C2I ADP-ribosylates actin in the cytosol of target cells. The binding/translocation component C2II mediates cell binding of the enzyme component and its translocation from acidic endosomes into the cytosol. After proteolytic activation, C2II forms heptameric pores in endosomal membranes, and most likely, C2I translocates through these pores into the cytosol. For this step, the cellular heat shock protein Hsp90 is essential. We analyzed the effect of methotrexate on the cellular uptake of a fusion toxin in which the enzyme dihydrofolate reductase (DHFR) was fused to the C-terminus of C2I. Here, we report that unfolding of C2I-DHFR is required for cellular uptake of the toxin via the C2IIa component. The C2I-DHFR fusion toxin catalyzed ADP-ribosylation of actin in vitro and was able to intoxicate cultured cells when applied together with C2IIa. Binding of the folate analogue methotrexate favors a stable three-dimensional structure of the dihydrofolate reductase domain. Pretreatment of C2I-DHFR with methotrexate prevented cleavage of C2I-DHFR by trypsin. In the presence of methotrexate, intoxication of cells with C2I-DHFR/C2II was inhibited. The presence of methotrexate diminished the translocation of the C2I-DHFR fusion toxin from endosomal compartments into the cytosol and the direct C2IIa-mediated translocation of C2I-DHFR across cell membranes. Methotrexate had no influence on the intoxication of cells with C2I/C2IIa and did not alter the C2IIa-mediated binding of C2I-DHFR to cells. The data indicate that methotrexate prevented unfolding of the C2I-DHFR fusion toxin, and thereby the translocation of methotrexate-bound C2I-DHFR from endosomes into the cytosol of target cells is inhibited.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, V.; Pace, J.; Rosowsky, A.

    It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2{prime}-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed nomore » electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2{prime}-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.« less

  7. Probing the structure of Leishmania donovani chagasi DHFR-TS: comparative protein modeling and protein-ligand interaction studies.

    PubMed

    Maganti, Lakshmi; Manoharan, Prabu; Ghoshal, Nanda

    2010-09-01

    Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. It also acts as a drug target for Leishmaniasis. Inhibition of DHFR leads to cell death through lack of thymine (nucleotide metabolism). Although the crystal structures of Leishmania major and Trypanosoma cruzi DHFR-thymidylate synthase (TS) have been resolved, to date there is no three-dimensional (3D)-structural information on DHFR-TS of Leishmania donovani chagasi, which causes visceral leishmaniasis. Our aim in this study was to model the 3D structure of L. donovani chagasi DHFR-TS, and to investigate the structural requirements for its inhibition. In this paper we describe a highly refined homology model of L. donovani chagasi DHFR-TS based on available crystallographic structures by using the Homology module of Insight II. Structural refinement and minimization of the generated L. donovani chagasi DHFR-TS model employed the Discover 3 module of Insight II and molecular dynamic simulations. The model was further validated through use of the PROCHECK, Verify_3D, PROSA, PSQS and ERRAT programs, which confirm that the model is reliable. Superimposition of the model structure with the templates L. major A chain, L. major B chain And T. cruzi A chain showed root mean square deviations of 0.69 A, 0.71 A and 1.11 A, respectively. Docking analysis of the L. donovani chagasi DHFR-TS model with methotrexate enabled us to identify specific residues, viz. Val156, Val30, Lys95, Lys75 and Arg97, within the L. donovani chagasi DHFR-TS binding pocket, that play an important role in ligand or substrate binding. Docking studies clearly indicated that these five residues are important determinants for binding as they have strong hydrogen bonding interactions with the ligand.

  8. Genomic organization and expression of the human MSH3 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Atsushi; Ikejima, Miyoko; Suzuki, Noriko

    1996-02-01

    We have studied the expression and genomic organization of the human MSH3 gene, which encodes a human homologue of the bacterial DNA mismatch repair protein MutS. This gene is located upstream of the dihydrofolate reductase (DHFR) gene. Northern analysis has demonstrated that the hMSH3 gene is expressed in a variety of human tissues at low levels, like the DHFR gene. Characterization of cosmid clones has shown that the hMSH3 gene consists of 24 exons spanning at least 160 kb. All exon-intron junction sequences match the classical GT/AG rule, except that intron 6 has AT and AA at the ends. Twomore » major transcripts of 5.0 and 3.8 kb have been shown to be derived from the differential use of two polyadenylation sites. Elucidation of the complete genomic organization and the nucleotide sequences of the introns of the hMSH3 gene should be useful for studying the function of this gene and the possible involvement of specific mutations of the hMSH3 gene in some diseases. 34 refs., 5 figs., 1 tab.« less

  9. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Bolstad, E

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison ofmore » the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.« less

  10. Engineering human T cells for resistance to methotrexate and mycophenolate mofetil as an in vivo cell selection strategy.

    PubMed

    Jonnalagadda, Mahesh; Brown, Christine E; Chang, Wen-Chung; Ostberg, Julie R; Forman, Stephen J; Jensen, Michael C

    2013-01-01

    Gene transfer and drug selection systems that enforce ongoing transgene expression in vitro and in vivo which are compatible with human pharmaceutical drugs are currently underdeveloped. Here, we report on the utility of incorporating human enzyme muteins that confer resistance to the lymphotoxic/immunosuppressive drugs methotrexate (MTX) and mycophenolate mofetil (MMF) in a multicistronic lentiviral vector for in vivo T lymphocyte selection. We found that co-expression of human dihydrofolate reductase (DHFR(FS); L22F, F31S) and inosine monophosphate dehydrogenase II (IMPDH2(IY); T333I, S351Y) conferred T cell resistance to the cytocidal and anti-proliferative effects of these drugs at concentrations that can be achieved clinically (up to 0.1 µM MTX and 1.0 µM MPA). Furthermore, using a immunodeficient mouse model that supports the engraftment of central memory derived human T cells, in vivo selection studies demonstrate that huEGFRt(+)DHFR(FS+)IMPDH2(IY+) T cells could be enriched following adoptive transfer either by systemic administration of MTX alone (4.4 -fold), MMF alone (2.9-fold), or combined MTX and MMF (4.9-fold). These findings demonstrate the utility of both DHFR(FS)/MTX and IMPDH2(IY)/MMF for in vivo selection of lentivirally transduced human T cells. Vectors incorporating these muteins in combination with other therapeutic transgenes may facilitate the selective engraftment of therapeutically active cells in recipients.

  11. INSULIN-LIKE GROWTH FACTOR-1 RECEPTOR INHIBITOR, AMG-479, IN CETUXIMAB-REFRACTORY HEAD AND NECK SQUAMOUS CELL CARCINOMA

    PubMed Central

    Pohlmann, Paula R.; Rothenberg, Mace L.; Burkey, Brian B.; Parker, Joel; Palka, Kevin; Aulino, Joseph; Puzanov, Igor; Murphy, Barbara

    2011-01-01

    Background Recurrent head and neck squamous cell carcinoma (HNSCC) remains a difficult cancer to treat. Here, we describe a patient with HNSCC who had complete response to methotrexate (MTX) after progressing on multiple cytotoxic agents, cetuximab, and AMG-479 (monoclonal antibody against insulin-like growth factor-1 receptor [IGF-1R]). Methods The clinical information was collected by a retrospective medical record review under an Institutional Review Board–approved protocol. From 4 tumors and 2 normal mucosal epithelia, global gene expression, and IGF-1R and dihydrofolate reductase (DHFR) protein levels were determined. Results Effective target inhibition in the tumor was confirmed by the decreased protein levels of total and phospho-IGF-1R after treatment with AMG-479. Decreased level of DHFR and conversion of a gene expression profile associated with cetuximab-resistance to cetuximab-sensitivity were also observed. Conclusion This suggests that the combination of AMG- 479 and MTX or cetuximab may be a promising therapeutic approach in refractory HNSCC. PMID:20652976

  12. Design, Synthesis, and X-ray Crystal Structures of 2,4-Diaminofuro[2,3-d]pyrimidines as Multireceptor Tyrosine Kinase and Dihydrofolate Reductase Inhibitors

    PubMed Central

    Gangjee, Aleem; Li, Wei; Lin, Lu; Zeng, Yibin; Ihnat, Michael; Warnke, Linda A.; Green, Dixy W.; Cody, Vivian; Pace, Jim; Queener, Sherry F.

    2009-01-01

    To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 Å and 1.4 Å respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5 Å) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 2–13 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8–C9 unsaturated compounds 2–7 and catalytic reduction gave the saturated 8–13. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-β were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs. PMID:19748785

  13. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads.

    PubMed

    Rajasekaran, Rajalakshmi; Chen, Yi-Ping Phoebe

    2012-09-01

    Leishmaniasis, a multi-faceted ethereal disease is considered to be one of the World's major communicable diseases that demands exhaustive research and control measures. The substantial data on these protozoan parasites has not been utilized completely to develop potential therapeutic strategies against Leishmaniasis. Dihydrofolate reductase thymidylate synthase (DHFR-TS) plays a major role in the infective state of the parasite and hence the DHFR-TS based drugs remains of much interest to researchers working on Leishmaniasis. Although, crystal structures of DHFR-TS from different species including Plasmodium falciparum and Trypanosoma cruzi are available, the experimentally determined structure of the Leishmania major DHFR-TS has not yet been reported in the Protein Data Bank. A high quality three dimensional structure of L.major DHFR-TS has been modeled through the homology modeling approach. Carefully refined and the energy minimized structure of the modeled protein was validated using a number of structure validation programs to confirm its structure quality. The modeled protein structure was used in the process of structure based virtual screening to figure out a potential lead structure against DHFR TS. The lead molecule identified has a binding affinity of 0.51 nM and clearly follows drug like properties.

  14. Computer simulation of protein systems

    NASA Technical Reports Server (NTRS)

    Osguthorpe, D. J.; Dauber-Osguthorpe, P.; Wolff, J.; Kitson, D. H.; Hagler, A. T.

    1984-01-01

    Ligand binding to dihydrofolate reductase (DHFR) is discussed. This is an extremely important enzyme, as it is the target of several drugs (inhibitors) which are used clinically as antibacterials, antiprotozoals and in cancer chemotherapy. DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduction of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine iosynthesis, including that of thymidylate. Since DNA synthesis is dependent on a continuing supply of thymidylate, a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of growth of a rapidly proliferating cell line. DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors. For example, trimethoprim, an inhibitor of DHFR, binds to bacterial DHFR's 5 orders of magnitude greater than to vertebrate DHFR's. The structural mechanics, dynamics and energetics of a family of dihydrofolate reductases are studied to rationalize the basis for the inhibitor of these enyzmes and to understand the molecular basis of the difference in the binding constants between the species. This involves investigating the conformational changes induced in the protein on binding the ligand, the internal strain imposed by the enzyme on the ligand, the restriction of fluctuations in atom positions due to binding and the consequent change in entropy.

  15. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    PubMed

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  16. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  17. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    PubMed Central

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations. PMID:27213086

  18. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  19. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.

    PubMed

    Vickers, Anna A; Potter, Nicola J; Fishwick, Colin W G; Chopra, Ian; O'Neill, Alex J

    2009-06-01

    This study sought to expand knowledge on the molecular mechanisms of mutational resistance to trimethoprim in Staphylococcus aureus, and the fitness costs associated with resistance. Spontaneous trimethoprim-resistant mutants of S. aureus SH1000 were recovered in vitro, resistance genotypes characterized by DNA sequencing of the gene encoding the drug target (dfrA) and the fitness of mutants determined by pair-wise growth competition assays with SH1000. Novel resistance genotypes were confirmed by ectopic expression of dfrA alleles in a trimethoprim-sensitive S. aureus strain. Molecular models of S. aureus dihydrofolate reductase (DHFR) were constructed to explore the structural basis of trimethoprim resistance, and to rationalize the observed in vitro fitness of trimethoprim-resistant mutants. In addition to known amino acid substitutions in DHFR mediating trimethoprim resistance (F(99)Y and H(150)R), two novel resistance polymorphisms (L(41)F and F(99)S) were identified among the trimethoprim-resistant mutants selected in vitro. Molecular modelling of mutated DHFR enzymes provided insight into the structural basis of trimethoprim resistance. Calculated binding energies of the substrate (dihydrofolate) for the mutant and wild-type enzymes were similar, consistent with apparent lack of fitness costs for the resistance mutations in vitro. Reduced susceptibility to trimethoprim of DHFR enzymes carrying substitutions L(41)F, F(99)S, F(99)Y and H(150)R appears to result from structural changes that reduce trimethoprim binding to the enzyme. However, the mutations conferring trimethoprim resistance are not associated with fitness costs in vitro, suggesting that the survival of trimethoprim-resistant strains emerging in the clinic may not be subject to a fitness disadvantage.

  20. The role of folate metabolism in orofacial development and clefting

    PubMed Central

    Wahl, Stacey E.; Kennedy, Allyson E.; Wyatt, Brent H.; Moore, Alexander D.; Pridgen, Deborah E.; Cherry, Amanda M.; Mavila, Catherine B.; Dickinson, Amanda J.G.

    2015-01-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  1. Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide-Protein Chemistry Enabled Multilayer Construction.

    PubMed

    Zhang, Xue-Jian; Wang, Xiao-Wei; Sun, Jiaxing; Su, Chao; Yang, Shuguang; Zhang, Wen-Bin

    2018-05-16

    Protein immobilization is critical to utilize their unique functions in diverse applications. Herein, we report that orthogonal peptide-protein chemistry enabled multilayer construction can facilitate the incorporation of various folded structural domains, including calmodulin in different states, affibody and dihydrofolate reductase (DHFR). An extended conformation is found to be the most advantageous for steady film growth. The resulting protein thin films exhibit sensitive and selective responsive behaviors to bio-signals (Ca2+, TFP, NADPH, etc.) and fully maintain the catalytic activity of DHFR. The approach is applicable to different substrates such as hydrophobic gold and hydrophilic silica microparticles. The DHFR enzyme can be immobilized onto silica microparticles with tunable amounts. The multi-layer set-up exhibits a synergistic enhancement of DHFR activity with increasing number of bilayers and also makes the embedded DHFR more resilient to lyophilization. Therefore, this is a convenient and versatile method for protein immobilization with potential benefits of synergistic enhancement in enzyme performance and resilience.

  2. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  3. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis.

    PubMed

    Zheng, Jun; Rubin, Eric J; Bifani, Pablo; Mathys, Vanessa; Lim, Vivian; Au, Melvin; Jang, Jichan; Nam, Jiyoun; Dick, Thomas; Walker, John R; Pethe, Kevin; Camacho, Luis R

    2013-08-09

    para-Aminosalicylic acid (PAS) is one of the antimycobacterial drugs currently used for multidrug-resistant tuberculosis. Although it has been in clinical use for over 60 years, its mechanism(s) of action remains elusive. Here we report that PAS is a prodrug targeting dihydrofolate reductase (DHFR) through an unusual and novel mechanism of action. We provide evidences that PAS is incorporated into the folate pathway by dihydropteroate synthase (DHPS) and dihydrofolate synthase (DHFS) to generate a hydroxyl dihydrofolate antimetabolite, which in turn inhibits DHFR enzymatic activity. Interestingly, PAS is recognized by DHPS as efficiently as its natural substrate para-amino benzoic acid. Chemical inhibition of DHPS or mutation in DHFS prevents the formation of the antimetabolite, thereby conferring resistance to PAS. In addition, we identified a bifunctional enzyme (riboflavin biosynthesis protein (RibD)), a putative functional analog of DHFR in a knock-out strain. This finding is further supported by the identification of PAS-resistant clinical isolates encoding a RibD overexpression mutation displaying cross-resistance to genuine DHFR inhibitors. Our findings reveal that a metabolite of PAS inhibits DHFR in the folate pathway. RibD was shown to act as a functional analog of DHFR, and as for DHFS, both were shown to be associated in PAS resistance in laboratory strains and clinical isolates.

  4. DHFR and MSH3 co-amplification in childhood acute lymphoblastic leukaemia, in vitro and in vivo.

    PubMed

    Matheson, Elizabeth C; Hogarth, Linda A; Case, Marian C; Irving, Julie A E; Hall, Andrew G

    2007-06-01

    The MSH3 and dihydrofolate reductase (DHFR) genes, located on chromosome 5, share a common promoter but are divergently transcribed. Dysregulation of the mismatch repair (MMR) pathway has been found to occur in cell line models due to co-amplification of MSH3 as a coincident effect of DHFR amplification, acquired as a mechanism generating resistance to methotrexate (MTX). The increased levels of MSH3 perturbed MutSalpha function resulting in hypermutability and increased resistance to thiopurines, drugs whose cytotoxic effects are triggered by MutSalpha. The relevance of this phenomenon in clinical samples is unknown but is extremely pertinent in childhood acute lymphoblastic leukaemia (ALL) in which children are exposed for prolonged periods to both MTX and thiopurines such that a single amplification event involving both the DHFR and the MSH3 genes may cause chemotherapeutic resistance to both agents. Thus, we have generated a leukaemic cell line (PreB697) and a normal human lymphoblastoid cell line (TK6) that are resistant to a pharmacologically relevant dose of MTX and show that while increased DHFR levels result in MTX resistance, the associated increased levels of MSH3 are insufficient to perturb MutSalpha functionality, in terms of MMR capacity or 6-thioguanine sensitivity. In addition, we show that although low-level DHFR amplification occurs alone in a significant number of samples, both at disease onset and relapse, co-amplification of both MSH3 and DHFR is rarely found in primary ALL samples, even after prolonged MTX therapy and is not at a sufficiently high level to perturb MMR function.

  5. Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan

    PubMed Central

    2013-01-01

    Background Artesunate plus sulphadoxine-pyrimethamine (AS+SP) is now first-line treatment for Plasmodium falciparum infection in several south Asian countries, including Afghanistan. Molecular studies provide a sensitive means to investigate the current state of drug susceptibility to the SP component, and can also provide information on the likely efficacy of other potential forms of artemisinin-combination therapy. Methods During the years 2007 to 2010, 120 blood spots from patients with P. falciparum malaria were obtained in four provinces of Afghanistan. PCR-based methods were used to detect drug-resistance mutations in dhfr, dhps, pfcrt and pfmdr1, as well as to determine copy number of pfmdr1. Results The majority (95.5%) of infections had a double mutation in the dhfr gene (C59R, S108N); no mutations at dhfr positions 16, 51 or 164 were seen. Most isolates were wild type across the dhps gene, but five isolates from the provinces of Kunar and Nangarhar in eastern Afghanistan had the triple mutation A437G / K540E / A581G; all five cases were successfully treated with three receiving AS+SP and two receiving dihydroartemisinin-piperaquine. All isolates showed the pfcrt SVNMT chloroquine resistance haplotype. Five of 79 isolates had the pfmdr1 N86Y mutation, while 52 had pfmdr1 Y184F; positions 1034, 1042 and 1246 were wild type in all isolates. The pfmdr1 gene was not amplified in any sample. Conclusions This study indicates that shortly after the adoption of AS+SP as first-line treatment in Afghanistan, most parasites had a double mutation haplotype in dhfr, and a small number of isolates from eastern Afghanistan harboured a triple mutation haplotype in dhps. The impact of these mutations on the efficacy of AS+SP remains to be assessed in significant numbers of patients, but these results are clearly concerning since they suggest a higher degree of SP resistance than previously detected. Further focused molecular and clinical studies in this region are urgently required. PMID:23497229

  6. Trimethoprim Resistance of Dihydrofolate Reductase Variants from Clinical Isolates of Pneumocystis jirovecii

    PubMed Central

    Cody, V.; Pace, J.; Torkelson, P.; Gangjee, A.

    2013-01-01

    Pneumocystis jirovecii is an opportunistic pathogen that causes serious pneumonia in immunosuppressed patients. Standard therapy and prophylaxis include trimethoprim (TMP)-sulfamethoxazole; trimethoprim in this combination targets dihydrofolate reductase (DHFR). Fourteen clinically observed variants of P. jirovecii DHFR were produced recombinantly to allow exploration of the causes of clinically observed failure of therapy and prophylaxis that includes trimethoprim. Six DHFR variants (S31F, F36C, L65P, A67V, V79I, and I158V) showed resistance to inhibition by trimethoprim, with Ki values for trimethoprim 4-fold to 100-fold higher than those for the wild-type P. jirovecii DHFR. An experimental antifolate with more conformational flexibility than trimethoprim showed strong activity against one trimethoprim-resistant variant. The two variants that were most resistant to trimethoprim (F36C and L65P) also had increased Km values for dihydrofolic acid (DHFA). The catalytic rate constant (kcat) was unchanged for most variant forms of P. jirovecii DHFR but was significantly lowered in F36C protein; one naturally occurring variant with two amino acid substitutions (S106P and E127G) showed a doubling of kcat, as well as a Km for NADPH half that of the wild type. The strongest resistance to trimethoprim occurred with amino acid changes in the binding pocket for DHFA or trimethoprim, and the strongest effect on binding of NADPH was linked to a mutation involved in binding the phosphate group of the cofactor. This study marks the first confirmation that naturally occurring mutations in the gene for DHFR from P. jirovecii produce variant forms of DHFR that are resistant to trimethoprim and may contribute to clinically observed failures of standard therapy or prophylaxis. PMID:23896474

  7. Common Origin and Fixation of Plasmodium falciparum dhfr and dhps Mutations Associated with Sulfadoxine-Pyrimethamine Resistance in a Low-Transmission Area in South America▿ †

    PubMed Central

    McCollum, Andrea M.; Mueller, Kristen; Villegas, Leopoldo; Udhayakumar, Venkatachalam; Escalante, Ananias A.

    2007-01-01

    Recent studies indicated that sensitive parasites could increase in frequency in a population when drugs are removed, suggesting that the life span of affordable antimalarial drugs could be expanded. We studied 97 samples from Bolivar State, Venezuela, an area where sulfadoxine-pyrimethamine (SP) has not been used for 8 years due to its ineffectiveness. We characterized point mutations in two genes that have been implicated in resistance to SP, dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps). We also assayed neutral microsatellite markers around the dhfr (chromosome 4) and dhps (chromosome 8) genes and on chromosomes 2 and 3 to track the origin and spread of resistant alleles. We found that drug-resistant SP mutants are fixed in the population. Two genotypes were present in the samples, dhfr(50R/51I/108N) dhps(437G/540E/581G) (90.7%) and dhfr(51I/108N) dhps(437G/581G) (9.3%). We show a single microsatellite haplotype for all of the dhfr and dhps alleles, and the alleles at the microsatellite loci are different from those present in Africa. Thus, in these samples from Venezuela, there is a single origin for both dhfr and dhps SP-resistant alleles, and these alleles originated independently of those characterized from Africa. Furthermore, this is the first report of a “hitchhiking effect” on the genetic variation around dhps due to selection by SP using an extensive set of microsatellite markers. Our results indicate that, in areas where there is limited gene flow, the fixation of drug-resistant parasites in the population is stable, even after drug selection is relaxed. PMID:17283199

  8. Methotrexate pharmacogenetics in Uruguayan adults with hematological malignant diseases.

    PubMed

    Giletti, Andrea; Vital, Marcelo; Lorenzo, Mariana; Cardozo, Patricia; Borelli, Gabriel; Gabus, Raúl; Martínez, Lem; Díaz, Lilian; Assar, Rodrigo; Rodriguez, María Noel; Esperón, Patricia

    2017-11-15

    Individual variability is among the causes of toxicity and interruption of treatment in acute lymphoblastic leukemia (ALL) and severe non-Hodgkin lymphoma (NHL) patients under protocols including Methotrexate (MTX): 2,4-diamino-N10-methyl propyl-glutamic acid. 41 Uruguayan patients were recruited. Gene polymorphisms involved in MTX pathway were analyzed and their association with treatment toxicities and outcome was evaluated. Genotype distribution and allele frequency were determined for SLC19A1 G 80 A, MTHFR C 677 T and A 1298 C, TYMS 28bp copy number variation, SLCO1B1 T 521 C, DHFR C -1610 G/T, DHFR C -680 A, DHFR A -317 G and DHFR 19bp indel. Multivariate analysis showed that DHFR -1610 G/T (OR=0.107, p=0.018) and MTHFR 677 T alleles (OR=0.12, p=0.026) had a strong protective effect against hematologic toxicity, while DHFR -1610 CC genotype increased this toxicity (OR=9, p=0.045). No more associations were found. The associations found between gene polymorphisms and toxicities in this small cohort are encouraging for a more extensive research to gain a better dose individualization in adult ALL and NHL patients. Besides, genotype distribution showed to be different from other populations, reinforcing the idea that genotype data from other populations should not be extrapolated to ours. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    PubMed

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  10. Surface Sites for Engineering Allosteric Control in Proteins

    PubMed Central

    Lee, Jeeyeon; Natarajan, Madhusudan; Nashine, Vishal C.; Socolich, Michael; Vo, Tina; Russ, William P.; Benkovic, Stephen J.; Ranganathan, Rama

    2010-01-01

    Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites. PMID:18927392

  11. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    PubMed

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In themore » present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.« less

  13. Transcription upregulation via force-induced direct stretching of chromatin

    NASA Astrophysics Data System (ADS)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  14. Generating mammalian stable cell lines by electroporation.

    PubMed

    A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J

    2013-01-01

    Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47.

    PubMed

    Yang, Seung Yeob; Choi, Seung Ah; Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki

    2015-12-22

    The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.

  16. Clinical Relevance of Multiple Single-Nucleotide Polymorphisms in Pneumocystis jirovecii Pneumonia: Development of a Multiplex PCR-Single-Base-Extension Methodology▿

    PubMed Central

    Esteves, F.; Gaspar, J.; De Sousa, B.; Antunes, F.; Mansinho, K.; Matos, O.

    2011-01-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP. PMID:21389160

  17. Clinical relevance of multiple single-nucleotide polymorphisms in Pneumocystis jirovecii Pneumonia: development of a multiplex PCR-single-base-extension methodology.

    PubMed

    Esteves, F; Gaspar, J; De Sousa, B; Antunes, F; Mansinho, K; Matos, O

    2011-05-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP.

  18. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli

    PubMed Central

    2016-01-01

    Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551

  19. Investigation of Classical Organic and Ionic Liquid Cosolvents for Early-Stage Screening in Fragment-Based Inhibitor Design with Unrelated Bacterial and Human Dihydrofolate Reductases.

    PubMed

    Toulouse, Jacynthe L; Abraham, Sarah M J; Kadnikova, Natalia; Bastien, Dominic; Gauchot, Vincent; Schmitzer, Andreea R; Pelletier, Joelle N

    Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.

  20. Screening of polymorphisms for MTHFR and DHFR genes in spina bifida children and their mothers

    NASA Astrophysics Data System (ADS)

    Husna, M. Z.; Endom, I.; Ibrahim, S.; Selvi, N. Amaramalar; Fakhrurazi, H.; Htwe, R. Ohnmar; Kanehaswari, Y.; Halim, A. R. Abdul; Wong, S. W.; Subashini, K.; Syahira, O. Nur; Aishah, S.

    2013-11-01

    Mechanism underlying the beneficial effect of folic acid supplementation in reducing the risk of neural tube defect is still not well understood. Current evidences show the involvement of folic acid metabolic gene's polymorphism as contributing factors that regulate this pathway. Therefore, the objective of this research was to determine the presence of C677T polymorphism for methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR-19 bp deletion) genes between mother-children pairs of case and control. With the approval of UKMMC ethic committee, genomic DNA was extracted from one hundred and forty consented bloods. Polymerase chain reaction (PCR), PCR-RFLP (Restriction Fragment Length Polymorphism) and sequencing were employed to verify each nucleotide change. Our result shows that mutant MTHFR and DHFR alleles are present in all Malaysian sub-ethnic groups, case and control. Even though mutant MTHFR are found to be slightly higher in the case groups, 75% of the affected child is a non carrier for this allele and 62.5% of the mothers with an affected child are genotypically normal. For DHFR, almost all (87.5-100%) investigated samples are a carrier or having a double DHFR deletion be it a case or control pairs. However, strong maternal inheritance shown by the deleted allele might be due to a cascade effect of lacks of folate consumption or maternal uniparental disomy. In conclusion, the use of MTHFR and DHFR as markers in determining the risk of having spina bifida baby is uninformative and plays a small indirect role as the genetic causes of spina bifida. Therefore, spina bifida remains etiologically unknown polygenic and quantitative developmental trait whereby the searches for positive genetic marker need to be continued.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitorsmore » with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.« less

  2. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  3. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    relationships between folate , one carbon metabolism, DNA methylation and gene expression within the context of breast cancer. Our hypothesis is that the...lentivirus plasmids containing miRNA against DHFR and AHCY. 2. Test effects of folate deficiency on global and gene specific DNA methylation and gene...including mammary tumors. The B vitamin folate is required for the synthesis of purines, thymidine, and S-adenosylmethionine (SAM), the methyl donor for DNA

  4. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential. PMID:26131691

  5. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47

    PubMed Central

    Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki

    2015-01-01

    Background The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. Materials and methods We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. Results A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Conclusions Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability. PMID:26506238

  6. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen

    PubMed Central

    2013-01-01

    Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT. PMID:23855834

  7. Travel and the emergence of high-level drug resistance in Plasmodium falciparum in southwest Uganda: results from a population-based study.

    PubMed

    Lynch, Caroline A; Pearce, Richard; Pota, Hirva; Egwang, Connie; Egwang, Thomas; Bhasin, Amit; Cox, Jonathan; Abeku, Tarekegn A; Roper, Cally

    2017-04-17

    The I164L mutation on the dhfr gene confers high level resistance to sulfadoxine-pyrimethamine (SP) but it is rare in Africa except in a cluster of reports where prevalence >10% in highland areas of southwest Uganda and eastern Rwanda. The occurrence of the dhfr I164L mutation was investigated in community surveys in this area and examined the relationship to migration. A cross-sectional prevalence survey was undertaken in among villages within the catchment areas of two health facilities in a highland site (Kabale) and a highland fringe site (Rukungiri) in 2007. Sociodemographic details, including recent migration, were collected for each person included in the study. A total of 206 Plasmodium falciparum positive subjects were detected by rapid diagnostic test; 203 in Rukungiri and 3 in Kabale. Bloodspot samples were taken and were screened for dhfr I164L. Sequence analysis confirmed the presence of the I164L mutations in twelve P. falciparum positive samples giving an estimated prevalence of 8.6% in Rukungiri. Of the three parasite positive samples in Kabale, none had I164L mutations. Among the twelve I164L positives three were male, ages ranged from 5 to 90 years of age. None of those with the I164L mutation had travelled in the 8 weeks prior to the survey, although three were from households from which at least one household member had travelled during that period. Haplotypes were determined in non-mixed infections and showed the dhfr I164L mutation occurs in both as a N51I + S108N + I164L haplotype (n = 2) and N51I + C59R + S108N + I164L haplotype (n = 5). Genotyping of flanking microsatellite markers showed that the I164L occurred independently on the triple mutant (N51I, C59R + S108N) and double mutant (N51I + S108N) background. There is sustained local transmission of parasites with the dhfr I164L mutation in Rukungiri and no evidence to indicate its occurrence is associated with recent travel to highly resistant neighbouring areas. The emergence of a regional cluster of I164L in SW Uganda and Rwanda indicates that transmission of I164L is facilitated by strong drug pressure in low transmission areas potentially catalysed in those areas by travel and the importation of parasites from relatively higher transmission settings.

  8. Growth Suppression and Therapy Sensitization of Breast Cancer

    DTIC Science & Technology

    2000-07-01

    determined by performed on two independent occasions. PCR amplification of a given housekeeping gene have been shown to correspond to determinations of...h incubation in the presence or absence of 1 mM cisplatin expressed housekeeping gene, dihydrofolate reductase (DHFR). (Platinol, aqueous solution at... G3PDH :j G3PDH Figure 9. A549 cells were treated with 3 different antisense oligonucleotides complementary to JNKI mRNA (including the active antisense

  9. Crystal structures of trimethoprim-resistant DfrA1 rationalize potent inhibition by propargyl-linked antifolates

    PubMed Central

    Lombardo, Michael N.; G-Dayanandan, Narendran; Wright, Dennis L.; Anderson, Amy C.

    2016-01-01

    Multidrug-resistant Enterobacteriaceae, notably Escherichia coli and Klebsiella pneumoniae, have become major health concerns worldwide. Resistance to effective therapeutics is often carried by class I and II integrons that can confer insensitivity to carbapenems, extended spectrum beta-lactamases, the antifolate trimethoprim, fluoroquinolones and aminoglycosides. Specifically of interest to the study here, a prevalent gene (dfrA1) coding for an insensitive dihydrofolate reductase (DHFR) confers 190- or 1000-fold resistance to trimethoprim for K. pneumoniae and E. coli, respectively. Attaining inhibition of both the wild-type and resistant forms of the enzyme is critical for new antifolates. For several years, we have been developing the propargyl-linked antifolates (PLAs) as effective inhibitors against trimethoprim-resistant DHFR enzymes. Here, we show that the PLAs are active against both the wild-type and DfrA1 DHFR proteins. We report two high resolution crystal structures of DfrA1 bound to potent PLAs. The structure-activity relationships and crystal structures will be critical in driving the design of broadly active inhibitors against wild-type and resistant DHFR. PMID:27624966

  10. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter.

    PubMed

    Means, A L; Slansky, J E; McMahon, S L; Knuth, M W; Farnham, P J

    1992-03-01

    The transcription rate of the dihydrofolate reductase (DHFR) gene increases at the G1/S boundary of the proliferative cell cycle. Through analysis of transiently and stably transfected NIH 3T3 cells, we have now demonstrated that DHFR promoter sequences extending from -270 to +20 are sufficient to confer similar regulation on a reporter gene. Mutation of a protein binding site that spans sequences from -16 to +11 in the DHFR promoter resulted in loss of the transcriptional increase at the G1/S boundary. Purification of an activity from HeLa nuclear extract that binds to this region enriched for a 180-kDa polypeptide (HIP1). Using this HIP1 preparation, we have identified specific positions within the binding site that are critical for efficient protein-DNA interactions. An analysis of association and dissociation rates suggests that bound HIP1 protein can exchange rapidly with free protein. This rapid exchange may facilitate the burst of transcriptional activity from the DHFR promoter at the G1/S boundary.

  11. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter.

    PubMed Central

    Means, A L; Slansky, J E; McMahon, S L; Knuth, M W; Farnham, P J

    1992-01-01

    The transcription rate of the dihydrofolate reductase (DHFR) gene increases at the G1/S boundary of the proliferative cell cycle. Through analysis of transiently and stably transfected NIH 3T3 cells, we have now demonstrated that DHFR promoter sequences extending from -270 to +20 are sufficient to confer similar regulation on a reporter gene. Mutation of a protein binding site that spans sequences from -16 to +11 in the DHFR promoter resulted in loss of the transcriptional increase at the G1/S boundary. Purification of an activity from HeLa nuclear extract that binds to this region enriched for a 180-kDa polypeptide (HIP1). Using this HIP1 preparation, we have identified specific positions within the binding site that are critical for efficient protein-DNA interactions. An analysis of association and dissociation rates suggests that bound HIP1 protein can exchange rapidly with free protein. This rapid exchange may facilitate the burst of transcriptional activity from the DHFR promoter at the G1/S boundary. Images PMID:1545788

  12. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors

    PubMed Central

    Zhang, Xin; Zhou, Xilin; L.Kisliuk, Roy; Piraino, Jennifer; Cody, Vivian

    2011-01-01

    Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH3 substituents inhibited human (h) TS (IC50 = 0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH3 with a 2-NH2 increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC50 = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate. PMID:21550809

  13. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II.

    PubMed

    Buermeyer, A B; Thompson, N E; Strasheim, L A; Burgess, R R; Farnham, P J

    1992-05-01

    We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.

  14. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  15. Folding pathway of a multidomain protein depends on its topology of domain connectivity

    PubMed Central

    Inanami, Takashi; Terada, Tomoki P.; Sasai, Masaki

    2014-01-01

    How do the folding mechanisms of multidomain proteins depend on protein topology? We addressed this question by developing an Ising-like structure-based model and applying it for the analysis of free-energy landscapes and folding kinetics of an example protein, Escherichia coli dihydrofolate reductase (DHFR). DHFR has two domains, one comprising discontinuous N- and C-terminal parts and the other comprising a continuous middle part of the chain. The simulated folding pathway of DHFR is a sequential process during which the continuous domain folds first, followed by the discontinuous domain, thereby avoiding the rapid decrease in conformation entropy caused by the association of the N- and C-terminal parts during the early phase of folding. Our simulated results consistently explain the observed experimental data on folding kinetics and predict an off-pathway structural fluctuation at equilibrium. For a circular permutant for which the topological complexity of wild-type DHFR is resolved, the balance between energy and entropy is modulated, resulting in the coexistence of the two folding pathways. This coexistence of pathways should account for the experimentally observed complex folding behavior of the circular permutant. PMID:25267632

  16. Fluorescent Biphenyl Derivatives of Phenylalanine Suitable for Protein Modification

    PubMed Central

    Chen, Shengxi; Fahmi, Nour Eddine; Bhattacharya, Chandrabali; Wang, Lin; Jin, Yuguang; Benkovic, Stephen J.; Hecht, Sidney M.

    2013-01-01

    In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from E. coli (ecDHFR) with minimal disruption of protein structure or function, even where the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics. Presently, we describe the synthesis and photophysical characterization of four positional isomers of biphenyl-phenylalanine, all of which were found to exhibit potentially useful fluorescent properties. All four phenylalanine derivatives were used to activate suppressor tRNA transcripts, and incorporated into multiple positions of ecDHFR. All phenylalanine derivatives were incorporated with good efficiency into position 16 of ecDHFR, and afforded modified proteins which consumed NADPH at rates up to about twice the rate measured for wild type. This phenomenon has been noted on a number of occasions previously and shown to be due to an increase in the off-rate of tetrahydrofolate from the enzyme, altering a step that is normally rate limiting. When introduced into sterically accessible position 49, the four phenylalanine derivatives afforded DHFRs having catalytic function comparable to wild type. The four phenylalanine derivatives were also introduced into position 115 of ecDHFR, which is known to be a folded region of the protein less tolerant of structural alteration. As anticipated, significant differences were noted in the catalytic efficiencies of the derived proteins. The ability of two of the sizeable biphenyl-phenylalanine derivatives to be accommodated at position 115 with minimal perturbation of DHFR function is attributed to rotational flexibility about the biphenyl bonds. PMID:24152169

  17. Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences

    PubMed Central

    Whitney, Anna; Shakhnovich, Eugene I.

    2015-01-01

    Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910

  18. Antigen persistence of rapid diagnostic tests in pregnant women in Nanoro, Burkina Faso, and the implications for the diagnosis of malaria in pregnancy.

    PubMed

    Kattenberg, Johanna H; Tahita, Christian M; Versteeg, Inge A J; Tinto, Halidou; Traoré-Coulibaly, Maminata; Schallig, Henk D F H; Mens, Petra F

    2012-05-01

    To evaluate persistence of several Plasmodium antigens in pregnant women after treatment and compare diagnostics during treatment follow-up. Thirty-two pregnant women (N = 32) with confirmed malaria infection by a histidine-rich protein 2 (HRP2)-based rapid diagnostic test (RDT) and microscopy were followed for 28 days after artemisinin-based combination therapy (ACT). A Plasmodium lactate dehydrogenase (pLDH)-based RDT and two ELISAs based on the detection of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and haeme detoxification protein (HDP) were compared with each other and to RT-PCR at each visit. The mean visit number (95% confidence interval) on which the HRP2-based RDT was still positive after treatment was 3.4 (2.7-4.1) visits with some patients still positive at day 28. This is significantly later than the pLDH-based RDT [0.84 (0.55-1.1)], microscopy (median 1, range 1-3), DHFR-TS-ELISA [1.7 (1.1-2.3)] and RT-PCR (median 2, range 1-5) (P < 0.05), but not significantly later than HDP-ELISA [2.1 (1.6-2.7)]. Lower gravidity and higher parasite density at day 0 resulted in significantly longer positive results with most tests (P < 0.05). HRP2 can persist up to 28 days after ACT treatment; therefore, this test is not suitable for treatment follow-up in pregnant women and can generate problems when using this test during intermittent preventive treatment (IPTp). DHFR-TS is less persistent than HRP2, making it a potentially interesting target for diagnosis. © 2012 Blackwell Publishing Ltd.

  19. Genetic mutations in Plasmodium falciparum and Plasmodium vivax dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) in Vanuatu and Solomon Islands prior to the introduction of artemisinin combination therapy.

    PubMed

    Gresty, Karryn J; Gray, Karen-Ann; Bobogare, Albino; Wini, Lyndes; Taleo, George; Hii, Jeffrey; Cheng, Qin; Waters, Norman C

    2014-10-14

    Plasmodium falciparum and Plasmodium vivax are endemic in Vanuatu and the Solomon Islands. While both countries have introduced artemether-lumefantrine (AL) as first-line therapy for both P. falciparum and P. vivax since 2008, chloroquine and sulphadoxine-pyrimethamine (SP) were used as first-line therapy for many years prior to the introduction of AL. Limited data are available on the extent of SP resistance at the time of policy change. Blood spots were obtained from epidemiological surveys conducted on Tanna Island, Tafea Province, Vanuatu and Temotu Province, Solomon Islands in 2008. Additional samples from Malaita Province, Solomon Islands were collected as part of an AL therapeutic efficacy study conducted in 2008. Plasmodium vivax and P. falciparum dhfr and dhps genes were sequenced to detect nucleotide polymorphisms. All P. falciparum samples analysed (n=114) possessed a double mutant pfdhfr allele (C59R/S108N). Additionally, mutation A437G in pfhdps was detected in a small number of samples 2/13, 1/17 and 3/26 from Tanna Island, Vanuatu and Temotu and Malaita Provinces Solomon Islands respectively. Mutations were also common in pvdhfr from Tanna Island, Vanuatu, where 33/51 parasites carried the double amino acid substitution S58R/S117N, while in Temotu and Malaita Provinces, Solomon Islands 32/40 and 39/46 isolates carried the quadruple amino acid substitution F57L/S58R/T61M/S117T in DHFR respectively. No mutations in pvdhps (n=108) were detected in these three island groups. Prior to the introduction of AL, there was a moderate level of SP resistance in the P. falciparum population that may cause SP treatment failure in young children. Of the P. vivax isolates, a majority of Solomon Islands isolates carried quadruple mutant pvdhfr alleles while a majority of Vanuatu isolates carried double mutant pvdhfr alleles. This suggests a higher level of SP resistance in the P. vivax population in Solomon Islands compared to the sympatric P. falciparum population and there is a higher level of SP resistance in P. vivax parasites from Solomon Islands than Vanuatu. This study demonstrates that the change of treatment policy in these countries from SP to ACT was timely. The information also provides a baseline for future monitoring.

  20. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS.

    PubMed

    Sahu, Supriya; Ghosh, Surajit Kumar; Kalita, Junmoni; Dutta, Mayurakhi; Bhat, Hans Raj

    2016-04-01

    Existing antifolate antimalarial drugs have shown resistance due to the mutations at some amino acid positions of Plasmodium falciparum DHFR-TS. In the present study, to overcome this resistance, a new series of hybrid 4-aminoquinoline-triazine derivatives were designed and docked into the active site of Pf-DHFR-TS (PDB i.d. 1J3K) using validated CDOCKER protocol. Binding energy was calculated by applying CHARMm forcefield. Binding energy and the pattern of interaction of the docked compounds were analysed. Fifteen compounds were selected for synthesis based on their binding energy values and docking poses. Synthesized compounds were characterised by FTIR, (1)H NMR, (13)C NMR, mass spectroscopy and were screened for antimalarial activity against 3D7 strain of Plasmodium falciparum. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A novel in silico approach to drug discovery via computational intelligence.

    PubMed

    Hecht, David; Fogel, Gary B

    2009-04-01

    A computational intelligence drug discovery platform is introduced as an innovative technology designed to accelerate high-throughput drug screening for generalized protein-targeted drug discovery. This technology results in collections of novel small molecule compounds that bind to protein targets as well as details on predicted binding modes and molecular interactions. The approach was tested on dihydrofolate reductase (DHFR) for novel antimalarial drug discovery; however, the methods developed can be applied broadly in early stage drug discovery and development. For this purpose, an initial fragment library was defined, and an automated fragment assembly algorithm was generated. These were combined with a computational intelligence screening tool for prescreening of compounds relative to DHFR inhibition. The entire method was assayed relative to spaces of known DHFR inhibitors and with chemical feasibility in mind, leading to experimental validation in future studies.

  2. Transcriptional Downregulation of ORF50/Rta by Methotrexate Inhibits the Switch of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 from Latency to Lytic Replication

    PubMed Central

    Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335

  3. Structure-Guided Development of Efficacious Antifungal Agents Targeting Candida Glabrata Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Smith, A

    2008-01-01

    Candida glabrata is a lethal fungal pathogen resistant to many antifungal agents and has emerged as a critical target for drug discovery. Over the past several years, we have been developing a class of propargyl-linked antifolates as antimicrobials and hypothesized that these compounds could be effective inhibitors of dihydrofolate reductase (DHFR) from C. glabrata. We initially screened a small collection of these inhibitors and found modest levels of potency. Subsequently, we determined the crystal structure of C. glabrata DHFR bound to a representative inhibitor with data to 1.6 A resolution. Using this structure, we designed and synthesized second-generation inhibitors. Thesemore » inhibitors bind the C. glabrata DHFR enzyme with subnanomolar potency, display greater than 2000-fold levels of selectivity over the human enzyme, and inhibit the growth of C. glabrata at levels observed with clinically employed therapeutics.« less

  4. Puromycin and Methotrexate Resistance Cassettes and Optimized cre-recombinase Expression Plasmids for use in Yeast

    PubMed Central

    MacDonald, Chris; Piper, Robert C.

    2015-01-01

    Here we expand the set of tools for genetically manipulating Saccharomyces cerevisiae. We show that puromycin-resistance can be achieved in yeast through expression of a bacterial puromycin-resistance gene optimized to the yeast codon bias, which in turn serves as an easy to use dominant genetic marker suitable for gene disruption. We have constructed a similar DNA cassette expressing yeast codon-optimized mutant human dihydrofolate reductase (DHFR) that confers resistance to methotrexate and can also be used as a dominant selectable marker. Both of these drug-resistant marker cassettes are flanked by loxP sites allowing for their excision from the genome following expression of cre-recombinase. Finally, we have created a series of plasmids for low-level constitutive expression of cre-recombinase in yeast that allows for efficient excision of loxP-flanked markers. PMID:25688547

  5. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  6. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana

    PubMed Central

    Maniga, Antonio; Ghisaura, Stefania; Perrotta, Lara; Marche, Maria Giovanna; Cella, Rino

    2017-01-01

    In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities. PMID:28594957

  7. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.; Liu, J; Lombardo, M

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and foundmore » that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.« less

  8. Multiple Mutations Modulate the Function of Dihydrofolate Reductase in Trimethoprim-Resistant Streptococcus pneumoniae

    PubMed Central

    Maskell, Jeffrey P.; Sefton, Armine M.; Hall, Lucinda M. C.

    2001-01-01

    Trimethoprim resistance in Streptococcus pneumoniae can be conferred by a single amino acid substitution (I100-L) in dihydrofolate reductase (DHFR), but resistant clinical isolates usually carry multiple DHFR mutations. DHFR genes from five trimethoprim-resistant isolates from the United Kingdom were compared to susceptible isolates and used to transform a susceptible control strain (CP1015). All trimethoprim-resistant isolates and transformants contained the I100-L mutation. The properties of DHFRs from transformants with different combinations of mutations were compared. In a transformant with only the I100-L mutation (R12/T2) and a D92-A mutation also found in the DHFRs of susceptible isolates, the enzyme was much more resistant to trimethoprim inhibition (50% inhibitory concentration [IC50], 4.2 μM) than was the DHFR from strain CP1015 (IC50, 0.09 μM). However, Km values indicated a lower affinity for the enzyme's natural substrates (Km for dihydrofolate [DHF], 3.1 μM for CP1015 and 27.5 μM for R12/T2) and a twofold decrease in the specificity constant. In transformants with additional mutations in the C-terminal portion of the enzyme, Km values for DHF were reduced (9.2 to 15.2 μM), indicating compensation for the lower affinity generated by I100-L. Additional mutations in the N-terminal portion of the enzyme were associated with up to threefold-increased resistance to trimethoprim (IC50 of up to 13.7 μM). It is postulated that carriage of the mutation M53-I—which, like I100-L, corresponds to a trimethoprim binding site in the Escherichia coli DHFR—is responsible for this increase. This study demonstrates that although the I100-L mutation alone may give rise to trimethoprim resistance, additional mutations serve to enhance resistance and modulate the effects of existing mutations on the affinity of DHFR for its natural substrates. PMID:11257022

  9. Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area.

    PubMed

    Li, Peipei; Zhao, Zhenjun; Xing, Hua; Li, Wenli; Zhu, Xiaotong; Cao, Yaming; Yang, Zhaoqing; Sattabongkot, Jetsumon; Yan, Guiyun; Fan, Qi; Cui, Liwang

    2016-11-15

    The Greater Mekong Subregion is aiming to achieve regional malaria elimination by 2030. Though a shift in malaria parasite species predominance by Plasmodium vivax has been recently documented, the transmission of the two minor Plasmodium species, Plasmodium malariae and Plasmodium ovale spp., is poorly characterized in the region. This study aims to determine the prevalence of these minor species in the China-Myanmar border area and their genetic diversity. Epidemiology study was conducted during passive case detection in hospitals and clinics in Myanmar and four counties in China along the China-Myanmar border. Cross-sectional surveys were conducted in villages and camps for internally displaced persons to determine the prevalence of malaria infections. Malaria infections were diagnosed initially by microscopy and later in the laboratory using nested PCR for the SSU rRNA genes. Plasmodium malariae and P. ovale infections were confirmed by sequencing the PCR products. The P. ovale subtypes were determined by sequencing the Pocytb, Pocox1 and Pog3p genes. Parasite populations were evaluated by PCR amplification and sequencing of the MSP-1 genes. Antifolate sensitivity was assessed by sequencing the dhfr-ts and dhps genes from the P. malariae and P. ovale isolates. Analysis of 2701 blood samples collected from the China-Myanmar border by nested PCR targeting the parasite SSU rRNA genes identified 561 malaria cases, including 161 Plasmodium falciparum, 327 P. vivax, 66 P. falciparum/P. vivax mixed infections, 4 P. malariae and 3 P. ovale spp. P. vivax and P. falciparum accounted for >60 and ~30% of all malaria cases, respectively. In comparison, the prevalence of P. malariae and P. ovale spp. was very low and only made up ~1% of all PCR-positive cases. Nevertheless, these two species were often misidentified as P. vivax infections or completely missed by microscopy even among symptomatic patients. Phylogenetic analysis of the SSU rRNA, Pocytb, Pocox1 and Pog3p genes confirmed that the three P. ovale spp. isolates belonged to the subtype P. ovale curtisi. Low-level genetic diversity was detected in the MSP-1, dhfr and dhps genes of these minor parasite species, potentially stemming from the low prevalence of these parasites preventing their mixing. Whereas most of the dhfr and dhps positions equivalent to those conferring antifolate resistance in P. falciparum and P. vivax were wild type, a new mutation S113C corresponding to the S108 position in pfdhfr was identified in two P. ovale curtisi isolates. The four human malaria parasite species all occurred sympatrically at the China-Myanmar border. While P. vivax has become the predominant species, the two minor parasite species also occurred at very low prevalence but were often misidentified or missed by conventional microscopy. These minor parasite species displayed low levels of polymorphisms in the msp-1, dhfr and dhps genes.

  10. Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity

    PubMed Central

    Bhattacharyya, Sanchari; Bershtein, Shimon; Yan, Jin; Argun, Tijda; Gilson, Amy I; Trauger, Sunia A; Shakhnovich, Eugene I

    2016-01-01

    Gene dosage toxicity (GDT) is an important factor that determines optimal levels of protein abundances, yet its molecular underpinnings remain unknown. Here, we demonstrate that overexpression of DHFR in E. coli causes a toxic metabolic imbalance triggered by interactions with several functionally related enzymes. Though deleterious in the overexpression regime, surprisingly, these interactions are beneficial at physiological concentrations, implying their functional significance in vivo. Moreover, we found that overexpression of orthologous DHFR proteins had minimal effect on all levels of cellular organization – molecular, systems, and phenotypic, in sharp contrast to E. coli DHFR. Dramatic difference of GDT between ‘E. coli’s self’ and ‘foreign’ proteins suggests the crucial role of evolutionary selection in shaping protein-protein interaction (PPI) networks at the whole proteome level. This study shows how protein overexpression perturbs a dynamic metabolon of weak yet potentially functional PPI, with consequences for the metabolic state of cells and their fitness. DOI: http://dx.doi.org/10.7554/eLife.20309.001 PMID:27938662

  11. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR

    PubMed Central

    Keedy, Daniel A.; van den Bedem, Henry; Sivak, David A.; Petsko, Gregory A.; Ringe, Dagmar; Wilson, Mark A.; Fraser, James S.

    2014-01-01

    Summary Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution datasets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These datasets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies sidechain and mainchain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved, and likely reflect temperature-dependent solvent remodeling. Both cryogenic datasets point to additional conformations not evident in the corresponding room-temperature datasets, suggesting that cryocooling does not merely trap pre-existing conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics. PMID:24882744

  12. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases.

    PubMed

    Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N

    2010-01-14

    Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.

  13. Design, synthesis of methotrexate-diosgenin conjugates and biological evaluation of their effect on methotrexate transport-resistant cells.

    PubMed

    Cai, Bangrong; Liao, Aimei; Lee, Kyung-Ku; Ban, Jae-Sam; Yang, Hyun-Sam; Im, Young Jun; Chun, ChangJu

    2016-12-01

    A series of methotrexate-diosgenin conjugates was designed and synthesized to enhance the passive internalization of methotrexate (MTX) into transport-resistant cells. The inhibitory effects of these conjugates on dihydrofolate reductase (DHFR), and their anti-proliferation behaviors against a transport-resistant breast cancer cell line, MDA-MB-231, were investigated. All of the synthesized conjugates retained an ability to inhibit DHFR after the diosgenin substitution. The MTX conjugates were much more potent against methotrexate-resistant MDA-MB-231 cells than MTX. Conjugate 18, containing a disulfide bond, exhibited the most potent anti-proliferative and DHFR inhibitory effects (IC 50 =4.1μM and 17.21nM, respectively). Anti-proliferative activity was higher in the conjugate with a longer space linker (conjugate 21) than those with shorter linkers (conjugates 19 and 20). These results suggest that diosgenin conjugation of MTX may be an effective way to overcome its transport resistance in cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions.

    PubMed

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-04-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.

  15. Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR.

    PubMed

    Anderson, Karen S

    2017-03-01

    Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Leishmania major (Lm), Plasmodium falciparum (Pf), Toxoplasma gondii (Tg) and Cryptosporidium hominis (Ch), contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the two sequential catalytic activities contained on a single polypeptide chain. It has been suggested that the bifunctional nature of the two catalytic activities may enable substrate channeling. The 3D structures for each of these enzymes reveals distinct features for each species. While three of the four species (Pf, Tg and Ch) contain a junctional region linking the two domains, this is lacking in Lm. The Lm and Pf contain N-terminal amino acid extensions. A multidisciplinary approach using structural studies and transient kinetic analyses combined with mutational analysis has investigated the roles of these unique structural features for each enzyme. Additionally, the possibility of substrate channeling behavior was explored. These studies have identified unique, functional regions in both the TS and DHFR domains that govern efficient catalysis for each species. Surprisingly, even though there are structural similarities among the species, each is regulated in a distinct manner. This structural and mechanistic information was also used to exploit species-specific inhibitor design. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    NASA Astrophysics Data System (ADS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-02-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

  17. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia

    PubMed Central

    Mkulama, Mtawa AP; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-01-01

    Background In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. Methods A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Results Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. Conclusion This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll. PMID:18495008

  18. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia.

    PubMed

    Mkulama, Mtawa A P; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-05-21

    In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.

  19. Vibrational Softening of a Protein on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balog, Erica; Perahia, David; Smith, Jeremy C

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  20. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.

    PubMed

    Sugiyama, Toru; Levy, Bruce D; Michel, Thomas

    2009-05-08

    Tetrahydrobiopterin (BH4) is a key redox-active cofactor in endothelial isoform of NO synthase (eNOS) catalysis and is an important determinant of NO-dependent signaling pathways. BH4 oxidation is observed in vascular cells in the setting of the oxidative stress associated with diabetes. However, the relative roles of de novo BH4 synthesis and BH4 redox recycling in the regulation of eNOS bioactivity remain incompletely defined. We used small interference RNA (siRNA)-mediated "knockdown" GTP cyclohydrolase-1 (GTPCH1), the rate-limiting enzyme in BH4 biosynthesis, and dihydrofolate reductase (DHFR), an enzyme-recycling oxidized BH4 (7,8-dihydrobiopterin (BH2)), and studied the effects on eNOS regulation and biopterin metabolism in cultured aortic endothelial cells. Knockdown of either DHFR or GTPCH1 attenuated vascular endothelial growth factor (VEGF)-induced eNOS activity and NO production; these effects were recovered by supplementation with BH4. In contrast, supplementation with BH2 abolished VEGF-induced NO production. DHFR but not GTPCH1 knockdown increased reactive oxygen species (ROS) production. The increase in ROS production seen with siRNA-mediated DHFR knockdown was abolished either by simultaneous siRNA-mediated knockdown of eNOS or by supplementing with BH4. In contrast, addition of BH2 increased ROS production; this effect of BH2 was blocked by BH4 supplementation. DHFR but not GTPCH1 knockdown inhibited VEGF-induced dephosphorylation of eNOS at the inhibitory site serine 116; these effects were recovered by supplementation with BH4. These studies demonstrate a striking contrast in the pattern of eNOS regulation seen by the selective modulation of BH4 salvage/reduction versus de novo BH4 synthetic pathways. Our findings suggest that the depletion of BH4 is not sufficient to perturb NO signaling, but rather that concentration of intracellular BH2, as well as the relative concentrations of BH4 and BH2, together play a determining role in the redox regulation of eNOS-modulated endothelial responses.

  1. An orally effective dihydropyrimidone (DHPM) analogue induces apoptosis-like cell death in clinical isolates of Leishmania donovani overexpressing pteridine reductase 1.

    PubMed

    Singh, Neeloo; Kaur, Jaspreet; Kumar, Pranav; Gupta, Swati; Singh, Nasib; Ghosal, Angana; Dutta, Avijit; Kumar, Ashutosh; Tripathi, Ramapati; Siddiqi, Mohammad Imran; Mandal, Chitra; Dube, Anuradha

    2009-10-01

    The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. The enzyme pteridine reductase 1 (PTR1) of L. donovani acts as a metabolic bypass for drugs targeting dihydrofolate reductase (DHFR); therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Leishmania cells overexpressing PTR1 tagged at the N-terminal with green fluorescent protein were established to screen for proprietary dihydropyrimidone (DHPM) derivatives of DHFR specificity synthesised in our laboratory. A cell-permeable molecule with impressive antileishmanial in vitro and in vivo oral activity was identified. Structure activity relationship based on homology model drawn on our recombinant enzyme established the highly selective inhibition of the enzyme by this analogue. It was seen that the leishmanicidal effect of this analogue is triggered by programmed cell death mediated by the loss of plasma membrane integrity as detected by binding of annexin V and propidium iodide (PI), loss of mitochondrial membrane potential culminating in cell cycle arrest at the sub-G0/G1 phase and oligonucleosomal DNA fragmentation. Hence, this DHPM analogue [(4-fluoro-phenyl)-6-methyl-2-thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylic acid ethyl ester] is a potent antileishmanial agent that merits further pharmacological investigation.

  2. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.

    PubMed

    Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen

    2014-03-26

    Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.

  3. A Fluorogenic TMP-tag for High Signal-to-Background Intracellular Live Cell Imaging

    PubMed Central

    Jing, Chaoran

    2013-01-01

    Developed to compliment the use of fluorescent proteins in live cell imaging, chemical tags enjoy the benefit of modular incorporation of organic fluorophores, opening the possibility of high photon output and special photophysical properties. However, the theoretical challenge in using chemical tags as opposed to fluorescent proteins for high-resolution imaging is background noise from unbound and/or non-specifically bound ligand-fluorophore. We envisioned we could overcome this limit by engineering fluorogenic trimethoprim-based chemical tags (TMP-tags) in which the fluorophore is quenched until binding with E. coli dihydrofolate reductase (eDHFR) tagged protein displaces the quencher. Thus, we began by building a non-fluorogenic, covalent TMP-tag based on a proximity-induced reaction known to achieve rapid and specific labeling both in vitro and inside of living cells. Here we take the final step and render the covalent TMP-tag fluorogenic. In brief, we designed a trimeric TMP-fluorophore-quencher molecule (TMP-Q-Atto520) with the quencher attached to a leaving group that, upon TMP binding to eDHFR, would be cleaved by a cysteine residue (Cys) installed just outside the binding pocket of eDHFR. We present the in vitro experiments showing that the eDHFR:L28C nucleophile cleaves the TMP-Q-Atto520 rapidly and efficiently, resulting in covalent labeling and remarkable fluorescence enhancement. Most significantly, while only our initial design, TMP-Q-Atto520 achieved the demanding goal of not only labeling highly abundant, localized intracellular proteins, but also less abundant, more dynamic cytoplasmic proteins. These results suggest that fluorogenic TMP-tag can significantly impact highresolution live cell imaging and further establish the potential of proximity-induced reactivity and organic chemistry more broadly as part of the growing toolbox for synthetic biology and cell engineering. PMID:23745575

  4. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.

    PubMed Central

    Venema, J; van Hoffen, A; Natarajan, A T; van Zeeland, A A; Mullenders, L H

    1990-01-01

    We have measured removal of pyrimidine dimers in defined DNA sequences in confluent and actively growing normal human and xeroderma pigmentosum complementation group C (XP-C) fibroblasts exposed to 10 J/m2 UV-irradiation. In normal fibroblasts 45% and 90% of the dimers are removed from the transcriptionally active adenosine deaminase (ADA) gene within 4 and 24 hours after irradiation respectively. Equal repair efficiencies are found in fragments located entirely within the transcription unit or partly in the 3' flanking region of the ADA gene. The rate and extent of dimer removal from the dihydrofolate reductase (DHFR) gene is very similar to that of the ADA gene. Repair of the transcriptionally inactive 754 locus is less efficient: 18% and 52% of the dimers are removed within 4 and 24 hours respectively. In spite of the limited overall repair capacity, confluent XP-C fibroblasts efficiently remove dimers from the ADA and DHFR genes: about 90% and 50% within 24 hours respectively. The 3' end of the ADA gene is repaired as efficiently as in normal human fibroblasts, but less efficient repair occurs in DNA fragments located in the DHFR gene and at the 5' end of the ADA gene. Repair of the inactive 754 locus does not exceed the very slow rate of dimer removal from the genome overall. Confluent and actively growing XP-C cells show similar efficiencies of repair of the ADA, DHFR and 754 genes. Our findings suggest the existence of two independently operating pathways directed towards repair of pyrimidine dimers in either active or inactive chromatin. XP-C cells have lost the capacity to repair inactive chromatin, but are still able to repair active chromatin. Images PMID:2308842

  5. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  6. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  7. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  8. Factors influencing the antifolate activity of synthetic tea-derived catechins.

    PubMed

    Sáez-Ayala, Magalí; Fernández-Pérez, María Piedad; Chazarra, Soledad; Mchedlishvili, Nani; Tárraga-Tomás, Alberto; Rodríguez-López, José Neptuno

    2013-07-16

    Novel tea catechin derivatives have been synthesized, and a structure-activity study, related to the capacity of these and other polyphenols to bind dihydrofolate reductase (DHFR), has been performed. The data showed an effective binding between all molecules and the free enzyme, and the dissociation constants of the synthetic compounds and of the natural analogues were on the same order. Polyphenols with a catechin configuration were better DHFR inhibitors than those with an epicatechin configuration. Antiproliferative activity was also studied in cultured tumour cells, and the data showed that the activity of the novel derivatives was higher in catechin isomers. Derivatives with a hydroxyl group para on the ester-bonded gallate moiety presented a high in vitro binding to DHFR, but exhibited transport problems in cell culture due to ionization at physiologic pHs. The impact of the binding of catechins to serum albumin on their biological activity was also evaluated. The information provided in this study could be important for the design of novel medicinal active compounds derived from tea catechins. The data suggest that changes in their structure to avoid serum albumin interactions and to facilitate plasmatic membrane transport are essential for the intracellular functions of catechins.

  9. An in vivo library-versus-library selection of optimized protein-protein interactions.

    PubMed

    Pelletier, J N; Arndt, K M; Plückthun, A; Michnick, S W

    1999-07-01

    We describe a rapid and efficient in vivo library-versus-library screening strategy for identifying optimally interacting pairs of heterodimerizing polypeptides. Two leucine zipper libraries, semi-randomized at the positions adjacent to the hydrophobic core, were genetically fused to either one of two designed fragments of the enzyme murine dihydrofolate reductase (mDHFR), and cotransformed into Escherichia coli. Interaction between the library polypeptides reconstituted enzymatic activity of mDHFR, allowing bacterial growth. Analysis of the resulting colonies revealed important biases in the zipper sequences relative to the original libraries, which are consistent with selection for stable, heterodimerizing pairs. Using more weakly associating mDHFR fragments, we increased the stringency of selection. We enriched the best-performing leucine zipper pairs by multiple passaging of the pooled, selected colonies in liquid culture, as the best pairs allowed for better bacterial propagation. This competitive growth allowed small differences among the pairs to be amplified, and different sequence positions were enriched at different rates. We applied these selection processes to a library-versus-library sample of 2.0 x 10(6) combinations and selected a novel leucine zipper pair that may be appropriate for use in further in vivo heterodimerization strategies.

  10. Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics

    NASA Astrophysics Data System (ADS)

    Rajagopalan, P. T. Ravi; Zhang, Zhiquan; McCourt, Lynn; Dwyer, Mary; Benkovic, Stephen J.; Hammes, Gordon G.

    2002-10-01

    The thermodynamics and kinetics of the interaction of dihydrofolate reductase (DHFR) with methotrexate have been studied by using fluorescence, stopped-flow, and single-molecule methods. DHFR was modified to permit the covalent addition of a fluorescent molecule, Alexa 488, and a biotin at the N terminus of the molecule. The fluorescent molecule was placed on a protein loop that closes over methotrexate when binding occurs, thus causing a quenching of the fluorescence. The biotin was used to attach the enzyme in an active form to a glass surface for single-molecule studies. The equilibrium dissociation constant for the binding of methotrexate to the enzyme is 9.5 nM. The stopped-flow studies revealed that methotrexate binds to two different conformations of the enzyme, and the association and dissociation rate constants were determined. The single-molecule investigation revealed a conformational change in the enzyme-methotrexate complex that was not observed in the stopped-flow studies. The ensemble averaged rate constants for this conformation change in both directions is about 2-4 s1 and is attributed to the opening and closing of the enzyme loop over the bound methotrexate. Thus the mechanism of methotrexate binding to DHFR involves multiple steps and protein conformational changes.

  11. Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor.

    PubMed

    Zhao, Sandy Shuo; Bichelberger, Mathilde A; Colin, Damien Y; Robitaille, Robert; Pelletier, Joelle N; Masson, Jean-François

    2012-10-21

    A competitive binding assay based on localized surface plasmon resonance (LSPR) of folic acid-functionalized gold nanoparticles (FA-AuNPs) and human dihydrofolate reductase enzyme (hDHFR) was developed to detect nanomolar to micromolar concentrations of the widely applied anti-cancer drug, methotrexate (MTX). By the nature of the competitive assay for MTX, the LSPR shift from specific binding between FA-AuNPs and the free enzyme was inversely proportional to the concentration of MTX. In addition, the dynamic range for MTX was tuned from 10(-11) to 10(-6) M by varying the concentration of hDHFR from 1 to 100 nM. Inter-day reproducibility and recovery of MTX spiked in phosphate buffer saline (PBS) were excellent. Potential interferents such as FA, trimethoprim (TMP) and 4-amino-4-deoxy-N-methylpteroic acid (DAMPA) did not occur in the concentration range of interest for MTX. Clinical samples of human serum from patients undergoing MTX chemotherapy were analyzed following a simple solid-phase extraction step to isolate MTX from the serum matrix, with a limit of detection of 155 nM. Validation of the LSPR method was carried out in comparison to Fluorescence Polarization Immunoassay (FPIA), a commonly used method in clinical settings, and LC-MS/MS, a reference technique. The results of the LSPR competitive assay compared well to FPIA and LC-MS/MS, with a slope of 2.4 and 1.1, respectively, for the correlation plots. The method established herein is intended for therapeutic drug monitoring (TDM) of MTX levels in patients undergoing chemotherapy to ensure safety and efficacy of the treatment.

  12. A Daily Dose of 5 mg Folic Acid for 90 Days Is Associated with Increased Serum Unmetabolized Folic Acid and Reduced Natural Killer Cell Cytotoxicity in Healthy Brazilian Adults.

    PubMed

    Paniz, Clovis; Bertinato, Juliano Felix; Lucena, Maylla Rodrigues; De Carli, Eduardo; Amorim, Patrícia Mendonça da Silva; Gomes, Guilherme Wataru; Palchetti, Cecília Zanin; Figueiredo, Maria Stella; Pfeiffer, Christine M; Fazili, Zia; Green, Ralph; Guerra-Shinohara, Elvira Maria

    2017-09-01

    Background: The effects of high-dose folic acid (FA) supplementation in healthy individuals on blood folate concentrations and immune response are unknown. Objective: The aim of the study was to evaluate the effects of daily consumption of a tablet containing 5 mg FA on serum folate; number and cytotoxicity of natural killer (NK) cells; mRNA expression of dihydrofolate reductase ( DHFR ), methylenetetrahydrofolate reductase ( MTHFR ), interferon γ ( IFNG ), tumor necrosis factor α ( TNFA ), and interleukin 8 ( IL8 ) genes; and concentrations of serum inflammatory markers. Methods: This prospective clinical trial was conducted in 30 healthy Brazilian adults (15 women), aged 27.7 y (95% CI: 26.4, 29.1 y), with a body mass index (in kg/m 2 ) of 23.1 (95% CI: 22.0, 24.3). Blood was collected at baseline and after 45 and 90 d of the intervention. Serum folate concentrations were measured by microbiological assay and HPLC-tandem mass spectrometry [folate forms, including unmetabolized folic acid (UMFA)]. We used real-time polymerase chain reaction to assess mononuclear leukocyte mRNA expression and flow cytometry to measure the number and cytotoxicity of NK cells. Results: Serum folate concentrations increased by ∼5-fold after the intervention ( P < 0.001), and UMFA concentrations increased by 11.9- and 5.9-fold at 45 and 90 d, respectively, when compared with baseline ( P < 0.001). UMFA concentrations increased (>1.12 nmol/L) in 29 (96.6%) participants at day 45 and in 26 (86.7%) participants at day 90. We observed significant reductions in the number ( P < 0.001) and cytotoxicity ( P = 0.003) of NK cells after 45 and 90 d. Compared with baseline, DHFR mRNA expression was higher at 90 d ( P = 0.006) and IL8 and TNFA mRNA expressions were higher at 45 and 90 d ( P = 0.001 for both). Conclusion: This noncontrolled intervention showed that healthy adults responded to a high-dose FA supplement with increased UMFA concentrations, changes in cytokine mRNA expression, and reduced number and cytotoxicity of NK cells. This trial was registered at www.ensaiosclinicos.gov.br as RBR-2pr7zp. © 2017 American Society for Nutrition.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Ramos, Ruben; Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F.; Lopez-Carrillo, Lizbeth

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrationsmore » (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.« less

  14. Protein unfolding with a steric trap.

    PubMed

    Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U

    2009-10-07

    The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.

  15. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  16. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN

    PubMed Central

    SHARIFI-SARASIABI, Khojasteh; HAGHIGHI, Ali; KAZEMI, Bahram; TAGHIPOUR, Niloofar; MOJARAD, Ehsan Nazemalhosseini; GACHKAR, Latif

    2016-01-01

    In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment. PMID:27007559

  18. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    PubMed

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease.

    PubMed

    Crabtree, Mark J; Channon, Keith M

    2011-08-01

    Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of L-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can 'recycle' BH2, and thus regenerate BH4. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  1. Modeling the evolution of drug resistance in malaria.

    PubMed

    Hecht, David; Fogel, Gary B

    2012-12-01

    Plasmodium falciparum, the causal agent of malaria, continues to evolve resistance to frontline therapeutics such as chloroquine and sulfadoxine-pyrimethamine. Here we study the amino acid replacements in dihydrofolate reductase (DHFR) that confer resistance to pyrimethamine while still binding the natural DHFR substrate, 7,8-dihydrofolate, and cofactor, NADPH. The chain of amino acid replacements that has led to resistance can be inferred in a computer, leading to a broader understanding of the coevolution between the drug and target. This in silico approach suggests that only a small set of specific active site replacements in the proper order could have led to the resistant strains in the wild today. A similar approach can be used on any target of interest to anticipate likely pathways of future resistance for more effective drug development.

  2. Modeling the inhibition of quadruple mutant Plasmodium falciparum dihydrofolate reductase by pyrimethamine derivatives

    NASA Astrophysics Data System (ADS)

    Fogel, Gary B.; Cheung, Mars; Pittman, Eric; Hecht, David

    2008-01-01

    Modeling studies were performed on known inhibitors of the quadruple mutant Plasmodium falciparum dihydrofolate reductase (DHFR). GOLD was used to dock 32 pyrimethamine derivatives into the active site of DHFR obtained from the x-ray crystal structure 1J3K.pdb. Several scoring functions were evaluated and the Molegro Protein-Ligand Interaction Score was determined to have one of the best correlation to experimental p K i . In conjunction with Protein-Ligand Interaction scores, predicted binding modes and key protein-ligand interactions were evaluated and analyzed in order to develop criteria for selecting compounds having a greater chance of activity versus resistant strains of Plasmodium falciparum. This methodology will be used in future studies for selection of compounds for focused screening libraries.

  3. Treatment of uncomplicated malaria with artesunate plus sulfadoxine-pyrimethamine is failing in Somalia: evidence from therapeutic efficacy studies and Pfdhfr and Pfdhps mutant alleles.

    PubMed

    Warsame, Marian; Hassan, Abdillahi Mohamed; Barrette, Amy; Jibril, Ali Mohamed; Elmi, Husein Haji; Arale, Abdulkadir Mohamed; Mohammady, Hanan El; Nada, Rania A; Amran, Jamal Ghilan Hefzullah; Muse, Abdikarim; Yusuf, Fahmi Essa; Omar, Abdiqani Sheikh

    2015-04-01

    Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been Somalia's national treatment policy since 2006. Routine monitoring of first-line malaria treatment is needed to ensure appropriate national malaria treatment policy and early detection of drug resistance. For this purpose, we conducted therapeutic efficacy studies of AS + SP for the treatment of uncomplicated malaria in Somalia in 2011. Studies were conducted in three sentinel sites. Eligible patients were evaluated for clinical and parasitological outcomes according to the WHO standard protocol. Molecular surveillance was conducted on resistance conferring mutations in the P.falciparum dihydrofolate reductase (dfhr) and dihydropteroate synthase (dhps) genes. The proportion of PCR-corrected treatment failures was high in Jamame (22%, 95% CI: 13.7-32.8%) and low (<5%) in Janale and Jowhar. All patients cleared parasites by day 3. Molecular markers associated with SP resistance were detected in all three sites. Treatment failure was associated with the presence of the double mutant dhps A437G/K540E (OR = 22.4, 95% CI: 5.1-98.1), quadruple mutant dhfr N51I/S108N+dhps A437G/K540E (OR = 5.5, 95% CI: 2.3-13.6), quintuple mutant dhfr N51I/C59R/S108N+dhps A437G/K540E (OR = 3.5, 95% CI: 1.4-8.8) and younger age (OR=0.86, 95% CI: 0.76-0.96). The high treatment failure rate observed in Jamame, together with the presence of molecular mutations associated with SP resistance, indicates P. falciparum resistance to SP. In Jowhar, high treatment failure rates were absent despite the presence of molecular mutations; signs of resistance in vivo may have been masked by the stronger immunity of the older study population. The study underscores the need to update Somalia's national malaria treatment policy. © 2015 John Wiley & Sons Ltd.

  4. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti

    PubMed Central

    2012-01-01

    Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59). Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on alternative malaria treatment options in Haiti. PMID:22889367

  5. Molecular appraisal of intestinal parasitic infection in transplant recipients

    PubMed Central

    Yadav, Pooja; Khalil, Shehla; Mirdha, Bijay Ranjan

    2016-01-01

    Background & objectives: Diarrhoea is the main clinical manifestation caused by intestinal parasitic infections in patients, with special reference to transplant recipients who require careful consideration to reduce morbidity and mortality. Further, molecular characterization of some important parasites is necessary to delineate the different modes of transmission to consider appropriate management strategies. We undertook this study to investigate the intestinal parasitic infections in transplant recipients with or without diarrhoea, and the genotypes of the isolated parasites were also determined. Methods: Stool samples from 38 transplant recipients comprising 29 post-renal, two liver and seven bone marrow transplant (BMT) recipients presenting with diarrhoea and 50 transplant recipients (42 post-renal transplant, eight BMT) without diarrhoea were examined for the presence of intestinal parasites by light microscopy using wet mount, modified Ziehl–Neelsen staining for intestinal coccidia and modified trichrome staining for microsporidia. Genotypes of Cryptosporidium species were determined by multilocus genotyping using small subunit ribosomal (SSUrRNA), Cryptosporidium oocyst wall protein (COWP) and dihydrofolate reductase (DHFR) as the target genes. Assemblage study for Giardia lamblia was performed using triose phosphate isomerase (TPI) as the target gene. Samples were also screened for bacterial, fungal and viral pathogens. Results: The parasites that were detected included Cryptosporidium species (21%, 8/38), Cystoisospora (Isospora) belli (8%, 3), Cyclospora cayetanensis (5%, 2), G. lamblia (11%, 4), Hymenolepis nana (11%, 4), Strongyloides stercoralis (3%, 1) and Blastocystis hominis (3%, 1). Multilocus genotyping of Cryptosporidium species at SSUrRNA, COWP and DHFR loci could detect four isolates of C. hominis; two of C. parvum, one of mixed genotype and one could not be genotyped. All the C. hominis isolates were detected in adult post-renal transplant (PRT) recipients, whereas the C. parvum isolates included a child with BMT and an adult with PRT. Clostridium difficle, cytomegalovirus and Candida albicans were found in 2, 3 and 2 patients, respectively. Interpretation & conclusions: In the present study, C. hominis was observed as an important parasite causing intestinal infections in transplant recipients. Multilocus genotyping of Cryptosporidium species could detect four isolates of C. hominis; two of C. parvum, one of mixed genotype and one could not be genotyped. Genotyping of G. lamblia revealed that assemblage B was most common. PMID:27934806

  6. Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis

    PubMed Central

    Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon

    2011-01-01

    This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278

  7. Identification of relevant single-nucleotide polymorphisms in Pneumocystis jirovecii: relationship with clinical data.

    PubMed

    Esteves, F; Gaspar, J; Marques, T; Leite, R; Antunes, F; Mansinho, K; Matos, O

    2010-07-01

    Pneumocystis jirovecii is a poorly understood pathogen that causes opportunistic pneumonia (Pneumocystis pneumonia (PcP)) in patients with AIDS. The present study was aimed at correlating genetic differences in P. jirovecii isolates and clinical patient data. A description of genetic diversity in P. jirovecii isolates from human immunodeficiency virus-positive patients, based on the identification of multiple single-nucleotide polymorphisms (SNPs) at five distinct loci encoding mitochondrial large-subunit rRNA (mtLSU rRNA), cytochrome b (CYB), superoxide dismutase (SOD), dihydrofolate reductase (DHFR), and dihydropteroate synthase (DHPS), was achieved using PCR with DNA sequencing and restriction fragment length polymorphism analysis. The statistical analysis revealed several interesting correlations among the four most relevant SNPs (mt85, SOD110, SOD215, and DHFR312) and specific clinical parameters: mt85C was associated with undiagnosed or atypical PcP episodes and favourable follow-up; SOD215C was associated with favourable follow-up; and DHFR312T was associated with PcP cases presenting moderate to high parasite burdens. The genotypes mt85C/SOD215C and SOD110T/SOD215C were found to be associated with less virulent P. jirovecii infections, whereas the genotype SOD110T/SOD215T was found to be related to more virulent PcP episodes. The present work demonstrated that potential P. jirovecii haplotypes may be related to the clinical data and outcome of PcP.

  8. Preliminary neutron diffraction studies of Escherichia coli dihydrofolate reductase bound to the anticancer drug methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brad C.; Meilleur, Flora; Myles, Dean A A

    2005-01-01

    The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation statesmore » as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm{sup 3} D{sub 2}O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 {angstrom} and the I/{sigma}(I) in individual shells dropped to below 2 at around 2.46 {angstrom}. However, reflections with I/{sigma}(I) greater than 2 were observed beyond these limits (as far out as 2.2 {angstrom}). To our knowledge, these crystals possess one of the largest primitive unit cells (P6{sub 1}, a = b = 92, c = 73 {angstrom}) and one of the smallest crystal volumes so far tested successfully with neutrons.« less

  9. Functional Neuroprotection and Efficient Regulation of GDNF Using Destabilizing Domains in a Rodent Model of Parkinson's Disease

    PubMed Central

    Quintino, Luis; Manfré, Giuseppe; Wettergren, Erika Elgstrand; Namislo, Angrit; Isaksson, Christina; Lundberg, Cecilia

    2013-01-01

    Glial cell line–derived neurotrophic factor (GDNF) has great potential to treat Parkinson's disease (PD). However, constitutive expression of GDNF can over time lead to side effects. Therefore, it would be useful to regulate GDNF expression. Recently, a new gene inducible system using destabilizing domains (DD) from E. coli dihydrofolate reductase (DHFR) has been developed and characterized. The advantage of this novel DD is that it is regulated by trimethoprim (TMP), a well-characterized drug that crosses the blood–brain barrier and can therefore be used to regulate gene expression in the brain. We have adapted this system to regulate expression of GDNF. A C-terminal fusion of GDNF and a DD with an additional furin cleavage site was able to be efficiently regulated in vitro, properly processed and was able to bind to canonical GDNF receptors, inducing a signaling cascade response in target cells. In vivo characterization of the protein showed that it could be efficiently induced by TMP and it was only functional when gene expression was turned on. Further characterization in a rodent model of PD showed that the regulated GDNF protected neurons, improved motor behavior of animals and was efficiently regulated in a pathological setting. PMID:23881415

  10. Localization of new, microdissection- generated, anonymous markers and of the genes Pcsk1, Dhfr, Ndub13, and Ccnb1 to rat chromosome region 2q1.

    PubMed

    Quan, X; Laes, J F; Ravoet, M; Van Vooren, P; Szpirer, J; Szpirer, C

    2000-01-01

    The centromeric region of rat chromosome 2 (2q1) harbors unidentified quantitative trait loci of genes that control tumor growth or development. To improve the mapping of this chromosome region, we microdissected it and generated 10 new microsatellite markers, which we included in the linkage map and/or radiation hybrid map of 2q1, together with other known markers, including four genes: Pcsk1 (protein convertase 1), Dhfr (dihydrofolate reductase), Ndub13 (NADH ubiquinone oxidoreductase subunit b13), and Ccnb1 (cyclin B1). To generate anchor points between the different maps, the gene Ndub13 and the microsatellite markers D2Ulb25 and D2Mit1 were also localized cytogenetically. The radiation map generated in region 2q1 extends its centromeric end of about 150 cR. Copyright 2000 S. Karger AG, Basel

  11. DNA variants in DHFR gene and response to treatment in children with childhood B ALL: revisited in AIEOP-BFM protocol.

    PubMed

    Ceppi, Francesco; Gagné, Vincent; Douyon, Laurance; Quintin, Camille J; Colombini, Antonella; Parasole, Rosanna; Buldini, Barbara; Basso, Giuseppe; Conter, Valentino; Cazzaniga, Giovanni; Krajinovic, Maja

    2018-01-01

    We have previously reported an association of dihydrofolate reductase promoter polymorphisms with reduced event-free survival in childhood acute lymphoblastic leukemia (ALL) patients treated with Dana Farber Cancer Institute protocol. Here, we assessed whether these associations are applicable to other protocol, based on different methotrexate doses. Genotypes for six tag polymorphisms and resulting haplotypes were analyzed for an association with ALL outcome. The association was found with the polymorphisms A-680C, A-317G and C-35T in high-risk group patients. Carriers of haplotype *1 had a remarkably higher risk of events compared with noncarriers and a lower probability of event-free survival (21.4 vs 81.3%). The role of DHFR variants in predicting the outcome of childhood ALL extends beyond single-treatment protocol and can be useful biomarker in personalizing treatment.

  12. Automated identification of functional dynamic networks from X-ray crystallography

    PubMed Central

    van den Bedem, Henry; Bhabha, Gira; Yang, Kun; Wright, Peter E.; Fraser, James S.

    2013-01-01

    Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design. PMID:23913260

  13. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    PubMed

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Structure-Based Approach to the Development of Potent and Selective Inhibitors of Dihydrofolate Reductase from Cryptosporidium

    PubMed Central

    Bolstad, David B.; Bolstad, Erin S. D.; Frey, Kathleen M.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Cryptosporidiosis is an emerging infectious disease that can be life-threatening in an immune-compromised individual and causes gastrointestinal distress lasting up to 2 weeks in an immune-competent individual. There are few therapeutics available for effectively treating this disease. We have been exploring dihydrofolate reductase (DHFR) as a potential target in Cryptosporidium. On the basis of the structure of the DHFR enzyme from C. hominis, we have developed a novel scaffold that led to the discovery of potent (38 nM) and efficient inhibitors of this enzyme. Recently, we have advanced these inhibitors to the next stage of development. Using the structures of both the protozoal and human enzymes, we have developed inhibitors with nanomolar potency (1.1 nM) against the pathogenic enzyme and high levels (1273-fold) of selectivity over the human enzyme. PMID:18834108

  15. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Alonso, Hernán; Gillies, Malcolm B.; Cummins, Peter L.; Bliznyuk, Andrey A.; Gready, Jill E.

    2005-03-01

    R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand-ligand and ligand-protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.

  16. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  17. Perspectives on electrostatics and conformational motions in enzyme catalysis.

    PubMed

    Hanoian, Philip; Liu, C Tony; Hammes-Schiffer, Sharon; Benkovic, Stephen

    2015-02-17

    CONSPECTUS: Enzymes are essential for all living organisms, and their effectiveness as chemical catalysts has driven more than a half century of research seeking to understand the enormous rate enhancements they provide. Nevertheless, a complete understanding of the factors that govern the rate enhancements and selectivities of enzymes remains elusive, due to the extraordinary complexity and cooperativity that are the hallmarks of these biomolecules. We have used a combination of site-directed mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear magnetic resonance (NMR), vibrational and fluorescence spectroscopies, resonance energy transfer, and computer simulations to study the implications of conformational motions and electrostatic interactions on enzyme catalysis in the enzyme dihydrofolate reductase (DHFR). We have demonstrated that modest equilibrium conformational changes are functionally related to the hydride transfer reaction. Results obtained for mutant DHFRs illustrated that reductions in hydride transfer rates are correlated with altered conformational motions, and analysis of the evolutionary history of DHFR indicated that mutations appear to have occurred to preserve both the hydride transfer rate and the associated conformational changes. More recent results suggested that differences in local electrostatic environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination of primary and solvent kinetic isotope effects, we demonstrated that the reaction mechanism is consistent across a broad pH range, and computer simulations suggested that deprotonation of the active site Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into the ecDHFR active site provided an experimental tool for interrogating these microenvironments and for investigating changes in electrostatics along the DHFR catalytic cycle. Complementary molecular dynamics simulations in conjunction with mixed quantum mechanical/molecular mechanical calculations accurately reproduced the vibrational frequency shifts in these probes and provided atomic-level insight into the residues influencing these changes. Our findings indicate that conformational and electrostatic changes are intimately related and functionally essential. This approach can be readily extended to the study of other enzyme systems to identify more general trends in the relationship between conformational fluctuations and electrostatic interactions. These results are relevant to researchers seeking to design novel enzymes as well as those seeking to develop therapeutic agents that function as enzyme inhibitors.

  18. Perspectives on Electrostatics and Conformational Motions in Enzyme Catalysis

    PubMed Central

    2016-01-01

    Conspectus Enzymes are essential for all living organisms, and their effectiveness as chemical catalysts has driven more than a half century of research seeking to understand the enormous rate enhancements they provide. Nevertheless, a complete understanding of the factors that govern the rate enhancements and selectivities of enzymes remains elusive, due to the extraordinary complexity and cooperativity that are the hallmarks of these biomolecules. We have used a combination of site-directed mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear magnetic resonance (NMR), vibrational and fluorescence spectroscopies, resonance energy transfer, and computer simulations to study the implications of conformational motions and electrostatic interactions on enzyme catalysis in the enzyme dihydrofolate reductase (DHFR). We have demonstrated that modest equilibrium conformational changes are functionally related to the hydride transfer reaction. Results obtained for mutant DHFRs illustrated that reductions in hydride transfer rates are correlated with altered conformational motions, and analysis of the evolutionary history of DHFR indicated that mutations appear to have occurred to preserve both the hydride transfer rate and the associated conformational changes. More recent results suggested that differences in local electrostatic environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination of primary and solvent kinetic isotope effects, we demonstrated that the reaction mechanism is consistent across a broad pH range, and computer simulations suggested that deprotonation of the active site Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into the ecDHFR active site provided an experimental tool for interrogating these microenvironments and for investigating changes in electrostatics along the DHFR catalytic cycle. Complementary molecular dynamics simulations in conjunction with mixed quantum mechanical/molecular mechanical calculations accurately reproduced the vibrational frequency shifts in these probes and provided atomic-level insight into the residues influencing these changes. Our findings indicate that conformational and electrostatic changes are intimately related and functionally essential. This approach can be readily extended to the study of other enzyme systems to identify more general trends in the relationship between conformational fluctuations and electrostatic interactions. These results are relevant to researchers seeking to design novel enzymes as well as those seeking to develop therapeutic agents that function as enzyme inhibitors. PMID:25565178

  19. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.

  20. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women

    PubMed Central

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E.; Thwai, Kyaw L.; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P.; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O.

    2015-01-01

    Background. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased placental inflammation and decreased infant birth weight among women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) during pregnancy. Methods. Between 2009 and 2011, delivering women without human immunodeficiency virus infection were enrolled in an observational study of IPTp-SP effectiveness in Malawi. Parasites were detected by polymerase chain reaction (PCR); positive samples were sequenced to genotype the dhfr and dhps loci. The presence of K540E in dhps was used as a marker for the quintuple mutant. Results. Samples from 1809 women were analyzed by PCR; 220 (12%) were positive for P. falciparum. A total of 202 specimens were genotyped at codon 581 of dhps; 17 (8.4%) harbored the sextuple mutant. The sextuple mutant was associated with higher risks of patent infection in peripheral blood (adjusted prevalence ratio [aPR], 2.76; 95% confidence interval [CI], 1.82–4.18) and placental blood (aPR 3.28; 95% CI, 1.88–5.78) and higher parasite densities. Recent SP use was not associated with increased parasite densities or placental pathology overall and among women with parasites carrying dhps A581G. Conclusions. IPTp-SP failed to inhibit parasite growth but did not exacerbate pathology among women infected with sextuple-mutant parasites. New interventions to prevent malaria during pregnancy are needed urgently. PMID:25564249

  1. Pneumocystis jirovecii multilocus genotyping in pooled DNA samples: a new approach for clinical and epidemiological studies.

    PubMed

    Esteves, F; Gaspar, J; de Sousa, B; Antunes, F; Mansinho, K; Matos, O

    2012-06-01

    Specific single-nucleotide polymorphisms (SNPs) are recognized as important DNA sequence variations influencing the pathogenesis of Pneumocystis jirovecii and the clinical outcome of Pneumocystis pneumonia, which is a major worldwide cause of illness among immunocompromised patients. Genotyping platforms for pooled DNA samples are promising methodologies for genetic characterization of infectious organisms. We have developed a new typing strategy for P. jirovecii, which consisted of DNA pools prepared according to clinical data (HIV diagnosis, microscopic and molecular detection of P. jirovecii, parasite burden, clinical diagnosis and follow-up of infection) from individual samples using quantitative real-time PCR followed by multiplex-PCR/single base extension (MPCR/SBE). The frequencies of multiple P. jirovecii SNPs (DHFR312, mt85, SOD215 and SOD110) encoded at three distinct loci, the dihydrofolate reductase (DHFR), the mitochondrial large-subunit rRNA (mtLSU rRNA) and the superoxide dismutase (SOD) loci, were estimated in seven DNA pooled samples, representing a total of 100 individual samples. The studied SNPs were confirmed to be associated with distinct clinical parameters of infection such as parasite burden and follow-up. The MPCR/SBE-DNA pooling methodology, described in the present study, was demonstrated to be a useful high-throughput procedure for large-scale P. jirovecii SNPs screening and a powerful tool for evaluation of clinically relevant SNPs potentially related to parasite burden, clinical diagnosis and follow-up of P. jirovecii infection. In further studies, the candidate SNPs mt85, SOD215 and SOD110 may be used as molecular markers in association with MPCR/SBE-DNA pooling to generate useful information for understanding the patterns and causes of Pneumocystis pneumonia. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  2. Analogues of methotrexate and aminopterin with gamma-methylene and gamma-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity.

    PubMed

    Rosowsky, A; Bader, H; Freisheim, J H

    1991-01-01

    Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.

  3. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.

    2001-09-01

    Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.

  4. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

  5. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities.

    PubMed

    Thakkar, Sampark S; Thakor, Parth; Ray, Arabinda; Doshi, Hiren; Thakkar, Vasudev R

    2017-10-15

    Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1 H NMR, 13 C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells.

    PubMed

    Inouye, Satoshi

    2018-01-01

    A dihydrofolate reductase-deficient Chinese hamster ovary (CHO-K1/dhfr - ) cell line stably expressing Gaussia luciferase with a histidine-tag sequence at the carboxyl terminus (GLase-His) was established. Recombinant GLase-His was purified from serum-containing culture medium by single-step Ni-chelate column chromatography in the presence of 2 M NaCl and 0.01% Tween 20. The protein yield of GLase-His with over 95% purity was 0.5 mg from 0.9 L of the cultured medium. The enzymatic properties of purified GLase-His were characterized. Interestingly, non-ionic detergent Tween 20 stabilized and stimulated GLase-His activity and its luminescence activity was stimulated 2-fold by the synergistic effect of 0.01% Tween 20 and 150 mM NaCl. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control

    PubMed Central

    Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.

    2012-01-01

    We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant. PMID:22740631

  8. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Qun, E-mail: wqun@yzu.edu.cn; Kovalevsky, Andrey Y.; Wilson, Mark A.

    2014-05-25

    A 2.0 Å resolution neutron data set and a 1.6 Å resolution X-ray data set were collected for joint X-ray/neutron refinement of the ecDHFR–folate–NADP{sup +} complex in order to study the reaction mechanism of dihydrofolate reductase.

  9. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.

    PubMed

    Bukar, Natalia; Zhao, Sandy Shuo; Charbonneau, David M; Pelletier, Joelle N; Masson, Jean-Francois

    2014-05-18

    We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength exceeding 300 mM. Under these conditions, the aggregation constant of the Au NPs was approximately 10(4) M(-1) s(-1) and the Debye length was below 1 nm, on the same length scale as the size of the folate anion (approximately 0.8 nm). Longer Debye lengths led to poorer SPR responses, revealing a reduced affinity of the folic acid-modified Au NPs for hDHFR. While high colloidal stability of Au NPs is desired in most applications, these conditions may hinder molecular interactions due to Debye lengths exceeding the size of the ligand and thus preventing close interactions with the surface-bound molecular receptor.

  10. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  11. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women.

    PubMed

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E; Thwai, Kyaw L; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O

    2015-06-15

    The A581 G: mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased placental inflammation and decreased infant birth weight among women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) during pregnancy. Between 2009 and 2011, delivering women without human immunodeficiency virus infection were enrolled in an observational study of IPTp-SP effectiveness in Malawi. Parasites were detected by polymerase chain reaction (PCR); positive samples were sequenced to genotype the dhfr and dhps loci. The presence of K540 E: in dhps was used as a marker for the quintuple mutant. Samples from 1809 women were analyzed by PCR; 220 (12%) were positive for P. falciparum. A total of 202 specimens were genotyped at codon 581 of dhps; 17 (8.4%) harbored the sextuple mutant. The sextuple mutant was associated with higher risks of patent infection in peripheral blood (adjusted prevalence ratio [aPR], 2.76; 95% confidence interval [CI], 1.82-4.18) and placental blood (aPR 3.28; 95% CI, 1.88-5.78) and higher parasite densities. Recent SP use was not associated with increased parasite densities or placental pathology overall and among women with parasites carrying dhps A581 G: . IPTp-SP failed to inhibit parasite growth but did not exacerbate pathology among women infected with sextuple-mutant parasites. New interventions to prevent malaria during pregnancy are needed urgently. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGES

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; ...

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP + from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm 3 crystal with the quasi-Laue technique, andmore » the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pK a of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  13. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  14. Pyrimethamine as a Potent and Selective Inhibitor of Acute Myeloid Leukemia Identified by High-throughput Drug Screening.

    PubMed

    Sharma, Amit; Jyotsana, Nidhi; Lai, Courteney K; Chaturvedi, Anuhar; Gabdoulline, Razif; Görlich, Kerstin; Murphy, Cecilia; Blanchard, Jan E; Ganser, Arnold; Brown, Eric; Hassell, John A; Humphries, R Keith; Morgan, Michael; Heuser, Michael

    2016-01-01

    Hematopoietic stem and progenitor cell differentiation are blocked in acute myeloid leukemia (AML) resulting in cytopenias and a high risk of death. Most patients with AML become resistant to treatment due to lack of effective cytotoxic and differentiation promoting compounds. High MN1 expression confers poor prognosis to AML patients and induces resistance to cytarabine and alltrans-retinoic acid (ATRA) induced differentiation. Using a high-throughput drug screening, we identified the dihydrofolate reductase (DHFR) antagonist pyrimethamine to be a potent inducer of apoptosis and differentiation in several murine and human leukemia cell lines. Oral pyrimethamine treatment was effective in two xenograft mouse models and specifically targeted leukemic cells in human AML cell lines and primary patient cells, while CD34+ cells from healthy donors were unaffected. The antileukemic effects of PMT could be partially rescued by excess folic acid, suggesting an oncogenic function of folate metabolism in AML. Thus, our study identifies pyrimethamine as a candidate drug that should be further evaluated in AML treatment.

  15. Correlated motion and the effect of distal mutations in dihydrofolate reductase

    PubMed Central

    Rod, Thomas H.; Radkiewicz, Jennifer L.; Brooks, Charles L.

    2003-01-01

    Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. The catalytic rate in this system has been found to be significantly affected by mutations far from the site of chemical activity in the enzyme [Rajagopalan, P. T. R, Lutz, S., and Benkovic, S. J. (2002) Biochemistry 41, 12618–12628]. On the basis of extensive computer simulations for wild-type DHFR from Escherichia coli and four mutants (G121S, G121V, M42F, and M42F/G121S), we show that key parameters for catalysis are changed. The parameters we study are relative populations of different conformations sampled and hydrogen bonds. We find that the mutations result in long-range structural perturbations, rationalizing the effects that the mutations have on the kinetics of the enzyme. Such perturbations also provide a rationalization for the reported nonadditivity effect for double mutations. We finally examine the role a structural perturbation will have on the hydride transfer step. On the basis of our new findings, we discuss the role of coupled motions between distant regions in the enzyme, which previously was reported by Radkiewicz and Brooks. PMID:12756296

  16. Very empirical treatment of solvation and entropy: a force field derived from Log Po/w

    NASA Astrophysics Data System (ADS)

    Kellogg, Glen Eugene; Burnett, James C.; Abraham, Donald J.

    2001-04-01

    A non-covalent interaction force field model derived from the partition coefficient of 1-octanol/water solubility is described. This model, HINT for Hydropathic INTeractions, is shown to include, in very empirical and approximate terms, all components of biomolecular associations, including hydrogen bonding, Coulombic interactions, hydrophobic interactions, entropy and solvation/desolvation. Particular emphasis is placed on: (1) demonstrating the relationship between the total empirical HINT score and free energy of association, ΔG interaction; (2) showing that the HINT hydrophobic-polar interaction sub-score represents the energy cost of desolvation upon binding for interacting biomolecules; and (3) a new methodology for treating constrained water molecules as discrete independent small ligands. An example calculation is reported for dihydrofolate reductase (DHFR) bound with methotrexate (MTX). In that case the observed very tight binding, ΔG interaction≤-13.6 kcal mol-1, is largely due to ten hydrogen bonds between the ligand and enzyme with estimated strength ranging between -0.4 and -2.3 kcal mol-1. Four water molecules bridging between DHFR and MTX contribute an additional -1.7 kcal mol-1 stability to the complex. The HINT estimate of the cost of desolvation is +13.9 kcal mol-1.

  17. Conformational Entropy from NMR Relaxation in Proteins: The SRLS Perspective.

    PubMed

    Tchaicheeyan, Oren; Meirovitch, Eva

    2017-02-02

    Conformational entropy changes associated with bond-vector motions in proteins contribute to the free energy of ligand-binding. To derive such contributions, we apply the slowly relaxing local structure (SRLS) approach to NMR relaxation from 15 N-H bonds or C-CDH 2 moieties of several proteins in free and ligand-bound form. The spatial restraints on probe motion, which determine the extent of local order, are expressed in SRLS by a well-defined potential, u(θ). The latter yields the orientational probability density, P eq  = exp(-u(θ)), and hence the related conformational entropy, Ŝ = -∫P eq (θ) ln[P eq (θ)] sin θ dθ (Ŝ is "entropy" in units of k B T, and θ represents the bond-vector orientation in the protein). SRLS is applied to 4-oxalocrotonate tautomerase (4-OT), the acyl-coenzyme A binding protein (ACBP), the C-terminal SH2 domain of phospholipase C γ 1 (PLC γ 1C SH2), the construct dihydrofolate reductase-E:folate (DHFR-E:folate), and their complexes with appropriate ligands, to determine ΔŜ. Eglin C and its V18A and V34A mutants are also studied. Finally, SRLS is applied to the structurally homologous proteins TNfn3 and FNfn10 to characterize within its scope the unusual "dynamics" of the TNfn3 core. Upon ligand-binding, the backbones of 4-OT, ACBP, and PLC γ 1C SH2 show limited, increased, and decreased order, respectively; the cores of DHFR-E:folate and PLC γ 1C SH2 become more ordered. The V18A (V34A) mutation increases (decreases) the order within the eglin C core. The core of TNfn3 is less ordered structurally and more mobile kinetically. Secondary structure versus loops, surface-binding versus core insertion, and ligand size emerged as being important in rationalizing ΔŜ. The consistent and general tool developed herein is expected to provide further insights in future work.

  18. The Tail Wagging the Dog: Insights into Catalysis in R67 Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, Ganesh K; Agarwal, Pratul K

    2010-01-01

    Plasmid-encoded R67 dihydrofolate reductase (DHFR) catalyzes a hydride transfer reaction between substrate dihydrofolate (DHF) and its cofactor, nicotinamide adenine dinucleotide phosphate (NADPH). R67 DHFR is a homotetramer that exhibits numerous characteristics of a primitive enzyme, including promiscuity in binding of substrate and cofactor, formation of nonproductive complexes, and the absence of a conserved acid in its active site. Furthermore, R67's active site is a pore, which is mostly accessible by bulk solvent. This study uses a computational approach to characterize the mechanism of hydride transfer. Not surprisingly, NADPH remains fixed in one-half of the active site pore using numerous interactionsmore » with R67. Also, stacking between the nicotinamide ring of the cofactor and the pteridine ring of the substrate, DHF, at the hourglass center of the pore, holds the reactants in place. However, large movements of the p-aminobenzoylglutamate tail of DHF occur in the other half of the pore because of ion pair switching between symmetry-related K32 residues from two subunits. This computational result is supported by experimental results that the loss of these ion pair interactions (located >13 {angstrom} from the center of the pore) by addition of salt or in asymmetric K32M mutants leads to altered enzyme kinetics [Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Hicks, S. N., et al. (2004) J. Biol. Chem. 279, 46995?47002]. The tail movement at the edge of the active site, coupled with the fixed position of the pteridine ring in the center of the pore, leads to puckering of the pteridine ring and promotes formation of the transition state. Flexibility coupled to R67 function is unusual as it contrasts with the paradigm that enzymes use increased rigidity to facilitate attainment of their transition states. A comparison with chromosomal DHFR indicates a number of similarities, including puckering of the nicotinamide ring and changes in the DHF tail angle, accomplished by different elements of the dissimilar protein folds.« less

  19. WISDOM-II: screening against multiple targets implicated in malaria using computational grid infrastructures.

    PubMed

    Kasam, Vinod; Salzemann, Jean; Botha, Marli; Dacosta, Ana; Degliesposti, Gianluca; Isea, Raul; Kim, Doman; Maass, Astrid; Kenyon, Colin; Rastelli, Giulio; Hofmann-Apitius, Martin; Breton, Vincent

    2009-05-01

    Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.

  20. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.

    1988-10-04

    A radioiodinated photoaffinity analogue of methotrexate, N{sup {alpha}}-(4-amino-4-deoxy-10-methyl-pteroyl)-N{sup {epsilon}}-(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K bandmore » only in the parent cells. However, when whole cells were UV irradiated at various times at 37{degree}C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37{degree}C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets.« less

  1. Selective Injection of Magnetization by Slow Chemical Exchange in NMR

    NASA Astrophysics Data System (ADS)

    Boulat, Benoit; Epstein, David M.; Rance, Mark

    1999-06-01

    In a system in slow dynamic equilibrium two NMR methods are shown to be suitable for injecting magnetization from one resonance to another by means of slow chemical exchange. The combined outputs of the methods may be employed to measure the value of the off-rate constant κoff in the complex. The methods are implemented experimentally using the complex of molecules composed of the enzyme Esherichia coli dihydrofolate reductase (DHFR) and the ligand folate. In an equilibrium solution with DHFR, folate is known to undergo chemical exchange between a free state and a bound state. The modified synchronous nutation method is applied to a spin of the folate molecule in the free and bound states; magnetization transfer occurs between the two sites due to the underlying exchange process. As a preliminary step for the application of the synchronous nutation method, a new one-dimensional 1H NMR technique is proposed which facilitates the assignment of the resonance of a spin in the bound state, provided the resonance of its exchange partner in the free state is known. This experiment is also used to obtain quantitative estimates of the transverse relaxation rate constant of the bound resonance. The numerical procedure necessary to analyze the experimental results of the synchronous nutation experiment is presented.

  2. Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases

    NASA Astrophysics Data System (ADS)

    Maitarad, Phornphimon; Kamchonwongpaisan, Sumalee; Vanichtanankul, Jarunee; Vilaivan, Tirayut; Yuthavong, Yongyuth; Hannongbua, Supa

    2009-04-01

    Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase ( PfDHFR). The represented CoMFA models of wild type ( r_{{cv}}2 = 0.727 and r 2 = 0.985) and mutant type ( r_{{cv}}2 = 0.786 and r 2 = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance.

  3. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.

    PubMed

    Hammes-Schiffer, Sharon; Watney, James B

    2006-08-29

    This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species.

  4. Molecular docking to Toxoplasma gondii thymidylate synthase-dihydrofolate reductase and efficacy of raltitrexed in infected mice.

    PubMed

    de Paula Reis, Michelle; de Lima, Daniely Alves; Pauli, Karoline Bach; Andreotti, Carlos Eduardo Linhares; de Moraes, André Luiz Soares; Gonçalves, Daniela Dib; Navarro, Italmar Teodorico; Bueno, Paulo Sérgio Alves; Seixas, Flavio Augusto Vicente; Gasparotto Junior, Arquimedes; Lourenço, Emerson Luiz Botelho

    2018-05-01

    Toxoplasmosis is a zoonosis of worldwide distribution. Currently, two drugs, pyrimethamine and sulfadiazine, are used as a reference in the treatment of toxoplasmosis, but the resistance of Toxoplasma gondii appears as a relevant public health problem. In order to identify new drugs to toxoplasmosis treatment, we performed a molecular docking of raltitrexed to T. gondii thymidylate synthase-dihydrofolate reductase (TS-DHFR) and also evaluated its efficacy in infected mice. Initially, raltitrexed was docked on the crystallographic structures of TS-DHFR from T. gondii and Mus musculus. Then, 48 h after infection with the T. gondii RH strain, different groups of mice received an oral dose of raltitrexed (0.15, 0.75, and 1.5 mg kg -1 ). Two days after treatments, raltitrexed was able to prevent mortality and reduce the number of tachyzoites in the peritoneal fluid and liver imprints from infected mice. The results showed that raltitrexed has important protective activities against the T. gondii RH strain. Molecular docking still suggests that the effects against the parasite may be dependent on the inhibition of T. gondii thymidylate synthase. This study opens new perspectives for the use of raltitrexed in patients infected with T. gondii, especially when conventional treatments do not exhibit the expected efficacy.

  5. Changes in Malaria Parasite Drug Resistance in an Endemic Population Over a 25-Year Period With Resulting Genomic Evidence of Selection

    PubMed Central

    Nwakanma, Davis C.; Duffy, Craig W.; Amambua-Ngwa, Alfred; Oriero, Eniyou C.; Bojang, Kalifa A.; Pinder, Margaret; Drakeley, Chris J.; Sutherland, Colin J.; Milligan, Paul J.; MacInnis, Bronwyn; Kwiatkowski, Dominic P.; Clark, Taane G.; Greenwood, Brian M.; Conway, David J.

    2014-01-01

    Background. Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. Methods. We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. Results. Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. Conclusions. Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes. PMID:24265439

  6. Dual Identification and Analysis of Differentially Expressed Transcripts of Porcine PK-15 Cells and Toxoplasma gondii during in vitro Infection

    PubMed Central

    Zhou, Chun-Xue; Elsheikha, Hany M.; Zhou, Dong-Hui; Liu, Qing; Zhu, Xing-Quan; Suo, Xun

    2016-01-01

    Toxoplasma gondii is responsible for causing toxoplasmosis, one of the most prevalent zoonotic parasitoses worldwide. The mechanisms that mediate T. gondii infection of pigs (the most common source of human infection) and renal tissues are still unknown. To identify the critical alterations that take place in the transcriptome of both porcine kidney (PK-15) cells and T. gondii following infection, infected cell samples were collected at 1, 3, 6, 9, 12, 18, and 24 h post infection and RNA-Seq data were acquired using Illumina Deep Sequencing. Differential Expression of Genes (DEGs) analysis was performed to study the concomitant gene-specific temporal patterns of induction of mRNA expression of PK-15 cells and T. gondii. High sequence coverage enabled us to thoroughly characterize T. gondii transcriptome and identify the activated molecular pathways in host cells. More than 6G clean bases/sample, including >40 million clean reads were obtained. These were aligned to the reference genome of T. gondii and wild boar (Sus scrofa). DEGs involved in metabolic activities of T. gondii showed time-dependent down-regulation. However, DEGs involved in immune or disease related pathways of PK-15 cells peaked at 6 h PI, and were highly enriched as evidenced by KEGG analysis. Protein-protein interaction analysis revealed that TGME49_120110 (PCNA), TGME49_049180 (DHFR-TS), TGME49_055320, and TGME49_002300 (ITPase) are the four hub genes with most interactions with T. gondii at the onset of infection. These results reveal altered profiles of gene expressed by PK-15 cells and T. gondii during infection and provide the groundwork for future virulence studies to uncover the mechanisms of T. gondii interaction with porcine renal tissue by functional analysis of these DEGs. PMID:27242740

  7. In silico design, construction and cloning of Trastuzumab humanized monoclonal antibody: A possible biosimilar for Herceptin

    PubMed Central

    Akbarzadeh-Sharbaf, Soudabeh; Yakhchali, Bagher; Minuchehr, Zarrin; Shokrgozar, Mohammad Ali; Zeinali, Sirous

    2012-01-01

    Background: There is a novel hypothesis in that antibodies may have specificity for two distinct antigens that have been named “dual specificity”. This hypothesis was evaluated for some defined therapeutic monoclonal antibodies (mAbs) such as Trastuzumab, Pertuzumab, Bevacizumab, and Cetuximab. In silico design and construction of expression vectors for trastuzumab monoclonal antibody also in this work were performed. Materials and Methods: First, in bioinformatics studies the 3D structures of concerned mAbs were obtained from the Protein Data Bank (PDB). Three-dimensional structural alignments were performed with SIM and MUSTANG softwares. AutoDock4.2 software also was used for the docking analysis. Second, the suitable genes for trastuzumab heavy and light chains were designed, synthesized, and cloned in the prokaryotic vector. These fragments individually were PCR amplified and cloned into pcDNA™ 3.3-TOPO® and pOptiVEC™ TOPO® shuttle vectors, using standard methods. Results: First, many bioinformatics tools and softwares were applied but we did not meet any new dual specificity in the selected antibodies. In the following step, the suitable expression cascade for the heavy and light chains of Trastuzumab therapeutic mAb were designed and constructed. Gene cloning was successfully performed and created constructs were confirmed using gene mapping and sequencing. Conclusions: This study was based on a recently developed technology for mAb expression in mammalian cells. The obtained constructs could be successfully used for biosimilar recombinant mAb production in CHO DG44 dihydrofolate reductase (DHFR) gene deficient cell line in the suspension culture medium. PMID:23210080

  8. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.

  9. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.

    PubMed

    Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases.

  10. MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice

    PubMed Central

    Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. PMID:23468640

  11. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation.

    PubMed

    Iskandar, Bermans J; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H; Jarrard, David F; Banerjee, Ruma V; Skene, J H Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D; Hogan, Kirk J

    2010-05-01

    The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.

  12. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation

    PubMed Central

    Iskandar, Bermans J.; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H.; Jarrard, David F.; Banerjee, Ruma V.; Skene, J.H. Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D.; Hogan, Kirk J.

    2010-01-01

    The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries. PMID:20424322

  13. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  14. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo Andrade; Hopfinger, Anton J.

    2001-01-01

    A set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines were studied using four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis. The corresponding biological activities of these compounds include IC50 inhibition constants for both the wild type, and a specific mutant type of Plasmodium falciparum dihydrofolate reductase (DHFR). Two thousand conformations of each analog were sampled to generate a conformational ensemble profile (CEP) from a molecular dynamics simulation (MDS) of 100,000 conformer trajectory states. Each sampled conformation was placed in a 1 Å cubic grid cell lattice for each of five trial alignments. The frequency of occupation of each grid cell was computed for each of six types of pharmacophore groups of atoms of each compound. These grid cell occupancy descriptors (GCODs) were then used as a descriptor pool to construct 4D-QSAR models. Models for inhibition of both the `wild' type and the mutant enzyme were generated which provide detailed spatial pharmacophore requirements for inhibition in terms of atom types and their corresponding relative locations in space. The 4D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the Plasmodium falciparum DHFR to current antimalarials. One feature identified is a slightly different binding alignment of the ligands to the mutant form of the enzyme as compared to the wild type.

  15. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venema, J.; van Hoffen, A.; Karcagi, V.

    1991-08-01

    The authors have measured the removal of UV-induced pyrimidine dimers from DNA fragments of the adenosine deaminase (ADA) and dihydrofolate reductase (DHFR) genes in primary normal human and xeroderma pigmentosum complementation group C (XP-C) cells. Using strand-specific probes, we show that in normal cells, preferential repair of the 5{prime} part of the ADA gene is due to the rapid and efficient repair of the transcribed strand. Within 8 h after irradiation with UV at 10 J m-2, 70% of the pyrimidine dimers in this strand are removed. The nontranscribed strand is repaired at a much slower rate, with 30% dimersmore » removed after 8 h. Repair of the transcribed strand in XP-C cells occurs at a rate indistinguishable from that in normal cells, but the nontranscribed strand is not repaired significantly in these cells. Similar results were obtained for the DHFR gene. In the 3{prime} part of the ADA gene, however, both normal and XP-C cells perform fast and efficient repair of either strand, which is likely to be caused by the presence of transcription units on both strands. The factor defective in XP-C cells is apparently involved in the processing of DNA damage in inactive parts of the genome, including nontranscribed strands of active genes. These findings have important implications for the understanding of the mechanism of UV-induced excision repair and mutagenesis in mammalian cells.« less

  16. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress.

    PubMed

    Kristensen, Ulrik; Epanchintsev, Alexey; Rauschendorf, Marc-Alexander; Laugel, Vincent; Stevnsner, Tinna; Bohr, Vilhelm A; Coin, Frédéric; Egly, Jean-Marc

    2013-06-18

    Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.

  17. Malaria prevalence in Nias District, North Sumatra Province, Indonesia.

    PubMed

    Syafruddin, Din; Asih, Puji B S; Wahid, Isra; Dewi, Rita M; Tuti, Sekar; Laowo, Idaman; Hulu, Waozidohu; Zendrato, Pardamean; Laihad, Ferdinand; Shankar, Anuraj H

    2007-08-30

    The Nias district of the North Sumatra Province of Indonesia has long been known to be endemic for malaria. Following the economic crisis at the end of 1998 and the subsequent tsunami and earthquake, in December 2004 and March 2005, respectively, the malaria control programme in the area deteriorated. The present study aims to provide baseline data for the establishment of a suitable malaria control programme in the area and to analyse the frequency distribution of drug resistance alleles associated with resistance to chloroquine and sulphadoxine-pyrimethamine. Malariometric and entomology surveys were performed in three subdistricts. Thin and thick blood smears were stained with Giemsa and examined under binocular light microscopy. Blood blots on filter paper were also prepared for isolation of parasite and host DNA to be used for molecular analysis of band 3 (SAO), pfcrt, pfmdr1, dhfr, and dhps. In addition, haemoglobin measurement was performed in the second and third surveys for the subjects less than 10 years old. Results of the three surveys revealed an average slide positivity rate of 8.13%, with a relatively higher rate in certain foci. Host genetic analysis, to identify the Band 3 deletion associated with Southeast Asian Ovalocytosis (SAO), revealed an overall frequency of 1.0% among the 1,484 samples examined. One hundred six Plasmodium falciparum isolates from three sub-districts were successfully analysed. Alleles of the dhfr and dhps genes associated with resistance to sulphadoxine-pyrimethamine, dhfr C59R and S108N, and dhps A437G and K540E, were present at frequencies of 52.2%, 82.5%, 1.18% and 1.18%, respectively. The pfmdr1 alleles N86Y and N1042D, putatively associated with mefloquine resistance, were present at 31.4% and 2%, respectively. All but one sample carried the pfcrt 76T allele associated with chloroquine resistance. Entomologic surveys identified three potential anopheline vectors in the area, Anopheles barbirostris, Anopheles kochi and Anopheles sundaicus. The cross sectional surveys in three different sub-districts of Nias District clearly demonstrated the presence of relatively stable endemic foci of malaria in Nias District, North Sumatra Province, Indonesia. Molecular analysis of the malaria parasite isolates collected from this area strongly indicates resistance to chloroquine and a growing threat of resistance to sulphadoxine-pyrimethamine. This situation highlights the need to develop sustainable malaria control measures through regular surveillance and proper antimalarial drug deployment.

  18. Malaria prevalence in Nias District, North Sumatra Province, Indonesia

    PubMed Central

    Syafruddin, Din; Asih, Puji BS; Wahid, Isra; Dewi, Rita M; Tuti, Sekar; Laowo, Idaman; Hulu, Waozidohu; Zendrato, Pardamean; Laihad, Ferdinand; Shankar, Anuraj H

    2007-01-01

    Background The Nias district of the North Sumatra Province of Indonesia has long been known to be endemic for malaria. Following the economic crisis at the end of 1998 and the subsequent tsunami and earthquake, in December 2004 and March 2005, respectively, the malaria control programme in the area deteriorated. The present study aims to provide baseline data for the establishment of a suitable malaria control programme in the area and to analyse the frequency distribution of drug resistance alleles associated with resistance to chloroquine and sulphadoxine-pyrimethamine. Methods Malariometric and entomology surveys were performed in three subdistricts. Thin and thick blood smears were stained with Giemsa and examined under binocular light microscopy. Blood blots on filter paper were also prepared for isolation of parasite and host DNA to be used for molecular analysis of band 3 (SAO), pfcrt, pfmdr1, dhfr, and dhps. In addition, haemoglobin measurement was performed in the second and third surveys for the subjects less than 10 years old. Results Results of the three surveys revealed an average slide positivity rate of 8.13%, with a relatively higher rate in certain foci. Host genetic analysis, to identify the Band 3 deletion associated with Southeast Asian Ovalocytosis (SAO), revealed an overall frequency of 1.0% among the 1,484 samples examined. One hundred six Plasmodium falciparum isolates from three sub-districts were successfully analysed. Alleles of the dhfr and dhps genes associated with resistance to sulphadoxine-pyrimethamine, dhfr C59R and S108N, and dhps A437G and K540E, were present at frequencies of 52.2%, 82.5%, 1.18% and 1.18%, respectively. The pfmdr1 alleles N86Y and N1042D, putatively associated with mefloquine resistance, were present at 31.4% and 2%, respectively. All but one sample carried the pfcrt 76T allele associated with chloroquine resistance. Entomologic surveys identified three potential anopheline vectors in the area, Anopheles barbirostris, Anopheles kochi and Anopheles sundaicus. Conclusion The cross sectional surveys in three different sub-districts of Nias District clearly demonstrated the presence of relatively stable endemic foci of malaria in Nias District, North Sumatra Province, Indonesia. Molecular analysis of the malaria parasite isolates collected from this area strongly indicates resistance to chloroquine and a growing threat of resistance to sulphadoxine-pyrimethamine. This situation highlights the need to develop sustainable malaria control measures through regular surveillance and proper antimalarial drug deployment. PMID:17760967

  19. High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples.

    PubMed

    Chelbi, Hanen; Essid, Rym; Jelassi, Refka; Bouzekri, Nesrine; Zidi, Ines; Ben Salah, Hamza; Mrad, Ilhem; Ben Sghaier, Ines; Abdelmalek, Rym; Aissa, Sameh; Bouratbine, Aida; Aoun, Karim

    2018-02-01

    Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species. Copyright © 2017. Published by Elsevier Ltd.

  20. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.

    PubMed

    Zhou, Chun-Xue; Zhu, Xing-Quan; Elsheikha, Hany M; He, Shuai; Li, Qian; Zhou, Dong-Hui; Suo, Xun

    2016-10-04

    Toxoplasma gondii is a medically and economically important protozoan parasite. However, the molecular mechanisms of its sporulation remain largely unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the proteomic expression profile of T. gondii oocysts during sporulation. Of the 2095 non-redundant proteins identified, 587 were identified as differentially expressed proteins (DEPs). Based on Gene Ontology enrichment and KEGG pathway analyses the majority of these DEPs were found related to the metabolism of amino acids, carbon and energy. Protein interaction network analysis generated by STRING identified ATP-citrate lyase (ACL), GMP synthase, IMP dehydrogenase (IMPDH), poly (ADP-ribose) glycohydrolase (PARG), and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) as the top five hubs. We also identified 25 parasite virulence factors that were expressed at relatively high levels in sporulated oocysts compared to non-sporulated oocysts, which might contribute to the infectivity of mature oocysts. Considering the importance of oocysts in the dissemination of toxoplasmosis these findings may help in the search of protein targets with a key role in infectiousness and ecological success of oocysts, creating new opportunities for the development of better means for disease prevention. The development of new preventative interventions against T. gondii infection relies on an improved understanding of the proteome and chemical pathways of this parasite. To identify proteins required for the development of environmentally resistant and infective T. gondii oocysts, we compared the proteome of non-sporulated (immature) oocysts with the proteome of sporulated (mature, infective) oocysts. iTRAQ 2D-LC-MS/MS analysis revealed proteomic changes that distinguish non-sporulated from sporulated oocysts. Many of the differentially expressed proteins were involved in metabolic pathways and 25 virulence factors were identified upregulated in the sporulated oocysts. This work provides the first quantitative characterization of the proteomic variations that occur in T. gondii oocyst stage during sporulation. Copyright © 2016. Published by Elsevier B.V.

  1. Sequences within the 5' untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle.

    PubMed Central

    Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S

    1996-01-01

    Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA. PMID:8943327

  2. Sequences within the 5' untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle.

    PubMed

    Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S

    1996-12-01

    Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.

  3. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  4. Population structure of Pneumocystis jirovecii isolated from immunodeficiency virus-positive patients.

    PubMed

    Esteves, Francisco; Gaspar, Jorge; Tavares, Adélcia; Moser, Inês; Antunes, Francisco; Mansinho, Kamal; Matos, Olga

    2010-03-01

    Pneumocystis jirovecii pneumonia (PcP) is an important opportunistic infection among immunocompromised patients. Genetic characterization of P. jirovecii isolated from HIV-positive patients, based on identification of multiple nucleotide sequences at eight distinct loci, was achieved by using PCR with DNA sequencing and RFLP. The present study showed that the mitochondrial large-subunit rRNA (mtLSU rRNA), the cytochrome b (CYB), the superoxide dismutase (SOD), the beta-tubulin (beta-tub), the dihydrofolate reductase (DHFR) and the dihydropteroate synthase (DHPS) loci sequences were more variable and therefore giving additional information than the thioredoxin reductase (Trr1) and the thymidylate synthase (TS) genes. Genotyping at those six most informative loci enabled the identification of 48 different P. jirovecii multilocus genotypes (MLGs). Significant statistical associations between infecting P. jirovecii genotypes and patients' age groups or PcP clinical status were found. Also, mtLSU rRNA sequences and specific genotypes from other three loci (CYB, SOD, and DHFR) were statistically associated. The results suggested large recombination between most P. jirovecii MLGs. However, one MLG occurred at a higher frequency than would be expected according to panmictic expectations, suggesting linkage disequilibrium and clonal propagation. The persistence of this specific MLG may be a consequence of clonal reproduction of this successful genotypic array in a P. jirovecii population with epidemic structure. The present study provided the description of multiple genomic regions of P. jirovecii, improving the understanding of genetic variability and frequency distribution of polymorphic genotypes, and exploring the criteria of clonality by testing over-representation of MLGs.

  5. Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1.

    PubMed

    Miyashita, Yurina; Ohmae, Eiji; Ikura, Teikichi; Nakasone, Kaoru; Katayanagi, Katsuo

    2017-05-01

    Dihydrofolate (DHF) reductase coded by a plasmid of the extremely halophilic archaeon Haloarcula japonica strain TR-1 (HjDHFR P1) shows moderate halophilicity on enzymatic activity at pH 6.0, although there is no significant effect of NaCl on its secondary structure. To elucidate the salt-activation and -inactivation mechanisms of this enzyme, we investigated the effects of pH and salt concentration, deuterium isotope effect, steady-state kinetics, and rapid-phase ligand-binding kinetics. Enzyme activity was increased eightfold by the addition of 500 mM NaCl at pH 6.0, fourfold by 250 mM at pH 8.0, and became independent of salt concentration at pH 10.0. Full isotope effects observed at pH 10.0 under 0-1000 mM NaCl indicated that the rate of hydride transfer, which was the rate-determining step at the basic pH region, was independent of salt concentration. Conversely, rapid-phase ligand-binding experiments showed that the amplitude of the DHF-binding reaction increased and the tetrahydrofolate (THF)-releasing rate decreased with increasing NaCl concentration. These results suggested that the salt-activation mechanism of HjDHFR P1 is via the population change of the anion-unbound and anion-bound conformers, which are binding-incompetent and -competent conformations for DHF, respectively, while that of salt inactivation is via deceleration of the THF-releasing rate, which is the rate-determining step at the neutral pH region.

  6. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela.

    PubMed

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W; Escalante, Ananias A; Udhayakumar, Venkatachalam

    2010-04-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: S(tct)VMNT (91%) and S(agt)VMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites.

  7. pfmdr1 Amplification and Fixation of pfcrt Chloroquine Resistance Alleles in Plasmodium falciparum in Venezuela ▿ †

    PubMed Central

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M.; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W.; Escalante, Ananias A.; Udhayakumar, Venkatachalam

    2010-01-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: StctVMNT (91%) and SagtVMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites. PMID:20145087

  8. Process Research and Development of Antibodies as Countermeasures for C. botulinum

    DTIC Science & Technology

    2009-02-01

    1. Diagram of plasmid pS25. Plasmid contains the light ( LC ) and heavy chains (HC) of S25 antibody against BoNT serotype A, along with dhfr as a...column, an MEP-hypercel column (100mm · 4.6mm di- ameter), or an EDTPA modified zirconia column (Zir- chrom ) (50mm · 4.6mm diameter). Prior to loading...Human IgG (2lg), (3) Human IgG (0.4lg), (4) CHO-S-SFM II media, (5) CHO-DG44 S25 supernatant, (6) rProtein A pooled peak fraction (ultrafiltered load), (7

  9. Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.

  10. Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi.

    PubMed

    Yeo, Matthew; Mauricio, Isabel L; Messenger, Louisa A; Lewis, Michael D; Llewellyn, Martin S; Acosta, Nidia; Bhattacharyya, Tapan; Diosque, Patricio; Carrasco, Hernan J; Miles, Michael A

    2011-06-01

    Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.

  11. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    PubMed

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR.

  12. Probing the Electrostatics of Active Site Microenvironments along the Catalytic Cycle for Escherichia coli Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and 13C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor–acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR. PMID:24977791

  13. Clinical trials of artesunate plus sulfadoxine-pyrimethamine for Plasmodium falciparum malaria in Afghanistan: maintained efficacy a decade after introduction.

    PubMed

    Awab, Ghulam Rahim; Imwong, Mallika; Pukrittayakamee, Sasithon; Alim, Fazel; Hanpithakpong, Warunee; Tarning, Joel; Dondorp, Arjen M; Day, Nicholas P J; White, Nicholas J; Woodrow, Charles J

    2016-02-25

    Combination therapy with artesunate plus sulfadoxine-pyrimethamine (SP) was adopted as recommended treatment for Plasmodium falciparum infection in Afghanistan in 2003. A series of prospective clinical studies examining the efficacy of artesunate plus sulfadoxine-pyrimethamine (AS + SP) against P. falciparum were undertaken in sentinel sites in Afghanistan from 2007 to 2014, accompanied by relevant molecular studies. The first study was a randomized trial of AS + SP versus dihydroartemisinin-piperaquine, while two subsequent studies were standard therapeutic efficacy studies of AS + SP. Three hundred and three patients were enrolled across four provinces in the north and east of the country. Curative efficacy was high in all the trials, with an adequate clinical and parasitological response (ACPR) of more than 95 % in all groups and trial stages. Genotyping for drug-resistance alleles at dhfr indicated fixation of the S108 N mutation and a prevalence of the C59R mutation of approximately 95 % across all sites. Other mutations in dhfr and dhps remained rare or absent entirely, although five isolates from the first trial carried the dhps triple mutant SGEGA haplotype. In the last study undertaken in 2012-2014 the K13 artemisinin resistance marker was examined; only two of 60 successfully sequenced samples carried a K13-propeller mutation. These data confirm maintained efficacy 10 years after introduction of artesunate plus SP as combination treatment of P. falciparum in Afghanistan. The molecular data indicate that despite a substantial fall in incidence, resistance has not developed to artemisinins, or intensified to the ACT partner drug components. Trial Registration http://www.clinicaltrials.gov/ct NCT00682578, NCT01115439 and NCT01707199.

  14. Efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria: revisiting molecular markers in an area of emerging AQ and SP resistance in Mali

    PubMed Central

    Tekete, Mamadou; Djimde, Abdoulaye A; Beavogui, Abdoul H; Maiga, Hamma; Sagara, Issaka; Fofana, Bakary; Ouologuem, Dinkorma; Dama, Souleymane; Kone, Aminatou; Dembele, Demba; Wele, Mamadou; Dicko, Alassane; Doumbo, Ogobara K

    2009-01-01

    Background To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria. Methods During the malaria transmission seasons of 2002 and 2003, 455 children – between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols. Genotyping of msp1, msp2 and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction). Results Day 28 adequate clinical and parasitological responses (ACPR) were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR) were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of dhfr triple mutant and dhfr/dhps quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with dhps 540E was found. Conclusion In this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy. PMID:19245687

  15. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  16. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative.

    PubMed

    Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A

    2015-06-15

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    PubMed

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  18. PROGNOSTIC FACTORS FOR PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMAS TREATED WITH HIGH-DOSE METHOTREXATE-BASED CHEMO-RADIOTHERAPY

    PubMed Central

    Nagane, Motoo; Lee, Jeunghun; Shishido-Hara, Yukiko; Suzuki, Kaori; Shimizu, Saki; Umino, Michiru; Kobayashi, Keiichi; Shiokawa, Yoshiaki

    2014-01-01

    BACKGROUND: Chemotherapy with high-dose methotrexate (HD-MTX) followed by whole brain radiotherapy (WBRT) is a conventional approach to treat primary central nervous system lymphomas (PCNSL), but some tumors relapse early leading to unfavorable outcome. Several biomarkers have been identified as prognostic factors in PCNSL, however, the correlation of both clinical factors including those related to MTX metabolism and B-cell differentiation and oncogenic biomarkers with response to and outcome by therapy is yet unclear. METHODS: We investigated 32 immunocompetent patients (19 males, 13 females) with PCNSL (all diffuse large B-cell type) treated with HD-MTX based therapy with or without WBRT since 2000 in our institution. Paraffin-embedded formalin-fixed tumor tissue sections were stained immunohistochemically with antibodies against following factors: B-cell differentiation markers (CD10, Bcl-6, Mum-1, CD138); MTX metabolism-related (MRP family, LRP, DHFR); cell cycle-related (p27KIP1, MIB-1); drug resistance-related (MGMT, MLH1, MSH2, MSH6, PMS2); and oncogenes (Myc, Bcl-2). Correlation between positivity of these factors and clinical outcomes were evaluated using logrank test and cox regression analysis. RESULTS: Among these factors, complete response to HD-MTX was significantly associated with longer progression-free survival (PFS)(P = 0.0012), while Bcl-6 expression as well as histological subtype (non-germinal center B-cell, non-GCB) was closely correlated with shorter PFS. Age (>60) (P = 0.006) and MSH2 expression (P = 0.017) were found to be better predictor for overall survival (OS), but in multivariate analysis, they were no longer significant. Other factors involved in MTX metabolism, DNA repair enzymes, and oncogenes did not affect outcome. CONCLUSIONS: Non-GCB subtype and Bcl-6 expression may be associated with worse outcome in patients with PCNSL treated with HD-MTX, while MTX-metabolism related factors did not influence prognosis. Further investigation is needed to assess Bcl-6 as a potential prognostic factor in PCNSL. SECONDARY CATEGORY: Clinical Neuro-Oncology.

  19. Phenotypic and molecular characterization of antimicrobial resistance in Proteus mirabilis isolates from dogs.

    PubMed

    Harada, Kazuki; Niina, Ayaka; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Miyamoto, Tadashi; Kataoka, Yasushi

    2014-11-01

    Large-scale monitoring of resistance to 14 antimicrobial agents was performed using 103 Proteus mirabilis strains isolated from dogs in Japan. Resistant strains were analysed to identify their resistance mechanisms. Rates of resistance to chloramphenicol, streptomycin, enrofloxacin, trimethoprim/sulfamethoxazole, kanamycin, ampicillin, ciprofloxacin, cephalothin, gentamicin, cefoxitin and cefotaxime were 20.4, 15.5, 12.6, 10.7, 9.7, 8.7, 5.8, 2.9, 2.9, 1.9 and 1.9%, respectively. No resistance to ceftazidime, aztreonam or imipenem was found. Class 1 and 2 integrases were detected in 2.9 and 11.7% of isolates, respectively. Class 1 integrons contained aadB or aadB-catB-like-blaOXA10-aadA1, whereas those of class 2 contained sat-aadA1, dhfr1-sat-aadA1 or none of the anticipated resistance genes. Of five distinct plasmid-mediated quinolone-resistance (PMQR) genes, only qnrD gene was detected in 1.9% of isolates. Quinolone-resistance determining regions (QRDRs) of gyrA and parC from 13 enrofloxacin-intermediate and -resistant isolates were sequenced. Seven strains had double mutations and three had single mutations. Three of nine ampicillin-resistant isolates harboured AmpC-type β-lactamases (i.e. blaCMY-2, blaCMY-4 and blaDHA-1). These results suggest that canine Proteus mirabilis deserves continued surveillance as an important reservoir of antimicrobial resistance determinants. This is the first report, to our knowledge, describing integrons, PMQRs and QRDR mutations in Proteus mirabilis isolates from companion animals. © 2014 The Authors.

  20. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    PubMed

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  1. Linking protein motion to enzyme catalysis.

    PubMed

    Singh, Priyanka; Abeysinghe, Thelma; Kohen, Amnon

    2015-01-13

    Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes-dihydrofolate reductase (DHFR) and thymidylate synthase (TSase)-and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs) and their temperature dependence as tools in probing such phenomena.

  2. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.

    PubMed

    Bhat, Hans Raj; Singh, Udaya Pratap; Thakur, Anjali; Kumar Ghosh, Surajit; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-10-01

    A series of novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives was synthesized in a five-steps reaction and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Entire synthetic derivatives showed higher antimalarial activity on the sensitive strain while two compounds, viz., 9a and 9c displayed good activity against both the strains of P. falciparum. The observed activity was further substantiated by docking study on both wild and qradruple mutant type P. falciparum dihydrofolate reductase-thymidylate synthase (pf-DHFR-TS). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region.

    PubMed

    Cubides, Juan Ricardo; Camargo-Ayala, Paola Andrea; Niño, Carlos Hernando; Garzón-Ospina, Diego; Ortega-Ortegón, Anggie; Ospina-Cantillo, Estefany; Orduz-Durán, María Fernanda; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2018-03-27

    Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage.

  4. A module located at a chromosomal integration hot spot is responsible for the multidrug resistance of a reference strain from Escherichia coli clonal group A.

    PubMed

    Lescat, Mathilde; Calteau, Alexandra; Hoede, Claire; Barbe, Valérie; Touchon, Marie; Rocha, Eduardo; Tenaillon, Olivier; Médigue, Claudine; Johnson, James R; Denamur, Erick

    2009-06-01

    Escherichia coli clonal group A (CGA) commonly exhibits a distinctive multidrug antimicrobial resistance phenotype-i.e., resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and trimethoprim (ACSSuTTp)-and has accounted for up to 50% of trimethoprim-sulfamethoxazole-resistant E. coli urinary tract infections in some locales. Annotation of the whole-genome sequencing of UMN026, a reference CGA strain, clarified the genetic basis for this strain's ACSSuTTp antimicrobial resistance phenotype. Most of the responsible genes were clustered in a unique 23-kbp chromosomal region, designated the genomic resistance module (GRM), which occurred within a 105-kbp genomic island situated at the leuX tRNA. The GRM is characterized by numerous remnants of mobilization and rearrangement events suggesting multiple horizontal transfers. Additionally, comparative genomic analysis of the leuX tRNA genomic island in 14 sequenced E. coli genomes showed that this region is a hot spot of integration, with the presence/absence of specific subregions being uncorrelated with either the phylogenetic group or the pathotype. Our data illustrate the importance of whole-genome sequencing in the detection of genetic elements involved in antimicrobial resistance. Additionally, this is the first documentation of the bla(TEM) and dhfrVII genes in a chromosomal location in E. coli strains.

  5. The association of polymorphisms in folate-metabolizing genes with response to adjuvant chemotherapy of colorectal cancer.

    PubMed

    Yousef, Al-Motassem; Zawiah, Mohammed; Al-Yacoub, Shorouq; Kadi, Taha; Tantawi, Dua' A; Al-Ramadhani, Hanguin

    2018-05-29

    Colorectal cancer (CRC) is one of the major health issues worldwide. 5-Fluorouracil (5-FU) is a cornerstone of chemotherapy for CRC and the major targets of 5-FU are folate-metabolizing enzymes. A total of 103 CRC patients with complete clinical data were included in this prospective cohort study. Genotyping was performed using polymerase chain reaction (PCR) followed by sequencing. Using Kaplan-Meier curves, log-rank tests, and Cox proportional hazard models, we evaluated associations between functional polymorphisms in four genes MTHFR (1298A>C and 677C>T), DPYD (496A>G and 85T>C), DHFR 19 bp del, and MTR (2756 A>G) with disease-free survival (DFS). The minor allele frequencies of MTHFR 1298A>C, MTHFR 677C>T, DPYD 496A>G, DPYD 85T>C, DHFR 19 bp del, and MTR 2756 A>G were 0.364, 0.214, 0.116, 0.209, 0.383, and 0.097, respectively. CRC patients carrying the homozygous GG genotype in DPYD 496A>G had 4.36 times shorter DFS than wild-type AA carriers, (DFS GG vs AA : 8.0 ± 4 vs 69.0 ± 10 months; HR 4.36, 95% CI 1.04-18; p = 0.04). Moreover, female carriers of homozygous CC genotype of DPYD 85T>C had shorter DFS compared to either heterozygous or wild-type genotypes, and were 12.7 times shorter than wild-type TT carriers (DFS CC vs TT : 5.0 ± 1.5 vs 42.0 ± 7.6 months; HR 12.7, 95% CI 2.2-71.4; p = 0.004). However, there were no significant associations with the other studied polymorphisms. Genetic polymorphism in DPYD seems to be associated with DFS in CRC patients receiving an adjuvant regimen of 5-FU/capecitabine-based chemotherapy. Further studies are needed to verify these findings.

  6. Multicentre study highlighting clinical relevance of new high-throughput methodologies in molecular epidemiology of Pneumocystis jirovecii pneumonia.

    PubMed

    Esteves, F; de Sousa, B; Calderón, E J; Huang, L; Badura, R; Maltez, F; Bassat, Q; de Armas, Y; Antunes, F; Matos, O

    2016-06-01

    Pneumocystis jirovecii causes severe interstitial pneumonia (PcP) in immunosuppressed patients. This multicentre study assessed the distribution frequencies of epidemiologically relevant genetic markers of P. jirovecii in different geographic populations from Portugal, the USA, Spain, Cuba and Mozambique, and the relationship between the molecular data and the geographical and clinical information, based on a multifactorial approach. The high-throughput typing strategy for P. jirovecii characterization consisted of DNA pooling using quantitative real-time PCR followed by multiplex-PCR/single base extension. The frequencies of relevant P. jirovecii single nucleotide polymorphisms (mt85, SOD110, SOD215, DHFR312, DHPS165 and DHPS171) encoded at four loci were estimated in ten DNA pooled samples representing a total of 182 individual samples. Putative multilocus genotypes of P. jirovecii were shown to be clustered due to geographic differences but were also dependent on clinical characteristics of the populations studied. The haplotype DHFR312T/SOD110C/SOD215T was associated with severe AIDS-related PcP and high P. jirovecii burdens. The frequencies of this genetic variant of P. jirovecii were significantly higher in patients with AIDS-related PcP from Portugal and the USA than in the colonized patients from Portugal, and Spain, and children infected with P. jirovecii from Cuba or Mozambique, highlighting the importance of this haplotype, apparently associated with the severity of the disease and specific clinical groups. Patients from the USA and Mozambique showed higher rates of DHPS mutants, which may suggest the circulation of P. jirovecii organisms potentially related with trimethoprim-sulfamethoxazole resistance in those geographical regions. This report assessed the worldwide distribution of P. jirovecii haplotypes and their epidemiological impact in distinct geographic and clinical populations. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.

  7. Identification and functional characterization of type II toxin/antitoxin systems in Aggregatibacter actinomycetemcomitans.

    PubMed

    Schneider, B; Weigel, W; Sztukowska, M; Demuth, D R

    2018-06-01

    Type II toxin/antitoxin (TA) systems contribute to the formation of persister cells and biofilm formation for many organisms. Aggregatibacter actinomycetemcomitans thrives in the complex oral microbial community subjected to continual environmental flux. Little is known regarding the presence and function of type II TA systems in this organism or their contribution to adaptation and persistence in the biofilm. We identified 11 TA systems that are conserved across all seven serotypes of A. actinomycetemcomitans and represent the RelBE, MazEF and HipAB families of type II TA systems. The systems selectively responded to various environmental conditions that exist in the oral cavity. Two putative RelBE-like TA systems, D11S_1194-1195 and D11S_1718-1719 were induced in response to low pH and deletion of D11S_1718-1719 significantly reduced metabolic activity of stationary phase A. actinomycetemcomitans cells upon prolonged exposure to acidic conditions. The deletion mutant also exhibited reduced biofilm biomass when cultured under acidic conditions. The D11S_1194 and D11S_1718 toxin proteins inhibited in vitro translation of dihydrofolate reductase (DHFR) and degraded ribosome-associated, but not free, MS2 virus RNA. In contrast, the corresponding antitoxins (D11S_1195 and D11S_1719), or equimolar mixtures of toxin and antitoxin, had no effect on DHFR production or RNA degradation. Together, these results suggest that D11S_1194-1195 and D11S_1718-1719 are RelBE-like type II TA systems that are activated under acidic conditions and may function to cleave ribosome-associated mRNA to inhibit translation in A. actinomycetemcomitans. In vivo, these systems may facilitate A. actinomycetemcomitans adaptation and persistence in acidic local environments in the dental biofilm. © 2018 The Authors. Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  8. Frequency, Antimicrobial Resistance and Genetic Diversity of Klebsiella pneumoniae in Food Samples

    PubMed Central

    Pang, Zhizhao; Qin, Tian; Ren, Hongyu; Pan, Zhuo; Zhou, Jikun

    2016-01-01

    This study aimed to assess the frequency of Klebsiella pneumoniae in food samples and to detect antibiotic resistance phenotypes, antimicrobial resistance genes and the molecular subtypes of the recovered isolates. A total of 998 food samples were collected, and 99 (9.9%) K. pneumoniae strains were isolated; the frequencies were 8.2% (4/49) in fresh raw seafood, 13.8% (26/188) in fresh raw chicken, 11.4% (34/297) in frozen raw food and 7.5% (35/464) in cooked food samples. Antimicrobial resistance was observed against 16 antimicrobials. The highest resistance rate was observed for ampicillin (92.3%), followed by tetracycline (31.3%), trimethoprim-sulfamethoxazole (18.2%), and chloramphenicol (10.1%). Two K. pneumoniae strains were identified as extended-spectrum β-lactamase (ESBL)–one strain had three beta-lactamases genes (blaSHV, blaCTX-M-1, and blaCTX-M-10) and one had only the blaSHV gene. Nineteen multidrug-resistant (MDR) strains were detected; the percentage of MDR strains in fresh raw chicken samples was significantly higher than in other sample types (P<0.05). Six of the 18 trimethoprim-sulfamethoxazole-resistant strains carried the folate pathway inhibitor gene (dhfr). Four isolates were screened by PCR for quinolone resistance genes; aac(6’)-Ib-cr, qnrB, qnrA and qnrS were detected. In addition, gyrA gene mutations such as T247A (Ser83Ile), C248T (Ser83Phe), and A260C (Asp87Ala) and a parC C240T (Ser80Ile) mutation were identified. Five isolates were screened for aminoglycosides resistance genes; aacA4, aacC2, and aadA1 were detected. Pulsed-field gel electrophoresis-based subtyping identified 91 different patterns. Our results indicate that food, especially fresh raw chicken, is a reservoir of antimicrobial-resistant K. pneumoniae, and the potential health risks posed by such strains should not be underestimated. Our results demonstrated high prevalence, antibiotic resistance rate and genetic diversity of K. pneumoniae in food in China. Improved control and prevention strategies are urgently needed. PMID:27078494

  9. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  10. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less

  11. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    PubMed Central

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-01

    Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer. PMID:19152710

  12. An active second dihydrofolate reductase enzyme is not a feature of rat and mouse, but they do have activity in their mitochondria.

    PubMed

    Hughes, Linda; Carton, Robert; Minguzzi, Stefano; McEntee, Gráinne; Deinum, Eva E; O'Connell, Mary J; Parle-McDermott, Anne

    2015-07-08

    The identification of a second functional dihydrofolate reductase enzyme in humans, DHFRL1, led us to consider whether this is also a feature of rodents. We demonstrate that dihydrofolate reductase activity is also a feature of the mitochondria in both rat and mouse but this is not due to a second enzyme. While our phylogenetic analysis revealed that RNA-mediated DHFR duplication events did occur across the mammal tree, the duplicates in brown rat and mouse are likely to be processed pseudogenes. Humans have evolved the need for two separate enzymes while laboratory rats and mice have just one. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study.

    PubMed

    Hensman Moss, Davina J; Pardiñas, Antonio F; Langbehn, Douglas; Lo, Kitty; Leavitt, Blair R; Roos, Raymund; Durr, Alexandra; Mead, Simon; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J

    2017-09-01

    Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008-11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003-13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10 -10 ) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10 -8 DHFR p=8·37 × 10 -7 MTRNR2L2 p=2·15 × 10 -9 ) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10 -4 DHFR p=8·45 × 10 -4 MTRNR2L2 p=1·20 × 10 -3 ). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10 -8 ), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16-0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06-0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detecting and Categorizing Fleeting Emotions in Faces

    PubMed Central

    Sweeny, Timothy D.; Suzuki, Satoru; Grabowecky, Marcia; Paller, Ken A.

    2013-01-01

    Expressions of emotion are often brief, providing only fleeting images from which to base important social judgments. We sought to characterize the sensitivity and mechanisms of emotion detection and expression categorization when exposure to faces is very brief, and to determine whether these processes dissociate. Observers viewed 2 backward-masked facial expressions in quick succession, 1 neutral and the other emotional (happy, fearful, or angry), in a 2-interval forced-choice task. On each trial, observers attempted to detect the emotional expression (emotion detection) and to classify the expression (expression categorization). Above-chance emotion detection was possible with extremely brief exposures of 10 ms and was most accurate for happy expressions. We compared categorization among expressions using a d′ analysis, and found that categorization was usually above chance for angry versus happy and fearful versus happy, but consistently poor for fearful versus angry expressions. Fearful versus angry categorization was poor even when only negative emotions (fearful, angry, or disgusted) were used, suggesting that this categorization is poor independent of decision context. Inverting faces impaired angry versus happy categorization, but not emotion detection, suggesting that information from facial features is used differently for emotion detection and expression categorizations. Emotion detection often occurred without expression categorization, and expression categorization sometimes occurred without emotion detection. These results are consistent with the notion that emotion detection and expression categorization involve separate mechanisms. PMID:22866885

  15. Poison Domains Block Transit of Translocated Substrates via the Legionella pneumophila Icm/Dot System

    PubMed Central

    Amyot, Whitney M.; deJesus, Dennise

    2013-01-01

    Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system. PMID:23798536

  16. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry.

    PubMed

    Obeng, Akua Serwaah; Rickard, Heather; Ndi, Olasumbo; Sexton, Margaret; Barton, Mary

    2012-01-27

    Antibiotic use in poultry production is a risk factor for promoting the emergence of resistant Escherichia coli. To ascertain differences in different classes of chickens, the resistance profile, some virulence genes and phylogenetic grouping on 251 E. coli isolates from intensive meat (free range and indoor commercial) and free range egg layer chickens collected between December 2008 and June 2009 in South Australia were performed. Among the 251 strains, 102 (40.6%) and 67 (26.7%) were found to be resistant to tetracycline and ampicillin respectively. Resistance was also observed to trimethoprim-sulfamethoxazole (12.4%), streptomycin (10.8%), spectinomycin (9.6%), neomycin (6.0%) and florfenicol (2.0%) but no resistance was found to ceftiofur, ciprofloxacin or gentamicin. Amplification of DNA of the isolates by polymerase chain reaction revealed the presence of genes that code for resistant determinants: tetracycline (tet(A), tet(B) and tet(C)), ampicillin (bla(TEM) and bla(SHV)), trimethoprim (dhfrV and dhfrXIII), sulphonamide (sulI and sulII), neomycin (aph(3)-Ia(aphA1)), and spectinomycin-streptinomycin (aadA2). In addition, 32.3-39.4% of the isolates were found to belong to commensal groups (A and B1) and 11.2-17.1% belonged to the virulent groups (B2 and D). Among the 251 E. coli isolates, 25 (10.0%) carried two or more virulence genes typical of Extraintestinal pathogenic E. coli (ExPEC). Furthermore, 17 of the isolates with multi-resistance were identified to be groups B2 and D. Although no significant difference was observed between isolates from free range and indoor commercial meat chickens (P>0.05), significant differences was observed between the different classes of meat chickens (free range and indoor commercial) and egg layers (P<0.05). While this study assessed the presence of a limited number of virulence genes, our study re emphasises the zoonotic potential of poultry E. coli isolates. Copyright © 2011. Published by Elsevier B.V.

  17. Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V.

    PubMed

    Oguike, Mary C; Falade, Catherine O; Shu, Elvis; Enato, Izehiuwa G; Watila, Ismaila; Baba, Ebenezer S; Bruce, Jane; Webster, Jayne; Hamade, Prudence; Meek, Sylvia; Chandramohan, Daniel; Sutherland, Colin J; Warhurst, David; Roper, Cally

    2016-12-01

    There are few published reports of mutations in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes in P. falciparum populations in Nigeria, but one previous study has recorded a novel dhps mutation at codon 431 among infections imported to the United Kingdom from Nigeria. To assess how widespread this mutation is among parasites in different parts of the country and consequently fill the gap in sulfadoxine-pyrimethamine (SP) resistance data in Nigeria, we retrospectively analysed 1000 filter paper blood spots collected in surveys of pregnant women and children with uncomplicated falciparum malaria between 2003 and 2015 from four sites in the south and north. Genomic DNA was extracted from filter paper blood spots and placental impressions. Point mutations at codons 16, 50, 51, 59, 108, 140 and 164 of the dhfr gene and codons 431, 436, 437, 540, 581 and 613 of the dhps gene were evaluated by nested PCR amplification followed by direct sequencing. The distribution of the dhps-431V mutation was widespread throughout Nigeria with the highest prevalence in Enugu (46%). In Ibadan where we had sequential sampling, its prevalence increased from 0% to 6.5% between 2003 and 2008. Although there were various combinations of dhps mutations with 431V, the combination 431V + 436A + 437G+581G+613S was the most common. All these observations support the view that dhps-431V is on the increase. In addition, P. falciparum DHPS crystal structure modelling shows that the change from Isoleucine to Valine (dhps-431V) could alter the effects of both S436A/F and A437G, which closely follow the 2nd β-strand. Consequently, it is now a research priority to assess the implications of dhps-VAGKGS mutant haplotype on continuing use of SP in seasonal malaria chemoprevention (SMC) and intermittent preventive treatment in pregnancy (IPTp). Our data also provides surveillance data for SP resistance markers in Nigeria between 2003 and 2015. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico

    PubMed Central

    Ramírez Castillo, Flor Y.; Avelar González, Francisco J.; Garneau, Philippe; Márquez Díaz, Francisco; Guerrero Barrera, Alma L.; Harel, Josée

    2013-01-01

    Contamination of surface waters in developing countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks and may represent a significant dissemination mechanism of antibiotic resistance genes. In this study, the water quality of San Pedro River, the main river and pluvial collector of the Aguascalientes State, Mexico was assessed. Thirty sample locations were tested throughout the River. The main physicochemical parameters of water were evaluated. Results showed high levels of fecal pollution as well as inorganic and organic matter abundant enough to support the heterotrophic growth of microorganisms. These results indicate poor water quality in samples from different locations. One hundred and fifty Escherichia coli were collected and screened by PCR for several virulence genes. Isolates were classified as either pathogenic (n = 91) or commensal (n = 59). The disc diffusion method was used to determine antimicrobial susceptibility to 13 antibiotics. Fifty-two percent of the isolates were resistant to at least one antimicrobial agent and 30.6% were multi-resistant. Eighteen E. coli strains were quinolone resistant of which 16 were multi-resistant. Plasmid-mediated quinolone resistance (PMQR) genes were detected in 12 isolates. Mutations at the Ser-83→Leu and/or Asp-87→Asn in the gyrA gene were detected as well as mutations at the Ser-80→Ile in parC. An E. coli microarray (Maxivirulence V 3.1) was used to characterize the virulence and antimicrobial resistance genes profiles of the fluoroquinolone-resistant isolates. Antimicrobial resistance genes such as blaTEM, sulI, sulII, dhfrIX, aph3 (strA), and tet (B) as well as integrons were found in fluoroquinolone (FQ) resistance E. coli strains. The presence of potential pathogenic E. coli and antibiotic resistance in San Pedro River such as FQ resistant E. coli could pose a potential threat to human and animal health. PMID:23785356

  19. Optochemical Control of Protein Localization and Activity within Cell-like Compartments.

    PubMed

    Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C

    2018-05-08

    We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.

  20. Identifying and detecting facial expressions of emotion in peripheral vision.

    PubMed

    Smith, Fraser W; Rossit, Stephanie

    2018-01-01

    Facial expressions of emotion are signals of high biological value. Whilst recognition of facial expressions has been much studied in central vision, the ability to perceive these signals in peripheral vision has only seen limited research to date, despite the potential adaptive advantages of such perception. In the present experiment, we investigate facial expression recognition and detection performance for each of the basic emotions (plus neutral) at up to 30 degrees of eccentricity. We demonstrate, as expected, a decrease in recognition and detection performance with increasing eccentricity, with happiness and surprised being the best recognized expressions in peripheral vision. In detection however, while happiness and surprised are still well detected, fear is also a well detected expression. We show that fear is a better detected than recognized expression. Our results demonstrate that task constraints shape the perception of expression in peripheral vision and provide novel evidence that detection and recognition rely on partially separate underlying mechanisms, with the latter more dependent on the higher spatial frequency content of the face stimulus.

  1. Identifying and detecting facial expressions of emotion in peripheral vision

    PubMed Central

    Rossit, Stephanie

    2018-01-01

    Facial expressions of emotion are signals of high biological value. Whilst recognition of facial expressions has been much studied in central vision, the ability to perceive these signals in peripheral vision has only seen limited research to date, despite the potential adaptive advantages of such perception. In the present experiment, we investigate facial expression recognition and detection performance for each of the basic emotions (plus neutral) at up to 30 degrees of eccentricity. We demonstrate, as expected, a decrease in recognition and detection performance with increasing eccentricity, with happiness and surprised being the best recognized expressions in peripheral vision. In detection however, while happiness and surprised are still well detected, fear is also a well detected expression. We show that fear is a better detected than recognized expression. Our results demonstrate that task constraints shape the perception of expression in peripheral vision and provide novel evidence that detection and recognition rely on partially separate underlying mechanisms, with the latter more dependent on the higher spatial frequency content of the face stimulus. PMID:29847562

  2. Impaired detection of happy facial expressions in autism.

    PubMed

    Sato, Wataru; Sawada, Reiko; Uono, Shota; Yoshimura, Sayaka; Kochiyama, Takanori; Kubota, Yasutaka; Sakihama, Morimitsu; Toichi, Motomi

    2017-10-17

    The detection of emotional facial expressions plays an indispensable role in social interaction. Psychological studies have shown that typically developing (TD) individuals more rapidly detect emotional expressions than neutral expressions. However, it remains unclear whether individuals with autistic phenotypes, such as autism spectrum disorder (ASD) and high levels of autistic traits (ATs), are impaired in this ability. We examined this by comparing TD and ASD individuals in Experiment 1 and individuals with low and high ATs in Experiment 2 using the visual search paradigm. Participants detected normal facial expressions of anger and happiness and their anti-expressions within crowds of neutral expressions. In Experiment 1, reaction times were shorter for normal angry expressions than for anti-expressions in both TD and ASD groups. This was also the case for normal happy expressions vs. anti-expressions in the TD group but not in the ASD group. Similarly, in Experiment 2, the detection of normal vs. anti-expressions was faster for angry expressions in both groups and for happy expressions in the low, but not high, ATs group. These results suggest that the detection of happy facial expressions is impaired in individuals with ASD and high ATs, which may contribute to their difficulty in creating and maintaining affiliative social relationships.

  3. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

    NASA Astrophysics Data System (ADS)

    Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas

    2017-07-01

    The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.

  4. Synthesis, Docking, In Vitro and In Vivo Antimalarial Activity of Hybrid 4-aminoquinoline-1,3,5-triazine Derivatives Against Wild and Mutant Malaria Parasites.

    PubMed

    Bhat, Hans Raj; Singh, Udaya Pratap; Gahtori, Prashant; Ghosh, Surajit Kumar; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-09-01

    A new series of hybrid 4-aminoquinoline-1,3,5-triazine derivatives was synthesized by a four-step reaction. Target compounds were screened for in vitro antimalarial activity against chloroquine-sensitive (3D-7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Compounds exhibited, by and large, good antimalarial activity against the resistant strain, while two of them, that is 8g and 8a, displayed higher activity against both the strains of P. falciparum. Additionally, docking study was performed on both wild (1J3I.pdb) and quadruple mutant (N51I, C59R, S108 N, I164L, 3QG2.pdb) type pf-DHFR-TS to highlight the structural features of hybrid molecules. © 2014 John Wiley & Sons A/S.

  5. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    PubMed

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Parasite clearance following treatment with sulphadoxine-pyrimethamine for intermittent preventive treatment in Burkina-Faso and Mali: 42-day in vivo follow-up study

    PubMed Central

    2014-01-01

    Background Intermittent Preventive Treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) is widely used for the control of malaria in pregnancy in Africa. The emergence of resistance to SP is a concern requiring monitoring the effectiveness of SP for IPTp. Methods This was an in-vivo efficacy study to determine the parasitological treatment response and the duration of post-treatment prophylaxis among asymptomatic pregnant women receiving SP as part of IPTp in Mali and Burkina-Faso. The primary outcome was the PCR-unadjusted % of patients with parasites recurrence by day 42 defined as a positive diagnostic test by malaria smear at any visit between days 4 and 42. Treatment failure was based on the standard World Health Organization criteria. The therapeutic response was estimated using the Kaplan-Meier curve. Results A total of 580 women were enrolled in Mali (N=268) and Burkina-Faso (N=312) and followed weekly for 42 days. Among these, 94.3% completed the follow-up. The PCR-unadjusted cumulative risk of recurrence by day 42 was 4.9% overall, and 3.2% and 6.5% in Mali and Burkina Faso respectively (Hazard Ratio [HR] =2.14, 95%, CI [0.93-4.90]; P=0.070), and higher among the primi– and secundigravida (6.4%) than multigravida (2.2%, HR=3.01 [1.04-8.69]; P=0.042). The PCR-adjusted failure risk was 1.1% overall (Mali 0.8%, Burkina-Faso 1.4%). The frequencies (95% CI) of the dhfr double and triple mutant and dhps 437 and 540 alleles mutant genotype at enrolment were 24.2% (23.7-25.0), 4.7% (4.4-5.0), and 21.4% (20.8-22.0) and 0.37% (0.29-0.44) in Mali, and 7.1% (6.5-7.7), 44.9% (43.8-46.0) and 75.3% (74.5-76.2) and 0% in Burkina-Faso, respectively. There were no dhfr 164L or dhps 581G mutations. Conclusion SP remains effective at clearing existing infections when provided as IPTp to asymptomatic pregnant women in Mali and Burkina. Continued monitoring of IPTp-SP effectiveness, including of the impact on birth parameters in this region is essential. PMID:24484467

  7. Distinct frontal and amygdala correlates of change detection for facial identity and expression

    PubMed Central

    Achaibou, Amal; Loth, Eva

    2016-01-01

    Recruitment of ‘top-down’ frontal attentional mechanisms is held to support detection of changes in task-relevant stimuli. Fluctuations in intrinsic frontal activity have been shown to impact task performance more generally. Meanwhile, the amygdala has been implicated in ‘bottom-up’ attentional capture by threat. Here, 22 adult human participants took part in a functional magnetic resonance change detection study aimed at investigating the correlates of successful (vs failed) detection of changes in facial identity vs expression. For identity changes, we expected prefrontal recruitment to differentiate ‘hit’ from ‘miss’ trials, in line with previous reports. Meanwhile, we postulated that a different mechanism would support detection of emotionally salient changes. Specifically, elevated amygdala activation was predicted to be associated with successful detection of threat-related changes in expression, over-riding the influence of fluctuations in top-down attention. Our findings revealed that fusiform activity tracked change detection across conditions. Ventrolateral prefrontal cortical activity was uniquely linked to detection of changes in identity not expression, and amygdala activity to detection of changes from neutral to fearful expressions. These results are consistent with distinct mechanisms supporting detection of changes in face identity vs expression, the former potentially reflecting top-down attention, the latter bottom-up attentional capture by stimulus emotional salience. PMID:26245835

  8. Distribution of Mutations Associated with Antifolate and Chloroquine Resistance among Imported Plasmodium vivax in the State of Qatar.

    PubMed

    Bansal, Devendra; Acharya, Anushree; Bharti, Praveen K; Abdelraheem, Mohamed H; Elmalik, Ashraf; Abosalah, Salem; Khan, Fahmi Y; ElKhalifa, Mohamed; Kaur, Hargobinder; Mohapatra, Pradyumna K; Sehgal, Rakesh; Idris, Mohammed A; Mahanta, Jagadish; Singh, Neeru; Babiker, Hamza A; Sultan, Ali A

    2017-12-01

    Plasmodium vivax is the most prevalent parasite worldwide, escalating by spread of drug resistance. Currently, in Qatar, chloroquine (CQ) plus primaquine are recommended for the treatment of P. vivax malaria. The present study examined the prevalence of mutations in dihydrofolate reductase ( dhfr ), dihydropteroate synthase ( dhps ) genes and CQ resistance transporter ( crt-o ) genes, associated with sulphadoxine-pyrimethamine (SP) and chloroquine resistance, among imported P. vivax cases in Qatar. Blood samples were collected from patients positive for P. vivax and seeking medical treatment at Hamad General Hospital, Doha, during 2013-2016. The Sanger sequencing method was performed to examine the single nucleotide polymorphisms in Pvdhfr , Pvdhps , and Pvcrt-o genes. Of 314 examined P. vivax isolates, 247 (78.7%), 294 (93.6%) and 261 (83.1%) were successfully amplified and sequenced for Pvdhfr , Pvdhps , and Pvcrt-o , respectively. Overall, 53.8% ( N = 133) carried mutant alleles (58R/117N) in Pvdhfr , whereas 77.2% ( N = 227) and 90% ( N = 235) isolates possessed wild type allele in Pvdhps and Pvcrt-o genes, respectively. In addition, a total of eleven distinct haplotypes were detected in Pvdhfr / Pvdhps genes. Interestingly, K10 insertion in the Pvcrt-o gene was observed only in patients originating from the Indian subcontinent. The results suggested that CQ remains an acceptable treatment regimen but further clinical data are required to assess the effectiveness of CQ and SP in Qatar to support the current national treatment guidelines. In addition, limited distribution of genetic polymorphisms associated with CQ and SP resistance observed in imported P. vivax infections, necessitates regular monitoring of drug resistant P. vivax malaria in Qatar.

  9. Analysis of Drug Resistance Determinants in Klebsiella pneumoniae Isolates from a Tertiary-Care Hospital in Beijing, China

    PubMed Central

    Wang, Qi; Woo, Patrick C. Y.; Tan, Lin; Jing, Hua; Gao, George F.; Liu, Cui Hua

    2012-01-01

    Background The rates of multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) isolates among Enterobacteriaceae isolates, particularly Klebsiella pneumoniae, have risen substantially worldwide. Methodology/Principal Findings To better understand the molecular mechanisms of drug resistance in K. pneumoniae, we analyzed the drug resistance determinants for K. pneumoniae isolates collected from the 306 Hospital, a tertiary-care hospital in Beijing, China, for the period of September 1, 2010-October 31, 2011. Drug susceptibility testing, PCR amplification and sequencing of the drug resistance determinants were performed. Conjugation experiments were conducted to examine the natural ability of drug resistance to disseminate among Enterobacteriaceae strains using a sodium azide-resistant Escherichia coli J53 strain as a recipient. Among the 223 consecutive non-repetitive K. pneumoniae isolates included in this study, 101 (45.3%) were extended-spectrum beta-lactamases (ESBLs) positive. The rates of MDR, XDR, and PDR isolates were 61.4% (n = 137), 22.0% (n = 49), and 1.8% (n = 4), respectively. Among the tested drug resistance-associated genes, the following ones were detected at relatively high rates bla CTX-M-10 (80, 35.9%), aacC2 (73, 32.7%), dhfr (62, 27.8%), qnrS (58, 26.0%), aacA4 (57, 25.6%), aadA1 (56, 25.1%). Results from conjugation experiments indicate that many of the drug resistance genes were transmissible. Conclusions/Significance Our data give a “snapshot” of the complex genetic background responsible for drug resistance in K. pneumoniae in China and demonstrate that a high degree of awareness and monitoring of those drug resistance determinants are urgently needed in order to better control the emergence and transmission of drug-resistant K. pneumoniae isolates in hospital settings. PMID:22860106

  10. The perceptual saliency of fearful eyes and smiles: A signal detection study

    PubMed Central

    Saban, Muhammet Ikbal; Rotshtein, Pia

    2017-01-01

    Facial features differ in the amount of expressive information they convey. Specifically, eyes are argued to be essential for fear recognition, while smiles are crucial for recognising happy expressions. In three experiments, we tested whether expression modulates the perceptual saliency of diagnostic facial features and whether the feature’s saliency depends on the face configuration. Participants were presented with masked facial features or noise at perceptual conscious threshold. The task was to indicate whether eyes (experiments 1-3A) or a mouth (experiment 3B) was present. The expression of the face and its configuration (i.e. spatial arrangement of the features) were manipulated. Experiment 1 compared fearful with neutral expressions, experiments 2 and 3 compared fearful versus happy expressions. The detection accuracy data was analysed using Signal Detection Theory (SDT), to examine the effects of expression and configuration on perceptual precision (d’) and response bias (c), separately. Across all three experiments, fearful eyes were detected better (higher d’) than neutral and happy eyes. Eyes were more precisely detected than mouths, whereas smiles were detected better than fearful mouths. The configuration of the features had no consistent effects across the experiments on the ability to detect expressive features. But facial configuration affected consistently the response bias. Participants used a more liberal criterion for detecting the eyes in canonical configuration and fearful expression. Finally, the power in low spatial frequency of a feature predicted its discriminability index. The results suggest that expressive features are perceptually more salient with a higher d’ due to changes at the low-level visual properties, with emotions and configuration affecting perception through top-down processes, as reflected by the response bias. PMID:28267761

  11. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    PubMed

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Subgenomic Reporter RNA System for Detection of Alphavirus Infection in Mosquitoes

    PubMed Central

    Steel, J. Jordan; Franz, Alexander W. E.; Sanchez-Vargas, Irma; Olson, Ken E.; Geiss, Brian J.

    2013-01-01

    Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes. PMID:24367703

  13. Role of Fanconi Anemia FANCG in Preventing Double-Strand Breakage and Chromosomal Rearrangement during DNA Replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tebbs, R S; Hinz, J M; Yamada, N A

    The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are unknown. By constructing and characterizing a null fancg mutant of hamster CHO cells, we present several new insights for FA. The fancg cells show a broad sensitivity to genotoxic agents, not supporting the conventional concept of sensitivity to only DNA crosslinking agents. The aprt mutation rate is normal, but hprt mutations are reduced, which we ascribe to the lethality of large deletions. CAD and dhfr gene amplification rates are increased, implying excess chromosomal breakage during DNA replication, andmore » suggesting amplification as a contributing factor to cancer-proneness in FA patients. In S-phase cells, both spontaneous and mutagen-induced Rad51 nuclear foci are elevated. These results support a model in which FancG protein helps to prevent collapse of replication forks by allowing translesion synthesis or lesion bypass through homologous recombination.« less

  14. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  15. Synthesis, crystal structure analysis, molecular docking studies and density functional theory predictions of the local reactive properties and degradation properties of a novel halochalcone

    NASA Astrophysics Data System (ADS)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.

    2017-09-01

    In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.

  16. Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations.

    PubMed

    Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C

    2016-07-14

    Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.

  17. Gene Amplification and Point Mutations in Pyrimidine Metabolic Genes in 5-Fluorouracil Resistant Leishmania infantum

    PubMed Central

    Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc

    2013-01-01

    Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495

  18. Evolutionary modification of T-brain (tbr) expression patterns in sand dollar.

    PubMed

    Minemura, Keiko; Yamaguchi, Masaaki; Minokawa, Takuya

    2009-10-01

    The sand dollars are a group of irregular echinoids that diverged from other regular sea urchins approximately 200 million years ago. We isolated two orthologs of T-brain (tbr), Smtbr and Pjtbr, from the indirect developing sand dollar Scaphechinus mirabilis and the direct developing sand dollar Peronella japonica, respectively. The expression patterns of Smtbr and Pjtbr during early development were examined by whole mount in situ hybridization. The expression of Smtbr was first detected in micromere descendants in early blastula stage, similar to tbr expression in regular sea urchins. However, unlike in regular sea urchin, Smtbr expression in middle blastula stage was detected in micromere-descendent cells and a subset of macromere-descendant cells. At gastrula stage, expression of Smtbr was detected in part of the archenteron as well as primary mesenchyme cells. A similar pattern of tbr expression was observed in early Peronella embryos. A comparison of tbr expression patterns between sand dollars and other echinoderm species suggested that broader expression in the endomesoderm is an ancestral character of echinoderms. In addition to the endomesoderm, Pjtbr expression was detected in the apical organ, the animal-most part of the ectoderm.

  19. Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner.

    PubMed

    Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A

    2012-03-01

    The ability of bacterial pathogens to express different fimbrial adhesins plays a significant role in virulence. Thus, specific detection of fimbrial expression is an important task in virulence characterization and epidemiological studies. Most clinical Klebsiella pneumoniae isolates express type 1 and type 3 fimbriae, which are characterized by mediation of mannose-sensitive agglutination of yeast cells and agglutination of tannic acid-treated ox red blood cells (RBCs), respectively. It has been observed that K. pneumoniae isolates agglutinate yeast cells and commercially available sheep RBCs in a mannose-resistant manner. Thus, this study was initiated to identify the adhesin involved. Screening of a mutant library surprisingly revealed that the mannose-resistant agglutination of yeast and sheep RBCs was mediated by type 3 fimbriae. Specific detection of type 1 fimbriae expression in K. pneumoniae was feasible only by the use of guinea pig RBCs. This was further verified by the use of isogenic fimbriae mutants and by cloning and expressing K. pneumoniae fimbrial gene clusters in Escherichia coli. Yeast agglutination assays are commonly used to detect type 1 fimbriae expression but should not be used for bacterial species able to express type 3 fimbriae. For these species, the use of guinea pig blood for specific type 1 fimbriae detection is essential. The use of commercially available sheep RBCs or yeast is an easy alternative to traditional methods to detect type 3 fimbriae expression. Easy and specific detection of expression of type 1 and type 3 fimbriae is essential in the continuous characterization of these important adhesive virulence factors present in members of the Enterobacteriaceae.

  20. [Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].

    PubMed

    Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin

    2006-04-01

    This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.

  1. Mutation and repair induced by the carcinogen 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) in the dihydrofolate reductase gene of Chinese hamster ovary cells and conformational modeling of the dG-C8-PhIP adduct in DNA.

    PubMed

    Carothers, A M; Yuan, W; Hingerty, B E; Broyde, S; Grunberger, D; Snyderwine, E G

    1994-01-01

    Three experiments using 20 microM 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) were performed to induce mutations in the dihydrofolate reductase (DHFR) gene of a hemizygous Chinese hamster ovary (CHO) cell line (UA21). Metabolized forms of this chemical primarily bind at the C-8 position of guanine in DNA. In total, 21 independent induced mutants were isolated and 20 were characterized. DNA sequencing showed that the preferred mutation type found in 75% of the induced DHFR- clones was G.C-->T.A single and tandem double transversions. In addition to base substitutions, one mutant carried a-1 frameshift and another one had lost the entire locus by deletion. The induced changes affected purine targets on the nontranscribed strand of the gene in nearly all of the mutants sequenced (18/19). At the time that the first two experiments were performed, the initial adduct levels were quantitated in treated cells at the mutagenic dose by 32P-postlabeling. While the induced frequency of mutation was relatively low (approximately 5 x 10(-6), the adduct levels after a 1-h exposure of UA21 cells to 20 microM N-OH-PhIP were relatively high (13 adducts x 10(-6) nucleotides). This latter method was then employed to learn if the induced mutation frequency correlated with rapid overall genome repair of PhIP-DNA adducts. Total adduct levels, determined using DNA samples from treated cells collected after intervals of time, were reduced by about 50% after 6 h, and about 70% after 24 h. Since overall genome repair in CHO cells is relatively slow compared with preferential gene repair, the removal of dG-C8-PhIP adducts was apparently efficient. In order to better understand the mutational and repair results, we performed computational modeling to determine the lowest energy structure for the major dG-C8-PhIP adduct in a repetitively mutated duplex sequence opposite dA. Results of this analysis indicate that the PhIP-modified base resembles previous structural determinations of (deoxyguanosin-8-yl)-aminofluorene; the carcinogen is in the B-DNA minor groove and its adopts a syn conformation mispaired with an anti A. The implications of this conformational distortion in DNA structure for damage recognition by cellular repair enzymes are discussed.

  2. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts.

    PubMed

    Pandey, Sachchida Nand; Khawaja, Hunain; Chen, Yi-Wen

    2015-05-08

    Facioscapulohumeral muscular dystrophy (FSHD) is believed to be caused by aberrant expression of double homeobox 4 (DUX4) due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR) on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT) primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01) and primary (4.7 fold, p < 0.01) FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.

  3. Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.

    2010-01-01

    Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855

  4. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  5. Development of a Support Application and a Textbook for Practicing Facial Expression Detection for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Saito, Hirotaka; Ando, Akinobu; Itagaki, Shota; Kawada, Taku; Davis, Darold; Nagai, Nobuyuki

    2017-01-01

    Until now, when practicing facial expression recognition skills in nonverbal communication areas of SST, judgment of facial expression was not quantitative because the subjects of SST were judged by teachers. Therefore, we thought whether SST could be performed using facial expression detection devices that can quantitatively measure facial…

  6. ROKU: a novel method for identification of tissue-specific genes.

    PubMed

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-06-12

    One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes.

  7. Deception Detection in Multicultural Coalitions: Foundations for a Cognitive Model

    DTIC Science & Technology

    2011-06-01

    and spontaneous vs. deliberate and contrived facial expression of emotions , symmetry, leakage through microexpressions, hand postures, dynamic...sequences of visually detectable cues , such as facial muscle-group coordination and correlations expressed as changes in facial expressions and face...concert, whereas facial expressions of deceivers emphasize a few cues that arise more randomly and chaotically [15]. A smile without the use of

  8. Sequential changes in luminal microflora and mucosal cytokine expression during developing of colitis in HLA-B27/beta2-microglobulin transgenic rats.

    PubMed

    Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T

    2001-11-01

    Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.

  9. Detection of Dystrophin Dp71 in Human Skeletal Muscle Using an Automated Capillary Western Assay System.

    PubMed

    Kawaguchi, Tatsuya; Niba, Emma Tabe Eko; Rani, Abdul Qawee Mahyoob; Onishi, Yoshiyuki; Koizumi, Makoto; Awano, Hiroyuki; Matsumoto, Masaaki; Nagai, Masashi; Yoshida, Shinobu; Sakakibara, Sachiko; Maeda, Naoyuki; Sato, Osamu; Nishio, Hisahide; Matsuo, Masafumi

    2018-05-23

    Dystrophin Dp71 is one of the isoforms produced by the DMD gene which is mutated in patients with Duchenne muscular dystrophy (DMD). Although Dp71 is expressed ubiquitously, it has not been detected in normal skeletal muscle. This study was performed to assess the expression of Dp71 in human skeletal muscle. Human skeletal muscle RNA and tissues were obtained commercially. Mouse skeletal muscle was obtained from normal and DMD mdx mice. Dp71 mRNA and protein were determined by reverse-transcription PCR and an automated capillary Western assay system, the Simple Western, respectively. Dp71 was over-expressed or suppressed using a plasmid expressing Dp71 or antisense oligonucleotide, respectively. Full-length Dp71 cDNA was PCR amplified as a single product from human skeletal muscle RNA. A ca. 70 kDa protein peak detected by the Simple Western was determined as Dp71 by over-expressing Dp71 in HEK293 cells, or suppressing Dp71 expression with antisense oligonucleotide in rhabdomyosarcoma cells. The Simple Western assay detected Dp71 in the skeletal muscles of both normal and DMD mice. In human skeletal muscle, Dp71 was also detected. The ratio of Dp71 to vinculin of human skeletal muscle samples varied widely, indicating various levels of Dp71 expression. Dp71 protein was detected in human skeletal muscle using a highly sensitive capillary Western blotting system.

  10. The Vividness of Happiness in Dynamic Facial Displays of Emotion

    PubMed Central

    Becker, D. Vaughn; Neel, Rebecca; Srinivasan, Narayanan; Neufeld, Samantha; Kumar, Devpriya; Fouse, Shannon

    2012-01-01

    Rapid identification of facial expressions can profoundly affect social interactions, yet most research to date has focused on static rather than dynamic expressions. In four experiments, we show that when a non-expressive face becomes expressive, happiness is detected more rapidly anger. When the change occurs peripheral to the focus of attention, however, dynamic anger is better detected when it appears in the left visual field (LVF), whereas dynamic happiness is better detected in the right visual field (RVF), consistent with hemispheric differences in the processing of approach- and avoidance-relevant stimuli. The central advantage for happiness is nevertheless the more robust effect, persisting even when information of either high or low spatial frequency is eliminated. Indeed, a survey of past research on the visual search for emotional expressions finds better support for a happiness detection advantage, and the explanation may lie in the coevolution of the signal and the receiver. PMID:22247755

  11. Subject independent facial expression recognition with robust face detection using a convolutional neural network.

    PubMed

    Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji

    2003-01-01

    Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.

  12. High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection

    PubMed Central

    Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd

    2011-01-01

    Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323

  13. Correlation between chemotherapy resistance in osteosarcoma patients and PAK5 and Ezrin gene expression

    PubMed Central

    Liu, Qian; Xu, Bo; Zhou, Wanshan

    2018-01-01

    The correlation between PAK5 (P21-activated kinase 5) and Ezrin gene expression and chemotherapy resistance of osteosarcoma patients was investigated. The cisplatin (CDDP)-resistance model of osteosarcoma cells SOSP-9607/CDDP was established to detect the cell growth curve. Methyl thiazolyl tetrazolium (MTT) assay was used to detect the drug resistance of cells to chemotherapy drugs. Transwell assay was used to detect the invasive capacity of cells. Semi-quantitative PCR (qPCR) was used to detect the mRNA expression levels in the drug resistance-related genes PAK5 and Ezrin. Western blot analysis was used to detect the protein expression levels in PAK5 and Ezrin. Tumor tissues were taken from the osteosarcoma patients with chemotherapy resistance to detect the expression levels of PAK5 and Ezrin via immunohistochemical detection, and the correlation between PAK5 and Ezrin expressions was studied. The results of MTT assay showed that the growth rate of SOSP-9607 was similar to that of SOSP-9607/CDDP, and the difference was not statistically significant (P>0.05). The sensitivity of SOSP-9607 to CDDP was significantly higher than that of SOSP-9607/CDDP, and the difference was statistically significant (P<0.01). Transwell assay showed that the migration capacity of SOSP-9607/CDDP was significantly better than that of SOSP-9607 (P<0.01), indicating that the drug resistance cell lines of osteosarcoma were constructed successfully. Semi-qPCR and western blot analysis showed that the protein expression levels in PAK5 and Ezrin in SOSP-9607/CDDP were significantly higher than those in SOSP-9607 (P<0.01). The results of immunohistochemistry showed that the expression quantities of PAK5 and Ezrin in osteosarcoma tissues were significantly higher than those in para-tumor tissues (P<0.01). Pearson's correlation analysis showed that expression of PAK5 and Ezrin was positively correlated (r=0.197, P=0.023). The osteosarcoma resistance is closely related to the expression levels of PAK5 and Ezrin genes. Thus, PAK5 and Ezrin genes may affect the tolerance of osteosarcoma patients to chemotherapy drugs during treatment via the synergistic effect. PMID:29391894

  14. Comparison of the QuantiGene 2.0 Assay and Real-Time RT-PCR in the Detection of p53 Isoform mRNA Expression in Formalin-Fixed Paraffin-Embedded Tissues- A Preliminary Study

    PubMed Central

    Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2016-01-01

    p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134

  15. ROKU: a novel method for identification of tissue-specific genes

    PubMed Central

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-01-01

    Background One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. Results We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. Conclusion ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes. PMID:16764735

  16. Signal Transducer and Activator of Transcription 1 (STAT1) Knock-down Induces Apoptosis in Malignant Pleural Mesothelioma.

    PubMed

    Arzt, Lisa; Halbwedl, Iris; Gogg-Kamerer, Margit; Popper, Helmut H

    2017-07-01

    Malignant pleural mesothelioma (MPM) is the most common primary tumor of the pleura. Its incidence is still increasing in Europe and the prognosis remains poor. We investigated the oncogenic function of signal transducer and activator of transcription 1 (STAT1) in MPM in more detail. A miRNA profiling was performed on 52 MPM tissue samples. Upregulated miRNAs (targeting SOCS1/3) were knocked-down using miRNA inhibitors. mRNA expression levels of STAT1/3, SOCS1/3 were detected in MPM cell lines. STAT1 has been knocked-down using siRNA and qPCR was used to detect mRNA expression levels of all JAK/STAT family members and genes that regulate them. An immunohistochemical staining was performed to detect the expression of caspases. STAT1 was upregulated and STAT3 was downregulated, SOCS1/3 protein was not detected but it was possible to detect SOCS1/3 mRNA in MPM cell lines. The upregulated miRNAs were successfully knocked-down, however the expected effect on SOCS1 expression was not detected. STAT1 knock-down had different effects on STAT3/5 expression. Caspase 3a and 8 expression was found to be increased after STAT1 knock-down. The physiologic regulation of STAT1 via SOCS1 is completely lost in MPM and it does not seem that the miRNAs identified by now, do inhibit the expression of SOCS1. MPM cell lines compensate STAT1 knock-down by increasing the expression of STAT3 or STAT5a, two genes which are generally considered to be oncogenes. And much more important, STAT1 knock-down induces apoptosis in MPM cell lines and STAT1 might therefore be a target for therapeutic intervention.

  17. Isolation of genes negatively or positively co-expressed with human recombination activating gene 1 (RAG1) by differential display PCR (DD RT-PCR).

    PubMed

    Verkoczy, L K; Berinstein, N L

    1998-10-01

    Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.

  18. False recognition of facial expressions of emotion: causes and implications.

    PubMed

    Fernández-Dols, José-Miguel; Carrera, Pilar; Barchard, Kimberly A; Gacitua, Marta

    2008-08-01

    This article examines the importance of semantic processes in the recognition of emotional expressions, through a series of three studies on false recognition. The first study found a high frequency of false recognition of prototypical expressions of emotion when participants viewed slides and video clips of nonprototypical fearful and happy expressions. The second study tested whether semantic processes caused false recognition. The authors found that participants made significantly higher error rates when asked to detect expressions that corresponded to semantic labels than when asked to detect visual stimuli. Finally, given that previous research reported that false memories are less prevalent in younger children, the third study tested whether false recognition of prototypical expressions increased with age. The authors found that 67% of eight- to nine-year-old children reported nonpresent prototypical expressions of fear in a fearful context, but only 40% of 6- to 7-year-old children did so. Taken together, these three studies demonstrate the importance of semantic processes in the detection and categorization of prototypical emotional expressions.

  19. Human Milk and Matched Serum Demonstrate Concentration of Select miRNAs.

    PubMed

    Qin, Wenyi; Dasgupta, Santanu; Corradi, John; Sauter, Edward R

    Pregnancy-associated breast cancers (PABCs), especially those diagnosed after childbirth, are often aggressive, with a poor prognosis. Factors influencing PABC are largely unknown. Micro(mi)RNAs are present in many human body fluids and shown to influence cancer development and/or growth. In six nursing mothers, we determined if breast cancer-associated miRNAs were (1) detectable in human breast milk and (2) if detectable, their relative expression in milk fractions compared to matched serum. We evaluated by quantitative PCR the expression of 11 cancer-associated miRNAs (10a-5p, 16, 21, 100, 140, 145, 155, 181, 199, 205, 212) in breast milk cells, fat and supernatant (skim milk), and matched serum. miRNA expression was detectable in all samples. For 10/11 miRNAs, mean relative expression compared to control (ΔCt) values was lowest in milk cells, the exception being miR205. Relative concentration was highest in the skim fraction of milk for all miRNAs. Expression was higher in skim milk than matched serum for 7/11 miRNAs and in serum for 4/11 miRNAs. miR205 expression was higher in all milk fractions than in matched serum. In conclusion, the expression of breast cancer-associated miRNAs is detectable in human breast milk and serum samples. The concentration is highest in skim milk, but is also detectable in milk fat and milk cells.

  20. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  1. Feedback training induces a bias for detecting happiness or fear in facial expressions that generalises to a novel task.

    PubMed

    Griffiths, Sarah; Jarrold, Chris; Penton-Voak, Ian S; Munafò, Marcus R

    2015-12-30

    Many psychological disorders are characterised by insensitivities or biases in the processing of subtle facial expressions of emotion. Training using expression morph sequences which vary the intensity of expressions may be able to address such deficits. In the current study participants were shown expressions from either happy or fearful intensity morph sequences, and trained to detect the target emotion (e.g., happy in the happy sequence) as being present in low intensity expressions. Training transfer was tested using a six alternative forced choice emotion labelling task with varying intensity expressions, which participants completed before and after training. Training increased false alarms for the target emotion in the transfer task. Hit rate for the target emotion did not increase once adjustment was made for the increase in false alarms. This suggests that training causes a bias for detecting the target emotion which generalises outside of the training task. However it does not increase accuracy for detecting the target emotion. The results are discussed in terms of the training's utility in addressing different types of emotion processing deficits in psychological disorders. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Association between EML4-ALK fusion gene and thymidylate synthase mRNA expression in non-small cell lung cancer tissues

    PubMed Central

    XU, CHUN-WEI; WANG, GANG; WANG, WU-LONG; GAO, WEN-BIN; HAN, CHUAN-JUN; GAO, JING-SHAN; ZHANG, LI-YING; LI, YANG; WANG, LIN; ZHANG, YU-PING; TIAN, YU-WANG; QI, DONG-DONG

    2015-01-01

    This study aimed to investigate the association of the mRNA expression of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene with that of thymidylate synthase (TYMS) in non-small cell lung cancer (NSCLC) tissues. Quantitative polymerase chain reaction was used to detect the expression of EML4-ALK fusion gene and TYMS mRNA in 257 cases of NSCLC. The positive rate of EML4-ALK fusion gene was 4.28% in the NSCLC tissues (11/257), and was higher in nonsmokers than in smokers (P<0.05); TYMS mRNA expression was detected in 63.42% (163/257) of cases. An association of the EML4-ALK fusion gene with TYMS expression was detected; a low expression level of TYMS mRNA was observed more frequently when the EML4-ALK fusion gene was present than when it was not detected (P<0.05). In conclusion, patients positive for the EML4-ALK fusion gene in NSCLC tissues are likely to have a low expression level of TYMS, and may benefit from the first-line chemotherapy drug pemetrexed. PMID:26136951

  3. Association between EML4-ALK fusion gene and thymidylate synthase mRNA expression in non-small cell lung cancer tissues.

    PubMed

    Xu, Chun-Wei; Wang, Gang; Wang, Wu-Long; Gao, Wen-Bin; Han, Chuan-Jun; Gao, Jing-Shan; Zhang, Li-Ying; Li, Yang; Wang, Lin; Zhang, Yu-Ping; Tian, Yu-Wang; Qi, Dong-Dong

    2015-06-01

    This study aimed to investigate the association of the mRNA expression of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene with that of thymidylate synthase (TYMS) in non-small cell lung cancer (NSCLC) tissues. Quantitative polymerase chain reaction was used to detect the expression of EML4-ALK fusion gene and TYMS mRNA in 257 cases of NSCLC. The positive rate of EML4-ALK fusion gene was 4.28% in the NSCLC tissues (11/257), and was higher in nonsmokers than in smokers (P<0.05); TYMS mRNA expression was detected in 63.42% (163/257) of cases. An association of the EML4-ALK fusion gene with TYMS expression was detected; a low expression level of TYMS mRNA was observed more frequently when the EML4-ALK fusion gene was present than when it was not detected (P<0.05). In conclusion, patients positive for the EML4-ALK fusion gene in NSCLC tissues are likely to have a low expression level of TYMS, and may benefit from the first-line chemotherapy drug pemetrexed.

  4. Dissociation between recognition and detection advantage for facial expressions: a meta-analysis.

    PubMed

    Nummenmaa, Lauri; Calvo, Manuel G

    2015-04-01

    Happy facial expressions are recognized faster and more accurately than other expressions in categorization tasks, whereas detection in visual search tasks is widely believed to be faster for angry than happy faces. We used meta-analytic techniques for resolving this categorization versus detection advantage discrepancy for positive versus negative facial expressions. Effect sizes were computed on the basis of the r statistic for a total of 34 recognition studies with 3,561 participants and 37 visual search studies with 2,455 participants, yielding a total of 41 effect sizes for recognition accuracy, 25 for recognition speed, and 125 for visual search speed. Random effects meta-analysis was conducted to estimate effect sizes at population level. For recognition tasks, an advantage in recognition accuracy and speed for happy expressions was found for all stimulus types. In contrast, for visual search tasks, moderator analysis revealed that a happy face detection advantage was restricted to photographic faces, whereas a clear angry face advantage was found for schematic and "smiley" faces. Robust detection advantage for nonhappy faces was observed even when stimulus emotionality was distorted by inversion or rearrangement of the facial features, suggesting that visual features primarily drive the search. We conclude that the recognition advantage for happy faces is a genuine phenomenon related to processing of facial expression category and affective valence. In contrast, detection advantages toward either happy (photographic stimuli) or nonhappy (schematic) faces is contingent on visual stimulus features rather than facial expression, and may not involve categorical or affective processing. (c) 2015 APA, all rights reserved).

  5. Expression of NF-κB and PTEN in osteosarcoma and its clinical significance

    PubMed Central

    Gong, Teng; Su, Xuetao; Xia, Qun; Wang, Jinggui; Kan, Shilian

    2017-01-01

    We investigated the role of nuclear factor-κB (NF-κB) and phosphatase and tensin homolog deleted in chromosome 10 (PTEN) in the pathogenesis of osteosarcoma and its relationship with prognosis. Immunohistochemical method was used to detect the expression of NF-κB and PTEN in osteosarcoma and adjacent tissues. RT-PCR was used to detect the expression of NF-κB and PTEN mRNA in osteosarcoma and adjacent tissues. Western blotting was used to detect the expression of NF-κB and PTEN in osteosarcoma and adjacent tissues and compare their differences. The expression of NF-κB and PTEN was detected in osteosarcoma and adjacent tissues. The positive rate of NF-κB was 75.3 and 32.9%, respectively; while the positive rate of PTEN was 67.1 and 90.4%, respectively. The positive expression of NF-κB and PTEN was statistically significant. There was a negative correlation between NF-κB and PTEN expression (r=−0.502, p<0.05). The positive and negative expression of NF-κB and PTEN was statistically significant for the five-year survival (p<0.05). At gene and protein level, osteosarcoma tissues had higher expression of NF-κB, and lower expression of PTEN, which was significantly different from the adjacent tissues. In osteosarcoma, NF-κB is highly expressed, but PTEN is expressed at low level, and the two are negatively correlated. This is of great significance for the early diagnosis of osteosarcoma and prognosis. PMID:29151913

  6. Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

    PubMed

    Oh, Sunghee; Song, Seongho

    2017-01-01

    In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

  7. Impaired detection and differentiation of briefly presented facial emotions in adults with high-functioning autism and asperger syndrome.

    PubMed

    Frank, R; Schulze, L; Hellweg, R; Koehne, S; Roepke, S

    2018-05-01

    Although deficits in the recognition of emotional facial expressions are considered a hallmark of autism spectrum disorder (ASD), characterization of abnormalities in the differentiation of emotional expressions (e.g., sad vs. angry) has been rather inconsistent, especially in adults without intellectual impairments who may compensate for their deficits. In addition, previous research neglected the ability to detect emotional expressions (e.g., angry vs. neutral). The present study used a backward masking paradigm to investigate, a) the detection of emotional expressions, and b) the differentiation of emotional expressions in adults diagnosed with high functioning autism or Asperger syndrome (n = 23) compared to neurotypical controls (n = 25). Compensatory strategies were prevented by shortening the stimulus presentation time (33, 67, and 100 ms). In general, participants with ASD were significantly less accurate in detecting and differentiating emotional expressions compared to the control group. In the emotion differentiation task, individuals with ASD profited significantly less from an increase in presentation time. These results reinforce theoretical models that individuals with ASD have deficits in emotion recognition under time constraints. Furthermore, first evidence was provided that emotion detection and emotion differentiation are impaired in ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases.

    PubMed

    Wang, Ying; Ha, Seung-Wook; Zhang, Tianpeng; Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-04-30

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation.

  9. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases

    PubMed Central

    Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-01-01

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation. PMID:24810856

  10. VALIDATION OF MICROSATELLITE MARKERS FOR USE IN GENOTYPING POLYCLONAL PLASMODIUM FALCIPARUM INFECTIONS

    PubMed Central

    GREENHOUSE, BRYAN; MYRICK, ALISSA; DOKOMAJILAR, CHRISTIAN; WOO, JONATHAN M.; CARLSON, ELAINE J.; ROSENTHAL, PHILIP J.; DORSEY, GRANT

    2006-01-01

    Genotyping methods for Plasmodium falciparum drug efficacy trials have not been standardized and may fail to accurately distinguish recrudescence from new infection, especially in high transmission areas where polyclonal infections are common. We developed a simple method for genotyping using previously identified microsatellites and capillary electrophoresis, validated this method using mixtures of laboratory clones, and applied the method to field samples. Two microsatellite markers produced accurate results for single-clone but not polyclonal samples. Four other microsatellite markers were as sensitive as, and more specific than, commonly used genotyping techniques based on merozoite surface proteins 1 and 2. When applied to samples from 15 patients in Burkina Faso with recurrent parasitemia after treatment with sulphadoxine-pyrimethamine, the addition of these four microsatellite markers to msp1 and msp2 genotyping resulted in a reclassification of outcomes that strengthened the association between dhfr 59R, an anti-folate resistance mutation, and recrudescence (P = 0.31 versus P = 0.03). Four microsatellite markers performed well on polyclonal samples and may provide a valuable addition to genotyping for clinical drug efficacy studies in high transmission areas. PMID:17123974

  11. Pneumocystis jirovecii multilocus gene sequencing: findings and implications.

    PubMed

    Matos, Olga; Esteves, Francisco

    2010-08-01

    Pneumocystis jirovecii pneumonia (PcP) remains a major cause of respiratory illness among immunocompromised patients, especially patients infected with HIV, but it has also been isolated from immunocompetent persons. This article discusses the application of multilocus genotyping analysis to the study of the genetic diversity of P. jirovecii and its epidemiological and clinical parameters, and the important concepts achieved to date with these approaches. The multilocus typing studies performed until now have shown that there is an important genetic diversity of stable and ubiquitous P. jirovecii genotypes; infection with P. jirovecii is not necessarily clonal, recombination between some P. jirovecii multilocus genotypes has been suggested. P. jirovecii-specific multilocus genotypes can be associated with severity of PcP. Patients infected with P. jirovecii, regardless of the form of infection they present with, are part of a common human reservoir for future infections. The CYB, DHFR, DHPS, mtLSU rRNA, SOD and the ITS loci are suitable genetic targets to be used in further epidemiological studies focused on the identification and characterization of P. jirovecii haplotypes correlated with drug resistance and PcP outcome.

  12. Tools for building a comprehensive modeling system for virtual screening under real biological conditions: The Computational Titration algorithm.

    PubMed

    Kellogg, Glen E; Fornabaio, Micaela; Chen, Deliang L; Abraham, Donald J; Spyrakis, Francesca; Cozzini, Pietro; Mozzarelli, Andrea

    2006-05-01

    Computational tools utilizing a unique empirical modeling system based on the hydrophobic effect and the measurement of logP(o/w) (the partition coefficient for solvent transfer between 1-octanol and water) are described. The associated force field, Hydropathic INTeractions (HINT), contains much rich information about non-covalent interactions in the biological environment because of its basis in an experiment that measures interactions in solution. HINT is shown to be the core of an evolving virtual screening system that is capable of taking into account a number of factors often ignored such as entropy, effects of solvent molecules at the active site, and the ionization states of acidic and basic residues and ligand functional groups. The outline of a comprehensive modeling system for virtual screening that incorporates these features is described. In addition, a detailed description of the Computational Titration algorithm is provided. As an example, three complexes of dihydrofolate reductase (DHFR) are analyzed with our system and these results are compared with the experimental free energies of binding.

  13. Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

    PubMed

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-05-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.

  14. Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore.

    PubMed

    Chavatte, Jean-Marc; Tan, Sarah Bee Hui; Snounou, Georges; Lin, Raymond Tzer Pin Valentine

    2015-11-14

    Plasmodium ovale, considered the rarest of the malaria parasites of humans, consists of two morphologically identical but genetically distinct sympatric species, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. These parasites resemble morphologically to Plasmodium vivax with which they also share a tertian periodicity and the ability to cause relapses, making them easily misidentified as P. vivax. Plasmodium ovale infections are rarely reported, but given the likelihood of misidentification, their prevalence might be underestimated. Morphological and molecular analysis of confirmed malaria cases admitted in Singapore in 2012-2014 detected nine imported P. ovale cases that had been misidentified as P. vivax. Since P. ovale had not been previously officially reported in Singapore, a retrospective analysis of available, frozen, archival blood samples was performed and returned two additional misidentified P. ovale cases in 2003 and 2006. These eleven P. ovale samples were characterized with respect to seven molecular markers (ssrRNA, Potra, Porbp2, Pog3p, dhfr-ts, cytb, cox1) used in recent studies to distinguish between the two sympatric species, and to a further three genes (tufa, clpC and asl). The morphological features of P. ovale and the differential diagnosis with P. vivax were reviewed and illustrated by microphotographs. The genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was assessed by ten molecular markers distributed across the three genomes of the parasite (Genbank KP050361-KP050470). The data obtained for seven of these markers were compared with those published and confirmed that both P. ovale species were present. This dimorphism was also confirmed for the first time on: (1) two genes from the apicoplast genome (tufA and clpC genes); and, (2) the asl gene that was used for phylogenetic analyses of other Plasmodium species, and that was found to harbour the highest number of dimorphic loci between the two P. ovale species. Misidentified P. ovale infections are reported for the first time among imported malaria cases in Singapore. Genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was confirmed using markers from the parasites' three genomes. The apparent increase of imported P. ovale since 2012 (with yearly detection of cases) is puzzling. Given decrease in the overall number of malaria cases recorded in Singapore since 2010 the 'resurgence' of this neglected species raises public health concerns.

  15. Dynamics of serotype 14 Streptococcus pneumoniae population causing acute respiratory infections among children in China (1997-2012).

    PubMed

    He, Mingming; Yao, Kaihu; Shi, Wei; Gao, Wei; Yuan, Lin; Yu, Sangjie; Yang, Yonghong

    2015-07-11

    In the last decade, the Streptococcus pneumoniae population has changed, mainly due to the abuse of antibiotics. The aim of this study was to determine the genetic structure of 144 S. pneumonia serotype 14 isolates collected from children with acute respiratory infections during 1997-2012 in China. All isolated pneumococci were tested for their sensitivity to 11 kinds of antibiotics with the E-test method or disc diffusion. The macrolides resistance genes ermB and mefA, as well as the sulfamethoxazole-trimethoprim resistance gene dihydrofolate reductase (DHFR) were detected by polymerase chain reaction (PCR). The sequence types (STs) were analyzed with multilocus sequence typing (MLST). From 1997 to 2012, the percentage of serotype 14 S. pneumonia isolates in the whole isolates increased. All of the 144 serotype 14 S. pneumonia isolates were susceptible to amoxicillin-clavulanic acid, vancomycin and levofloxacin. No penicillin resistant isolate was found, and the intermediate rate was as low as 0.7 %. Erythromycin resistance was confirmed among 143 isolates. The ermB gene was determined in all erythromycin resistant isolates, and the mefA gene was positive additionally in 13 of them. The non-susceptibility rate to the tested cephalosporins increased from 1997-2012. All trimethoprim-resistant isolates contained the Ile100-Leu mutation. Overall, 30 STs were identified, among which ST876 was the most prevalent, followed by ST875. During the study period, the percentage of CC876 increased from 0 % in 1997-2000 to 96.4 % in 2010-2012, whereas CC875 decreased from 84.2 to 0 %. CC876 showed higher non-susceptibility rates to β-lactam antibiotics than CC875. The percentage of serotype 14 S. pneumonia isolates increased over time in China. The increase of resistance to β-lactam antibiotics in this serotype isolates was associated with the spread of CC876.

  16. A quick eye to anger: An investigation of a differential effect of facial features in detecting angry and happy expressions.

    PubMed

    Lo, L Y; Cheng, M Y

    2017-06-01

    Detection of angry and happy faces is generally found to be easier and faster than that of faces expressing emotions other than anger or happiness. This can be explained by the threatening account and the feature account. Few empirical studies have explored the interaction between these two accounts which are seemingly, but not necessarily, mutually exclusive. The present studies hypothesised that prominent facial features are important in facilitating the detection process of both angry and happy expressions; yet the detection of happy faces was more facilitated by the prominent features than angry faces. Results confirmed the hypotheses and indicated that participants reacted faster to the emotional expressions with prominent features (in Study 1) and the detection of happy faces was more facilitated by the prominent feature than angry faces (in Study 2). The findings are compatible with evolutionary speculation which suggests that the angry expression is an alarming signal of potential threats to survival. Compared to the angry faces, the happy faces need more salient physical features to obtain a similar level of processing efficiency. © 2015 International Union of Psychological Science.

  17. Detection of intra-brain cytoplasmic 1 (BC1) long noncoding RNA using graphene oxide-fluorescence beacon detector.

    PubMed

    Kim, Mee Young; Hwang, Do Won; Li, Fangyuan; Choi, Yoori; Byun, Jung Woo; Kim, Dongho; Kim, Jee-Eun; Char, Kookheon; Lee, Dong Soo

    2016-03-21

    Detection of cellular expression of long noncoding RNAs (lncRNAs) was elusive due to the ambiguity of exposure of their reactive sequences associated with their secondary/tertiary structures and dynamic binding of proteins around lncRNAs. Herein, we developed graphene-based detection techniques exploiting the quenching capability of graphene oxide (GO) flakes for fluorescent dye (FAM)-labeled single-stranded siRNAs and consequent un-quenching by their detachment from GO by matching lncRNAs. A brain cytoplasmic 1 (BC1) lncRNA expression was significantly decreased by a siRNA, siBC1-1. GO quenched the FAM-labeled siBC1-1 peptide nucleic acid (PNA) probe, and this quenching was recovered by BC1. While FAM-siBC1-1-PNA-GO complex transfected spontaneously mouse or human neural stem cells, fluorescence was recovered only in mouse cells having high BC1 expression. Fluorescent dye-labeled single-stranded RNA-GO probe could detect the reactive exposed nucleic acid sequence of a cytoplasmic lncRNA expressing in the cytoplasm, which strategy can be used as a detection method of lncRNA expression.

  18. RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway.

    PubMed

    Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro

    2003-01-01

    We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.

  19. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  20. Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

    PubMed Central

    Shiao, Meng-Shin; Chang, Andrew Ying-Fei; Liao, Ben-Yang; Ching, Yung-Hao; Lu, Mei-Yeh Jade; Chen, Stella Maris; Li, Wen-Hsiung

    2012-01-01

    To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities. PMID:22511034

  1. A powerful nonparametric method for detecting differentially co-expressed genes: distance correlation screening and edge-count test.

    PubMed

    Zhang, Qingyang

    2018-05-16

    Differential co-expression analysis, as a complement of differential expression analysis, offers significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to detecting differentially co-expressed genes is to compare Pearson's correlation coefficients in two phenotypes. However, due to the limitations of Pearson's correlation measure, this approach lacks the power to detect nonlinear changes in gene co-expression which is common in gene regulatory networks. In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations. We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for breast cancer subtypes. Compared with some existing methods, the new method is more powerful in detecting nonlinear type of differential co-expressions. The distance correlation screening can greatly improve computational efficiency, facilitating its application to large data sets.

  2. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh.

    PubMed

    Sheikh, Alaullah; Charles, Richelle C; Sharmeen, Nusrat; Rollins, Sean M; Harris, Jason B; Bhuiyan, Md Saruar; Arifuzzaman, Mohammad; Khanam, Farhana; Bukka, Archana; Kalsy, Anuj; Porwollik, Steffen; Leung, Daniel T; Brooks, W Abdullah; LaRocque, Regina C; Hohmann, Elizabeth L; Cravioto, Alejandro; Logvinenko, Tanya; Calderwood, Stephen B; McClelland, Michael; Graham, James E; Qadri, Firdausi; Ryan, Edward T

    2011-12-01

    Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection.

  3. Evaluation of Vitronectin Expression in Prostate Cancer and the Clinical Significance of the Association of Vitronectin Expression with Prostate Specific Antigen in Detecting Prostate Cancer.

    PubMed

    Niu, Yue; Zhang, Ling; Bi, Xing; Yuan, Shuai; Chen, Peng

    2016-03-05

    To detect the expression of vitronectin (VTN) in the tissues and blood serum of prostate cancer (PCa) patients, and evaluate its clinical significance and to evaluate the significance of the combined assay of VTN and prostate specific antigens (PSA) in PCa diagnosis. To detect the expression of VTN as a potential marker for PCa diagnosis and prognosis, immunohistochemistry was performed on the tissues of 32 patients with metastatic PCa (PCaM), 34 patients with PCa without metastasis (PCa), and 41 patients with benign prostatic hyperplasia (BPH). The sera were then subjected to Western blot analysis. All cases were subsequently examined to determine the concentrations of PSA and VTN in the sera. The collected data were collated and analyzed. The positive expression rates of VTN in the tissues of the BPH and PCa groups (including PCa and PCaM groups) were 75.61% and 45.45%, respectively (P = .005). VTN was more highly expressed in the sera of the BPH patients (0.83 ± 0.07) than in the sera of the PCa patients (0.65 ± 0.06) (P < .05). It was also more highly expressed in the sera of the PCa patients than in the sera of the PCaM patients (0.35 ± 0.08) (P < .05). In the diagnosis of BPH and PCa, the Youden indexes of PSA detection, VTN detection, and combined detection were 0.2620, 0.3468, and 0.5635; the kappa values were 0.338, 0.304, and 0.448, respectively, and the areas under the receiver operating characteristic curve were 0.625, 0.673, and 0.703 (P < .05), respectively. VTN levels in sera may be used as a potential marker of PCa for the diagnosis and assessment of disease progression and metastasis. The combined detection of VTN and PSA in sera can be clinically applied in PCa diagnosis. .

  4. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients.

    PubMed

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H; Kopetz, Scott; Li, Shulin

    2016-07-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.

  5. Sad Facial Expressions Increase Choice Blindness

    PubMed Central

    Wang, Yajie; Zhao, Song; Zhang, Zhijie; Feng, Wenfeng

    2018-01-01

    Previous studies have discovered a fascinating phenomenon known as choice blindness—individuals fail to detect mismatches between the face they choose and the face replaced by the experimenter. Although previous studies have reported a couple of factors that can modulate the magnitude of choice blindness, the potential effect of facial expression on choice blindness has not yet been explored. Using faces with sad and neutral expressions (Experiment 1) and faces with happy and neutral expressions (Experiment 2) in the classic choice blindness paradigm, the present study investigated the effects of facial expressions on choice blindness. The results showed that the detection rate was significantly lower on sad faces than neutral faces, whereas no significant difference was observed between happy faces and neutral faces. The exploratory analysis of verbal reports found that participants who reported less facial features for sad (as compared to neutral) expressions also tended to show a lower detection rate of sad (as compared to neutral) faces. These findings indicated that sad facial expressions increased choice blindness, which might have resulted from inhibition of further processing of the detailed facial features by the less attractive sad expressions (as compared to neutral expressions). PMID:29358926

  6. Sad Facial Expressions Increase Choice Blindness.

    PubMed

    Wang, Yajie; Zhao, Song; Zhang, Zhijie; Feng, Wenfeng

    2017-01-01

    Previous studies have discovered a fascinating phenomenon known as choice blindness-individuals fail to detect mismatches between the face they choose and the face replaced by the experimenter. Although previous studies have reported a couple of factors that can modulate the magnitude of choice blindness, the potential effect of facial expression on choice blindness has not yet been explored. Using faces with sad and neutral expressions (Experiment 1) and faces with happy and neutral expressions (Experiment 2) in the classic choice blindness paradigm, the present study investigated the effects of facial expressions on choice blindness. The results showed that the detection rate was significantly lower on sad faces than neutral faces, whereas no significant difference was observed between happy faces and neutral faces. The exploratory analysis of verbal reports found that participants who reported less facial features for sad (as compared to neutral) expressions also tended to show a lower detection rate of sad (as compared to neutral) faces. These findings indicated that sad facial expressions increased choice blindness, which might have resulted from inhibition of further processing of the detailed facial features by the less attractive sad expressions (as compared to neutral expressions).

  7. Detection of proliferating cell nuclear antigens and interleukin-2 beta receptor molecules on mitogen- and antigen-stimulated lymphocytes.

    PubMed Central

    Hesketh, J; Dobbelaere, D; Griffin, J F; Buchan, G

    1993-01-01

    The expression of interleukin-2 receptors (IL-2R) and proliferating cell nuclear antigens (PCNA) were compared for their usefulness as markers of lymphocyte activation. Heterologous polyclonal (anti-bovine IL-2R) and monoclonal (anti-human PCNA) antibodies were used to detect the expression of these molecules on activated deer lymphocytes. Both molecules were co-expressed on blast cells which had been activated with mitogen [concanavalin A (Con A)]. There was detectable up-regulation of IL-2R expression in response to antigen [Mycobacterium bovis-derived purified protein derivative (PPD)] stimulation while PCNA expression mimicked lymphocyte transformation (LT) reactivity. PCNA expression was found to more accurately reflect both antigen- and mitogen-activated lymphocyte activation, as estimated by LT activity. The expression of PCNA was used to identify antigen reactive cells from animals exposed to M. bovis. A very low percentage (1.1 +/- 0.4%) of peripheral blood lymphocytes from non-infected animals could be stimulated to express PCNA by in vitro culture with antigen (PPD). Within the infected group both diseased and healthy, 'in-contact', animals expressed significantly higher levels of PCNA upon antigen stimulation. PMID:8104884

  8. Mucin gene expression in human male urogenital tract epithelia

    PubMed Central

    Russo, Cindy Leigh; Spurr-Michaud, Sandra; Tisdale, Ann; Pudney, Jeffrey; Anderson, Deborah; Gipson, Ilene K.

    2010-01-01

    BACKGROUND Mucins are large, hydrophilic glycoproteins that protect wet-surfaced epithelia from pathogen invasion as well as provide lubrication. At least 17 mucin genes have been cloned to date. This study sought to determine the mucin gene expression profile of the human male urogenital tract epithelia, to determine if mucins are present in seminal fluid, and to assess the effect of androgens on mucin expression. METHODS AND RESULTS Testis, epididymis, vas deferens, seminal vesicle, prostate, bladder, urethra and foreskin were assessed for mucin expression by RT-PCR and immunohistochemistry. Epithelia of the vas deferens, prostate and urethra expressed the greatest number of mucins, each expressing 5–8 mucins. Messenger RNA of MUC1 and MUC20, both membrane-associated mucins, were detected in most tissues analyzed. Conversely, MUC6 was predominantly detected in seminal vesicle. MUC1, MUC5B and MUC6 were detected in seminal fluid samples by immunoblot analysis. Androgens had no effect on mucin expression by cultured human prostatic epithelial cells. CONCLUSIONS Each region of urogenital tract epithelium expressed a unique mucin gene repertoire. Secretory mucins are present in seminal fluid, and androgens do not appear to regulate mucin gene expression. PMID:16997931

  9. Differences in MYB expression and gene abnormalities further confirm that salivary cribriform basal cell tumors and adenoid cystic carcinoma are two distinct tumor entities.

    PubMed

    Tian, Zhen; Li, Lei; Zhang, Chun-Ye; Gu, Ting; Li, Jiang

    2016-10-01

    In practices, some cases of salivary basal cell tumors that consist mainly of cribriform growth pattern are difficult to differentiate from adenoid cystic carcinoma (AdCC). Identification of reliable molecular biomarkers for the differential diagnosis between them is required. Twenty-two cases of cribriform salivary basal cell tumors (at least 10% cribriform pattern present in each tumor) comprising 18 cases of basal cell adenoma (BCA) and four cases of basal cell adenocarcinoma (BcAC) were collected between 1985 and 2008. Twenty cases of cribriform AdCC were retrieved from our archives. MYB protein expression and gene abnormalities were detected in all cases by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) analyses, respectively. Neither MYB protein nor split genes were detected in any of the cases of cribriform basal cell tumors, while 55% (11/20) of cases of cribriform AdCC had MYB protein expression. High MYB expression was detected in 81.8% (9/11) cases, while low expression was found in the remaining cases. FISH analysis indicated that nine AdCC tumors with high MYB protein expression were split gene-positive, while MYB gene splitting was not detected in the 11 cases with low or absent MYB protein expression. The molecular changes in AdCC differ from those associated with cribriform basal cell tumors, which further confirms that cribriform basal cell tumors and AdCC are two distinct tumor entities. Simultaneous detection of MYB protein expression and the associated molecular changes could be beneficial in differentiating salivary cribriform basal cell tumors from AdCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Noninvasive Optical Tracking of Red Fluorescent Protein-Expressing Cancer Cells in a Model of Metastatic Breast Cancer 1*

    PubMed Central

    Winnard, Paul T; Kluth, Jessica B; Raman, Venu

    2006-01-01

    Abstract We have evaluated the use of the Xenogen IVIS 200 imaging system for real-time fluorescence protein-based optical imaging of metastatic progression in live animals. We found that green fluorescent protein-expressing cells (100 x 106) were not detectable in a mouse cadaver phantom experiment. However, a 10-fold lower number of tdTomato-expressing cells were easily detected. Mammary fat pad xenografts of stable MDA-MB-231-tdTomato cells were generated for the imaging of metastatic progression. At 2 weeks postinjection, barely palpable tumor burdens were easily detected at the sites of injection. At 8 weeks, a small contralateral mammary fat pad metastasis was imaged and, by 13 weeks, metastases to lymph nodes were detectable. Metastases with nodular composition were detectable within the rib cage region at 15 weeks. 3-D image reconstructions indicated that the detection of fluorescence extended to approximately 1 cm below the surface. A combination of intense tdTomato fluorescence, imaging at ≥ 620 nm (where autofluorescence is minimized), and the sensitivity of the Xenogen imager made this possible. This study demonstrates the utility of the noninvasive optical tracking of cancer cells during metastatic progression with endogenously expressed fluorescence protein reporters using detection wavelengths of ≥ 620 nm. PMID:17032496

  11. 3D Face Model Dataset: Automatic Detection of Facial Expressions and Emotions for Educational Environments

    ERIC Educational Resources Information Center

    Chickerur, Satyadhyan; Joshi, Kartik

    2015-01-01

    Emotion detection using facial images is a technique that researchers have been using for the last two decades to try to analyze a person's emotional state given his/her image. Detection of various kinds of emotion using facial expressions of students in educational environment is useful in providing insight into the effectiveness of tutoring…

  12. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    PubMed

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  13. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland.

    PubMed

    Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S

    2007-08-01

    Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.

  14. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  15. Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis.

    PubMed

    Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz

    2018-02-19

    Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.

  16. Evaluation of Two Outlier-Detection-Based Methods for Detecting Tissue-Selective Genes from Microarray Data

    PubMed Central

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-01-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU. PMID:19936074

  17. Detection of Sirtuin-1 protein expression in peripheral blood leukocytes in dogs.

    PubMed

    Yoshimura, Kuniko; Matsuu, Aya; Sasaki, Kai; Momoi, Yasuyuki

    2018-05-11

    Sirtuin-1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD + )-dependent histone deacetylase with a large number of protein substrates. It has attracted a lot of attention in association with extending lifespan. The objective of this study was to enable the evaluation of SIRT1 expression in peripheral blood mononuclear cells (PBMCs) from dogs by flow cytometry. Three transcript variants were amplified from PBMCs by reverse transcription PCR and the nucleotide sequences were analyzed. On the basis deduced amino acid sequence, a monoclonal antibody against human SIRT1, 1F3, was selected to detect canine SIRT1. Canine SIRT1 in peripheral blood mononuclear cells was successfully detected by western blotting using this antibody. Intracellular canine SIRT1 was also detected in permeabilized 293T cells transfected with a canine SIRT1 expression plasmid by flow cytometry using this antibody. SIRT1 was detected in all leukocyte subsets including lymphocytes, granulocytes and monocytes. The expression level was markedly different among individual dogs. These results indicated that the method applied in this study is useful for evaluating canine SIRT1 levels in PBMCs from dogs.

  18. Identification and handling of artifactual gene expression profiles emerging in microarray hybridization experiments

    PubMed Central

    Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena

    2004-01-01

    Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086

  19. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours.

    PubMed

    Varley, J M; Armour, J; Swallow, J E; Jeffreys, A J; Ponder, B A; T'Ang, A; Fung, Y K; Brammar, W J; Walker, R A

    1989-06-01

    We have analysed the organisation of the retinoblastoma (RB1) gene in 77 primary breast carcinomas, in metastatic tissue derived from 16 of those primary tumours, and in a variety of benign breast lesions. Expression of RB1 was also assessed in most samples by immunohistochemical detection of the RB1 protein in tissue sections. Structural abnormalities to RB1 were detected in DNA from 15/77 (19%) of primary breast carcinomas examined. Where DNA was available from metastatic tissue derived from such primary tumours, the same aberration could be detected. No alterations were seen in benign breast lesions. 16/56 (29%) of tumours examined for expression by immunohistochemical methods showed a proportion of tumour cells to be completely negative for the RB1 protein. All tumours in which a structural alteration to RB1 was detected had a proportion of negative cells, except for one case where all cells were positive. Several primary tumour samples were identified where there was no detectable structural change to the gene, but there was loss of expression in some tumour cells. The data presented here demonstrate that changes to the RB1 gene leading to loss of expression of both alleles are frequent in primary human breast tumours.

  20. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang

    1988-01-01

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with ({sup 14}C)chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of {sup 14}C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated {sup 14}C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intactmore » mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.« less

  1. Expression of Selected Integrins and Selectins in Bullous Pemphigoid

    PubMed Central

    Żebrowska, Agnieszka; Sysa-Jędrzejowska, Anna; Wągrowska-Danilewicz, Małgorzata; Joss-Wichman, Ewa; Erkiert-Polguj, Anna; Waszczykowska, Elżbieta

    2007-01-01

    Blister development in bullous pemphigoid (BP) results from destruction of hemidesmosomes and basement membrane components within the dermoepidermal junction by autoantibodies. Adhesion molecules can take part in pathogenesis of this disease. The aim of the study was to determine the localization and expression of L- and E-selectins and β1, β3, and β4 integrins by immunohistochemistry in skin lesions of 21 patients with BP, compared with 10 healthy subjects. Expression of L and E selectins and β1, β3 integrins was detected mainly in basal keratinocytes and in inflammatory infiltrates in the dermis, expression of β4 integrin was irregular and was detected mainly in dermal part of the blister, while in the control group only weak and single expression of the examined molecules was detected in basal keratinocytes and endothelium cells. The obtained results reveal the important role of selected selectins and integrins in development of skin lesions in BP. PMID:17515951

  2. cDNA microarray analyses reveal candidate marker genes for the detection of ascidian disease in Korea.

    PubMed

    Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi

    2007-12-01

    A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.

  3. Methods of expressing and detecting activity of expansin in plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Elizabeth E.; Yoon, Sangwoong

    A method of expressing heterologous expansin in a plant cell is provided where a nucleic acid molecule encoding expansin is introduced into the plant cell and in an embodiment is operably linked to a promoter preferentially expressing in the seed tissue of the plant, and in another embodiment is linked to a promoter preferentially expressing in the embryo tissue of the seed. An embodiment provides the nucleic acid molecule is operably linked to a second nucleic acid molecule that directs expression to the endoplasmic reticulum, vacuole or cell wall. Plants and plant parts expressing expansin are provided. An assay formore » detection of expansin activity is also provided.« less

  4. Human T cell activation. III. Induction of an early activation antigen, EA 1 by TPA, mitogens and antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, T.; Jung, L.K.L.; FU, S.M.

    1986-03-01

    With human T cells activated for 12 hours by 12-o-tetradecanoyl phorbol-13-acetate (TPA) as immunogen, an IgG/sub 2a/ monoclonal antibody, mAb Ea 1, has been generated to a 60KD phosphorylated protein with 32KD and 28KD subunits. The antigen, Ea 1, is readily detected on 60% of isolated thymocytes by indirect immunofluorescence. A low level of Ea 1 expression is detectable on 2-6% of blood lymphocytes. Isolated T cells have been induced to express Ea 1 by TPA, mitogens and anitgens. TPA activated T cells express Ea 1 as early as 1 hour after activation. By 4 hours, greater than 95% ofmore » the T cells stain with mAb Ea 1. About 50% of the PHA or Con A activated T cells express Ea 1 with a similar kinetics. Ea 1 expression proceeds that of IL-2 receptor in these activation processes. T cells activated by soluble antigens (tetanus toxoid and PPD) and alloantigens in MLR also express Ea 1 after a long incubation. About 20% of the T cells stain for Ea 1 at day 6. Ea 1 expression is not limited to activated T cells. B cells activated by TPA or anti-IgM Ab plus B cell growth factor express Ea 1. The kinetics of Ea 1 expression is slower and the staining is less intense. Repeated attempts to detect Ea 1 on resting and activated monocytes and granulocytes have not been successful. Ea 1 expression is due to de novo synthesis for its induction is blocked by cycloheximide and actinomycin D. Ea 1 is the earliest activation antigen detectable to-date.« less

  5. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    PubMed

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Human herpes simplex viruses in benign and malignant thyroid tumours.

    PubMed

    Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl

    2010-06-01

    To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.

  7. Study on γH2AX Expression of Lymphocytes as a Biomarker In Radiation Biodosimetry

    PubMed Central

    Pan, Yan; Gao, Gang; Ruan, Jian Lei; Liu, Jian Xiang

    2016-01-01

    Flow cytometry analysis was used to detect the changes of γH2AX protein expression in human peripheral blood lymphocytes. In the dose-effect study, the expression of γH2AX was detected 1 h after irradiation with 60Co γ-rays at doses of 0, 0.5, 1, 2, 4, and 6 Gy. Blood was cultivated for 0, 1, 2, 4, 6, 12, and 24 h after 4 Gy 60Co γ-rays irradiation for the time-effect study. At the same time, the blood was divided into four treatment groups (ultraviolet [UV] irradiation, 60Co γ-rays irradiation, UV plus 60Co γ-rays irradiation, and control group) to detect the changes of protein expression of γH2AX. The results showed that the γH2AX protein expression was in dose-effect and time-effect relationship with 60Co γ-rays. The peak expression of γH2AX was at 1 h after 60Co γ-ray irradiation and began to decrease quickly. Compared to irradiation with 60Co γ-rays alone, the expression of γH2AX was not significantly changed after irradiation with 60Co γ-rays plus UV. Dose rate did not significantly change the expression of γH2AX. The expression of γH2AX induced by 60Co γ-rays was basically consistent with the mice in vivo and in vitro. The results revealed that the detection of γH2AX protein expression changes in peripheral blood lymphocyte by flow cytometry analysis is reasonable and may be useful for biodosimetry. PMID:28217286

  8. Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device.

    PubMed

    Zhang, Ye; Li, Wenjie; Zhou, Yun; Johnson, Amanda; Venable, Amanda; Hassan, Ahmed; Griswold, John; Pappas, Dimitri

    2017-12-18

    A microfluidic affinity separation device was developed for the detection of sepsis in critical care patients. An affinity capture method was developed to capture cells based on changes in CD64 expression in a single, simple microfluidic chip for sepsis detection. Both sepsis patient samples and a laboratory CD64+ expression model were used to validate the microfluidic assay. Flow cytometry analysis showed that the chip cell capture had a linear relationship with CD64 expression in laboratory models. The Sepsis Chip detected an increase in upregulated neutrophil-like cells when the upregulated cell population is as low as 10% of total cells spiked into commercially available aseptic blood samples. In a proof of concept study, blood samples obtained from sepsis patients within 24 hours of diagnosis were tested on the chip to further validate its performance. On-chip CD64+ cell capture from 10 patient samples (619 ± 340 cells per chip) was significantly different from control samples (32 ± 11 cells per chip) and healthy volunteer samples (228 ± 95 cells per chip). In addition, the on-chip cell capture has a linear relationship with CD64 expression indicating our approach can be used to measure CD64 expression based on total cell capture on Sepsis Chip. Our method has proven to be sensitive, accurate, rapid, and cost-effective. Therefore, this device is a promising detection platform for neutrophil activation and sepsis diagnosis.

  9. Detecting differentially expressed genes in heterogeneous diseases using half Student's t-test.

    PubMed

    Hsu, Chun-Lun; Lee, Wen-Chung

    2010-12-01

    Microarray technology provides information about hundreds and thousands of gene-expression data in a single experiment. To search for disease-related genes, researchers test for those genes that are differentially expressed between the case subjects and the control subjects. The authors propose a new test, the 'half Student's t-test', specifically for detecting differentially expressed genes in heterogeneous diseases. Monte-Carlo simulation shows that the test maintains the nominal α level quite well for both normal and non-normal distributions. Power of the half Student's t is higher than that of the conventional 'pooled' Student's t when there is heterogeneity in the disease under study. The power gain by using the half Student's t can reach ∼10% when the standard deviation of the case group is 50% larger than that of the control group. Application to a colon cancer data reveals that when the false discovery rate (FDR) is controlled at 0.05, the half Student's t can detect 344 differentially expressed genes, whereas the pooled Student's t can detect only 65 genes. Or alternatively, if only 50 genes are to be selected, the FDR for the pooled Student's t has to be set at 0.0320 (false positive rate of ∼3%), but for the half Student's t, it can be at as low as 0.0001 (false positive rate of about one per ten thousands). The half Student's t-test is to be recommended for the detection of differentially expressed genes in heterogeneous diseases.

  10. When is a cow in estrus? Clinical and practical aspects.

    PubMed

    Roelofs, J; López-Gatius, F; Hunter, R H F; van Eerdenburg, F J C M; Hanzen, Ch

    2010-08-01

    Good detection of estrus is critically important in dairy husbandry. Incorrect detection of estrus is related to loss of profit due to extended calving intervals, milk loss, veterinary costs, etc. Detection of estrus remains a major problem despites enormous progress in the knowledge of reproductive physiology of the cow and in development of estrus detection aids. To achieve good estrus detection, many factors have to be taken into account. On one hand a cow has to express estrus and on the other hand the farmer has to detect it. Combined action of several hormones causes physiological changes that lead to ovulation and an environment in the uterus that allows sperm to fertilize the egg. Besides these internal actions, a number of external changes can be observed. When using visual observations, time of the day and time spend on observation have a great impact on detection rates. Many devices are available to aid in estrus detection, such as pedometers, mount devices, temperature, and hormone measurements. Expression of estrus can be influenced by many factors. Heritability, number of days postpartum, lactation number, milk production, and health are known to influence estrus expression. Environmental factors like nutrition, season, housing, herd size, etc. also play a role in estrus expression. To evaluate estrus detection, record keeping is very important; a number of formulas can be used to assess detection efficiency. Besides the farmer, the veterinarian and inseminator can play an important role in estrus confirmation and good insemination strategy. In the end, the time of ovulation and the age of the egg at sperm penetration is critical for conception. Therefore, emphasis in research needs to be on the timing of insemination relative to ovulation, and thus on the detection of ovulation. Copyright 2010 Elsevier Inc. All rights reserved.

  11. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  12. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection.

    PubMed

    Iwata, Seiko; Wada, Kaoru; Tobita, Satomi; Gotoh, Kensei; Ito, Yoshinori; Demachi-Okamura, Ayako; Shimizu, Norio; Nishiyama, Yukihiro; Kimura, Hiroshi

    2010-01-01

    Chronic active Epstein-Barr virus (CAEBV) infection is a systemic Epstein-Barr virus (EBV)-positive lymphoproliferative disorder characterized by persistent or recurrent infectious mononucleosis-like symptoms in patients with no known immunodeficiency. The detailed pathogenesis of the disease is unknown and no standard treatment regimen has been developed. EBV gene expression was analysed in peripheral blood samples collected from 24 patients with CAEBV infection. The expression levels of six latent and two lytic EBV genes were quantified by real-time RT-PCR. EBV-encoded small RNA 1 and BamHI-A rightward transcripts were abundantly detected in all patients, and latent membrane protein (LMP) 2 was observed in most patients. EBV nuclear antigen (EBNA) 1 and LMP1 were detected less frequently and were expressed at lower levels. EBNA2 and the two lytic genes were not detected in any of the patients. The pattern of latent gene expression was determined to be latency type II. EBNA1 was detected more frequently and at higher levels in the clinically active patients. Quantifying EBV gene expression is useful in clarifying the pathogenesis of CAEBV infection and may provide information regarding a patient's disease prognosis, as well as possible therapeutic interventions.

  13. Curcumin reverses irinotecan resistance in colon cancer cell by regulation of epithelial-mesenchymal transition.

    PubMed

    Zhang, Chunhong; Xu, Yangjie; Wang, Haowen; Li, Gang; Yan, Han; Fei, Zhenghua; Xu, Yunsheng; Li, Wenfeng

    2018-04-01

    The objective of this study was to investigate the effect and the mechanism by which curcumin reverses irinotecan-induced chemotherapy resistance in colon cancer. Construction of irinotecan-resistant colon cancer model LoVo/CPT-11R cells was performed by increasing drug concentration. The Cell Counting Kit-8 assay was used to detect inhibition of proliferation; cell morphology was observed by an optical microscope. Quantitative RT-PCR and western blotting were performed to detect molecular marker expressions during epithelial-mesenchymal transition (EMT); drug-resistant cells were treated with curcumin at different concentrations and Cell Counting Kit-8 was reperformed to detect cell proliferation after treatments. Drug-resistant cells were then divided into four groups: control group, irinotecan group, curcumin group, and irinotecan+curcumin group; quantitative RT-PCR and western blotting were performed to detect molecular marker expressions during epithelial-mesenchymal transition. Flow cytometry was used to detect cell apoptosis after grouping, and apoptosis-related protein was detected by western blotting. LoVo/CPT-11R cells could survive in culture medium containing irinotecan at 60 μg/ml and the drug-resistance index was 5.69; the drug-resistant cells had a larger volume than normal cells and were poorly connected to each other. E-cadherin expression was downregulated, whereas vimentin and N-cadherin expressions were upregulated. After curcumin treatment, drug-resistant cell proliferation was significantly inhibited; in the curcumin+irinotecan treatment group, E-cadherin expression was upregulated, whereas vimentin and N-cadherin expressions were downregulated. Curcumin could significantly increase cell apoptosis. EMT is involved in the development of irinotecan resistance and curcumin can reverse this drug resistance through reversion of the EMT process.

  14. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2

    PubMed Central

    Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David

    2015-01-01

    The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267

  15. Lower and reduced expression of EphA4 is associated with advanced TNM stage, lymph node metastasis, and poor survival in breast carcinoma.

    PubMed

    Sun, Yuejun; Qian, Jianzhong; Lu, Min; Xu, Hongming

    2016-09-01

    The expression of EphA4 has been well documented in the development of nerve and in certain types of human cancer. Few studies of EphA4, however, have focused on breast carcinoma. In this study, a set of breast carcinomas was subjected to immunohistochemical staining. In normal luminal cells, EphA4 was weakly detected in 11 (14.3 %), moderately detected in 15 (19.5 %) and highly detected in 51 out of 77 (66.2 %) samples, while in breast carcinoma cells, EphA4 was weakly detected in 42 (54.5 %), moderately detected in 19 (24.7 %) and highly detected in 16 out of 77 (20.8 %) samples (P < 0.001). The expression of EphA4 protein was significantly reduced in 68.8 % of breast carcinoma samples comparing with normal cells. The expression of EphA4 was significantly associated with tumor grade (P = 0.003), TNM stage (P = 0.034), lymph node metastasis (P = 0.034) and Ki-67 (P < 0.001). No significant relationship was found between the expression of EphA4 and age, molecular subtypes, and HER2 status. Survival analysis showed that significant association of low expression of EphA4 in tumor cells with short overall survival (P = 0.048) and disease-free survival (P = 0.051). Our data show that EphA4 was reduced in breast carcinoma, which is associated with high grade, advanced TNM stage, lymph node metastasis, and poor outcome of patients. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  16. Detection of Albumin Expression by RNA In Situ Hybridization Is a Sensitive and Specific Method for Identification of Hepatocellular Carcinomas and Intrahepatic Cholangiocarcinomas.

    PubMed

    Lin, Fan; Shi, Jianhui; Wang, Hanlin L; Ma, Xiao-Jun; Monroe, Robert; Luo, Yuling; Chen, Zongming; Liu, Haiyan

    2018-05-09

    Inconsistent data on detection of albumin expression by ribonucleic acid (RNA) in situ hybridization have been reported. We investigated the utility of RNAscope (Advanced Cell Diagnostics, Hayward, CA) in detection of albumin in hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (ICCs), and carcinomas from various organs using manual and automated staining. RNAscope for albumin detection was performed on 482 cases on tissue microarray sections and on 22 cases of ICC, including 14 surgical resection and eight core biopsy specimens. Thirty-six of 37 (97%) HCCs had detectable mRNA, whereas all non-HCC and non-ICC cases, except one lung adenocarcinoma, were negative for albumin. Fourteen of 22 ICCs (64%) were positive for albumin. RNAscope for albumin is highly sensitive and specific for identifying HCCs and is highly specific and moderately sensitive for detection of ICCs; however, rare carcinomas (non-HCC, non-ICC, and those with no hepatoid histomorphology) can also have aberrant expression of albumin.

  17. Facial recognition in education system

    NASA Astrophysics Data System (ADS)

    Krithika, L. B.; Venkatesh, K.; Rathore, S.; Kumar, M. Harish

    2017-11-01

    Human beings exploit emotions comprehensively for conveying messages and their resolution. Emotion detection and face recognition can provide an interface between the individuals and technologies. The most successful applications of recognition analysis are recognition of faces. Many different techniques have been used to recognize the facial expressions and emotion detection handle varying poses. In this paper, we approach an efficient method to recognize the facial expressions to track face points and distances. This can automatically identify observer face movements and face expression in image. This can capture different aspects of emotion and facial expressions.

  18. An image cytometric technique is a concise method to detect adenoviruses and host cell proteins and to monitor the infection and cellular responses induced.

    PubMed

    Morinaga, Takao; Nguyễn, Thảo Thi Thanh; Zhong, Boya; Hanazono, Michiko; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi

    2017-11-10

    Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.

  19. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  20. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  1. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    PubMed

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  2. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2017-05-16

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  3. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  4. Detection of LiveLock in BPMN Using Process Expression

    NASA Astrophysics Data System (ADS)

    Tantitharanukul, Nasi; Jumpamule, Watcharee

    Although the Business Process Modeling Notation (BPMN) is a popular tool for modeling business process in conceptual level, the result diagram may contain structural problem. One of the structural problems is livelock. In this problem, one token proceeds to end event, while other token is still in process with no progression. In this paper, we introduce an expression liked method to detect livelock in the BPMN diagram. Our approach utilizes the power of the declarative ability of expression to determine all of the possible process chains, and indicate whether there are livelock or not. As a result, we have shown that our method can detect livelock, if any.

  5. [Effect of Yiguan Decoction on differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells: an experimental research].

    PubMed

    Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming

    2014-03-01

    To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.

  6. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    PubMed

    Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F

    1999-02-01

    Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  7. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans

    PubMed Central

    Andachi, Yoshiki; Kohara, Yuji

    2016-01-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans. Here, we show a novel WISH method for miRNA detection in C. elegans. Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. PMID:27154969

  8. Characterization of zebrafish dysferlin by morpholino knockdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.

    2011-09-23

    Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafishmore » dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.« less

  9. In-the-wild facial expression recognition in extreme poses

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.

  10. 3D facial expression recognition using maximum relevance minimum redundancy geometrical features

    NASA Astrophysics Data System (ADS)

    Rabiu, Habibu; Saripan, M. Iqbal; Mashohor, Syamsiah; Marhaban, Mohd Hamiruce

    2012-12-01

    In recent years, facial expression recognition (FER) has become an attractive research area, which besides the fundamental challenges, it poses, finds application in areas, such as human-computer interaction, clinical psychology, lie detection, pain assessment, and neurology. Generally the approaches to FER consist of three main steps: face detection, feature extraction and expression recognition. The recognition accuracy of FER hinges immensely on the relevance of the selected features in representing the target expressions. In this article, we present a person and gender independent 3D facial expression recognition method, using maximum relevance minimum redundancy geometrical features. The aim is to detect a compact set of features that sufficiently represents the most discriminative features between the target classes. Multi-class one-against-one SVM classifier was employed to recognize the seven facial expressions; neutral, happy, sad, angry, fear, disgust, and surprise. The average recognition accuracy of 92.2% was recorded. Furthermore, inter database homogeneity was investigated between two independent databases the BU-3DFE and UPM-3DFE the results showed a strong homogeneity between the two databases.

  11. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    PubMed

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  12. Detection of alkaline phosphatase in canine cells previously stained with Wright-Giemsa and its utility in differentiating osteosarcoma from other mesenchymal tumors.

    PubMed

    Ryseff, Julia K; Bohn, Andrea A

    2012-09-01

    Osteosarcoma (OSA) is a common primary bone tumor in dogs. Demonstration of alkaline phosphatase (ALP) reactivity by tumor cells on unstained slides is useful in differentiating osteosarcoma from other types of sarcoma. However, unstained slides are not always available. The objectives of this study were to evaluate the diagnostic utility of detecting ALP expression in differentiating osteosarcoma from other sarcomas in dogs using cytologic material previously stained with Wright-Giemsa stain and to assess the sensitivity and specificity of ALP expression for diagnosing osteosarcoma using a specific protocol. Archived aspirates of histologically confirmed sarcomas in dogs that had been previously stained with Wright-Giemsa stain were treated with 5-bromo, 4-chloro, 3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) as a substrate for ALP. Cells were evaluated for expression of ALP after incubation with BCIP/NBT for 1 hour. Sensitivity and specificity of ALP expression for diagnosis of OSA were calculated. In samples from 83 dogs, cells from 15/17 OSAs and from 4/66 tumors other than OSA (amelanotic melanoma, gastrointestinal stromal tumor, collision tumor, and anaplastic sarcoma) expressed ALP. Sensitivity and specificity of ALP expression detected using BCIP/NBT substrate applied to cells previously stained with Wright-Giemsa stain for OSA were 88 and 94%, respectively. ALP expression detected using BCIP/NBT substrate applied to previously stained cells is useful in differentiating canine OSA from other mesenchymal neoplasms. © 2012 American Society for Veterinary Clinical Pathology.

  13. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    PubMed

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the native endothelium.

  14. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    PubMed

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P  < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae)

    PubMed Central

    2010-01-01

    Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors. PMID:20403175

  16. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae).

    PubMed

    Valletta, Alessio; Trainotti, Livio; Santamaria, Anna Rita; Pasqua, Gabriella

    2010-04-19

    Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  17. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  18. Identification of MSX1 and DCLK1 as mRNA Biomarkers for Colorectal Cancer Detection Through DNA Methylation Information.

    PubMed

    Sun, Ai-Jun; Gao, Hai-Bo; Liu, Gao; Ge, Heng-Fa; Ke, Zun-Ping; Li, Sen

    2017-07-01

    Colorectal cancer is the second most deadly malignancy in the United States. However, the currently screening options had their limitation. Novel biomarkers for colorectal cancer detections are necessary to reduce the mortality. The clinical information, mRNA expression levels and DNA methylation information of colorectal cancer were downloaded from TCGA. The patients were separated into training group and testing group based on their platforms for DNA methylation. Beta values of DNA methylation from tumor tissues and normal tissues were utilized to figure out the position that were differentially methylated. The expression levels of mRNA of thirteen genes, whose CpG islands were differentially methylated, were extracted from the RNA-Seq results from TCGA. The probabilities whether the mRNA was differentially expressed between tumor and normal samples were calculated using Student's t-test. Logistic regression and decision tree were built for cancer detection and their performances were evaluated by the area under the curve (AUC). Twenty-four genomic locations were differentially methylated, which could be mapped to eleven genes. Nine out of eleven genes had differentially expressed mRNA levels, which were used to build the model for cancer detection. The final detection models consisting of mRNA expression levels of these nine genes had great performances on both training group and testing group. The model that constructed in this study suggested MSX1 and DCLK1 might be used in colorectal cancer detection or as target of cancer therapies. J. Cell. Physiol. 232: 1879-1884, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. Detection of survivin 2α gene expression in thyroid nodules.

    PubMed

    Kyani, Keyhaneh; Babaei, Esmaeil; Feizi, Mohammad Ali Hosseinpour; Vandghanooni, Somayeh; Montazeri, Vahid; Halimi, Monireh

    2014-01-01

    Functional studies of the survivin splice variants have been performed almost exclusively in various types of cancer and produced remarkable advances in our understanding of cancer biology and cancer genetics. To observation the expression of survivin 2α in thyroid nodules and estimate its potential as a new molecular marker in thyroid nodules screening and malignant thyroid, as well. We detected the expression of a splice variant of survivin, survivin 2α, in thyroid nodules. Expression of survivin 2α mRNA was evaluated with specific primers by Hemi-Nested RT-PCR in 77 thyroid nodules including malignant and benign tumors, non-tumoral (goiter and thyroiditis) as well as surgical margin, non-neoplastic normal tissues adjacent to the malignant lesions. Our data revealed for the first time the expression of survivin 2α in thyroid nodules. It was detected in 85.7% of non-neoplastic surgical margin tissues, 71.4% of non tumoral, 63.2% of tumoral samples. Also, the expression of survivin 2α in benign tumor samples (64.2%) is more than malignant groups (62.8%). Survivin 2α expression is the highest in non-neoplastic surgical margin rather than other samples and the lowest expression was that of malignancy. According to the results, it can be concluded that survivin 2α protein may be has a vital protective effect throw survivin quenching due to the high expression in normal tissue compared with lesions.

  1. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4.

    PubMed

    Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F

    1998-12-01

    To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.

  2. Modeling of gene expression pattern alteration by p,p′-DDE and dieldrin in largemouth bass

    PubMed Central

    Garcia-Reyero, Natàlia; Barber, David; Gross, Timothy; Denslow, Nancy

    2007-01-01

    In this study, largemouth bass (LMB) were subchronically exposed to p,p′-DDE or dieldrin in their diet to evaluate the effect of exposure on expression of genes involved in reproduction and steroid homeostasis. Using real-time PCR, we detected a different gene expression pattern for each OCP, suggesting that they each affect LMB in a different way. We also detected a different expression pattern among sexes, suggesting that sexes are affected differently by OCPs perhaps reflecting the different adaptive responses of each sex to dysregulation caused by OCP exposure. PMID:16707152

  3. SpeCond: a method to detect condition-specific gene expression

    PubMed Central

    2011-01-01

    Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066

  4. Modeling of gene expression pattern alteration by p,p′-DDE and dieldrin in largemouth bass

    USGS Publications Warehouse

    Garcia-Reyero, Natalia; Barber, David; Gross, Timothy; Denslow, Nancy

    2006-01-01

    In this study, largemouth bass (LMB) were subchronically exposed to p,p′-DDE or dieldrin in their diet to evaluate the effect of exposure on expression of genes involved in reproduction and steroid homeostasis. Using real-time PCR, we detected a different gene expression pattern for each OCP, suggesting that they each affect LMB in a different way. We also detected a different expression pattern among sexes, suggesting that sexes are affected differently by OCPs perhaps reflecting the different adaptive responses of each sex to dysregulation caused by OCP exposure.

  5. Development and Application of a Saccharomyces cerevisiae-Expressed Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against Infectious Bronchitis Virus

    PubMed Central

    Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.

    2005-01-01

    A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038

  6. Improvement of emotional healthcare system with stress detection from ECG signal.

    PubMed

    Tivatansakul, S; Ohkura, M

    2015-01-01

    Our emotional healthcare system is designed to cope with users' negative emotions in daily life. To make the system more intelligent, we integrated emotion recognition by facial expression to provide appropriate services based on user's current emotional state. Our emotion recognition by facial expression has confusion issue to recognize some positive, neutral and negative emotions that make the emotional healthcare system provide a relaxation service even though users don't have negative emotions. Therefore, to increase the effectiveness of the system to provide the relaxation service, we integrate stress detection from ECG signal. The stress detection might be able to address the confusion issue of emotion recognition by facial expression to provide the service. Indeed, our results show that integration of stress detection increases the effectiveness and efficiency of the emotional healthcare system to provide services.

  7. Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

    PubMed

    Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon

    2012-01-01

    Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

  8. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    PubMed Central

    Brandan, Cecilia Pérez; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence. PMID:22705838

  9. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.; Lombardo, M; Wright, D

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affectedmore » by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.« less

  10. 3D-QSAR studies on the inhibitory activity of trimethoprim analogues against Escherichia coli dihydrofolate reductase.

    PubMed

    Vijayaraj, Ramadoss; Devi, Mekapothula Lakshmi Vasavi; Subramanian, Venkatesan; Chattaraj, Pratim Kumar

    2012-06-01

    Three-dimensional quantitative structure activity relationship (3D-QSAR) study has been carried out on the Escherichia coli DHFR inhibitors 2,4-diamino-5-(substituted-benzyl)pyrimidine derivatives to understand the structural features responsible for the improved potency. To construct highly predictive 3D-QSAR models, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods were used. The predicted models show statistically significant cross-validated and non-cross-validated correlation coefficient of r2 CV and r2 nCV, respectively. The final 3D-QSAR models were validated using structurally diverse test set compounds. Analysis of the contour maps generated from CoMFA and CoMSIA methods reveals that the substitution of electronegative groups at the first and second position along with electropositive group at the third position of R2 substitution significantly increases the potency of the derivatives. The results obtained from the CoMFA and CoMSIA study delineate the substituents on the trimethoprim analogues responsible for the enhanced potency and also provide valuable directions for the design of new trimethoprim analogues with improved affinity. © 2012 John Wiley & Sons A/S.

  11. [Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].

    PubMed

    Cheng, Hao; Chen, Nian-yong

    2014-05-01

    To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.

  12. Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions.

    PubMed

    Friedmann, Y; Daniel, C W

    1996-07-10

    The murine homeobox genes Msx-1 and Msx-2 are related to the Drosophila msh gene and are expressed in a variety of tissues during mouse embryogenesis. We now report the developmentally regulated expression of Msx-1 and Msx-2 in the mouse mammary gland and show that their expression patterns point toward significant functional roles. Msx-1 and Msx-2 transcripts were present in glands of virgin mice and in glands of mice in early pregnancy, but transcripts decreased dramatically during late pregnancy. Low levels of Msx-1 transcripts were detected in glands from lactating animals and during the first days of involution, whereas Msx-2 expression was not detected during lactation or early involution. Expression of both genes increased gradually as involution progressed. Msx-2 but not Msx-1 expression was decreased following ovariectomy or following exposure to anti-estrogen implanted directly into the gland. Hormonal regulation of Msx-2 expression was confirmed when transcripts returned to normal levels after estrogen was administered to ovariectomized animals. In situ molecular hybridization for Msx-1 showed transcripts localized to the mammary epithelium, whereas Msx-2 expression was confined to the periductal stroma. Mammary stroma from which mammary epithelium had been removed did not transcribe detectable amounts of Msx-2, showing that expression is regulated by contiguous mammary epithelium, and indicating a role for these homeobox genes in mesenchymal-epithelial interactions during mammary development.

  13. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.

    PubMed

    Jiang, Lan; Chen, Huidong; Pinello, Luca; Yuan, Guo-Cheng

    2016-07-01

    High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.

  14. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.

    PubMed

    Li, Bo; Bai, Xiangjun; Wanh, Haiping

    2006-01-01

    The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.

  16. Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland.

    PubMed

    Yu, Dongfang; Thelin, William R; Randell, Scott H; Boucher, Richard C

    2012-10-01

    The aim of the study was to elucidate aquaporin (AQP) family member mRNA expression and protein expression/localization in the rat lacrimal functional unit. The mRNA expression of all rat AQPs (AQP0-9, 11-12) in palpebral, fornical, and bulbar conjunctiva, cornea, lacrimal gland, and Meibomian gland was measured by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and real time RT-PCR. Antibodies against AQP1, 3, 4, 5, 9, and 11 were used in Western blotting and immunohistochemistry to determine protein expression and distribution. Our study demonstrated characteristic AQP expression profiles in rat ocular tissues. AQP1, 3, 4, 5, 8, 9, 11, and 12 mRNA were detected in conjunctiva. AQP0, 1, 2, 3, 4, 5, 6, 11, and 12 mRNA were expressed in cornea. AQP0, 1, 2, 3, 4, 5, 7, 8, and 11 mRNA were detected in lacrimal gland. AQP1, 3, 4, 5, 7, 8, 9, 11, and 12 mRNA were identified in Meibomian gland. By Western blot, AQP1, 3, 5, and 11 were detected in conjunctiva; AQP1, 3, 5, and 11 were identified in cornea; AQP1, 3, 4, 5, and 11 were detected in lacrimal gland; and AQP1, 3, 4, 5, 9, and 11 were present in Meibomian gland. Immunohistochemistry localized AQPs to distinct sites in the various tissues. This study rigorously analyzed AQPs expression and localization in rat conjunctiva, cornea, lacrimal gland, and Meibomian gland tissues. Our findings provide a comprehensive platform for further investigation into the physiological or pathophysiological relevance of AQPs in ocular surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  18. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  19. Complex nature of SNP genotype effects on gene expression in primary human leucocytes.

    PubMed

    Heap, Graham A; Trynka, Gosia; Jansen, Ritsert C; Bruinenberg, Marcel; Swertz, Morris A; Dinesen, Lotte C; Hunt, Karen A; Wijmenga, Cisca; Vanheel, David A; Franke, Lude

    2009-01-07

    Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease - a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects. In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, cis expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  20. PD-L1 Detection in Tumors Using [(64)Cu]Atezolizumab with PET.

    PubMed

    Lesniak, Wojciech G; Chatterjee, Samit; Gabrielson, Matthew; Lisok, Ala; Wharram, Bryan; Pomper, Martin G; Nimmagadda, Sridhar

    2016-09-21

    The programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pair is a major immune checkpoint pathway exploited by cancer cells to develop and maintain immune tolerance. With recent approvals of anti-PD-1 and anti-PD-L1 therapeutic antibodies, there is an urgent need for noninvasive detection methods to quantify dynamic PD-L1 expression in tumors and to evaluate the tumor response to immune modulation therapies. To address this need, we assessed [(64)Cu]atezolizumab for the detection of PD-L1 expression in tumors. Atezolizumab (MPDL3208A) is a humanized, human and mouse cross-reactive, therapeutic PD-L1 antibody that is being investigated in several cancers. Atezolizumab was conjugated with DOTAGA and radiolabeled with copper-64. The resulting [(64)Cu]atezolizumab was assessed for in vitro and in vivo specificity in multiple cell lines and tumors of variable PD-L1 expression. We performed PET-CT imaging, biodistribution, and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-hPD-L1) and in controls (CHO). Specificity of [(64)Cu]atezolizumab was further confirmed in orthotopic tumor models of human breast cancer (MDAMB231 and SUM149) and in a syngeneic mouse mammary carcinoma model (4T1). We observed specific binding of [(64)Cu]atezolizumab to tumor cells in vitro, correlating with PD-L1 expression levels. Specific accumulation of [(64)Cu]atezolizumab was also observed in tumors with high PD-L1 expression (CHO-hPD-L1 and MDAMB231) compared to tumors with low PD-L1 expression (CHO, SUM149). Collectively, these studies demonstrate the feasibility of using [(64)Cu]atezolizumab for the detection of PD-L1 expression in different tumor types.

  1. Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice.

    PubMed

    Wert, S E; Glasser, S W; Korfhagen, T R; Whitsett, J A

    1993-04-01

    Transgenic animals bearing a chimeric gene containing 5'-flanking regions of the human surfactant protein C (SP-C) gene ligated to the bacterial chloramphenicol acetyltransferase (CAT) gene were analyzed by in situ hybridization histochemistry to determine the temporal and spatial distribution of transgene expression during organogenesis of the murine lung. Ontogenic expression of the SP-C-CAT gene was compared to that of the endogenous SP-C gene and to the Clara cell CC10 gene. High levels of SP-C-CAT expression were observed as early as Day 10 of gestation in epithelial cells of the primordial lung buds. Low levels of endogenous SP-C mRNA were detected a day later, but only in the more distal epithelial cells of the newly formed, primitive, lobar bronchi. On Gestational Days 13 through 16, transcripts for both the endogenous and chimeric gene were restricted to distal epithelial elements of the branching bronchial tubules and were no longer detected in the more proximal regions of the bronchial tree. Although high levels of SP-C-CAT expression were maintained throughout organogenesis, endogenous SP-C expression increased dramatically on Gestational Day 15, coincident with acinar tubule differentiation at the lung periphery. Low levels of endogenous CC10 expression were detected by Gestational Day 16 in both lobar and segmental bronchi. By the time of birth, CC10 transcripts were expressed at high levels in the trachea and at all levels of the bronchial tree; endogenous SP-C mRNA was restricted to epithelial cells of the terminal alveolar saccules; and SP-C-CAT expression was now detected in both alveolar and bronchiolar epithelial cells. These results indicate that (1) cis-acting regulatory elements of the human SP-C gene can direct high levels of foreign gene expression to epithelial cells of the embryonic mouse lung; (2) expression of the human SP-C-CAT chimeric gene is developmentally regulated, exhibiting a morphogenic expression pattern similar, but not identical, to that of the endogenous murine SP-C gene; (3) the embryonic expression of endogenous SP-C and chimeric SP-C-CAT transcripts identifies progenitor cells of the distal respiratory epithelium; and (4) differentiation of bronchial epithelium is coincident with loss of SP-C expression and subsequent acquisition of CC10 expression in proximal regions of the developing bronchial tubules.

  2. The Influences of Glycosylation on the Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines

    DTIC Science & Technology

    2006-11-22

    multiple muta- tions were not studied, (iii) a vaccinia virus (VACV)- T7 system was used for transient expression, (iv) pseudotyped retrovi- ruses were used...those studies produced little to no detectable GP1 or GP2 in the transient VACV- T7 expression assays, whereas in our studies with the DNA con- structs...type GP2 was detected in pseudotyped retroviruses, a result seemingly in conflict with these authors’ findings with the VACV- T7 expression. Although

  3. Oocyte maturation and origin of the germline as revealed by the expression of Nanos-like in the Pacific oyster Crassostrea gigas.

    PubMed

    Xu, Rui; Li, Qi; Yu, Hong; Kong, Lingfeng

    2018-04-13

    Nanos gene plays an important role in germline development in animals. However, the molecular mechanisms involved in germline development in Mollusca, the second largest animal phylum, are still poorly understood. Here we identified the Nanos orthologue from the Pacific oyster Crassostrea gigas (Cg-Nanos-like), and investigated the expression patterns of Nanos during gametogenesis and embryogenesis in C. gigas. Tissue expression analysis showed that Cg-Nanos-like was specifically expressed in female gonads. During the reproductive cycle, the expression of Cg-Nanos-like mRNA increased matching the seasonal development of the ovarian tissues in diploids, while the expression levels were significantly lower in the ovaries of sterile triploids compared to diploids. High expression of Cg-Nanos-like transcripts were detected in early embryonic stages, while the expression significantly dropped at gastrulation and was barely detectable in veliger stages. In situ hybridization showed that Cg-Nanos-like was expressed at different stages of developing oocytes, whereas positive signals were detected only in spermatogonia during the spermatogenic cycle. These findings indicated that Cg-Nanos-like was involved in the development of germ cells, and maintenance of oocyte maturation. In early embryogenesis, the transcripts were broadly expressed; following gastrulation, the expression was restricted to two cell clumps, which might be the putative primordial germ cells (PGCs) or their precursors. Based on the results, the formation of the PGCs in C. gigas was consistent with the model of transition from epigenesis to preformation. Copyright © 2017. Published by Elsevier B.V.

  4. [Expression of C-fos in nasopharyngeal carcinoma and the relationship with chemosensitivity and prognosis].

    PubMed

    Liu, Y T; Zhao, F P; Miao, H B; Fu, S Z; Zhou, S; Zhang, X G; Qin, G

    2018-05-01

    Objective: To investigate the expression of C-fos in patients with nasopharyngeal carcinoma(NPC), and analyze the relationship between the expression of C-fos and the clinical characteristics, chemosensitivity and prognosis. Method: Clinical and follow-up data of 75 NPC patients was analyzed retrospectively. The expression of C-fos was detected by immunohistochemical assay, and chemosensitivity was detected by ATP bioluminescent anticancer drug sensitivity detection technology. The relationship between them was studied. Result: The expression of C-fos in NPC was statistically higher than that in the control nasopharyngeal mucosa( P <0.001). It was found that C-fos had no statistical relationship with the gender, age, pathologic type, clinical stage of tumor classification, lymph node status, metastasis status and overall stage of NPC patients( P >0.05). NPC had different chemosensitivity with 8 anticancer drugs( P <0.001).There was a significant difference in chemosensitivity of paclitaxel between the high expression of C-fos group and the low expression of C-fos group( P =0.036). The rate of tumor progression was significantly higher in NPC patients with high expression of C-fos than in the low expression group( P =0.014).There was no significant difference in overall survival between the two groups( P =0.076). Conclusion: C-fos is highly expressed in NPC tissues, and the high expression of C-fos in NPC tissues may be related to tumor progression and resistance to paclitaxel. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  5. A possible mechanism of maxillofacial abscess formation: involvement of Porphyromonas endodontalis lipopolysaccharide via the expression of inflammatory cytokines.

    PubMed

    Murakami, Y; Hanazawa, S; Tanaka, S; Iwahashi, H; Yamamoto, Y; Fujisawa, S

    2001-12-01

    In a previous study, we developed a specific monoclonal antibody against Porphyromonas endodontalis lipopolysaccharide, and demonstrated that this lipopolysaccharide was detected in bacterially infected root canal fluid. We suggest here that P. endodontalis lipopolysaccharide in the infectious materials plays a stimulatory role in maxillofacial abscess formation via the expression of inflammatory cytokines. Our epidemiological study showed that this lipopolysaccharide was detected in significant levels the infectious material of patients with periapical periodontitis and odontogenic abscesses. Interestingly, infectious material-induced expression of tumor necrosis factor-alpha, interleukin-1beta, or neutrophil chemoattractant KC genes in mouse macrophages, was significantly neutralized by monoclonal antibody against the lipopolysaccharide. In addition, we also detected a significant amount of tumor necrosis factor-alpha in the infectious material. These results suggest that P. endodontalis lipopolysaccharide plays an important role in the pathogenic mechanism of maxillofacial abscess formation via the expression of inflammatory cytokines.

  6. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans.

    PubMed

    Andachi, Yoshiki; Kohara, Yuji

    2016-07-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans Here, we show a novel WISH method for miRNA detection in C. elegans Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. © 2016 Andachi and Kohara; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. More emotional facial expressions during episodic than during semantic autobiographical retrieval.

    PubMed

    El Haj, Mohamad; Antoine, Pascal; Nandrino, Jean Louis

    2016-04-01

    There is a substantial body of research on the relationship between emotion and autobiographical memory. Using facial analysis software, our study addressed this relationship by investigating basic emotional facial expressions that may be detected during autobiographical recall. Participants were asked to retrieve 3 autobiographical memories, each of which was triggered by one of the following cue words: happy, sad, and city. The autobiographical recall was analyzed by a software for facial analysis that detects and classifies basic emotional expressions. Analyses showed that emotional cues triggered the corresponding basic facial expressions (i.e., happy facial expression for memories cued by happy). Furthermore, we dissociated episodic and semantic retrieval, observing more emotional facial expressions during episodic than during semantic retrieval, regardless of the emotional valence of cues. Our study provides insight into facial expressions that are associated with emotional autobiographical memory. It also highlights an ecological tool to reveal physiological changes that are associated with emotion and memory.

  8. Protein markers for identification of Yersinia pestis and their variation related to culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Engelmann, Heather E.; Victry, Kristin D.

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y.more » pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.« less

  9. Dysregulated Expression of MITF in Subsets of Hepatocellular Carcinoma and Cholangiocarcinoma.

    PubMed

    Nooron, Nattakarn; Ohba, Koji; Takeda, Kazuhisa; Shibahara, Shigeki; Chiabchalard, Anchalee

    2017-08-01

    Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.

  10. Detection of rearrangements and transcriptional up-regulation of ALK in FFPE lung cancer specimens using a novel, sensitive, quantitative reverse transcription polymerase chain reaction assay.

    PubMed

    Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia

    2014-03-01

    The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.

  11. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    PubMed

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  12. JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms

    PubMed Central

    Ma, Wanlong; Kantarjian, Hagop; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; O'Brien, Susan; Giles, Francis; Bruey, Jean Marie; Albitar, Maher

    2010-01-01

    Background The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Δexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. Methodology/Principal Findings We investigated the possibility that MPN patients may express the JAK2 Δexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR–based fluorescent fragment analysis method to quantify JAK2 Δexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Δexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean  = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression  = 5.41% [2.13%–26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression  = 3.88% [2.08%–12.22%]). Immunoprecipitation studies demonstrated that patients expressing Δexon14 mRNA expressed a corresponding truncated JAK2 protein. The Δexon14 variant was not detected in the 46 control subjects. Conclusions/Significance These data suggest that expression of the JAK2 Δexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for testing. PMID:20730051

  13. Expression of CB2 cannabinoid receptor in Pichia pastoris.

    PubMed

    Feng, Wenke; Cai, Jian; Pierce, William M; Song, Zhao-Hui

    2002-12-01

    To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.

  14. PhenomeExpress: a refined network analysis of expression datasets by inclusion of known disease phenotypes.

    PubMed

    Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc

    2015-01-29

    We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.

  15. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis.

    PubMed Central

    Sutinen, M.; Kainulainen, T.; Hurskainen, T.; Vesterlund, E.; Alexander, J. P.; Overall, C. M.; Sorsa, T.; Salo, T.

    1998-01-01

    Although matrix metalloproteinases (MMPs) are among the potential key mediators of cancer invasion, their involvement in premalignant lesions and conditions is not clarified. Therefore, we studied, using in situ hybridization, immunohistochemistry and zymography the expression and distribution of MMP-1 and -2, and their tissue inhibitors (TIMPs -1, -2 and -3) in oral squamous cell carcinomas (SCC) and lymph node metastases as well as in oral lichen planus, epithelial dysplasias and normal buccal mucosa. In oral SCC and lymph node metastasis, MMP-1 mRNA was detected in fibroblastic cells of tumoral stroma. In two out of ten carcinomas studied, the peripheral cells of neoplastic islands were also positive. MMP-2 mRNA expression was noted in fibroblasts surrounding the carcinoma cells, and no signal in carcinoma cells was detected. A clear TIMP-3 mRNA expression was seen in stromal cells surrounding the neoplastic islands in all SCCs and lymph node metastases studied. TIMP-1 mRNA was detected in some stromal cells surrounding the neoplastic islands, whereas the mRNA expression for TIMP-2 was negligible. On the other hand, expression of MMPs and TIMPs was consistently low in oral epithelial dysplasias, lichen planus and normal mucosa. In certain epithelial dysplasias and lichen planus, MMP-1 and -2 mRNA expressions were detected in few fibroblasts under the basement membrane zone, but normal mucosa was completely negative. In SCC and lymph node metastasis, a detectable immunostaining for MMP-1 in stromal cells and in some carcinoma cells was observed. MMP-2 immunoreactivity was detected in the peripheral cell layer in neoplastic islands and in some fibroblast-like cells of tumoral stroma. Immunostaining for TIMP-3 was detected in stromal cells surrounding the neoplastic islands. A weak positive staining for TIMP-1 was located in tumoral stroma, whereas the immunostaining for TIMP-2 was negative. Using zymography, elevated levels of MMP-2 and MMP-9 were observed in carcinoma samples in comparison with lichen planus or normal oral mucosa. Our results indicate that the studied MMPs and TIMPs are clearly up-regulated during invasion in oral SCC. However, there was also a clear, although weak, up-regulation of the expression of the MMPs but not TIMPs in some of the lichen planus and dysplastic lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9649139

  16. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer.

    PubMed

    Zhao, Zhihong; Wang, Ju; Wang, Shengfa; Chang, Hao; Zhang, Tiewa; Qu, Junfeng

    2017-03-01

    Non-small cell lung cancer (NSCLC) remains one of the most important death-related diseases, with poor effective diagnosis and less therapeutic biomarkers. LncRNA colon cancer-associated transcript 2 (CCAT2) was identified as an oncogenic lncRNA and over-expressed in many tumor cells. The aims of this study were to detect the correlation between CCAT2 and its regulatory genes and then explore the potential mechanism between them in NSCLC. In this study, qRT-PCR was used to detect CCAT2, Pokemon and p21 expression. Western-blot was used to detect protein levels of Pokemon and p21. CCK-8 assay and Transwell chambers were used to assess cell viability and invasion. CCAT2 and Pokemon were over-expressed in NSCLC tissue and cells. In NSCLC cells, CCAT2 knockdown significantly decreased cell viability and invasion as well as Pokemon expression, but increased the expression of p21; then CCAT2 overexpression revealed an opposite result. In addition, over-expressed Pokemon reversed the results that induced by si-CCAT2, while down-regulation of Pokemon significantly reversed the results that induced by CCAT2 overexpression. The results indicated that CCAT2 promotes tumorigenesis by over-expression of Pokemon, and the potential mechanism might relate to the Pokemon related gene p21. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    PubMed

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  18. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A dynamic appearance descriptor approach to facial actions temporal modeling.

    PubMed

    Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja

    2014-02-01

    Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analyzed by detecting the constituent temporal segments in Facial Action Coding System (FACS) Action Units (AUs)-onset, apex, and offset. In this paper, we present a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL database, the GEMEP-FERA dataset in database-dependent experiments, in cross-database experiments using the Cohn-Kanade, and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method outperforms the other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from dynamic appearance information.

  20. Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism.

    PubMed

    Didenko, Vladimir V; Ngo, Hop N; Minchew, Candace; Baskin, David S

    2002-03-01

    The goal of this study was to investigate whether apoptosis occurs in T lymphocytes that invade Fas ligand (FasL)-expressing glioblastomas multiforme (GBMs) and if its induction could be mediated by Fas. Apoptotic T lymphocytes were detected in GBMs by using detection of cell-type markers combined with active caspase-3 immunohistochemical analysis, a recently introduced apoptosis-specific in situ ligation assay, as well as by examining morphological criteria. Apoptotic T cells expressed Fas and were localized in the vicinity or in direct contact with FasL-expressing tumor cells. The T lymphocytes were undergoing apoptosis in spite of Bcl-2 expression. Expression of Bax was also detected in dying T cells, which can explain the absence of the protective effect of Bcl-2. because Bax inhibits Bcl-2 death-repressor activity. On the basis of the data presented in this paper, the authors suggest that GBM cells that express FasL can induce apoptosis in invading immune cells. This phenomenon may play an important role in these tumors' maintenance of immune privilege and evasion of immune attacks. Awareness of this phenomenon should be helpful for the development of novel strategies for treatment of malignant gliomas.

  1. Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization.

    PubMed

    Nomura, S; Ogami, K; Kawamura, K; Tsukamoto, I; Kudo, Y; Kanakura, Y; Kitamura, Y; Miyazaki, H; Kato, T

    1997-07-01

    The expression of thrombopoietin (TPO) mRNA is observed in several tissues, including liver, kidney, brain, skeletal muscle, intestine, spleen, and bone marrow. Among these organs, the highest expression of TPO mRNA is detected in the liver. We identified cells producing TPO by means of in situ hybridization of adult rat liver using digoxigenin-11-UTP-labeled cRNA probes. We found that the cells expressing TPO mRNA also expressed serum albumin mRNA. TPO mRNA was detected in parenchymal cells (hepatocytes) but not in non-parenchymal cells (including endothelial cells, epithelial cells, and so forth). To determine the location of TPO expression in embryogenesis, sections of fetal mice were further analyzed by in situ hybridization. TPO mRNA was detected only in hepatocytes of fetal liver, which was also the major site of hematopoiesis. The expression of TPO mRNA in fetal liver was observed from 12.5 days postcoitus. Northern blot analysis showed that mouse liver transcribed the same size of TPO mRNA in the fetus and in the adult. These results clearly demonstrate that hepatocytes are the primary site of TPO production in the liver from fetus to adult.

  2. Gene expression analysis in calcific tendinopathy of the rotator cuff.

    PubMed

    Oliva, F; Barisani, D; Grasso, A; Maffulli, N

    2011-06-20

    We evaluated the expression of several genes involved in tissue remodelling and bone development in patients with calcific tendinopathy of the rotator cuff. Biopsies from calcified and non-calcified areas were obtained from 10 patients (8 women and 2 men; average age: 55 years; range: 40-68) with calcific tendinopathy of the rotator cuff. To evaluate the expression of selected genes, RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (PCR) were performed. A significantly increased expression of tissue transglutaminase (tTG)2 and its substrate, osteopontin, was detected in the calcific areas compared to the levels observed in the normal tissue from the same subject with calcific tendinopathy, whereas a modest increase was observed for catepsin K. There was also a significant decrease in mRNA expression of Bone Morphogenetic Protein (BMP)4 and BMP6 in the calcific area. BMP-2, collagen V and vascular endothelial growth factor (VEGF) did not show significant differences. Collagen X and matrix metalloproteinase (MMP)-9 were not detectable. A variation in expression of these genes could be characteristic of this form tendinopathy, since an increased level of these genes has not been detected in other forms of tendon lesions.

  3. Detection of human T lymphotropic virus type-I bZIP factor and tax in the salivary glands of Sjögren's syndrome patients.

    PubMed

    Nakamura, Hideki; Hasegawa, Hiroo; Sasaki, Daisuke; Takatani, Ayuko; Shimizu, Toshimasa; Kurushima, Shota; Horai, Yoshiro; Nakashima, Yoshikazu; Nakamura, Tatsufumi; Fukuoka, Junya; Kawakami, Atsushi

    2018-03-20

    To detect HTLV-I bZIP factor (HBZ), tax and relevant molecules in labial salivary glands (LSGs) from patients with Sjögren's syndrome (SS). The expressions of HBZ and tax in T cell lines and LSGs were analysed by in situ hybridization (ISH) or real time PCR. The expressions of forkhead box P3 (Foxp3) and p65 in immunohistochemistry were quantified. After specificity of ISH probes was determined in 5 T cell lines, in LSGs from an adult T-cell leukemia (ATL) patient and 3 HTLV-I-associated myelopathy (HAM)-SS patients, both HBZ and tax signals were detected in infiltrating mononuclear cells (MNCs) and ducts, and HBZ and tax were dominantly expressed in MNCs of ATL and HAM-SS, respectively. HBZ was dominantly observed in LSGs from 8 HTLV-I asymptomatic carrier (AC)-SS patients; faint expression of HBZ was observed in LSGs from 5 HTLV-I-seronegative SS patients. No cell adhesion molecule 1(CADM1) expressed in LSGs from the ATL patient. Although Foxp3 expression was observed in LSG MNCs of all of the SS patients, the ATL patient's expression was significantly greater than that of the AC-SS (p<0.01) and HTLV-I-seronegative SS (p<0.01) patients. The Foxp3 expression was similar in ATL and HAMSS, but significantly higher in HAM-SS than AC-SS (p<0.05). p65 was expressed in LSG MNC nuclei from all SS patients and co-expressed with Foxp3. The expressions of Foxp3 in ducts differed according to HTLV-I infection. These results suggest that HBZ-mediated Foxp3 expression is partly associated with the pathogenesis of HTLV-I-seropositive SS.

  4. Globo H expression is associated with driver mutations and PD-L1 expressions in stage I non-small cell lung cancer.

    PubMed

    Yang, Ching-Yao; Lin, Mong-Wei; Chang, Yih-Leong; Wu, Chen-Tu

    2017-12-12

    Globo H is a tumor-associated carbohydrate antigen exclusively expressed in cancer cells rather than normal tissue. Globo H has been found on many cancers of epithelial origins, and become an attractive target for cancer vaccine. We aimed to study the expression of Globo H in non-small cell lung cancer (NSCLC) patients, and correlated its expression with common driver mutations, clinical outcomes, and status of immune checkpoint, programmed death-ligand 1 (PD-L1). The study enrolled 228 patients with surgically resected stage I NSCLC, including 139 patients with adenocarcinoma (ADC) and 89 patients with squamous cell carcinoma (SqCC). Using immunohistochemistry, tumors with moderate to strong membranous staining in ⩾ 1% tumor cells per section were scored as positive Globo H expression. Driver mutations including EGFR, KRAS, BRAF were detected by direct sequencing, while ALK, PI3KCA, FGFR1 and PD-L1 expression was detected by immunohistochemical (IHC) staining. Positive Globo H expression was detected in 88 of the 228 (38.6%) patients. These included 51 of 139 (36.7%) patients with ADC and 37 of 89 (41.6%) patients with SqCC. Positive Globo H expression was significantly associated with EGFR mutation and PD-L1 expression in the ADC group, and PI3KCA overexpression in the SqCC group. The survival analysis showed that Globo H expression was not an independent prognostic factor in stage I NSCLC. Globo H expression was correlated with specific driver mutations in ADC and SqCC NSCLC tumors, as well as PD-L1 status. Immunotherapy targeting Globo H may have potential application in lung cancer treatment.

  5. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    PubMed Central

    2012-01-01

    Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis. PMID:22943700

  6. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    PubMed Central

    2012-01-01

    Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally. Conclusion Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos. PMID:22726887

  7. Methods of detecting and controlling mucoid Pseudomonas biofilm production

    NASA Technical Reports Server (NTRS)

    Qiu, Dongru (Inventor); Yu, Hongwei D. (Inventor)

    2013-01-01

    Compositions and methods for detecting and controlling the conversion to mucoidy in Pseudomonas aeruginosa are disclosed. The present invention provides for detecting the switch from nonmucoid to mucoid state of P. aeruginosa by measuring mucE expression or MucE protein levels. The interaction between MucE and AlgW controls the switch to mucoidy in wild type P. aeruginosa. Also disclosed is an alginate biosynthesis heterologous expression system for use in screening candidate substances that inhibit conversion to mucoidy.

  8. Methods of detecting and controlling mucoid pseudomonas biofilm production

    NASA Technical Reports Server (NTRS)

    Qiu, Dongru (Inventor); Yu, Hongwei D. (Inventor)

    2010-01-01

    Compositions and methods for detecting and controlling the conversion to mucoidy in Pseudomonas aeruginosa are disclosed. The present invention provides for detecting the switch from nonmucoid to mucoid state of P. aeruginosa by measuring mucE expression or MucE protein levels. The interaction between MucE and AlgW controls the switch to mucoidy in wild type P. aeruginosa. Also disclosed is an alginate biosynthesis heterologous expression system for use in screening candidate substances that inhibit conversion to mucoidy.

  9. Expression of MUC4 mucin is observed mainly in the intestinal type of intraductal papillary mucinous neoplasm of the pancreas.

    PubMed

    Kitazono, Iwao; Higashi, Michiyo; Kitamoto, Sho; Yokoyama, Seiya; Horinouchi, Michiko; Osako, Masahiko; Shimizu, Takeshi; Tabata, Mineo; Batra, Surinder K; Goto, Masamichi; Yonezawa, Suguru

    2013-10-01

    This study aimed to examine expression profile of MUC4 in intraductal papillary mucinous neoplasm of the pancreas (IPMN). We performed immunohistochemistry (IHC) of MUC4 in 142 IPMNs, with evaluation of the specificity of 2 anti-MUC4 monoclonal antibodies, 8G7 and 1G8, in cancer cell lines. Monoclonal antibody 8G7 showed a clear immunoreactivity, whereas MAb 1G8 did not show any immunoreactivity, in the Western blotting and IHC for human pancreatic carcinoma cell lines expressing MUC4 messenger RNA. However, IHC signals detected by both monoclonal antibodies were observed in the tissue specimens. The expression rates of MUC4/8G7 detected by MAb 8G7 and MUC4/1G8 detected by MAb 1G8 in the intestinal-type IPMNs were significantly higher than those in the gastric-type IPMNs. In the intestinal-type IPMNs, MUC4/8G7 was expressed mainly in the cytoplasm of the neoplastic cells, whereas MUC4/1G8 was expressed mainly at the cell apexes. Even in the gastric-type IPMNs with rare MUC4 expression in the low-grade dysplasia, both MUC4 expression rates increased when dysplasia advanced. A significantly higher expression of MUC4 in intestinal-type IPMNs than in gastric-type IPMNs will be one of the biomarkers to discriminate between the intestinal-type IPMNs with high malignancy potential from gastric-type IPMNs with low malignancy potential.

  10. [Correlation of chromosome 1p and 19q status and expression of R132H mutant IDH1 protein in oligodendroglial tumors].

    PubMed

    Yao, Kun; Duan, Zejun; Hu, Zeliang; Bian, Yu; Qi, Xueling

    2014-10-01

    To correlate the presence of chromosome 1p/19q deletion with the expression of R132H mutant IDH1 status in oligodendroglial tumors, and to explore molecular markers for predicting chemosensitivity of oligodendroglial tumors. The study included 75 oligodendroglial tumors (38 oligodendrogliomas and 37 oligoastrocytomas). Immunohistochemistry was used to detect the expression of R132H mutant IDH1 protein, and fluorescence in situ hybridization (FISH) was employed to detect 1p/19q deletion. Deletion of chromosome 1p and/or 19q was detected in 37 cases (37/75, 49.3%), among which co-deletion of 1p and 19q was seen in 34 cases (closely correlated, P < 0.01). Oligodendrogliomas WHOIIhad a slightly higher deletion rate than oligodendrogliomas WHO III, although without statistical significance. Oligodendrogliomas WHO IIand WHO III had a significantly higher deletion rate of chromosome 1p/19q than oligoastrocytomas WHO II and WHO III (P < 0.05). While combined loss of 1p/19q was always detected in oligodendrogliomas when FISH was positive, isolated 1p or 19q deletion was only found in oligoastrocytomas. The expression of R132H mutant IDH1 was detected in 51 of 75 cases (68.0%), in which oligodendrogliomas had a higher positive rate than oligoastrocytomas. Statistical analysis demonstrated a significant correlation between the expression of R132H mutant IDH1 protein and the presence of combined 1p/19q deletion in oligodendrogliomas (P < 0.05). A significant correlation was observed between the expression of R132H mutant protein and 1p/19q LOH.Expression of 132H mutant IDH1 protein is the potential biomarker for predicating the presence of 1p/19q deletion in oligodendrogliomas.

  11. [Gene expression of H-FABP and FAS and its clinicopathological significance in breast infiltrating ductal carcinoma].

    PubMed

    Li, Hua; Lü, Qing; Xue, Hui; Dong, Li-hua; Yang, Hui-jun

    2008-07-01

    To detect the expression of Heart or Muscle Fatty acid binding protein (H-FABP) and fatty acid synthase (FAS) in human breast cancer cells. The expression levels of FAS and H-FABP in 81 ductal infiltrating carcinoma (DIC) were detected by RT-PCR, immunohistochemistry and Western blot analysis. The possible associations of the expression of the two proteins with major clinicopathological factors were analyzed. The expression of both H-FABP and FAS increased in DIC cells than in adjacent normal cells. But less H-FABP and FAS were found in grade III DIC than in grade I and grade II DIC (P < 0.05). There was a positive correlation between the expression of H-FABP and FAS. No correlations between the expressions of two genes with other clinicopathological factors were found. The higher expression of H-FABP in grade I and II DIC suggests an early increased response to the over-expression of FAS. The parallel increase of H-FABP and FAS expressions marks increased breast cancer risk.

  12. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord

    PubMed Central

    Barry, Devin M; Li, Hui; Liu, Xian-Yu; Shen, Kai-Feng; Liu, Xue-Ting; Wu, Zhen-Yu; Munanairi, Admire; Chen, Xiao-Jun; Yin, Jun; Sun, Yan-Gang; Li, Yun-Qing

    2016-01-01

    There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons. PMID:27068287

  13. Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles

    NASA Astrophysics Data System (ADS)

    Frigato, Elena; Vallone, Daniela; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2006-08-01

    Non-mammalian vertebrates have multiple extraocular photoreceptors, mainly localised in the pineal complex and the brain, to mediate irradiance detection. In this study, we report the full-length cDNA cloning of ruin lizard melanopsin and pinopsin. The high level of identity with opsins in both the transmembrane regions, where the chromophore binding site is located, and the intracellular loops, where the G-proteins interact, suggests that both melanopsin and pinopsin should be able to generate a stable photopigment, capable of triggering a transduction cascade mediated by G-proteins. Phylogenetic analysis showed that both opsins are located on the expected branches of the corresponding sequences of ortholog proteins. Subsequently, using RT-PCR and RPA analysis, we verified the expression of ruin lizard melanopsin and pinopsin in directly photosensitive organs, such as the lateral eye, brain, pineal gland and parietal eye. Melanopsin expression was detected in the lateral eye and all major regions of the brain. However, different from the situation in Xenopus and chicken, melanopsin is not expressed in the ruin lizard pineal. Pinopsin mRNA expression was only detected in the pineal complex. As a result of their phylogenetic position and ecology, reptiles provide the circadian field with some of the most interesting models for understanding the evolution of the vertebrate circadian timing system and its response to light. This characterization of melanopsin and pinopsin expression in the ruin lizard will be important for future studies aimed at understanding the molecular basis of circadian light detection in reptiles.

  14. Comparison of detection methods for cell surface globotriaosylceramide.

    PubMed

    Kim, Minji; Binnington, Beth; Sakac, Darinka; Fernandes, Kimberly R; Shi, Sheryl P; Lingwood, Clifford A; Branch, Donald R

    2011-08-31

    The cell surface-expressed glycosphingolipid (GSL), globotriaosylceramide (Gb(3)), is becoming increasingly important and is widely studied in the areas of verotoxin (VT)-mediated cytotoxicity, human immunodeficiency virus (HIV) infection, immunology and cancer. However, despite its diverse roles and implications, an optimized detection method for cell surface Gb(3) has not been determined. GSLs are differentially organized in the plasma membrane which can affect their availability for protein binding. To examine various detection methods for cell surface Gb(3), we compared four reagents for use in flow cytometry analysis. A natural ligand (VT1B) and three different monoclonal antibodies (mAbs) were optimized and tested on various human cell lines for Gb(3) detection. A differential detection pattern of cell surface Gb(3) expression, which was influenced by the choice of reagent, was observed. Two mAb were found to be suboptimal. However, two other methods were found to be useful as defined by their high percentage of positivity and mean fluorescence intensity (MFI) values. Rat IgM anti-Gb(3) mAb (clone 38-13) using phycoerythrin-conjugated secondary antibody was found to be the most specific detection method while the use of VT1B conjugated to Alexa488 fluorochrome was found to be the most sensitive; showing a rare crossreactivity only when Gb(4) expression was highly elevated. The findings of this study demonstrate the variability in detection of Gb(3) depending on the reagent and cell target used and emphasize the importance of selecting an optimal methodology in studies for the detection of cell surface expression of Gb(3). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins.

    PubMed

    Suomi, Tomi; Corthals, Garry L; Nevalainen, Olli S; Elo, Laura L

    2015-11-06

    The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.

  16. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  17. Simultaneous detection of changes in protein expression and oxidative modification as function of age and APOE genotype in human APOE-targeted replacement mice

    EPA Science Inventory

    Background The purpose of this study was to improve the current method for detecting differentially-oxidized (carbonyl-modified) proteins by 2D-DIGE, while at the same time determining changes in total protein expression. Protein oxidation is a widely accepted model of aging and...

  18. Detecting Emotional Expression in Face-to-Face and Online Breast Cancer Support Groups

    ERIC Educational Resources Information Center

    Liess, Anna; Simon, Wendy; Yutsis, Maya; Owen, Jason E.; Piemme, Karen Altree; Golant, Mitch; Giese-Davis, Janine

    2008-01-01

    Accurately detecting emotional expression in women with primary breast cancer participating in support groups may be important for therapists and researchers. In 2 small studies (N = 20 and N = 16), the authors examined whether video coding, human text coding, and automated text analysis provided consistent estimates of the level of emotional…

  19. [Regulating human interferon-gamma gene expression in marrow stromal cells in mice by Tet-off system].

    PubMed

    Qin, Xin-Tian; Lu, Yue; Tan, Yin-Duo; Chen, Xiao-Qin; Gen, Qi-Rong

    2008-01-01

    We have constructed plasmid "pTre-IFN-gamma" and proved that the Tet-off system could regulate the expression of human interferon-gamma (IFN-gamma) gene in murine marrow stromal cells in vitro. This study was to investigate the regulatory reversibility of Tet-off system and its effect on the expression of human IFN-gamma gene in murine marrow stromal cells in mice. Plasmids pTet-off and pTre-IFN-gamma were co-transfected into murine marrow stromal cells. The expression of IFN-gamma in marrow stromal cells was detected with ELISA. The marrow stromal cells were transfused into BABL/c naked mice after co-transfection. The expression of IFN-gamma mRNA in the spleen was detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). IFN-gamma protein was detected in the culture solution of marrow stromal cells after co-transfection. The secretion peak appeared within the first 72 h. The protein level of IFN-gamma was significantly lower in 300 ng/ml tetracycline hydrochloride-treated marrow stroma cells than in untreated cells [(67.11+/-22.14) pg/1 x 10(7) cells vs. (319.96+/-29.04) pg/1 x 10(7) cells, P<0.001]; its expression was increased when removed tetracycline hydrochloride (P=0.032). The expression of human IFN-gamma mRNA was detected in the spleen. The mRNA level of IFN-gamma was significantly higher in untreated group than in continuous tetracycline hydrochloride-treated group [(1.5+/-0.7)x10(5) copies . (100 mg)(-1) vs. (6.9+/-5.3)x10(2) copies . (100 mg)(-1), P<0.001]; its expression in the mice received tetracycline hydrochloride for one single time lay between the above two groups with significant difference. In mice, Tet-off system could rapidly, efficiently and reversibly regulate the expression of human IFN-gamma gene in marrow stromal cells in vitro and in vivo.

  20. [Role of C5b-9 expression in skeletal muscle blood vessels in necrotizing myopathy].

    PubMed

    Cong, Lu; Pu, Chuanqiang; Mao, Yanling; Liu, Jiexiao; Lu, Xianghui; Wang, Qian

    2012-05-01

    To investigate the expression of C5b-9 in the skeletal muscle blood vessels in patients with necrotizing myopathy and explore its role in the pathogenesis of this disease. The expression of C5b-9 and MHC-I in the skeletal muscular fibers and blood vessels in 4 patients with necrotizing myopathy was detected using enzymohistochemistry and immunohistochemistry. Focal or dispersive necrotic muscle fibers with obvious phagocytosis were observed in all the 4 patients. No inflammatory cell infiltration was found in the perimysium or perivascular regions. HE staining showed a decreased number of local small blood vessels, and the some small blood vessels showed thickened vascular walls. Immunohistochemistry detected prominent C5b-9 expression in the necrotic muscle fibers and the blood vessels, and diffuse strong C5b-9 expression was found in the vascular walls, vascular endothelial cells and the smooth muscle layer. No MHC-I deposition was detected in the muscular fibers and blood vessels. C5b-9 contributes to the pathogenesis of necrotizing myopathy mediated by pathologies in the blood vessels.

  1. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum.

    PubMed

    Kim, Julian O; Gazala, Sayf; Razzak, Rene; Guo, Linghong; Ghosh, Sunita; Roa, Wilson H; Bédard, Eric L R

    2015-04-01

    To assess if miRNA expression profiling of bronchoalveolar lavage (BAL) fluid and sputum could be used to detect early-stage non-small cell lung cancer (NSCLC). Hierarchical cluster analysis was performed on the expression levels of 5 miRNAs (miR-21, miR-143, miR-155, miR-210, and miR-372) which were quantified using RNA reverse transcription and quantitative real-time polymerase chain reaction in sputum and BAL samples from NSCLC cases and cancer-free controls. Cluster analysis of the miRNA expression levels in BAL samples from 21 NSCLC cases and sputum samples from 10 cancer-free controls yielded a diagnostic sensitivity of 85.7% and specificity of 100%. Cluster analysis of sputum samples from the same patients yielded a diagnostic sensitivity of 67.8% and specificity of 90%. miRNA expression profiling of sputum and BAL fluids represent a potential means to detect early-stage NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  3. [Activation of peripheral T lymphocytes in children with epilepsy and production of cytokines].

    PubMed

    Yang, Jie; Hu, Chongkang; Jiang, Xun

    2016-09-01

    Objective To study the state of peripheral T lymphocytes and cytokine levels in children with epilepsy. Methods Twenty children with epilepsy and 20 healthy age-matched children were recruited and their peripheral blood was collected. The activation of T lymphocytes was evaluated by detecting the expressions of CD25, CD69 and cytotoxic T lymphocyte-assicated antigen 4 (CTLA4). The function of T lymphocytes was evaluated by detecting the expressions of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), IL-17A and IL-6. The activation of regulatory T cells (Tregs) was evaluated by detecting the expression of IL-10. Results Children with epilepsy had higher expressions of CD25, CD69 and CTLA-4 in T lymphocytes than the controls did. The expressions of IFN-γ, TNF-α, IL-17A and IL-6 in T lymphocytes of children with epilepsy were higher than those of the controls. Frequency of Tregs producing IL-10 was higher in children with epilepsy as compared with the controls. Conclusion Peripheral T lymphocytes of children with epilepsy are activated and produce cytokines.

  4. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  5. The drug sensitivity and transmission dynamics of human malaria on Nias Island, North Sumatra, Indonesia.

    PubMed

    Fryauff, D J; Leksana, B; Masbar, S; Wiady, I; Sismadi, P; Susanti, A I; Nagesha, H S; Syafruddin; Atmosoedjono, S; Bangs, M J; Baird, J K

    2002-07-01

    Nias Island, off the north-western coast of Sumatra, Indonesia, was one of the first locations in which chloroquine-resistant Plasmodium vivax malaria was reported. This resistance is of particular concern because its ancient megalithic culture and the outstanding surfing conditions make the island a popular tourist destination. International travel to and from the island could rapidly spread chloroquine-resistant strains of P. vivax across the planet. The threat posed by such strains, locally and internationally, has led to the routine and periodic re-assessment of the efficacy of antimalarial drugs and transmission potential on the island. Active case detection identified malaria in 124 (17%) of 710 local residents whereas passive case detection, at the central health clinic, confirmed malaria in 77 (44%) of 173 cases of presumed 'clinical malaria'. Informed consenting volunteers who had malarial parasitaemias were treated, according to the Indonesian Ministry of Health's recommendations, with sulfadoxine-pyrimethamine (SP) on day 0 (for P. falciparum) or with chloroquine (CQ) on days 0, 1 and 2 (for P. vivax). Each volunteer was then monitored for clinical and parasite response until day 28. Recurrent parasitaemia by day 28 treatment was seen in 29 (83%) of the 35 P. falciparum cases given SP (14, 11 and four cases showing RI, RII and RIII resistance, respectively). Recurrent parasitaemia was also observed, between day 11 and day 21, in six (21%) of the 28 P. vivax cases given CQ. Although the results of quantitative analysis confirmed only low prevalences of CQ-resistant P. vivax malaria, the prevalence of SP resistance among the P. falciparum cases was among the highest seen in Indonesia. When the parasites present in the volunteers with P. falciparum infections were genotyped, mutations associated with pyrimethamine resistance were found at high frequency in the dhfr gene but there was no evidence of selection for sulfadoxine resistance in the dhps gene. Night-biting mosquitoes were surveyed by human landing collections and tested for sporozoite infection. Among the five species of human-biting anophelines collected, Anopheles sundaicus was dominant (68%) and the only species found to be infective--two (1.2%) of 167 females being found carrying P. vivax sporozoites. The risk of malarial infection for humans on Nias was considered high because of the abundance of asymptomatic carriers, the reduced effectiveness of the available antimalarial drugs, and the biting and infection 'rates' of the local An. sundaicus.

  6. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets.

    PubMed

    Husale, Sudhir; Persson, Henrik H J; Sahin, Ozgur

    2009-12-24

    Techniques to detect and quantify DNA and RNA molecules in biological samples have had a central role in genomics research. Over the past decade, several techniques have been developed to improve detection performance and reduce the cost of genetic analysis. In particular, significant advances in label-free methods have been reported. Yet detection of DNA molecules at concentrations below the femtomolar level requires amplified detection schemes. Here we report a unique nanomechanical response of hybridized DNA and RNA molecules that serves as an intrinsic molecular label. Nanomechanical measurements on a microarray surface have sufficient background signal rejection to allow direct detection and counting of hybridized molecules. The digital response of the sensor provides a large dynamic range that is critical for gene expression profiling. We have measured differential expressions of microRNAs in tumour samples; such measurements have been shown to help discriminate between the tissue origins of metastatic tumours. Two hundred picograms of total RNA is found to be sufficient for this analysis. In addition, the limit of detection in pure samples is found to be one attomolar. These results suggest that nanomechanical read-out of microarrays promises attomolar-level sensitivity and large dynamic range for the analysis of gene expression, while eliminating biochemical manipulations, amplification and labelling.

  7. Olfactory discrimination varies in mice with different levels of α7-nicotinic acetylcholine receptor expression.

    PubMed

    Hellier, Jennifer L; Arevalo, Nicole L; Blatner, Megan J; Dang, An K; Clevenger, Amy C; Adams, Catherine E; Restrepo, Diego

    2010-10-28

    Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expressions (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/-] and α7 homozygous knock-out mice [α7-/-]) significantly differ in odor discrimination and detection of chemically-related odorant pairs. Using [(125)I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically-related odorants sooner than α7+/- or α7-/- mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. [Expression of proBNP and NT-proBNP in Sudden Death of Coronary Heart Disease].

    PubMed

    Zeng, Q; Sun, R F; Li, Z; Zhai, L Q; Liu, M Z; Guo, X J; Gao, C R

    2017-10-01

    To study the expression change of pro-brain natriuretic peptide (proBNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in sudden death of coronary atherosclerotic heart disease, and to explore its application in forensic diagnosis. Myocardial and blood samples were collected from normal control group, sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group (20 cases in each group). The expression of proBNP in myocardial samples were detected by immunohistochemical staining and Western blotting, and that of BNP mRNA were detected by reverse transcription PCR (RT-PCR). The content of NT-proBNP in plasma were detected by ELISA. Immunohistochemical staining showed positive expression of proBNP in both sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group. There was no positive expression in normal control group. For sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group, the relative expression of proBNP protein and BNP mRNA in myocardial tissue and the NT-proBNP content in plasma were higher than that of normal control group ( P <0.05). The NT-proBNP content in plasma of sudden death of coronary atherosclerotic heart disease group was higher than that of single coronary stenosis group ( P <0.05). In myocardial ischemia condition, the higher expression of proBNP in cardiac muscle cell shows that the detection of NT-proBNP in plasma can be useful to differentially diagnose the degree of coronary atherosclerotic heart disease and determine whether the sudden death due to coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine

  9. PRDM1 expression via human parvovirus B19 infection plays a role in the pathogenesis of Hashimoto thyroiditis.

    PubMed

    Wang, Lu; Zhang, Wei-Ping; Yao, Li; Zhang, Wei; Zhu, Jin; Zhang, Wei-Chen; Zhang, Yue-Hua; Wang, Zhe; Yan, Qing-Guo; Guo, Ying; Fan, Lin-Ni; Liu, Yi-Xiong; Huang, Gao-Sheng

    2015-12-01

    Ectopic lymphoid follicle infiltration is a key event in Hashimoto thyroiditis (HT). Positive regulatory domain zinc finger protein 1 (PRDM1), which is induced by antigen stimulation, can regulate all lymphocyte lineages. Several groups independently demonstrated that human parvovirus B19 (PVB19) is closely associated with HT. Hence, we determined whether PRDM1 is expressed in HT thyroid tissue and whether there is any correlation between PRDM1 expression and PVB19 in the pathogenesis of HT. We detected PRDM1 expression in HT (n = 86), normal thyroid tissue (n = 30), and nontoxic nodular goiter (n = 20) samples using immunohistochemistry. We also detected PVB19 protein in HT samples in a double-blind manner and analyzed the correlation between the 2 proteins using immunofluorescence confocal detection and coimmunoprecipitation. Furthermore, we detected changes of the expression levels of PRDM1 and PVB19 in transfected primary thyroid follicular epithelial cells using real-time quantitative polymerase chain reaction. We found that PRDM1 protein is significantly highly expressed in the injured follicular epithelial cells in HT (83/86 cases) than in normal thyroid cells (0/30 cases) or in nontoxic nodular goiter cells (0/20 cases) (P < .001). In HT, the PRDM1 expression pattern was the same as that of PVB19, whereas PRDM1 and PVB19 were coexistent in the involved epithelial cells. Statistical analysis showed a significant correlation between PRDM1 and PVB19 (P < .001). In addition, primary thyroid epithelial cells also showed PRDM1 up-regulation after PVB19 NS1 transfection. Our findings suggest a previously unrecognized role of PRDM1 and PVB19 in the pathogenesis of HT. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla.

    PubMed

    Wei, Yangdou; Shih, Jenny; Li, Jieran; Goodwin, Paul H

    2002-07-01

    Two pectin lyase genes, designated pnl-1 and pnl-2, were cloned from Colletotrichum gloeosporioides f. sp. malvae, a pathogen of round-leaved mallow (Malva pusilla). pnl-1 was isolated using cDNA from infected plant material; pnl-2 was isolated using cDNA from 3-day-old mycelia grown in mallow-cell-wall extract (MCWE) broth. pnl-1 is the first pectinase gene described thus far to encode a cellulose-binding domain (CBD), which is common in cellulases and xylanases, whereas pnl-2 encodes a pectin lyase that lacks a CBD. In pure culture, pnl-1 expression could be detected when purified pectin or glucose was the sole carbon source, but not when MCWE was the sole carbon source. The lack of pnl-1 expression appeared to be due to gene repression by some unknown factor(s) in the cell-wall extract. In contrast, expression of pnl-2 was detected in cultures when MCWE, but not when purified pectin or glucose, was the sole carbon source. In infected tissue, detection of pnl-1 expression by Northern-blot hybridization and by RT-PCR began with the onset of the necrotrophic phase of infection. Expression ofpnl-2 was not detectable by Northern-blot hybridization, but was observed byRT-PCR in both the biotrophic and necrotrophic phases of infection. The differences between pnl-1 and pnl-2 (i.e. pnl-1 encoding a CBD and differences in the expression patterns of both genes) may be related to the requirements of C. gloeosporioides f. sp. malvae to be able to grow in host tissue under the different conditions present during the biotrophic and necrotrophic phases of infection.

  11. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    PubMed

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  12. Thermal background noise limitations

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1982-01-01

    Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.

  13. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  14. [Intergration and epression of porcine endogenous retrovinus in the immortal cell line of Banna Minipig Inberd Line-Mesenhymal Stem Cells].

    PubMed

    Yu, Ping; Liu, Jin; Zhang, Li; Li, Shrng-Fu; Bu, Hong; Li, You-Ping; Cheng, Jing-Qui; Lu, Yan-Rong; Long, Dan

    2005-11-01

    To detect the integration and expression of porcine endogenous retrovirus (PERV) in the immortal cell line of Banna Minipig Inbred Line-Mesenchymal Stem Cells (BMI-MSCs). DNA and total RNA of the immortal cell line of BMI-MSCs were extracted and PCR, RT-PCR were performed to detect PERV-gag, pol and env gene, and the type of PERV was also detected. PERV-gag, pol and env gene were all detected in the primary culture and immortal cell line (passage 150 and passage 180) of BMI-MSCs, and the type of PERV was PERV-A, B. Functional expression of PERV-gag and pol mRNA was also detected. In this laboratory, PERV was not lost during the proceeding of pig inbred and since has been in long-term culture of pig cells in vitro. PERV has integrated into the genome of its natural host, and virus mRNA can effectively express. So it is very essential to evaluate the possibility of xenozoonoses in pig-to-human xenotransplantation.

  15. Inhibition of calpain on oxygen glucose deprivation-induced RGC-5 necroptosis.

    PubMed

    Chen, Shuang; Yan, Jie; Deng, Hai-Xiao; Long, Ling-Ling; Hu, Yong-Jun; Wang, Mi; Shang, Lei; Chen, Dan; Huang, Ju-Fang; Xiong, Kun

    2016-10-01

    The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal (ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor (tAIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and tAIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule tAIF.

  16. Molecular characterization of babesiosis infected cattle: Improvement of diagnosis and profiling of the immune response genes expression

    USDA-ARS?s Scientific Manuscript database

    The main aim of this study was to improve the detection of Babesia (B.) spp. in naturally infected cattle in Egypt. In addition, we analyzed the pattern of expression of selected cytokine genes in response to infection of bovines with B. bovis and B. bigemina. Infections were detected using both, tr...

  17. Preclinical Evaluation of Serine/Threonine Kinase Inhibitors Against Prostate Cancer Metastases

    DTIC Science & Technology

    2007-11-01

    lung adenocarcinoma A549. The hepatocarcinoma HepG2 did not express detectable PMEPA1. When cells were treated with TGF-β for 24 hours, PMEPA1...The hepatocarcinoma HepG2 did not express detectable PMEPA1. When cells were treated with TGF-β for 24 hours, PMEPA1 mRNA was increased in most of

  18. EMMPRIN expression is involved in the development of interstitial fibrosis and tubular atrophy in human kidney allografts.

    PubMed

    Kemmner, Stephan; Schulte, Christian; von Weyhern, Claus Hann; Schmidt, Roland; Baumann, Marcus; Heemann, Uwe; Renders, Lutz; Schmaderer, Christoph

    2016-03-01

    Matrix metalloproteinases (MMP) are involved in the development of interstitial fibrosis and tubular atrophy (IF/TA) in renal disease. The synthesis of MMP is activated by the extracellular matrix metalloproteinases inducer protein (EMMPRIN). To analyze the role of EMMPRIN in IF/TA, we retrospectively detected EMMPRIN expression in specimens of human renal allografts with various levels of IF/TA. Immunohistochemistry was performed to detect EMMPRIN expression. In a retrospective analysis, a total cohort of 50 specimens were divided according to BANFF-classification into four subgroups (0-3): no, mild (≤ 25%), moderate (26-50%), or severe (>50%) IF/TA. Among other parameters, renal function was analyzed and compared to EMMPRIN expression. In 24 of 38 biopsies, we detected positive EMMPRIN staining. All nephrectomy (n = 12) samples were negative for EMMPRIN. Positive staining in the biopsy samples was detectable on the basolateral side of tubular epithelial cells. EMMPRIN staining was negatively correlated with IF/TA (p < 0.001). We found significant differences between the mean EMMPRIN expression in IF/TA groups 0 and 3 (p = 0.021) and groups 1 and 3 (p = 0.004). Furthermore, we found significant correlations between EMMPRIN staining and renal function. Our data suggest that EMMPRIN is involved in the pathophysiology of IF/TA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4].

    PubMed

    Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao

    2018-01-01

    Objective To observe the effect of microRNA-519d-3p (miR-519d-3p) on the proliferation of prostate cancer cells and explore the possible molecular mechanism. Methods The expression level of miR-519d-3p in PC-3, DU-145, 22RV1, PC-3M, LNCaP human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time quantitative PCR. miR-519d-3p mimics or negative control microRNAs (miR-NC) was transfected into the prostate cancer cells with the lowest level of miR-519d-3p expression. Transfection efficiency was examined. The effect of miR-519d-3p on the cell cycle of prostate cancer was detected by flow cytometry. MTT assay and plate clone formation assay were used to detect its effect on the proliferation of prostate cancer cells. Bioinformatics software was used to predict and dual luciferase reporter assay was used to validate the target gene of miR-519d-3p. Real-time quantitative PCR was used to detect the expression of miR-519d-3p target gene. Western blot analysis was used to detect the expression of target gene protein and downstream protein. Results The expression of miR-519d-3p in normal prostate epithelial cells was significantly higher than that in prostate cancer cells, and the lowest was found in DU-145 cells. After transfected with miR-519d-3p mimics, the expression level of miR-519d-3p in DU-145 cells increased significantly. Bioinformatics prediction and dual luciferase reporter gene confirmed that tumor necrosis factor receptor associated factor 4 (TRAF4) was the target gene of miR-519d-3p. Overexpression of miR-519d-3p significantly reduced the expression of TRAF4 gene and its downstream TGF-β signaling pathway proteins in the prostate cancer cells. Conclusion The expression of miR-519d-3p is down-regulated in prostate cancer cells. Overexpression of miR-519d-3p can inhibit the proliferation of prostate cancer cells. The possible mechanism is that miR-519d-3p inhibits the expression of TRAF4.

  20. Expression patterns of protein C inhibitor in mouse development.

    PubMed

    Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian

    2010-02-01

    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.

  1. [Knock-down of BCL11A expression in breast cancer cells promotes MDA-MB-231 cell apoptosis].

    PubMed

    Li, Hongli; Gui, Chen; Yan, Lijun

    2016-11-01

    Objective To detect the expression and pathological significance of B-cell CLL/lymphoma 11A (BCL11A) in breast cancer and investigate the effect of its silencing on the apoptosis of human MDA-MB-231 breast cancer cells. MethodsImmunohistochemistry was used to detect the expression of BCL11A in 62 cases of human breast cancer tissues and 8 cases of normal tissues. We synthesized siRNA targeting BCL11A, and then siRNA was transfected into MDA-MB-231 cells. Forty-eight hours later, the suppression effect of siRNA on BCL11A was determined by quantitative real-time PCR and Western blotting. The apoptosis of MDA-MB-231 cells was detected by flow cytometry. Results The BCL11A protein was mainly expressed in cytoplasm. The expression level of BCL11A in breast cancer tissues was higher than that in paracancerous tissues. The expression had correlations with tumor grade, tumor stage, while it had no correlations with the patients' age and tumor size. BCL11A-siRNA significantly suppressed the expression of BCL11A mRNA and protein as compared with the control group. MDA-MB-231 cells transfected with BCL11A-siRNA had higher apoptosis rate compared with the control group. Conclusion The BCL11A protein is highly expressed in breast cancer and knock-down of BCL11A promotes the apoptosis of MDA-MB-231 cells.

  2. [Abnormality of TOP2A expression and its gene copy number variations in neuroblastic tumors].

    PubMed

    Chen, J M; Zhou, C J; Ma, X L; Guan, D D; Yang, L Y; Yue, P; Gong, L P

    2016-11-08

    Objective: To detect TOP2A protein expression and gene copy number alterations, and to analyze related clinical and pathological implications in pediatric neuroblastic tumors (NT). Methods: Immunohistochemistry was used to detect TOP2A protein expression. Fluorescence in situ hybridization (FISH) was used to detect numerical aberrations of TOP2A. Results: TOP2A protein was expressed in 59.1%(52/88) of cases, which was associated with differentiation ( P =0.006), Ki-67 index ( P <0.01) and MKI ( P =0.001). Twenty-eight cases (35.0%, 28/88) showed TOP2A gene amplification, which was correlated with the age ( P <0.01), clinical stage ( P =0.028), high risk group ( P =0.001), Ki-67 index ( P =0.040) and differentiation ( P =0.014). Survival analysis showed that TOP2A expression was related to survival rate. Multivariate analyses showed that TOP2A expression was an independent predictor for poor prognosis ( P =0.010). Conclusions: More than half of the cases show TOP2A expression, which is more likely associated with NB, high Ki-67 index and high MKI. Cases with TOP2A expression have shorter survivals and poorer prognosis. TOP2A amplification is seen in 35% and likely occurs in patients older than 18 months and at advanced INSS stages (Ⅲ and Ⅳ). As a target of the anthracycline-based adjuvant drugs, TOP2A test can be used to select patient with NT for the therapy.

  3. Circular RNA profile in gliomas revealed by identification tool UROBORUS.

    PubMed

    Song, Xiaofeng; Zhang, Naibo; Han, Ping; Moon, Byoung-San; Lai, Rose K; Wang, Kai; Lu, Wange

    2016-05-19

    Recent evidence suggests that many endogenous circular RNAs (circRNAs) may play roles in biological processes. However, the expression patterns and functions of circRNAs in human diseases are not well understood. Computationally identifying circRNAs from total RNA-seq data is a primary step in studying their expression pattern and biological roles. In this work, we have developed a computational pipeline named UROBORUS to detect circRNAs in total RNA-seq data. By applying UROBORUS to RNA-seq data from 46 gliomas and normal brain samples, we detected thousands of circRNAs supported by at least two read counts, followed by successful experimental validation on 24 circRNAs from the randomly selected 27 circRNAs. UROBORUS is an efficient tool that can detect circRNAs with low expression levels in total RNA-seq without RNase R treatment. The circRNAs expression profiling revealed more than 476 circular RNAs differentially expressed in control brain tissues and gliomas. Together with parental gene expression, we found that circRNA and its parental gene have diversified expression patterns in gliomas and control brain tissues. This study establishes an efficient and sensitive approach for predicting circRNAs using total RNA-seq data. The UROBORUS pipeline can be accessed freely for non-commercial purposes at http://uroborus.openbioinformatics.org/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast Pichia pastoris.

    PubMed

    Kim, Tae-Kang; Zhang, Rundong; Feng, Wenke; Cai, Jian; Pierce, William; Song, Zhao-Hui

    2005-03-01

    For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.

  5. M-RNA Gene Expression of INF-Γ and IL-10 during Intestinal Phase of Trichinella spiralis after Myrrh and Albendazole Treatment.

    PubMed

    Bakir, Hanaa Y; Ah Attia, Rasha; Mahmoud, Abeer E; Ibraheim, Zedan

    2017-01-01

    The protective response developed against Trichinella spiralis infection provokes immune and inflammatory responses mediated by cytokines released from T helper cells. We aimed to evaluate the effect of albendazole or myrrh on the expression of IFN-γ and IL-10 in BALB/c mice infected with T. spiralis . This study was done at the Animal House of Faculty of Medicine, Assiut University (Assiut, Egypt) from April to December 2015. Mice were infected with 300 T. spiralis larvae and treated with albendazole (50 mg/kg per day) or myrrh (500 mg/kg per day) for 3 consecutive days post-infection (pi). The expression of INF-γ and IL-10 was detected in the intestinal tissue by reverse transcription (RT) PCR. The expression of IFN-γ in mice treated with albendazole and myrrh was detected on days 3 and 15 pi respectively. In the control group, it was found on days 5, 10, 15 and 20 pi with the highest expression on day 15 pi. The expression of IL-10 was detected on days 3, 20 pi in the albendazole and myrrh treated groups, respectively. In the control group, IL-10 expression appeared on days 5 and day 20 pi. The target of albendazole and myrrh on the profile of IFN-γ and IL-10 on these cytokines were encouraging to reinforce their therapeutic use against trichinellosis.

  6. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    PubMed

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  7. Regucalcin Expression in Bovine Tissues and Its Regulation by Sex Steroid Hormones in Accessory Sex Glands

    PubMed Central

    Starvaggi Cucuzza, Laura; Divari, Sara; Mulasso, Chiara; Biolatti, Bartolomeo; Cannizzo, Francesca T.

    2014-01-01

    Regucalcin (RGN) is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle. PMID:25415588

  8. Expression of MUC4 mucin is observed mainly in the intestinal-type of intraductal papillary mucinous neoplasm of the pancreas

    PubMed Central

    Kitazono, Iwao; Higashi, Michiyo; Kitamoto, Sho; Yokoyama, Seiya; Horinouchi, Michiko; Osako, Masahiko; Shimizu, Takeshi; Tabata, Mineo; Batra, Surinder K.; Goto, Masamichi; Yonezawa, Suguru

    2013-01-01

    Objectives This study aimed to examine expression profile of MUC4 in intraductal papillary mucinous neoplasm of the pancreas (IPMN). Methods We performed immonohistochemistry (IHC) of MUC4 in 142 IPMNs, with evaluation of the specificity of two anti-MUC4 monoclonal antibodies (MAbs), 8G7 and 1G8, in cancer cell lines. Results MAb 8G7 showed a clear immunoreactivity, whereas MAb 1G8 did not show any immunoreactivity, in the Western blotting and IHC for human pancreatic carcinoma cell lines expressing MUC4 mRNA. However, IHC signals detected by both MAbs were observed in the tissue specimens. The expression rates of MUC4/8G7 detected by MAb 8G7 and MUC4/1G8 detected by MAb 1G8 in the intestinal-type IPMNs were significantly higher than those in the gastric-type IPMNs. In the intestinal-type IPMNs, MUC4/8G7 was expressed mainly in the cytoplasm of the neoplastic cells, whereas MUC4/1G8 was expressed mainly at the cell apexes. Even in the gastric-type IPMNs with rare MUC4 expression in the low-grade dysplasia, both MUC4 expression rates increased when dysplasia advanced. Conclusions A significantly higher expression of MUC4 in intestinal-type IPMNs than in gastric-type IPMNs will be one of the biomarkers to discriminate between the intestinal-type IPMNs with high malignancy potential from gastric-type IPMNs with low malignancy potential. PMID:23921963

  9. Young Children Detect and Avoid Logically Inconsistent Sources: The Importance of Communicative Context and Executive Function

    PubMed Central

    Doebel, Sabine; Rowell, Shaina F.; Koenig, Melissa A.

    2016-01-01

    The reported research tested the hypothesis that young children detect logical inconsistency in communicative contexts that support the evaluation of speakers’ epistemic reliability. In two experiments (N = 194), 3- to 5-year-olds were presented with two speakers who expressed logically consistent or inconsistent claims. Three-year-olds failed to detect inconsistencies (Experiment 1), 4-year-olds detected inconsistencies when expressed by human speakers but not when read from books, and 5-year-olds detected inconsistencies in both contexts (Experiment 2). In both experiments, children demonstrated skepticism toward testimony from previously inconsistent sources. Executive function and working memory each predicted inconsistency detection. These findings indicate logical inconsistency understanding emerges in early childhood, is supported by social and domain general cognitive skills, and plays a role in adaptive learning from testimony. PMID:27317511

  10. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  11. A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma.

    PubMed

    Zhao, W; Sun, C; Cui, Z

    2017-06-01

    Acting as a proto-oncogene, long noncoding RNAs (lncRNAs) urothelial carcinoembryonic antigen 1 (UCA1) plays a key role in the occurrence and development of several human tumors. However, the expression and biological functions of UCA1 in glioma are less known. This study discussed the expression of UCA1 in glioma and its effect on the proliferation and cell cycle of glioma cells. LncRNA UCA1 expressions in 64 glioma samples (Grade I-II in 22 cases and Grade III-IV in 42 cases, according to WHO criteria) and 10 normal brain samples were detected using real-time fluorescence quantitative PCR. On this basis, the correlations of UCA1 to clinicopathological characteristics and prognosis of glioma were assessed. Then, using qPCR, the lncRNA UCA1 expressions in glioma cell lines and astrocytes were detected. UCA1-overexpressing glioma cell lines U87 and U251 were further detected after siRNA transfection of these two cell lines, and the impact on cell proliferation and cell cycle was assessed with CCK-8 (cell counting kit-8) assay and flow cytometry method (FCM), respectively. The expression of cyclin D1, a cell cycle-related protein, was detected using Western Blot. LncRNA UCA1 expression in the glioma samples was obviously higher as compared with the normal brain samples (P < 0.001), and the expression was correlated significantly with grading of the tumors (P < 0.05). However, lncRNA UCA1 expression was not correlated with age, gender, tumor size and KPS score (P > 0.05). After interference of UCA1 expression by siRNA transfection, the proliferation of both U251 and SHG-44 cells was inhibited (P < 0.05), with more cells arrested in G0/G1 (P < 0.05). Moreover, cyclin D1 expression was also downregulated considerably. LncRNA UCA1 can promote the proliferation and cell cycle progression of glioma cells by upregulating cyclin D1 transcription. So UCA1 may serve as an independent prognostic indicator and a novel therapeutic target for glioma.

  12. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    PubMed

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  13. ALK Expression Is a Novel Marker for the WNT-activated Type of Pediatric Medulloblastoma and an Indicator of Good Prognosis for Patients.

    PubMed

    Łastowska, Maria; Trubicka, Joanna; Niemira, Magdalena; Paczkowska-Abdulsalam, Magdalena; Karkucińska-Więckowska, Agnieszka; Kaleta, Magdalena; Drogosiewicz, Monika; Tarasińska, Magdalena; Perek-Polnik, Marta; Krętowski, Adam; Dembowska-Bagińska, Bożenna; Grajkowska, Wiesława; Pronicki, Maciej; Matyja, Ewa

    2017-06-01

    ALK gene rearrangements were identified in a variety of cancers, including neuroblastoma, where the presence of ALK expression is associated with adverse prognosis. ALK mutations have recently been found in the pediatric brain tumor medulloblastoma, and microarray data indicate that ALK is highly expressed in a subset of these tumors. Therefore, we investigated whether ALK expression correlates with transcriptional profiles and clinical features of medulloblastoma. Tumors from 116 medulloblastoma patients were studied at diagnosis for the detection of ALK expression at the RNA level by an application of NanoString technology and at the protein level by immunohistochemistry using antibody ALK clone D5F3. The results indicate that ALK expression, at both the RNA and the protein levels, is strongly associated with the WNT-activated type of tumors and therefore may serve as a useful marker for the detection of this type of medulloblastoma. Importantly, ALK protein expression alone is also an indicator of good prognosis for medulloblastoma patients.

  14. Ventana immunohistochemistry ALK (D5F3) detection of ALK expression in pleural effusion samples of lung adenocarcinoma.

    PubMed

    Wang, Zheng; Wu, Xiaonan; Shi, Yuankai; Han, Xiaohong; Cheng, Gang; Cui, Di; Li, Lin; Zhang, Yuhui; Mu, Xinlin; Zhang, Li; Yang, Li; Di, Jing; Yu, Qi; Liu, Dongge

    2015-08-01

    To evaluate the Ventana IHC ALK (D5F3) assay for detecting anaplastic lymphoma kinase (ALK) protein expression in pleural effusion samples. Historical, selected (wild-type EGFR, K-RAS) pleural effusion cytologic blocks of lung adenocarcinoma samples (Study 1) and unselected lung adenocarcinoma pleural effusion cytologic blocks (Study 2) were tested by Ventana IHC ALK (D5F3) assay. Quantitative real-time-PCR was used to verify immunohistochemistry results. A total of 17 out of 100 (Study 1) and ten out of 104 (Study 2) pleural effusion samples were ALK expression positive by the Ventana IHC ALK (D5F3) assay. The ALK fusion results with immunohistochemistry and quantitative real-time-PCR had a concordance rate of 87.5% (κ = 0.886; p < 0.001). The Ventana IHC ALK (D5F3) assay is a reliable tool for detecting ALK protein expression in pleural effusion samples.

  15. Expression of Foxp3, CD25 and IL-2 in the B16F10 cancer cell line and melanoma is correlated with tumor growth in mice

    PubMed Central

    MIRANDA-HERNÁNDEZ, D.F.; FRANCO-MOLINA, M.A.; MENDOZA-GAMBOA, E.; ZAPATA-BENAVIDES, P.; SIERRA-RIVERA, C.A.; CORONADO-CERDA, E.E.; ROSAS-TARACO, A.G.; TAMÉZ-GUERRA, R.S.; RODRÍGUEZ-PADILLA, C.

    2013-01-01

    The forkhead box P3 (Foxp3) transcription factor is one of the most studied markers used to identify CD4+CD25+ regulatory T cells (Tregs), and has been identified as a key regulator in the development and function of Tregs. Foxp3 expression has been reported in a variety of solid human tumors, including melanoma. The aims of the present study were to analyze Foxp3 expression in B16F10 melanoma cells in vitro, to determine whether this expression was affected during tumor growth in a murine melanoma model and to correlate Foxp3 expression with CD25 expression, interleukin (IL)-2 production and tumor weight. Foxp3 expression was analyzed with quantitative (q)PCR, flow cytometry and confocal microscopy. CD25 expression was analyzed by flow cytometry, and cytokine production was measured by ELISA [IL-2, interferon (IFN)-γ, transforming growth factor (TGF)-β and IL-10] and flow cytometry (IL-2, IFN-γ, IL-4 and IL-5). Foxp3 and CD25 expression was detected in the B16F10 cells in culture and in the intratumoral B16F10 cells. An increase in Foxp3 and CD25 expression was observed in a time-dependent manner during tumor growth at 7, 14 and 21 days. The production of the IL-2, IL-10, IFN-γ and TGF-β cytokines was observed in the B16F10 cells and also detected in the tumoral microenvironment during tumor growth (7, 14 and 21 days). An increase in IL-2 and IL-10 production was observed, whereas IFN-γ production decreased in a time-dependent manner. The production of tumor necrosis factor (TNF)-α was not observed in culture, but was detected during tumor growth, whereas the production of IL-4 and IL-5 was not detected. These data showed a positive correlation between the expression of Foxp3, CD25 and IL-2 and tumor weight in murine melanoma. From these data, it may be suggested that Foxp3 participates in melanoma growth, the modulation of the IL-2, IFN-γ and TNF-α cytokines and CD25 expression, and that it also plays a possible role in immunosuppression. PMID:24179494

  16. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection. PMID:23506210

  17. Desmocollin 2 is a new immunohistochemical marker indicative of squamous differentiation in urothelial carcinoma.

    PubMed

    Hayashi, Tetsutaro; Sentani, Kazuhiro; Oue, Naohide; Anami, Katsuhiro; Sakamoto, Naoya; Ohara, Shinya; Teishima, Jun; Noguchi, Tsuyoshi; Nakayama, Hirofumi; Taniyama, Kiyomi; Matsubara, Akio; Yasui, Wataru

    2011-10-01

    Urothelial carcinoma (UC) with squamous differentiation tends to present at higher stages than pure UC. To distinguish UC with squamous differentiation from pure UC, a sensitive and specific marker is needed. Desmocollin 2 (DSC2) is a protein localized in desmosomal junctions of stratified epithelium, but little is known about its biological significance in bladder cancer. We examined the utility of DSC2 as a diagnostic marker. We analysed the immunohistochemical characteristics of DSC2, and studied the relationship of DSC2 expression with the expression of the known markers uroplakin III (UPIII), cytokeratin (CK)7, CK20, epidermal growth factor receptor (EGFR), and p53. DSC2 staining was detected in 24 of 25 (96%) cases of UC with squamous differentiation, but in none of 85 (0%) cases of pure UC. DSC2 staining was detected only in areas of squamous differentiation. DSC2 expression was mutually exclusive of UPIII expression, and was correlated with EGFR expression. Furthermore, DSC2 expression was correlated with higher stage (P = 0.0314) and poor prognosis (P = 0.0477). DSC2 staining offers high sensitivity (96%) and high specificity (100%) for the detection of squamous differentiation in UC. DSC2 is a useful immunohistochemical marker for separation of UC with squamous differentiation from pure UC. 2011 Blackwell Publishing Limited.

  18. Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis

    PubMed Central

    Tsukifuji, R; Tagawa, K; Hatamochi, A; Shinkai, H

    1999-01-01

    Matrix metalloproteinase (MMP) plays an important role in extracellular matrix degradation associated with cancer invasion. An expression of MMP-1 (interstitial collagenase), MMP-2 (72-kDa type IV collagenase) and MMP-3 (stromelysin-1) was investigated in squamous cell carcinoma (SCC) and its precancerous condition, actinic keratosis (AK), using in situ hybridization techniques. MMP-1 mRNA was detected in tumour cells and/or in stromal cells in all cases of SCC, four of six AKs adjacent to SCC and four of 16 AKs. MMP-2 and MMP-3 mRNAs were detected in SCC but not in AK. The expression of MMP-3 correlated to that of MMP-1 (P = 0.03) localized at the tumour mass and stroma of the invasive area, while MMP-2 mRNA was detected widely throughout the stroma independent of MMP-1 expression. Our results indicated that the expression of MMP-1, -2 and -3 showed different localization patterns, suggesting a unique role of each MMP in tumour progression. Moreover, MMP-1 expression could be an early event in the development of SCC, and AK demonstrating MMP-1 mRNA, might be in a more advanced dysplastic state, progressing to SCC. © 1999 Cancer Research Campaign PMID:10362121

  19. [Role of CRISPR/Cas systems in drugresistance and virulence and the effect of IS600 on the expression of cse2 in Shigella].

    PubMed

    Hong, Lijuan; Zhang, Bing; Duan, Guangcai; Liang, Wenjuan; Wang, Yingfang; Chen, Shuaiyin; Yang, Haiyan; Xi, Yuanlin

    2016-12-04

    To analyze the relationship between CRISPR/Cas system and drug-resistance, virulence. To investigate the effect of IS600 on the expression of CRISPR associated gene cse2 in Shigella. CRISPR loci, CRISPR associated gene cse2, drug-resistant genes and virulent genes were detected by PCR in 33 Shigella strains; Trypan Blue counting test was used to detect bacterial virulence; Real-time PCR was used to detect relative mRNA expression of cse2; susceptibilities of Shigella strains were tested by agar diffusion method. Furthermore, we analyzed the relationship between CRISPR loci and drug-resistant genes, virulent genes. The effect of the IS600 on the expression of CRISPR associated gene cse2 was investigated. The mortality of Hela cells infected by Shigella with CRISPR1 loci was significantly lower (P<0.05) than those infected by Shigella without CRISPR1. The mRNA expression level of cse2 in group with IS600 was significantly (P<0.05) lower than that in group without IS600. CRISPR loci were widely present in Shigella. Shigella without CRISPR1 has a higher pathogenicity. Due to the insertion of IS600, the mRNA expression level of cse2 was decreased in Shigella.

  20. Predicting Outcome and Therapy Response in mCRC Patients Using an Indirect Method for CTCs Detection by a Multigene Expression Panel: A Multicentric Prospective Validation Study

    PubMed Central

    Vidal Insua, Yolanda; De La Cámara, Juan; Brozos Vázquez, Elena; Fernández, Ana; Vázquez Rivera, Francisca; Villanueva Silva, Mª José; Barbazán, Jorge; Muinelo-Romay, Laura; Candamio Folgar, Sonia; Abalo, Alicia; López-López, Rafael; Abal, Miguel; Alonso-Alconada, Lorena

    2017-01-01

    Colorectal cancer (CRC) is one of the major causes of cancer-related deaths. Early detection of tumor relapse is crucial for determining the most appropriate therapeutic management. In clinical practice, computed tomography (CT) is routinely used, but small tumor changes are difficult to visualize, and reliable blood-based prognostic and monitoring biomarkers are urgently needed. The aim of this study was to prospectively validate a gene expression panel (composed of GAPDH, VIL1, CLU, TIMP1, TLN1, LOXL3 and ZEB2) for detecting circulating tumor cells (CTCs) as prognostic and predictive tool in blood samples from 94 metastatic CRC (mCRC) patients. Patients with higher gene panel expression before treatment had a reduced progression-free survival (PFS) and overall-survival (OS) rates compared with patients with low expression (p = 0.003 and p ≤ 0.001, respectively). Patients with increased expression of CTCs markers during treatment presented PFS and OS times of 8.95 and 11.74 months, respectively, compared with 14.41 and 24.7 for patients presenting decreased expression (PFS; p = 0.020; OS; p ≤ 0.001). Patients classified as non-responders by CTCs with treatment, but classified as responders by CT scan, showed significantly shorter survival times (PFS: 8.53 vs. 11.70; OS: 10.37 vs. 24.13; months). In conclusion, our CTCs detection panel demonstrated efficacy for early treatment response assessment in mCRC patients, and with increased reliability compared to CT scan. PMID:28608814

  1. Early diagnostic role of PSA combined miR-155 detection in prostate cancer.

    PubMed

    Guo, T; Wang, X-X; Fu, H; Tang, Y-C; Meng, B-Q; Chen, C-H

    2018-03-01

    As a kind of malignant tumor in the male genitourinary system, prostate cancer exhibits significantly increased occurrence. Prostate-specific antigen (PSA) expression can be seen in the prostate cancer, prostatitis, and other diseases, therefore, lack of diagnostic specificity. The miR-155 expression is abnormally increased in the tumors. Therefore, this study aims to explore the clinical significance of PSA combined miR-155 detection in the early diagnosis of prostate cancer. A total of 86 patients diagnosed with prostate cancer were enrolled in this study. PSA and miR-155 gene expression in tumor tissue were detected by using Real-time PCR. The serum levels of PSA were measured by using enzyme-linked immunosorbent assay (ELISA). The correlation of PSA and miR-155 expression with age, body mass index (BMI), tumor volume, tumor-node-metastasis (TNM) stage, lymph node metastasis (LNM), and other clinicopathological features were analyzed, respectively. Serum PSA expression and PSA gene in tumor tissue were significantly higher compared to that in adjacent tissues (p<0.05). PSA gene and protein increased significantly with the clinical stage of TNM and decreased following the increase of grade (p<0.05). The miR-155 level was significantly elevated in the tumor tissue compared with para-carcinoma tissue (p<0.05). PSA and miR-155 expressions were positively correlated with TNM stage, tumor volume, and LNM, and negatively correlated with grade (p<0.05). PSA and miR-155 were closely related to the clinicopathological features of prostate cancer. Combined detection is helpful for the early diagnosis of prostate cancer.

  2. Effects of polymorphisms in endothelial nitric oxide synthase and folate metabolizing genes on the concentration of serum nitrate, folate, and plasma total homocysteine after folic acid supplementation: a double-blind crossover study.

    PubMed

    Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2015-02-01

    A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes.

    PubMed

    Lucock, Mark; Yates, Zoë; Martin, Charlotte; Choi, Jeong-Hwa; Boyd, Lyndell; Tang, Sa; Naumovski, Nenad; Furst, John; Roach, Paul; Jablonski, Nina; Chaplin, George; Veysey, Martin

    2014-01-01

    Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008(wk7)), TaqI (P = 0.0014(wk7)) and EcoRV (P = 0.0030(wk6)) variant occurrence between post-conceptional weeks 6-8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025(wk6)), and to a lesser extent C1420T-SHMT (P = 0.0249(wk6)), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient-gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively). Findings identify environmental and nutritional agents that may interact to modify gene-phenotype relationships across the lifecycle, offering new insight into human ecology. This includes factors related to both disease aetiology and the evolution of skin pigmentation.

  4. Fecal Carriage of Carbapenemase-Producing Enterobacteriaceae: a Hidden Reservoir in Hospitalized and Nonhospitalized Patients

    PubMed Central

    Gijón, Desirèe; Curiao, Tânia; Baquero, Fernando; Coque, Teresa M.

    2012-01-01

    Fecal carriage of carbapenemase-producing Enterobacteriaceae (CPE) has not been extensively investigated, except in the cases of selected patients at risk, mostly during outbreaks. A total of 1,100 fecal samples randomly collected in our institution in two different periods in 2006 (n = 600) and 2009–2010 (n = 500) from hospitalized (26.8%) and nonhospitalized (73.2%) patients were screened for CPE. The first period coincided with an outbreak of VIM-1-producing Enterobacteriaceae, and the second one coincided with the emergence of KPC enzymes in our hospital. Diluted samples in saline were cultured in Luria-Bertani broth with 1 μg/ml imipenem and subcultured in MacConkey agar plates with 4 μg/ml ceftazidime. Growing colonies were screened for CPE (modified Hodge test and EDTA and boronic acid synergy tests). Carbapenemase genes, plasmids in which they are located, and clonal relatedness were determined. Individuals who exhibited fecal carriage of CPE (11/1,043, 1.1%; 95% confidence interval [CI], 0.53 to 1.88) included 8 hospitalized (carriage rate, 2.9%; 95% CI, 1.24 to 5.55) and 3 nonhospitalized patients (carriage rate, 0.4%; 95% CI, 0.08 to 1.14), the latter being identified in 2009. Eighty-two percent of colonized patients were not infected with CPE. Isolates harboring blaVIM-1 with or without blaSHV-12 were identified as Klebsiella pneumoniae (n = 8; ST39, ST688, ST253, and ST163), Enterobacter cloacae (n = 3; two pulsed-field gel electrophoresis [PFGE] types), Escherichia coli (n = 2; ST155 and ST2441), and Citrobacter freundii (n = 1). Some of these lineages had previously been detected in our institution. The blaVIM-1 gene was a member of the class 1 integrons In110 (blaVIM-1-aacA4-aadA1) and In113 (blaVIM-1-aacA4-dhfrII) located on plasmids IncN (n = 11; 30 to 50 kb) and IncHI2 (n = 3; 300 kb), respectively. Dissemination of blaVIM-1 class-1 integrons within highly transferable plasmids in a polyclonal population has potentially contributed to the maintenance and spread of CPE. PMID:22403422

  5. Analysis of NUAK1 and NUAK2 expression during early chick development reveals specific patterns in the developing head.

    PubMed

    Bekri, Abdelhamid; Billaud, Marc; Thélu, Jacques

    2014-01-01

    Several human diseases are associated with the NUAK1 and NUAK2 genes. These genes encode kinases, members of the AMPK-related kinases (ARK) gene family. Both NUAK1 and NUAK2 are known targets of the serine threonine kinase LKB1, a tumor suppressor involved in regulating cell polarity. While much is known about their functions in disease, their expression pattern in normal development has not been extensively studied. Here, we present the expression patterns for NUAK1 and NUAK2 in the chick during early-stage embryogenesis, until day 3 (Hamburger and Hamilton stage HH20). Several embryonic structures, in particular the nascent head, showed distinct expression levels. NUAK1 expression was first detected at stage HH6 in the rostral neural folds. It was then expressed (HH7-11) throughout the encephalalon, predominantly in the telencephalon and mesencephalon. NUAK1 expression was also detected in the splanchnic endoderm area at HH8-10, and in the vitellin vein derived from this area, but not in the heart. NUAK2 expression was first detected at stage HH6 in the neural folds. It was then found throughout the encephalon at stage HH20. Particular attention was paid in this study to the dorsal ectoderm at stages HH7 and HH8, where a local deficit or accumulation of NUAK2 mRNA were found to correlate with the direction of curvature of the neural plate. This is the first description of NUAK1 and NUAK2 expression patterns in the chick during early development; it reveals non-identical expression profiles for both genes in neural development.

  6. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion.

    PubMed

    Laudien, Martin; Dressel, Stefanie; Harder, Jürgen; Gläser, Regine

    2011-03-01

    The intact nasal barrier is a prerequisite for a functioning defense of the upper airway system, in particular the permanent threat by inhaled potentially harmful microorganisms. Antimicrobial peptides (AMP) play an important role in maintaining barrier function. There is few data about AMP in respect of nasal mucosa. This study is addressed to gain further insight into the differential AMP expression and secretion pattern according to defined anatomical regions of the vestibulum nasi and turbinates. ELISA was applied to quantify concentrations of AMP RNase-7, psoriasin, hBD-2, hBD-3 and LL-37 in nasal secretions of 20 healthy volunteers. Immunohistochemistry was used to detect the local cellular sources of AMP in the vestibulum nasi (squamous epithelium) and compared to the mucosa of the turbinates (pseudostratified epithelium) in 10 healthy volunteers. Expression of RNase 7 and psoriasin was detected in all nasal secretion specimens, whereas LL-37 was detected in 16, hBD-2 in 5 and hBD-3 in 6 specimens. In the vestibulum nasi, luminal cell layers were demonstrated as local cellular sources for hBD-3 and RNase 7, whereas psoriasin was found in all layers of the stratified squamous epithelium. LL-37 was detected in 1 stroma cells sample, whereas hBD-2 was not detected at all. In turbinate biopsie,s hBD-3 and LL-37 were detectable in the epithelium, stroma cells and submucosal glands. RNase 7 was only present in submucosal glands. HBD-2 and psoriasin were not detected. These data demonstrate that the nasal epithelium contains a chemical defense shield through the expression and secretion of various AMP.

  7. Trophinin expression in the mouse uterus coincides with implantation and is hormonally regulated but not induced by implanting blastocysts.

    PubMed

    Suzuki, N; Nadano, D; Paria, B C; Kupriyanov, S; Sugihara, K; Fukuda, M N

    2000-11-01

    Trophinin mediates apical cell adhesion between two human cell lines, trophoblastic teratocarcinoma and endometrial adenocarcinoma. In humans, trophinin is specifically expressed in cells involved in implantation and early placentation. The present study was undertaken to establish trophinin expression by the mouse uterus. In the pregnant mouse uterus, trophinin transcripts are expressed during the time which coincides with the timing of blastocyst implantation. Trophinin is also expressed in the nonpregnant mouse uterus at estrus stage. Uteri from ovariectomized mice did not express trophinin, whereas strong expression was induced by estrogen but not by progesterone. Trophinin transcripts and protein were found in the pseudopregnant mouse uterus. No differences were detected in trophinin expression by the uteri in the pregnant, pseudopregnant, and pseudopregnant received blastocysts. In delayed implantation model, trophinin proteins were found in both luminal and glandular epithelium, whereas dormant blastocysts were negative for trophinin. Upon activation with estrogen, however, no significant changes were detected either in the blastocyst or in the uterus. These results indicate that ovarian hormones regulate trophinin expression by the mouse uterus, and that an implanting blastocyst has no effect on trophinin expression in the surrounding endometrial luminal epithelial cells.

  8. Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus

    PubMed Central

    Cao, Zhi; Zheng, Minping; Lv, Huifang; Guo, Kangkang; Zhang, Yanming

    2018-01-01

    The Toll-like receptors (TLRs) of the innate immune system provide the host with the ability to detect and respond to viral infections. The present study aimed to investigate the mRNA and protein expression levels of TLR2, 3, 4 and 7 in porcine tissues upon infection with the highly virulent Shimen strain of classical swine fever virus (CSFV). Reverse transcription-quantitative polymerase chain reaction was used to detect the mRNA expression levels of CSFV and TLR, whereas western blotting was used to detect the expression levels of TLR proteins. In addition, tissues underwent histological examination and immunohistochemistry to reveal the histopathological alterations associated with highly virulent CSFV infection and to detect TLR antigens. Furthermore, porcine monocyte-derived macrophages (pMDMs) were prestimulated with peptidoglycan from Staphylococcus aureus (PGN-SA), polyinosinic-polycytidylic acid [poly (I:C)], lipopolysaccharide from Escherichia coli 055:B5 (LPS-B5) or imiquimod (R837) in order to analyze the association between TLR expression and CSFV replication. Following stimulation for 12 h (with TLR-specific ligands), cells were infected with CSFV Shimen strain. The results revealed that the expression levels of TLR2 and TLR4 were increased in the lung and kidney, but were decreased in the spleen and lymph nodes in response to CSFV. TLR3 was strongly expressed in the heart and slightly upregulated in the spleen in response to CSFV Shimen strain infection, and TLR7 was increased in all examined tissues in the presence of CSFV. Furthermore, R837 and LPS-B5 exerted inhibitory effects on CSFV replication in pMDMs, whereas PGN-SA and poly(I:C) had no significant effect. These findings highlight the potential role of TLR expression in the context of CSFV infection. PMID:29568891

  9. The molecular basis for water taste in Drosophila

    PubMed Central

    Cameron, Peter; Hiroi, Makoto; Ngai, John; Scott, Kristin

    2010-01-01

    The detection of water and the regulation of water intake are essential for animals to maintain proper osmotic homeostasis1. Drosophila and other insects have gustatory sensory neurons that mediate the recognition of external water sources2-4, but little is known about the underlying molecular mechanism for water taste detection. Here, we identify a member of the Degenerin/Epithelial Sodium Channel family5, ppk28, as an osmosensitive ion channel that mediates the cellular and behavioral response to water. We use molecular, cellular, calcium imaging and electrophysiological approaches to show that ppk28 is expressed in water-sensing neurons and loss of ppk28 abolishes water sensitivity. Moreover, ectopic expression of ppk28 confers water sensitivity to bitter-sensing gustatory neurons in the fly and sensitivity to hypo-osmotic solutions when expressed in heterologous cells. These studies link an osmosensitive ion channel to water taste detection and drinking behavior, providing the framework for examining the molecular basis for water detection in other animals. PMID:20364123

  10. Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease

    DTIC Science & Technology

    2012-08-01

    1 (SQSTM1/p62) gene have been widely identified in PDB patients. We previously detected expression of measles virus nucleocapsid (MVNP) transcripts...high bone turnover in PDB. 15. SUBJECT TERMS Paget’s Disease, measles virus nucleocapsid, sequestosome1 , osteoclast, osteoclast inhibitory peptide...detected expression of measles virus nucleocapsid (MVNP) transcripts in osteoclasts from patients with PDB. Also, we have shown that MVNP gene

  11. Preclinical Evaluation of Serine/Threonine Kinase Inhibitors Against Prostate Cancer Metastases

    DTIC Science & Technology

    2008-11-01

    lung adenocarcinoma A549. The hepatocarcinoma HepG2 did not express detectable PMEPA1. When cells were treated with TGF-β for 24 hours, PMEPA1 mRNA... hepatocarcinoma HepG2 did not express detectable PMEPA1. When cells were treated with TGF-β for 24 hours, PMEPA1 mRNA was increased in most of the cells but

  12. Early Detection of Breast Cancer Using Molecular Beacons

    DTIC Science & Technology

    2008-01-01

    a molecular beacon (MB)-based approach for direct examination of gene expression in viable and fixed cells (2, 3). This objective of proposed study ...can be distinguished from normal cells (dark) (Figure 1) (2, 3, 8). Recently, a class of new fluorescent emitting nanoparticles, semiconductor ...morphological classification. This method may offer a simple and fast procedure to detect biomarker gene expression in clinical samples. Our study results

  13. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    PubMed Central

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O’Callaghan, Dennis J.

    2007-01-01

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5′untranslated region (UTR), a 285 base pair open reading frame (ORF) and a poly adenylation (A) signal (Holden et al., 1992 DNA Seq 3, 143-52). Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed. PMID:17306852

  14. A microRNA detection system based on padlock probes and rolling circle amplification

    PubMed Central

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-01-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321

  15. A microRNA detection system based on padlock probes and rolling circle amplification.

    PubMed

    Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen

    2006-09-01

    The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.

  16. Development of antibodies against the rat brain somatostatin receptor.

    PubMed

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  17. [Hepatocyte apoptosis and mitochondrial permeability transition pore opening in rats with nonalcoholic fatty liver].

    PubMed

    Kang, Min; Li, Sen; Zhong, Dejun; Yang, Zhimin; Li, Peng

    2013-07-01

    To investigate the role of hepatocyte apoptosis and mitochondrial permeability transition pore (MPTP) opening in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thirty male SD rats were randomized into normal diet group and high-fat diet group. At 4, 8 and 12 week of feeding. The hepatocyte apoptosis index (AI) was measured using flow cytometry, and MPTP opening was evaluated with ultraviolet spectrophotometry. Immunohistochemistry was employed to detect hepatic expressions of Bcl-2 and Bax, and Western blotting was used to detect Bax protein expression changes. High-fat feeding resulted in significantly increased hepatocyte AI at 4-12 weeks and gradually increased MPTP opening. In the high-fat diet group, hepatic Bcl-2 expression was detected but the positive cell number remained stable, whereas Bax-positive cell number increased steadily with time with progressively increased intensity of Bax protein expression, resulting in gradually decreased Bcl-2/Bax ratio. Hepatocyte apoptosis occurs in the rat model of NAFLD in close correlation with mitochondrial damage. Increased MPTP opening as the result of increased Bax expression and aberrant Bcl-2/Bax ratio is an important mechanism of hepatocyte mitochondrial damage in NAFLD.

  18. Effect of human papilloma virus expression on clinical course of laryngeal papilloma.

    PubMed

    Kim, Kwang Moon; Cho, Nam Hoon; Choi, Hong Shik; Kim, Young Ho; Byeon, Hyung Kwon; Min, Hyun Jin; Kim, Se-Heon

    2008-10-01

    Our observations suggest that human papilloma virus (HPV) 6/11 is the main causative agent of laryngeal papilloma and that detection of active HPV DNA expression may be helpful in identifying patients with aggressive recurrent laryngeal papilloma. HPV is assumed to be the main causative agent of this disease. We investigated the expression of the entire genotype of HPV in cases of laryngeal papilloma and correlated their expression with the clinical course of the disease. Seventy cases of laryngeal papilloma were evaluated for the presence of the HPV genome by in situ hybridization (ISH) using wide-spectrum HPV DNA probe. Specific types of HPV infection were determined by DNA ISH using type-specific HPV DNA probes (HPV 6, 11, 16, 18, 31, 33). Separate analyses were conducted comparing viral types, frequency of recurrences and duration of disease-free periods. We detected HPV DNA in 40 of the 70 laryngeal papilloma cases (57%). In particular, HPV DNA was detected in 75% of the juvenile types. There were significant associations between HPV and laryngeal papilloma (p<0.01). Among the HPV-positive cases, major specific types were HPV 6/11 (97%). Significant associations were also noted between viral expression and clinical course.

  19. Urine TREM-1 as a marker of urinary tract infection in children.

    PubMed

    Sierra-Diaz, Erick; Bravo Cuéllar, Alejandro; Ortiz Lazareno, Pablo Cesar; García Gutiérrez, Mariana; Georgina, Hernandez Flores; Anaya Prado, Roberto

    2017-04-01

    Objective Triggering receptor expressed on myeloid cells (TREM)-1 is a receptor that is thought to improve recognition of patients with true infection. In this study, we investigated whether Triggering receptor expressed on myeloid cells (TREM-1) is present in urine samples from children with urinary tract infection (UTI) and in samples from healthy children. Methods A total of 128 samples met the inclusion criteria for the study. Urine samples were processed for culture and urinalysis as a regular protocol for patients with UTI. Samples were classified according to culture and urinalysis results. TREM-1 protein expression was detected with flow cytometry and sTREM-1 was assessed by ELISA. Results Flow cytometry showed detectable expression of TREM-1 in 100% of samples, UTI and non-UTI groups ( p < 0.001). Mean fluorescence intensity of TREM-1 was different between the groups ( p < 0.001). Levels of sTREM-1 were detected in patients with UTI, but not in non-UTI patients. Conclusions All of our patients (healthy and diseased) showed TREM-1 expression. However, TREM-1 levels in patients with UTI tend to be higher and are associated with increased neutrophils and cytokine activity induced by bacteria.

  20. Urine TREM-1 as a marker of urinary tract infection in children

    PubMed Central

    Sierra-Diaz, Erick; Ortiz Lazareno, Pablo Cesar; García Gutiérrez, Mariana; Georgina, Hernandez Flores; Anaya Prado, Roberto

    2017-01-01

    Objective Triggering receptor expressed on myeloid cells (TREM)-1 is a receptor that is thought to improve recognition of patients with true infection. In this study, we investigated whether Triggering receptor expressed on myeloid cells (TREM-1) is present in urine samples from children with urinary tract infection (UTI) and in samples from healthy children. Methods A total of 128 samples met the inclusion criteria for the study. Urine samples were processed for culture and urinalysis as a regular protocol for patients with UTI. Samples were classified according to culture and urinalysis results. TREM-1 protein expression was detected with flow cytometry and sTREM-1 was assessed by ELISA. Results Flow cytometry showed detectable expression of TREM-1 in 100% of samples, UTI and non-UTI groups (p < 0.001). Mean fluorescence intensity of TREM-1 was different between the groups (p < 0.001). Levels of sTREM-1 were detected in patients with UTI, but not in non-UTI patients. Conclusions All of our patients (healthy and diseased) showed TREM-1 expression. However, TREM-1 levels in patients with UTI tend to be higher and are associated with increased neutrophils and cytokine activity induced by bacteria. PMID:28367708

  1. KCNQ and KCNE Potassium Channel Subunit Expression in Bovine Retinal Pigment Epithelium

    PubMed Central

    Zhang, Xiaoming; Hughes, Bret A.

    2013-01-01

    Human, monkey, and bovine retinal pigment epithelial (RPE) cells exhibit an M-type K+ current, which in many other cell types is mediated by channels composed of KCNQ α-subunits and KCNE auxiliary subunits. Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 in the monkey RPE. Here, we investigated the expression of KCNQ and KCNE subunits in native bovine RPE. RT-PCR analysis revealed the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in the RPE, but, in Western blot analysis of RPE plasma membranes, only KCNQ5 was detected. Among the five members of the KCNE gene family, transcripts for KCNE1, KCNE2, KCNE3, and KCNE4 were detected in bovine RPE, but only KCNE1 and KCNE2 proteins were detected. Immunohistochemistry of frozen bovine retinal sections revealed KCNE1 expression near the apical and basal membranes of the RPE, in cone outer segments, in the outer nuclear layer, and throughout the inner retina. The localization of KCNE1 in the RPE basal membrane, where KCNQ5 was previously found to be present, suggests that this β-subunit may contribute to M-type K+ channels in this membrane. PMID:24416770

  2. Effect of cytomegalovirus and Epstein-Barr virus replication on intestinal mucosal gene expression and microbiome composition of HIV-infected and uninfected individuals.

    PubMed

    Gianella, Sara; Chaillon, Antoine; Mutlu, Ece A; Engen, Phillip A; Voigt, Robin M; Keshavarzian, Ali; Losurdo, John; Chakradeo, Prachi; Lada, Steven M; Nakazawa, Masato; Landay, Alan L

    2017-09-24

    HIV-infection is associated with dramatic changes in the intestinal mucosa. The impact of other viral pathogens is unclear. One hundred and eight (108) biopsies from left and right colon (n = 79) and terminal ileum (n = 29) were collected from 19 HIV-infected and 22 HIV-uninfected participants. Levels of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) DNA were measured by droplet digital PCR. Mucosal gene expression was measured via multiplex-assay. Microbiome analysis was performed using bacterial 16S-rDNA-pyrosequencing. The effect of CMV and EBV replication on the microbiome composition and mRNA-expression of selected cytokines (IL-6, IFN-γ, IL-1β, CCL2, IL-8, and IFN-β1) was evaluated. Overall, CMV and EBV were detected in at least one intestinal site in 60.5 and 78.9% of participants, respectively. HIV-infected individuals demonstrated less detectable CMV (P = 0.04); CMV was more frequently detected in terminal ileum than colon (P = 0.04). Detectable EBV was more frequent among HIV-infected (P = 0.05) without differences by intestinal site. The number of operational taxonomic units did not differ by CMV or EBV detection status. Among HIV-infected participants, higher CMV was only associated with lower relative abundance of Actinobacteria in the ileum (P = 0.03). Presence of CMV was associated with upregulated expression of all selected cytokines in the ileum (all P = 0.02) and higher expression of IL-8 and IFN-β1 in the colon (all P < 0.05) of HIV-uninfected participants, but not among HIV-infected. EBV had no effect on cytokine expression or microbiome composition whatsoever. These results illustrate a complex interplay among HIV-infection, intestinal CMV replication, and mucosal gut environment, and highlight a possible modulatory effect of CMV on the microbial and immune homeostasis.

  3. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  4. Facial expression system on video using widrow hoff

    NASA Astrophysics Data System (ADS)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  5. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas.

    PubMed

    Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.

  6. Localization of complement factor H gene expression and protein distribution in the mouse outer retina

    PubMed Central

    Smit-McBride, Zeljka; Oltjen, Sharon L.; Radu, Roxana A.; Estep, Jason; Nguyen, Anthony T.; Gong, Qizhi

    2015-01-01

    Purpose To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC. PMID:25684976

  7. Molecular elements of pheromone detection in the female moth, Heliothis virescens.

    PubMed

    Zielonka, Monika; Breer, Heinz; Krieger, Jürgen

    2018-06-01

    Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female-released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)-9-tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the "sensory neuron membrane protein 1" (SNMP1) and were associated with supporting cells expressing the pheromone-binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1-expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1-neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758).

    PubMed

    Cecchini, Stefano; Paciolla, Mariateresa; Biffali, Elio; Borra, Marco; Ursini, Matilde V; Lioi, Maria B

    2013-09-01

    The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Recombinant expression of the alternate reading frame protein (ARFP) of hepatitis C virus genotype 4a (HCV-4a) and detection of ARFP and anti-ARFP antibodies in HCV-infected patients.

    PubMed

    Shehat, Michael G; Bahey-El-Din, Mohammed; Kassem, Mervat A; Farghaly, Faten A; Abdul-Rahman, Medhat H; Fanaki, Nourhan H

    2015-08-01

    HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.

  10. Greater perceptual sensitivity to happy facial expression.

    PubMed

    Maher, Stephen; Ekstrom, Tor; Chen, Yue

    2014-01-01

    Perception of subtle facial expressions is essential for social functioning; yet it is unclear if human perceptual sensitivities differ in detecting varying types of facial emotions. Evidence diverges as to whether salient negative versus positive emotions (such as sadness versus happiness) are preferentially processed. Here, we measured perceptual thresholds for the detection of four types of emotion in faces--happiness, fear, anger, and sadness--using psychophysical methods. We also evaluated the association of the perceptual performances with facial morphological changes between neutral and respective emotion types. Human observers were highly sensitive to happiness compared with the other emotional expressions. Further, this heightened perceptual sensitivity to happy expressions can be attributed largely to the emotion-induced morphological change of a particular facial feature (end-lip raise).

  11. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  12. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells

    PubMed Central

    Soares, Ricardo J; Maglieri, Giulia; Gutschner, Tony; Lund, Anders H; Nielsen, Boye S

    2018-01-01

    Abstract Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system. PMID:29059327

  13. Searching for emotion or race: task-irrelevant facial cues have asymmetrical effects.

    PubMed

    Lipp, Ottmar V; Craig, Belinda M; Frost, Mareka J; Terry, Deborah J; Smith, Joanne R

    2014-01-01

    Facial cues of threat such as anger and other race membership are detected preferentially in visual search tasks. However, it remains unclear whether these facial cues interact in visual search. If both cues equally facilitate search, a symmetrical interaction would be predicted; anger cues should facilitate detection of other race faces and cues of other race membership should facilitate detection of anger. Past research investigating this race by emotional expression interaction in categorisation tasks revealed an asymmetrical interaction. This suggests that cues of other race membership may facilitate the detection of angry faces but not vice versa. Utilising the same stimuli and procedures across two search tasks, participants were asked to search for targets defined by either race or emotional expression. Contrary to the results revealed in the categorisation paradigm, cues of anger facilitated detection of other race faces whereas differences in race did not differentially influence detection of emotion targets.

  14. In Situ Detection and Quantification of AR-V7, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells.

    PubMed

    El-Heliebi, Amin; Hille, Claudia; Laxman, Navya; Svedlund, Jessica; Haudum, Christoph; Ercan, Erkan; Kroneis, Thomas; Chen, Shukun; Smolle, Maria; Rossmann, Christopher; Krzywkowski, Tomasz; Ahlford, Annika; Darai, Evangelia; von Amsberg, Gunhild; Alsdorf, Winfried; König, Frank; Löhr, Matthias; de Kruijff, Inge; Riethdorf, Sabine; Gorges, Tobias M; Pantel, Klaus; Bauernhofer, Thomas; Nilsson, Mats; Sedlmayr, Peter

    2018-03-01

    Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices. © 2017 American Association for Clinical Chemistry.

  15. [Promoting effect of cyclin D1 overexpression on proliferation and epithelial mesenchymal transition of cervical squamous cell carcinoma SiHa cells].

    PubMed

    Wang, P; Liu, S; Cheng, B; Wu, X Z; Ding, S S; Xu, L; Liu, Y; Duan, L; Sun, S Z

    2017-03-08

    Objective: To study effects of cyclin D1 overexpression on the proliferation and differentiation of cervical squamous cell carcinoma SiHa cells and to investigate related signaling molecules. Methods: Primers were designed to amplify the full length of cyclin D1 gene and cyclin D1 gene was amplified by PCR for constructing pcDNA3.1 plasmid vector. The construct was then transfected into SiHa cells, and the cells with stable overexpression of cyclin D1 were established, cyclin D1 gene and protein expression were detected by RT-PCR and Western blot, respectively. Cell growth curve was documented by MTT assay. CK7, E-cadherin, vimentin, Snail gene and protein expression in transfected cells were detected by RT-PCR and Western blot. RT-PCR was used to detect the mRNA expression of proliferation and differentiation-related genes like CDK4, CDK2, p21, p27, cyclin E, Rb, E2F, E6/E7 and Ki-67. After synchronization of cells, RT-PCR was used to detect of cyclin D1 and p21 mRNA expression at different time points of the cell cycle. Results: The G-3 cells with cyclin D1 overexpression were successfully established. The growth curve and Ki-67 mRNA expression accelerated in G-3 cells.Vimentin and Snail expression significantly increased at both gene and protein levels, while E-cadherin, CK7 gene and protein expression significantly decreased, indicating epithelial mesenchymal transitionoccurred in G-3 cells.Meanwhile, mRNA expression of cyclin D1, CDK4, CDK2, p21, p27, cyclin E, E2F and Rb increased, while E6/E7 and p16 showed no significant change. The expression trends of p21 and cyclin D1 were almost identical with fluctuation at different time points in the cell cycle. Conclusions: Overexpression of cyclin D1 induced by gene transfection promotes proliferation and epithelial mesenchymal transition in SiHa cells.The process is accompanied by up-regulation of CDK4, CDK2, p21, p27 and cyclin E genes.p21 expression increases synchronously with cyclin D1, suggesting a regulatory role in epithelial mesenchymal transition by affecting expression of vimentin in G-3 cells.

  16. Detection of pathogenic organisms in food, water, and body fluids

    NASA Astrophysics Data System (ADS)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  17. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

  18. Embryonic Wnt gene expression in the nitrofen-induced hypoplastic lung using 3-dimensional imaging.

    PubMed

    Takayasu, Hajime; Murphy, Paula; Sato, Hideaki; Doi, Takashi; Puri, Prem

    2010-11-01

    Wnts have been reported to play a key role in the lung morphogenesis. We have previously reported that pulmonary gene expression of Wnt2 and Wnt7b is downregulated on day 15 of gestation in the nitrofen-induced congenital diaphragmatic hernia (CDH) model. However, the distribution pattern of gene expression of Wnts in the very early lung development remains unclear. Optical projection tomography (OPT) is a new technique for 3-dimensional imaging of small developing organs and gene distribution combined with whole-mount in situ hybridization. We designed this study to investigate the distribution pattern of Wnts gene expression in lung buds of nitrofen-induced CDH model using OPT. Embryos from normal and nitrofen-treated dams were harvested on embryonic day 10 (E10), and divided into controls and nitrofen group, respectively. Whole-mount in situ hybridization to detect transcripts of Wnt2 and Wnt7b was performed, analyzed, and reconstructed using OPT. The expression of Wnt2 transcripts was detected in the lung bud mesenchyme and markedly diminished in nitrofen group compared to controls, whereas Wnt7b transcripts were expressed in the mesoderm of bronchi and the lung bud with no detectable difference between 2 groups. We provide evidence for the first time that Wnt2 expression is downregulated at lung bud stage in the nitrofen model. Optical projection tomography is potentially a useful approach to visualize both gene expression and morphology during very early stages of lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer.

    PubMed

    He, Yuyu; Zhao, Xianda; Gao, Jun; Fan, Lifang; Yang, Guifang; Cho, William Chi-Shing; Chen, Honglei

    2012-10-24

    Caveolin-1 (Cav-1) expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts) are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC) and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV)-associated GC (EBVaGC) is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs)-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029) that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032) and was positively associated with Cav-1 expression (r = 0.432, p < 0.001). EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis.

  20. miR-152 regulated glioma cell proliferation and apoptosis via Runx2 mediated by DNMT1.

    PubMed

    Zhang, Peng; Sun, Hongwei; Yang, Bo; Luo, Wenzheng; Liu, Zengjin; Wang, Junkuan; Zuo, Yuchao

    2017-08-01

    Aberrant DNA methylation is associated with tumor onset and progression. Study has verified that the DNA methylation of miR-152 was mediated in many tumors, but whether it involved in glioblastomas was still unclear. This study enrolled 20 patients with glioma to analyze the expression pattern of miR-152. Real-time PCR and western blot were used to detect the mRNA or protein expression level, respectively. The relationship between miR-152 and runx2 was detected by Luciferase reporter assay. The methylation level of miR-152 was determined by methylation-specific PCR. Cell proliferation and apoptosis were detected by MTT and Annexin-FITC/PI assay. The expression of miR-152 was down-regulated while the expression of DNMT1 was up-regulated in both glioma tissue and cell lines. MiR-152 was hypermethylated and its expression was negatively correlated with DNMT in glioma cell lines. DNMT1 knockdown promoted the expression of miR-152, however, DNMT1 overexpression suppressed the expression of miR-152. MiR-152 overexpression promoted glioma cell apoptosis while miR-152 knockdown promoted cell proliferation. MiR-152 targets Runx2 to regulate its expression, Runx2 overexpression abolished the effects of miR-152 overexpression. MiR-152 regulated cell proliferation and apoptosis of glioma mediated by Runx2, while the mechanism of down regulated miR-152 in glioma tissues and cells was its hypermethylation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

Top